用户指南

Evolver

Microsoft Excel 遗传算法 求解程序

第 5.7 版 2010 年 7 月

Palisade Corporation 798 Cascadilla St. Ithaca, NY 14850 USA +1-607-277-8000 +1-607-277-8001(传真) http://www.palisade.com(网站) sales@palisade.com(电子邮件)

版权通告

版权所有 © 2010, Palisade Corporation。

商标确认

Microsoft、Excel 和 Windows 是 Microsoft Corporation 的注册商标。 IBM 是 International Business Machines, Inc. 的注册商标。 Palisade、Evolver、TopRank、BestFit 和 RISKview 是 Palisade Corporation 的注册商标。 RISK 是 Tonka Corporation 分部 Parker Brothers 的商标,须获得许可才能使用。

第一章:简介	v
简介	3
安装说明	7
第二章:背景知识	11
什么是 Evolver?	13
第三章:Evolver 分步介绍	19
简介	21
Evolver 教程	23
第四章: 应用示例	41
简介	43
广告选择	45
按字母顺序排列	47
任务分配	49
面包厂	51
预算分配	53
化学平衡	55
课程安排程序	57

代码段组合程序	59
达科他:具有约束条件的行程安排	63
加工车间日程安排	65
无线电塔位置	67
投资组合平衡	69
投资组合	71
发电站	73
采购	75
推销员问题	77
太空导航员	79
交易者	81
变压器	83
交通	85
第五章:Evolver 参考指南	87
模型定义命令	89
"最优化设置"命令	107
"最优化设置"命令 "开始最优化"命令	107 112
"最优化设置"命令 "开始最优化"命令 "实用工具"命令	107 112 113
"最优化设置"命令 "开始最优化"命令 "实用工具"命令 Evolver 观察器	107 112 113 117
"最优化设置"命令 "开始最优化"命令 "实用工具"命令 Evolver 观察器 第六章:最优化	107 112 113 117 127
"最优化设置"命令 "开始最优化"命令 "实用工具"命令 Evolver 观察器 第六章:最优化 最优化方法	107 112 113 117 127 129

问题类型	139
第七章:遗传算法	143
简介	145
历史	145
生物示例	147
数字示例	149
第八章:Evolver 附加说明	153
添加约束条件	155
提高速度	162
如何执行 Evolver 的最优化	164
附录 A:Evolver 自动化	167
VBA	167
附录 B:故障排除/问与答	169
附录 C:其他资源	171
其他学习资源	171
词汇	177
索引	183

简介	3
开始之前	3
软件包内装物品	
本版本简介	
在您的操作环境中使用	4
如果需要获得帮助	4
打电话之前	4
与 Palisade 联系	5
学生版	6
Evolver 系统要求	6
安装说明	7
一般安装说明	7
从计算机上移除 Evolver	7
DecisionTools Suite	7
设置 Evolver 图标或快捷方式	8
启动时的宏安全警告消息	8
其他有关 Evolver 的信息	
Evolver Readme	
Evolver 教程	
坐 习 Evolver	10
子刁 LV01VE1	10

简介

Evolver 是迄今为止速度最快、最先进的基于遗传算法的商用优化程序。 通过应用功能强大的基于遗传算法的最优化方法, Evolver 能够找到标 准线性和非线性优化程序"无法解决"问题的优化解法。Evovler 有专 业版和正式版两种版本,允许您选择具有您所需功能的优化程序。

您正在阅读的《Evolver 用户指南》提供 Evolver 简介、Evolver 工作 原理以及 Evolver 的独特遗传算法技术的几个应用示例。本套手册也 可以用作完整索引的参考指南,其中包含有关每种 Evolver 功能的说 明和实例。

开始之前

在安装和开始使用 Evolver 之前,请确保您的 Evolver 软件包包括所有要求的物品,并确定您的计算机是否符合适当用途的最低要求。

软件包内装物品

Evolver 可以单独购买,也可以与 DecisionTools Suite 专业版和正式版 一起购买。Evolver CD-ROM 包含 Evolver Excel 插件、几个 Evolver 示例,以及完整索引的 Evolver 在线帮助系统。DecisionTools Suite 专 业版和正式版包括以上所有项目,以及附加应用程序。

本版本简介

本 Evolver 版本可以作为 Microsoft Excel 2000 或更高版本的 32 位程序 安装。

在您的操作环境中使用

本《用户指南》假设您掌握了 Windows 操作系统和 Excel 的一般知识。特别是以下知识:

- ◆ 熟悉自己的计算机和鼠标的用法。
- ◆ 熟悉图标、单击、双击、菜单、窗口、命令和目标等术语。
- ◆ 理解目录结构和文件命名之类的基本概念。

如果需要获得帮助

我们向拥有有效维护计划的所有 Evolver 注册用户免费提供技术支持, 或按照每次事件收取服务费。要确保您是 Evolver 的注册用户,

请在以下网站注册: http://www.palisade.com/support/register.asp。

如果通过电话与我们联系,请准备好您的序列号和《用户指南》。如果您 坐在计算机前并作好准备,这将有助于我们为您提供更好的技术支持。

打电话之前

在与技术支持部联系之前,请检查以下核对清单:

- 是否已经查阅了在线帮助?
- 是否已经查阅本《用户指南》,并查看了联机多媒体教程?
- 是否已经阅读 README.WRI 文件? 该文件包含可能未纳入手册的 有关 Evolver 的最新信息。
- 是否是能够始终重复出现的问题?是否是能够在另一台计算机或不 同型号的计算机上重复出现的问题?
- 是否已经在互联网上查阅了我们的网站?我们的网址为: http://www.palisade.com。我们的网站还在"技术支持"部分中 提供最新常见问题解答(可搜索的技术支持问答数据库)和Evolver 补丁。我们建议您定期访问我们的网站,了解有关 Evolver 以及其 他 Palisade 软件的最新信息。

与 Palisade 联系

Palisade Corporation 欢迎您提出有关 Evolver 的问题、评论意见或建议。请用以下任何一种方法与我们的技术支持部人员联系:

