DM7417 Hex Buffers with High Voltage Open-Collector Outputs August 1986 FAIRCHILD Revised February 2000 SEMICONDUCTOR DM7417 Hex Buffers with High Voltage Open-Collector Outputs **Pull-Up Resistor Equations General Description** This device contains six independent gates each of which $\mathsf{R}_{MAX} = \frac{\mathsf{V}_{O}\left(\mathsf{Min}\right) - \mathsf{V}_{OH}}{\mathsf{N}_{1}\left(\mathsf{I}_{OH}\right) + \mathsf{N}_{2}\left(\mathsf{I}_{|H}\right)}$ performs a buffer function. The open-collector outputs require external pull-up resistors for proper logical operation. $\mathsf{R}_{\mathsf{MIN}} = \frac{\mathsf{V}_{\mathsf{O}}\left(\mathsf{Max}\right) - \mathsf{V}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{OL}} - \mathsf{N}_{\mathsf{3}}\left(\mathsf{I}_{\mathsf{IL}}\right)}$ N_1 (I_{OH}) = total maximum output high current Where: for all outputs tied to pull-up resistor N_2 (I_{IH}) = total maximum input high current for all inputs tied to pull-up resistor N_3 (I_{IL}) = total maximum input low current for all inputs tied to pull-up resistor **Ordering Code:** Order Number Package Description Package Number DM7417M M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow DM7417N N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. **Connection Diagram Function Table** $\mathbf{Y} = \mathbf{A}$ Output Input Α L L н Н H = HIGH Logic Level L = LOW Logic Level с N O

www.fairchildsemi.com

DM7417

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	5.5V
Output Voltage	15V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

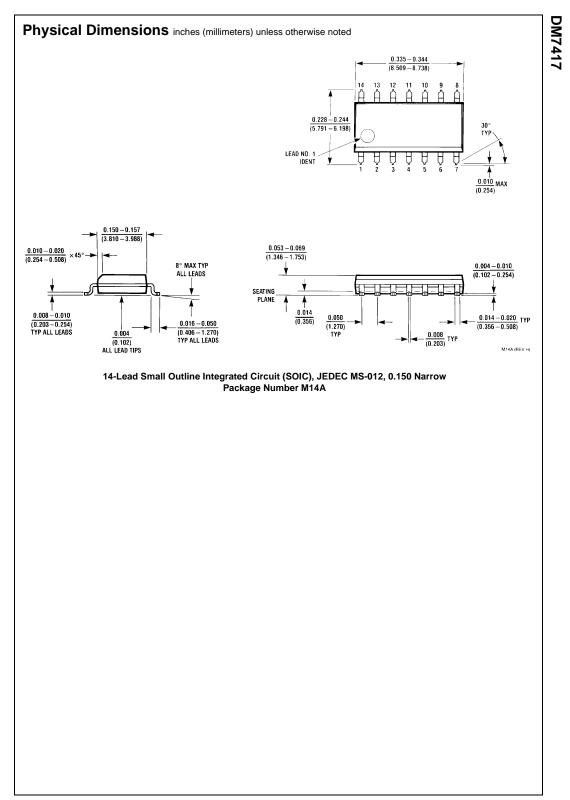
Recommended Operating Conditions

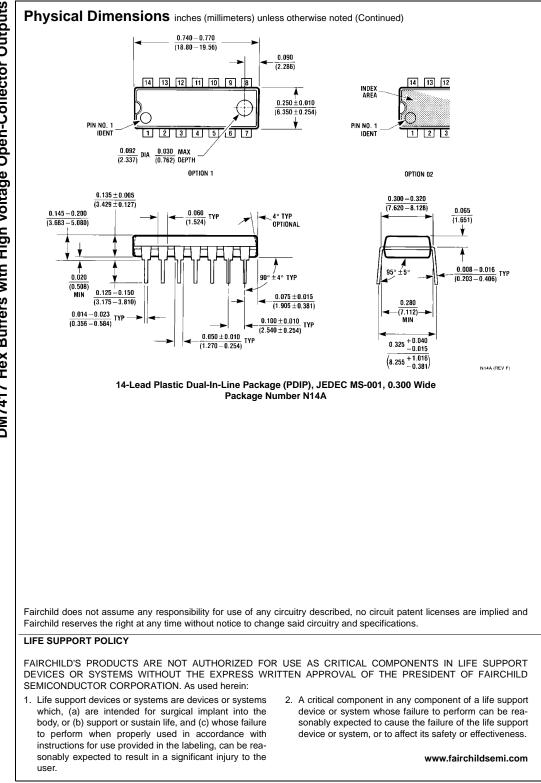
Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
V _{OH}	HIGH Level Output Voltage			15	V
I _{OL}	LOW Level Output Current			40	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 mA$			-1.5	V
I _{CEX}	HIGH Level	$V_{CC} = Min, V_O = 15V$			250	μA
	Output Current	$V_{IH} = Min$			230	μΛ
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.7	
	Output Voltage	V _{IL} = Max			0.7	V
		$I_{OL} = 16 \text{ mA}, V_{CC} = \text{Min}$			0.4	1
I	Input Current @ Max	$V_{CC} = Max, V_I = 5.5V$			1	mA
	Input Voltage					
IIH	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.4V$			40	μΑ
IIL	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
I _{CCH}	Supply Current with Outputs HIGH	V _{CC} = Max		29	41	mA
I _{CCL}	Supply Current with Outputs LOW	V _{CC} = Max		21	30	mA


Note 2: All typicals are at $V_{CC}=5V,\,T_A=25^\circ C.$


Switching Characteristics

at $V_{CC} = 5V$ and $T_{A} = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	C _L = 15 pF		10	ns
	LOW-to-HIGH Level Output	$R_L = 110\Omega$			
t _{PHL}	Propagation Delay Time			30	5
	HIGH-to-LOW Level Output			30	ns

www.fairchildsemi.com

www.fairchildsemi.com