- *请发送电子邮件至 support@palisade.com*。
- 请在美国东部时间上午9点至下午5点(星期一至星期五)致电
 +1-607-277-8000,并按照提示接通技术支持部。
- 请发送传真至+1-607-277-8001。
- 请寄邮件至:

Technical Support Palisade Corporation 798 Cascadilla St. Ithaca, NY 14850 USA

如果您希望与 Palisade 欧洲分部联系:

- *请发送电子邮件至 support@palisade-europe.com*。
- 请致电+44 1895 425050 (英国)。
- 请发送传真至+44 1895 425051 (英国)。
- 请寄邮件至:

Palisade Europe 31 The Green West Drayton Middlesex UB7 7PN United Kingdom

如果您希望与 Palisade 亚太分部联系:

- *请发送电子邮件至 support@palisade.com.au*。
- 请致电+61292525922(澳大利亚)。
- 请发送传真至+61292522820(澳大利亚)。
- 请寄邮件至:

Palisade Asia-Pacific Pty Limited Suite 404, L4, 20 Loftus Street Sydney NSW 2000 AUSTRALIA

无论您用何种方法与我们联系,请提供产品名称、版本和序列号。请在 Excel 的 Evolver 菜单上选择"帮助"命令,查找确切的版本。 不为 Evolver 学生版提供技术支持。如果需要获得帮助,我们建议您采取以下替代方法:

- ◆ 向您的教授或助教咨询。
- ◆ 登录以下网站查找常见问题的回答: http://www.palisade.com。
- ◆ 通过电子邮件或传真与我们的技术支持部联系。

Evolver 系统要求

Evolver 系统要求包括:

- 配备硬盘的 Pentium 个人计算机或速度更快的个人计算机。
- Microsoft Windows 2000 SP4 或更高版本。
- Microsoft Excel 2000 或更高版本。

安装说明

Evolver 是 Microsoft Excel 的插件程序。通过在 Excel 菜单栏上添加命 令, Evolver 可以增强电子表格程序的功能。

一般安装说明

安装程序会将 Evolver 系统文件复制到您指定的硬盘目录中去。要在 Windows 2000 或更高版本的系统上运行安装程序:

- 将 Evolver 或 DecisionTools Suite 专业版或正式版 CD-ROM 插入您 的 CD-ROM 驱动器中
- 2) 依次单击"开始"按钮、"设置"和"控制面板"
- 3) 双击"添加/删除程序"图标
- 4) 在"安装/卸载"选项卡上,单击"安装"按钮
- 5) 按照屏幕上显示的"安装"说明进行安装

如果您在安装 Evolver 时遇到问题,请确认尝试安装 Evolver 的驱动器 是否有足够的空间。释放足够的空间后,尝试重新运行安装程序。

从计算机上移除如果您希望从计算机上移除 Evolver (或 DecisionTools Suite),请使Evolver用控制面板的"添加/删除程序"实用程序,并选择 Evolver 或 DecisionToolsSuite 条目。

DecisionTools Suite

Evolver 可以与 Palisade Corporation 提供的一套风险与决策分析产品 DecisionTools Suite 配合使用。Evolver 的默认安装程序会将 Evolver 放入 "Program Files\Palisade" 主目录的一个子目录内。这与通常将 Excel 安装至 "Microsoft Office" 目录的一个子目录非常相似。

"Program Files\Palisade"目录的一个子目录将成为 Evolver 目录 (默认名称为 Evolver5)。该目录包含 Evolver 插件程序文件 (EVOLVER.XLA)、模型示例以及运行 Evolver 所需的其他文件。 "Program Files\Palisade"的另一个子目录是"SYSTEM"目录,该 目录包含 DecisionTools Suite 中的每个程序所需的文件,包括普通帮 助文件和程序库。

设置 Evolver 图标或快捷方式

在 Windows 中,安装程序会自动在任务栏的"程序"菜单中创建 Evolver 命令。但是,如果在安装过程中出现问题,或者希望以后再以 手动方式设置,请遵循以下说明:

- 1) 单击"开始"按钮,然后将光标指向"设置"。
- 2) 单击"任务栏",然后单击"开始菜单"选项卡。
- 3) 单击"添加",然后单击"浏览"。
- 4) 找到EVOLVER.EXE 文件,并双击此文件。
- 5) 单击"下一步",然后双击您希望显示程序的菜单。
- 6) 键入名称"Evolver", 然后单击"完成"。

启动时的宏安全警告消息

Microsoft Office 提供几种不同的安全设置,以防不受欢迎的或恶意的宏 在 Office 应用程序中运行。除非使用最低安全设置,否则在每次尝试载 入带有宏的文件时,系统都会显示一条警告消息。为了防止在每次运行 Palisade 插件时显示此消息,Palisade 以数字方式在所提供的插件文件 中签名。因此,一旦将 Palisade Corporation 指定为受信任的发布者, 您就可以使用任何 Palisade 插件,而不会再显示警告消息。要进行此操 作:

• 在使用 Evolver 时,如果显示"安全报警"对话框(例如以下对话 框),请单击信任来自此发布者的所有文档。

Ticrosoft Office 安全选项 ? 🔀
🥪 安全警告 - 宏和 ActiveX
 宏和 ActiveX 已禁用了宏以及一个或多个 ActiveX 控件。此活动内容可能包含病毒或其他安全 隐患。如果不信任此文件的来源,请不要启用此内容。 注意:此数字签名有效,但您尚未选择信任签署此签名的发布者。 其他信息 文件路径: C:\olver5\Examples\Chinese (Simplified)\Macro Control.xls 签名 签署者: Palisade Corporation 证书到期日期: 2012-2-18 证书颁发机构: VeriSign Class 3 Code Signing 2009-2 CA 显示签名详细信息
 ● 有助于保护我避免未知内容风险(推荐)(£) ○ 启用此内容(2) ○ 信任来自此发布者的所有文档
打开信任中心 确定 取消

其他有关 Evolver 的信息

用户可在以下来源中查找其他有关 Evolver 的信息:

- **Evolver** *Readme* 该文件包含 Evolver 的简单总结,以及有关您的软件最新版本的任何最新新闻或信息。要查看 Readme 文件,请选择 Windows "开始"菜单/ "程序"/"Palisade DecisionTools"/"Readmes",然后单击 "Evolver 5.7 - Readme"。在使用 Evolver 之前阅读该文件会有帮助。
- **Evolver 教程** Evolver 联机教程向新用户提供有关 Evolver 和遗传算法的简介。观看 该演示只需几分钟时间。请参见以下"学习 Evolver"一节中有关如何 访问教程的信息。

学习 Evolver

熟悉 Evolver 的最快方法是使用 Evolver 联机教程,业界专家会以电影格式引导您观看模型样本。本联机教程是有关 Evolver 主要功能的多媒体演示。

用户可以通过选择 Evolver "帮助" 菜单的 "入门教程" 命令,运行联 机教程。

第二章:背景知识

什么是 Evolver?	13
Evolver 工作原理?	14
遗传算法	14
什么是最优化?	15
为什么要建立 Excel 模型?	15
为什么要使用 Evolver?	16
无需猜测	16
更准确、更有意义	16
更灵活	
功能更强大	
更便于使用	
成本效益	18

什么是 Evolver?

Evolver 软件包向用户提供了一种查找几乎任何类型问题的优化解法的 简便方法。简言之, Evolver 可以确定生成所需输出项的最佳输入项。 您可以使用 Evolver 查找变量的适当搭配、顺序或组合, 使之生成最高 的利润、最低的风险或使用最少量的材料生产最多的商品。Evolver 最 常用作 Microsoft Excel 电子表格程序的插件; 用户在 Excel 中建立问题 的模型, 然后调用 Evolver 来解决问题。

您必须首先在 Excel 中建立问题的模型,然后在 Evolver 插件中描述问题。

Excel 为大多数用户创建问题的切合实际的模型提供所需的所有公式、函数、图形和宏功能。Evolver 提供描述模型中的不确定因素和要查找解法的接口,并提供查找解法的引擎。将 Excel 与 Evolver 结合,能够找到几乎所有可模型化问题的优化解法。

Evolver 工作原理?

Evolver 使用一套专有遗传算法搜索问题的优化解法。

遗传算法

Evolver 使用遗传算法查找您模型的最佳解法。遗传算法模拟达尔文的 自然选择法则,方法是创建一个允许某个问题的数百种可能解法相互竞 争的环境,最后只留下"最适合的"解法。如同生物进化一样,每个解 法可以通过"子孙"解法遗传良好的"基因",因此整个解法群体将继 续进化为更好的解法。

您可能已经注意到,在遗传算法中使用的术语通常与生物进化中使用的 术语相似。我们会谈到"交叉"功能如何帮助确定查找解法的重点、"突 变"率如何帮助使"基因群"多样化,并且我们会评估整个解法"群 体"或"组织"。要详细了解 Evolver 遗传算法的工作原理,请参见<u>第</u> 七章 – 遗传算法。

什么是最优化?

最优化是尝试查找可能有多种可能解法问题的最佳解法的过程。大多数 问题涉及众多根据特定公式和约束条件相互作用的变量。例如,一家公 司可能有三家制造厂,每家制造厂制造不同数量的不同商品。根据每家 制造厂生产每种商品的成本、每家制造厂将商品运送至每家商店的成本 和每家制造厂的限制条件,可以在充分满足当地零售店需求量的同时, 并且将运输成本降至最低的最优方法是什么?这就是最优化工具设计用 来回答的一种问题。

最优化经常用于确定 从特定资源产生最多产量的组合。

在上例中,每种建议的解法都有一份完整的列表,包括将哪家制造厂生产的哪些商品用什么卡车运送至哪一家零售店的信息。其他最优化问题的示例包括确定如何产生最高利润、最低成本、拯救最多的生命、电路中的噪音最低、在一组城市之间最短的路程或广告媒体采购最有效的组合。最优化问题的一个重要子集涉及日程安排,其目标可以包括在工作班次中最大程度提高效率或尽量减少在不同时间进行团体会议的日程冲突。要详细了解最优化,请参见<u>第六章 – 最优化</u>。

为什么要建立 Excel 模型?

为了提高任何系统的效率,我们必须首先了解系统的行为方式。这就是 我们需要构建系统工作模型的原因。在研究复杂系统时,模型是必要的 抽象概念,但为了使结果可以应用于"真实的世界",模型不能将变量 之间的因果关系过于简单化。更好的软件和功能日益强大的计算机允许 经济学家构建更切合实际的经济模型,允许科学家改善对化学反应的预 测,并且允许商界人士提高企业模型的灵敏度。

在过去几年内,计算机硬件和软件程序(例如 Microsoft Excel)取得了 巨大的发展,几乎任何拥有个人计算机的人都能为复杂系统创建切合实 际的模型。Excel的内建函数、宏功能和简洁直观的界面使初学者可以对 复杂的问题建立模型并进行分析。要详细了解模型的构建,请参见<u>第九</u> 章 – Evolver 附加说明。

为什么要使用 Evolver?

Evolver 的独特技术允许任何拥有个人计算机和 Windows Excel 的人享 受最优化的益处。在 Evolver 问世之前,希望提高效率或查找优化解法 的人有三个选择:猜测、使用功能低的问题求解软件或聘用最优化咨询 领域的专家设计和构建定制软件。以下是使用 Evolver 的几个最重要的 优势:

无需猜测

- 当您在处理大量相互作用的变量、尝试确定变量的最佳搭配、适当的顺 序和最佳组合时,您可能会倾向于只做出"有根据的猜测"。很多人认 为除猜测之外的任何类型的模型建立和分析都需要复杂的编程,或令人 困惑的统计或数学算法。一种良好的最优化解法可以节约数百万美元、 数千加仑稀缺燃料、几个月的时间等。现在,功能强大的台式计算机的 价格越来越便宜,并且 Excel 和 Evolver 之类的软件随手可得,因此我 们就没有理由再猜测解法,或以手工方法尝试多种选择方案,而浪费宝 贵的时间。
- **更准确、更有意义** Evolver 允许您使用全套 Excel 公式,甚至是宏来为任何系统创建更切合 实际的模型。在使用 Evolver 时,您无需因为所使用的算法无法处理现 实世界的复杂问题而"损害"模型的准确性。传统的"婴儿"求解程序 (统计和线性编程工具)强制用户对变量在问题中相互作用的方式做出 假设,从而迫使用户建立过于简单且不切实际的问题模型。当用户对系 统进行简化以使其可以使用这些求解程序时,生成的解法通常因为过于 抽象而没有实际价值。无论您尝试将模型设计得多么简单,任何涉及大量变量、非线性函数、查找表、假定陈述、数据库查询或随机元素的问 题都无法使用这些方法解决。

更灵活

有许多求解算法可以解决小型、简单的线性和非线性类型的问题,这些 算法包括登山、婴儿求解程序和其他数学方法。即使作为电子表格的插 件提供,这些一般用途的最优化工具只能进行数字最优化。对于更大型 或更复杂的问题,您也许能够编写具体的自定义算法,并获得良好的结 果,但可能需要进行很多研发工作。即使如此,每当您的模型变化时, 都需要对生成的程序进行修改。

Evolver 不仅能够处理数字问题,而且是世界上唯一一种能够解决大多数组合问题的商用程序。这些是必须将变量打乱(序列改变)或相互组合的问题。例如,为棒球队选择击球顺序是一个组合问题;这是一个交换队员在队列中位置的问题。复杂的日程安排问题也是组合问题。 Evolver 能够解决所有此类型的问题,以及很多任何其他程序无法解决的问题。Evolver 的独特*遗传算法*技术允许对几乎任何类型的模型进行最优化,包括任何大小和任何复杂性的模型。

- **功能更强大** Evolver 能够找到更好的解法。大多数软件使用数学和系统方法推导出 优化解法。这些方法常常局限于利用一种现有解法,并且只查找最接近 且更好的答案。这种"局部"解法可能远非优化解法。Evolver 以智能 方式从整个可能性领域提取样本,从而生成更好的"整体"解法。
- **更便于使用** 尽管 Evolver 明显具有强大功能和灵活优势,但该程序仍然便于使用,因为用户完全没有必要理解 Evovler 使用的复杂遗传算法技术。Evolver 不关心您问题的"具体细节";只需要一个能够评估不同选择方案优良程度的电子表格模型。只需选择包含变量的电子表格单元格,并告知 Evolver 需要查找的内容即可。Evolver 以智能方式将困难的技术隐藏起来,自动运行分析问题的"假设分析"过程。

尽管已经开发出许多用于数学编程和模型建立的商用程序,但电子表格仍然是最受欢迎的程序,每个月的销售量都达到数百万套。由于电子表格使用直观的行和列格式,因而比其他专用软件包更容易设置和维护。此外,电子表格与其他程序(例如文字处理程序和数据库)的兼容性更好,并且比任何其他独立软件包提供更多的内建公式、格式化选项、图形绘制和宏功能。由于 Evolver 是 Microsoft Excel 的插件,因此用户可以使用所有功能和开发工具,方便地为系统建立更切合实际的模型。

很多公司都聘请了经过培训的顾问来为他们提供自定义最优化系统。 此类系统通常能够很好地运行,但可能需要数月时间和大笔投资进行开 发和实施。而且此类系统很难学习,因此要求提供费用高昂的培训和持 续不断的维护。如果您必须对系统进行改动,则您可能需要开发一套全 新的算法,才能找到优化解法。Evolver 只需相当少的投资就能提供功 能最强大的遗传算法,并且能为各种不同的问题提供快速、准确的解法。 由于 Evolver 在直观且熟悉的环境中运行,因此几乎无需进行任何费用 高昂的培训和维护。

您甚至可以希望将 Evolver 的最优化功能添加到自己的自义定程序中。 只需几天时间,您就能够使用 Visual Basic 开发自己的日程安排、 配送、制造或财务管理系统。有关开发基于 Evolver 的应用程序的详细 信息,请参见"Evolver Developer Kit"。

第三章: Evolver 分步介绍

简介	21
Evolver 教程	23
启动 Evolver	23
Evolver 工具栏	23
打开示例模型	24
Evolver"模型"对话框	25
选择目标单元格	25
添加可调整单元格范围	26
选择求解方法	28
约束条件	29
添加约束条件	30
简单值范围和公式约束条件	30
其他 Evolver 选项	33
停止条件	
视图选项	34
运行最优化	35
Evolver 观察器	36
停止最优化	37
摘要报表	
将结果放在模型中	39

在本章中,我们将逐步向您介绍 Evolver 的所有最优化设置。如果您没 有在硬盘中安装 Evolver,请在开始本教程之前参见<u>第一章:安装</u>的安 装部分并安装 Evolver。

首先,我们将打开预制的电子表格模型,然后将使用概率分布和 Evolver 对话框定义 Evolver 中的问题。最后,当 Evolver 正在查找解 法时,我们将检查 Evolver 的进度,并研究 Evolver 观察器的多个选项 中的部分选项。有关任何特定主题的附加信息,请参见本手册后面的索 引或<u>第五章: Evolver 参考资料</u>。

注:以下所示屏幕来自Excel 2007。如果您正在使用Excel 的其他版本,则屏幕上显示的窗口可能与图片稍有不同。

通过一个可以准确表示您的问题的模型,开始问题的求解过程。您的模型必须能够评估一组特定的输入值(可调整单元格),并生成这些输入项在解决问题方面表现的数字评级(评估或"适应度"函数)。当Evolver查找解法时,本适应度函数提供反馈信息,告知 Evolver 每个猜测好或差的程度,从而使 Evolver 生成越来越好的猜测。创建问题的模型时,您必须密切关注适应度函数,因为 Evolver 将尽一切能力使此单元格最大化(或最小化)。

Evolver 教程

启动 Evolver

您可以选择以下方式启动 Evolver: 1) **单击** Windows 桌面上的 Evolver 图标,或者 2) 在 Windows "开始"菜单的"程序"条目中依次选择 Palisade DecisionTools 和 Evolver 5.7。以上两种方法均可以启动 Microsoft Excel 和 Evolver。

Evolver *工具栏* 加载 Evolver 后,将会在 Excel 中显示一个新的 Evolver 功能导航栏或 工具栏。此工具栏中包含可以用于指定 Evolver 设置,以及用于启动、 暂停和停止最优化的按钮。

打开示例模型

要查看 Evolver 的功能,您需要查看在安装 Evolver 时所安装的示例模型。要进行此操作:

1) 使用"帮助"菜单中的"电子表格示例"命令,**打开**BAKERY -TUTORIAL WALKTHROUGH.XLS 工作表。

此工作表示例包含一家面包厂业务中的一个简单的利润最大化的问题。 您的面包厂生产 6 种面包产品。您是面包厂的经理,负责追踪生产过程 中的收入、成本和利润。您需要确定每种面包的箱数,从而使总利润最 大化,同时能够满足生产限制要求。您面前的要求包括: 1) 满足低热量 面包的生产配额, 2) 保持可接受的高纤维面包与低热量面包的比率, 3) 保持可接受的五谷面包与低热量面包的比率,以及 4) 保证生产时间在所 用的员工工时的限制之内。

Evolver "模型" 对话框

要设置此工作表的 Evolver 选项:

1) 单击Evolver 工具栏上的Evolver 模型图标(在工具栏的最左侧)。

将会显示以下的 Evolver "模型"对话框:

😌 Evolver - 模	型			
最优化目标(<u>○</u>) 单元(<u>⊂</u>)	最大值 \$A\$3		•	
可调整单元范围(U) 最小值	范围	最大值	值	添加(<u>A</u>)
				删除(L)
				组(G)
约束条件(<u>N</u>)	小士		米刑	添加(D)
JEXE			天王	编辑(E)
0			确定	取消

Evolver"模型"对话框旨在使用户能够以简单明了的方式描述其问题。 在教程示例中,我们要尝试确定要生产的不同面包产品的箱数,从而使 总利润最大化。

选择目标单元格

示例模型中的"总利润"就是所说的目标单元格。这是您尝试最小化或 最大化其所包含值的单元格,或尝试使其值尽量接近预设值的单元格。 要指定目标单元格:

1) 将"最优化目标"选项设置为"最大值"。

2) 在"单元格"字段中,输入目标单元格 \$I\$11。

在 Evolver 对话框字段中输入单元格引用的方法有两种: 1) 使用鼠标指 针单击字段,并在字段中直接输入引用,或者 2) 将光标放置在选中字段 上,然后单击"引用条目"图标,以便用鼠标直接选择工作表单元格。

添加可调整单元格范围

现在,您必须指定包含数值的单元格的位置,Evolver 可以调整这些数 值来查找解法。您可以通过"模型"对话框的*可调整单元范围*部分在一 个单元块中一次性添加和编辑这些变量。此外,可以在"可调整单元范 围"内输入的单元格的数目视您正在使用的 Evolver 版本而定。

- 1) 单击"可调整单元范围"部分中的"添加"按钮。
- 2) 在 Excel 中选择 \$C\$4:\$G\$4 作为要添加到可调整单元格范围的 单元格。

输入可调整单元 在大家 **格的取值范围** 的取

在大多数情况下,您需要将可调整单元格范围的可能值限制在一个特定 的取值范围内。在 Evolver 中,将其称为"范围"约束条件。当选择一 组要调整的单元格时,您可以快速输入此取值范围。以面包厂为例,在 此范围内,生产的每种面包产品的箱数的最小可能值为 0,而最大可能 值为 100,000。要输入此范围约束条件:

- 1) 在"最小值"单元格中输入0, 而在"最大值"单元格中输入 100,000。
- 2) 在"值"单元格中,从下拉列表中选择"整数"

😌 Evolver -	模型					
最优化目标(<u>○</u>) 单元(<u>⊂</u>)		最大值 =I11			▼	
可调整单元范围() 最小值	D D	范围		最大值	值	添加(<u>A</u>)
	<=	=C4:G4	<=	100000	整数 ▼ 任意值	
					整数	
						<u>组(G)</u>
约束条件(N)						
描述		公式	ť		类型	添加(<u>D</u>)
						编辑(E)
						册除(<u>T</u>)
0					确定	取消

接下来,输入要调整的另一个单元格范围:

- 1) 单击"添加",以输入另一个可调整单元格。
- 2) 选择单元格 B4。
- 3) 输入 20,000 作为"最小值", 而输入 100,000 作为"最大值"。

😌 Evolver -	模型					
最优化目标(0)		最大值			•	
单元(⊆)		=I11				
可调整单元范围(U)					
最小值		范围		最大值	值	添加(A)
三菜単		- 01		100000	-	册除(L)
20000	<=	=64	<=	100000	型 型 ▼ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
-	~-	-01.01	4	100000	TEXX.	
						\$E(G)

这可以指定最后的可调整单元格 B4 代表低热量面包的生产水平。

如果此问题中还存在其他变量,我们将继续添加几组可调整单元格。在 Evolver 中,您可以创建数量不受限制的可调整单元格组。要添加更多 单元格,请再次单击"添加"按钮。

稍后,您可能需要检查可调整单元格或更改其中的一些设置。要执行此 操作,只需在表格中编辑取值范围。您也可以选择一组单元格,然后单 击"删除"按钮将其删除。 选择求解方法

定义可调整单元格时,您可以指定要使用的*求解方法*。不同的求解方法 可以处理不同类型的可调整单元格。设置求解方法以用于可调整单元格 组,而且可以通过单击"组"按钮和显示可调整单元设置对话框对其进 行更改。通常,您将使用默认的"菜单"求解方法;在此求解方法中, 每个单元格值可以独立与其他单元格进行更改。由于将其选为默认方法, 因此您无需进行更改。

😌 Evolver - 可调整单元组设置	X
常规(G) 运算符(O)	
定义	
描述(<u>D</u>)	生成的箱数
求解方法(<u>5</u>)	菜单
最优化参数	
交叉率(<u>C</u>)	.5
突变率(<u>M</u>)	.15 💌
0	确定取消

"菜单"和"顺序"求解方法是最常用的方法,而且可以将其结合使用, 以解决复杂的组合问题。尤其值得一提的是,"菜单"求解方法将每个 变量视为菜单中的基本成分,其通过分别更改每个变量的值来尝试确定 "最佳搭配"。与此相反,"顺序"求解方法在变量之间交换值,按不 同的方式排列初始值以确定"最佳顺序"。

对于此模型,将"求解方法"设置为"菜单",然后只需:

◆ 在"描述"字段中输入"生产的箱数"标记。

约束条件

Evolver 允许您输入约束条件,必须符合这些条件才能使解法有效。在此示例模型中,必须符合三个附加约束条件,才能使每种面包产品的一组可能生产水平有效。这些是除我们已为可调整单元格输入的范围约束条件之外的附加约束条件。这三个约束条件如下所示:

- 保持可接受的高纤维面包与低热量面包的比率(生产的高纤维面包 的箱数>=1.5*生产的低热量面包的箱数)
- 2) 保持可接受的五谷物面包与低热量面包的比率(生产的五谷物面包的箱数 >= 1.5*生产的低热量面包的箱数)
- 保证生产时间在所用的员工工时的限制之内(所用的员工总工时 < 50,000)

当 Evolver 每次针对您的模型生成一个可能解法时, Evolver 会检查此解法是否符合您已输入的约束条件。

约束条件显示在 Evolver "模型"对话框底部的约束条件部分。您可以 在 Evolver 中指定两种类型的约束条件:

- ◆ 严格。必须符合才能使解法有效的条件(例如,严格迭代约束条件为 C10<=A4;在这种情况下,如果解法为 C10 生成的值比 A4 单元格的值大,则此解法将会被丢弃)</p>
- ◆ 宽松。我们希望尽可能符合,但可能会为了大大改进适应度或目标 单元格结果而愿意做出让步的条件。(即宽松约束条件可以是 C10<100。在这种情况下,C10的值可以超过100,但是,当此情况发 生时,为目标单元格计算的值将会根据您输入惩罚函数而减小)。

添加约束条件

要添加约束条件:

1) 请单击 Evolver 主对话框的"约束条件"部分的"添加"按钮。

"约束条件设置"对话框将会显示,您可以在其中输入模型的约束条件。

😔 Evolver - 约束条件设置		×
描述(の)		_
1884C(<u>C</u>)	p.	
约束条件类型		
 严格(丢弃不符合约束条件的角 	释决方案)(H)	
○ 宽松(不赞成不符合约束条件的	的解决方案)(5)	
惩罚函数(<u>P</u>)	=100*(EXP(偏差/100)-1)	ж. ==
定义		
条目样式(<u>E</u>)	简单	
最小值(<u>N</u>)	要约束的范围(R) 最大值(X)	
0		
	确定 取消	

简单值范围和公 式约束条件

可以使用*简单和公式*这两种格式输入约束条件。简单值范围格式允许使 用简单的 <、<=、>、>= 或 = 关系输入约束条件。典型的简单值范围约 束条件为 0< A1 的值 <10,其中在 单元格范围 框中输入 A1,在最小值框 中输入 0,而在最大值 框中输入 10。可以从下拉列表框中选择所需的运 算符。如果使用简单值范围格式的约束条件,您可以只输入一个"最小" 值、一个"最大"值或同时输入二者。

公式约束条件则允许您输入任何有效的 Excel 公式作为约束条件,例如 A19<(1.2*E7)+E8。对于每种可能解法,Evolver 将检查输入的公式估值 是 TRUE 还是 FALSE,以查看解法是否已符合约束条件。如果您希望将 工作表单元格中的布尔公式用作约束条件,只需在"约束条件设置"对 话框的*公式*字段中引用此单元格。
要输入面包厂模型的约束条件,您要指定三个新的严格约束条件。必须 符合这些作为已输入条件的严格约束条件,否则 Evolver 将会丢弃可能 解法。首先,输入简单值范围格式的严格约束条件:

- 1) 在"描述"框中,输入"可接受的总工时"。
- 2) 在"要约束的范围"框中,输入 I8。
- 3) 在"要约束的范围"框的右侧,选择<=运算符。
- 4) 在"最大值"框中, 输入 50,000。
- 5) 清除"最小值"框中的默认值0。
- 6) 在"要约束的范围"框的左侧,通过从下拉列表中选择空白来清除 运算符
- 7) 单击"确定"以输入此约束条件。

😌 Evolver - 约束条件设置		×
描述(<u>D</u>)	可接受的工作总时数	
约束条件类型		
 严格(丢弃不符合约束条件的 	解决方案)(出	
○ 宽松 (不赞成不符合约束条件	的解决方案)(5)	
惩罚函数(<u>P</u>)	=100*(EXP(偏差/100)-1)	74 ==
定义		
条目样式(E)	简单	
	要约束的范围(<u>R</u>) ▼ =18	
0	确定即消	

接下来,输入公式格式的严格约束条件:

- 1) 单击"添加"以再次显示"约束条件设置"对话框。
- 2) 在"描述"框中,输入"可接受的高纤维面包与低热量面包的比率"。
- 3) 在"条目样式"框中,选择"公式"。
- 4) 在"约束条件公式"框中, 输入 C4>= 1.5*B4。
- 5) 单击"确定"。
- 6) 单击"添加"以再次显示"约束条件设置"对话框。
- 7) 在"描述"框中,输入"可接受的五谷物面包与低热量面包的比率"。
- 8) 在"条目样式"框中,选择"公式"。
- 9) 在"约束条件公式"框中, 输入 D4>=1.5*B4。
- 10) 单击"确定"

已完成"约束条件"部分的"模型"对话框应如下所示。

😌 Evolver -	模型					
最忧化目标(<u>○</u>) 单元(<u>⊂</u>)		最大值 =I11				
可调整单元范围(U)					
最小值		范围		最大值	值	添加(<u>A</u>)
■ 菜単	5 11A 1		- 0			冊際(L)
20000	<=	=B4	<=	100000	整数	
0	<=	=C4:G4	<=	100000	任意值	
约束条件(1)						<u>组(G)</u>
描述	19	公:	式	1	类型	添加(D)
可接受的高纤维.	20	1000		=C4>=1.5*B4	严格	编辑(F)
可接受的五种谷.				=D4 >= 1.5 * B4	严格	319444(_)
可接受的五种谷.	•		1	=\$I\$8 <= 50000	严格	册除(I)
0					确定	取消

其他 Evolver 选项

在最优化过程中,可以使用*更新显示、随机数种子和停止条件*之类的选项来控制 Evolver 的运行方式。让我们来指定一些停止条件和更新显示设置。

停止条件
Evolver 将按照您的要求运行。当处于以下情况时,停止条件允许
Evolver 自动停止运行: a) 已检查一定数目的方案或"试验",b) 已消
耗一定数量的时间,c) 未在最后n 个方案中找到改进之处,或者 d) 已输
入的 Excel 公式评估为 TRUE。要查看和编辑停止条件:

1) 单击 Evolver 工具栏上的"最优化设置"图标。

2) 选择"运行时间"选项卡。

😌 Evolver - 最优化设置			
常规(G) 运行时间(R) 视图(V) 发	5(M)		,
最优化运行时间			
▼ 试验(5)	5000		
□ 时间(<u>I</u>)	5	分钟	-
□ 进度(P)			
最大变化(<u>A</u>)	.01	<u>%</u> ▼	
试验次数(№)	100		
□ 公式为真(E)			18
□ 遇到错误时停止(0)	1		
0		确定	

在"最优化设置"对话框中,您可以选择这些最优化停止条件的任意组合,<u>或者根本不选择任何停止条件</u>。如果选择了多个停止条件,当符合所选的任何一个停止条件时,Evolver 均将停止运行。如果没有选择任何停止条件,Evolver 将会一直运行,除非按 Evolver 工具栏中的"停止"按钮,以手动方式将其停止运行。

注於	公钟教	上—————————————————————————————————————	公式书章
	771 秋 大 7 米 大 米 内 米		山利川 英
此选坝设置您希望	在匕消耗指定数	此停止条件是最常用的条	4
Evolver 运行的	量的时间后,	件,因为它跟踪改进之处,	中,如果已输入的
"试验"的数目。	Evolver 将会停	并允许 Evolver 在改进比	Excel 公式评估为
在每次试验中,	止运行。此数目	率降低之前保持运行。例	TRUE, Evolver 将
Evolver 会评估一	可以是分数	如,我们已通过了100次	会停止运行。
整套变量或问题的	(4.25)。	试验, 而到目前为止, 尚	
一种可能解法。		未在最佳方案中找到任何	
		改进之处,此时 Evolver	
		将会停止运行。	

视图选项

•

当 Evolver 运行时, "视图"选项卡上提供的一组选项可以确定您在屏 幕上看到的内容。

关闭所有停止条件可以使 Evolver 自由运行。

😌 Evolver - 最优化设置			
常规(G) 运行时间(R) 视图(Y) 宏(M)			
最优化期间			
☐ 开始时将 Excel 最小化(№)			, in the second s
☑ 显示 Excel 重新计算(5)	每个新的最佳试验		•
☑ 记录所有试验(K)			
<u>@</u>		确定	

"最优化期间"选项包括:

每次试验	每个新的最佳试验	从来没有
此选项在每次计算后重画 屏幕,允许您查看 Evolver 调整变量和计算输出项的 过程。在您学习 Evolver, 以及每次针对一个新模型 使用 Evolver 时,我们建 议您打开此选项,以确定 您的模型是否正在进行正 确计算。	每次当 Evolver 生成一个新的 最佳答案时,此选项会重画屏 幕,允许您在最优化过程中随 时查看当前的优化解法。	在最优化过程中,此选项从 不重画屏幕。这可以使最优 化以最快的速度完成,但是 对运行过程中的计算结果提 供的反馈信息较少。

◆ 打开"每次试验"

运行最优化

现在,所有要做的事就是最优化此模型,以使总利润最大化,同时满足 生产限制要求。要进行此操作:

1) 单击"确定"以退出"最优化设置"对话框。

2) 单击"开始最优化"图标

当 Evolver 开始研究您的问题时,您将在电子表格中看到可调整单元格 *生产的箱数*当前的最佳值。*总利润*的最佳值会在单元格中突出显示。

Evolver)	<u>世度</u>
试验:	2968(767次有效)
运行时间:	00:00:06
初始值:	2164545
最佳值:	3508002.7717
B	

在运行过程中,"进度"窗口会显示:1)到目前为止找到的最佳解法, 2) Evolver 开始最优化时,目标单元格的初始值,3)对您的模型所执行 的试验次数,以及有效试验次数;即符合所有约束条件,以及4)在最优 化过程中已消耗的时间。

在运行过程中,您可以随时单击 Excel 更新选项图标来查看每次试验的 屏幕的实时更新。 Evolver 也可以显示每种试验解法的运行日志。当 Evolver 运行时,会在"Evolver 观察器"中显示此运行日志。"Evolver 观察器"在运行时允许您研究和修改问题的多个方面。要查看试验的运行日志:

1) 请单击"进度"窗口中的"观察器"(放大镜)图标,以显示 "Evolver 观察器"

2) 单击"日志"选项卡。

E	volve	7 观察器							
ſ	进度(P)	│摘要(5) [E	志(」) 总体(」) │ 多样性(D)) 停止选项(N)			
						_			
	显示	所有词	式验			•			
	试验	消耗的时间	结果	B4	C4	D4	E4	F	•
	1	00:00:07	2164545	20405	50144	36968	1980	-	
	2	00:00:09	2400000.68	20405	50144	50048.8712	1980		
	3	00:00:09	2393253.33	20405	50144	36968	1980	1520	
	4	00:00:09	2200117.12	20405	38029.3514	36968	1980		
	5	00:00:09	2752941.72	20405	61794.5021	36968	1980	2418	
	6	00:00:09	2409405.57	20405	50144	36968	1980		
	7	00:00:09	N/A	20405	50144	12019.5198	1980		
	8	00:00:09	2649194.78	20405	60629.4519	34473.1520	1980	2201	
	9	00:00:09	N/A	74813	50144	96760.9297	1980	2254	
	10	00:00:09	2973814.18	25845	60629.4519	42947.2930	1980	2401	
	11	00:00:09	N/A	20405	19838.5338	36968	1980		
	12	00:00:09	2841367.97	25301	56550.3601	42349.3637	1980	2186	
	13	00:00:09	2855311.15	20405	50144	36968	38336.1135		
	14	00:00:09	N/A	20405	50144	36968	62874.0056		-
	•							•	
	0							确定	

此报表中会显示每种试验解法的结果。结果列按试验显示您要尝试最大 化或最小化的目标单元格的值 – 在此案例中,总利润在 \$I\$11 中。 C4 至 G4 列确定用于可调整单元格的值。 停止最优化

五分钟后, Evolver 将停止最优化。您也可通过以下方式停止最优化:

1) 单击Evolver 观察器或进度窗口中的"停止"图标。

当 Evolver 进程停止时, Evolver 会显示"停止选项"选项卡,此选项 卡提供以下选择:

Evolver 观察器	
进度(P) 摘要(5) 日志(L) 总体(L) 多样性(D) 停止选项(M)	
将显示在工作簿中的可调整单元值更新到	
○ 最佳值(B)	
○ 初始值(○)	
○ 最新值(<u>I</u>)	
要生成的报表	
✓ 最优化摘要(M)	
□ 记录所有试验(A)	
□ 记录进度条步进(R)	
0 2 2	 确定

当符合"Evolver 最优化设置"对话框中设置的任何一个停止条件时,这些相同选项将会自动出现。

摘要报表

Evolver 可以创建一个最优化摘要报表,其中包含诸如运行日期和时间、使用的最优化设置、计算的目标单元格的值,以及每个可调整单元格的 值之类的信息。

		(2 -)	÷	Boo	ok2 - Mi	crosoft E	ixcel					x
	开始	插入	页面布局	公式	数据	审阅	视图	加载项	Evolver	0		х
模型定			 ▶ ▶ ₩ ₩	€ • 日工具 •) •								
模型		最优化	I	具								
	A1		• (*	fx								≯
		В				С			D		E	
1 2 3 4 夜	volver 行人: 微朝 期: 2010年 型: Baken	: 最优4 (用户 ∓6月16日 (.xls	化摘要 12:12:23									
5	t								-			=
	量优化的	单元					5	Sheet1!\$I\$1	1			
8 日	标类型						200	最大值	Ξ			
9									-			
10 结	米はみど	Star .						01				
11 T	验 高次数	9 7						500	0			
13 初	始值		(1) (1)					\$2, 164, 545				
14	+ 宽松约	束条件惩	罚					\$0				
15	= 结果	佐						\$2, 164, 545				
17 17	+ 電松约	山 東名件領	E.977					\$3,012,314 \$0				
18	= 结果	****						\$3,672,574				
19	最佳模拟	编号						180	3			
20	查找最佳	值的时间						0:00:2	5			
21 最	优化停止	原因					0010	试验次委	Ω.			
22 取	化化开始	的时间					2010)-6-16 12:0)-6-16 12:0	4			
24 量	优化总时						2010	0:00:4	6			
25 可	调整单元	值						Sheet1!\$B\$	4			
26	初始值							20, 40	5			
27	最佳值	H-						22,18	8			
28 1	明至甲元日初始店							Sheet1!\$C\$	4			
30	品件值							50, 14	9			
14 4 1	1 萬伊	化摘要	一冊(水日)	志/墨白	化日志	(2) / *					8	
就绪	- ACVG	TOJIHI 32	ACCUTOR)	UN AKU	010476	(47 <u>2</u> G		90%	Θ	J.	4) .:

对于比较连续最优化的结果,此报表将非常有用。

将结果放在模型中 要将面包厂的六种面包的新的且已最优化的生产水平组合放在您的工作 表中:

- 1) 请单击"停止"按钮。
- 2) 确保将"将显示在工作簿中的可调整单元格值更新到"选项设置为 "最佳"

Evolver 将会返回到 BAKERY - TUTORIAL WALKTHROUGH.XLS 电 子表格,其中包含创建了最佳解法的所有新变量值。

	插入	页面布	局 公式	数据 育	阀 视图	加戴项	Evolver					0	_
1 定义 设		● 指 <i>小</i> 穿 ● 非	3表、 ◎用工具、 9助、										
型	最优化		工具										
B4	•	()	fx 2040)5									_
A		В	С	D	E	F	G	н	J	K	L	D 1	
在本私	展型中有几个。 全面包的比率。	2.须满足的 2.须达到3:3	约束条件,首先 2、最后,总工题	5. 我们生产的高; 1必须少于50.000	纤维与低热量面 ·	包的比率必须至	赵达到3:2. 黄	以7、五种谷物与					
在本代 低热 注释E Evolv	真型中有几个小 全面包的出车。 本模型的另一 -er设定 值, 因	23 (满足的 23 (须达到3:3 27 版本是 可以通	約末条件。首先 2. 最后,总工即 日秋使用的 Bake Eita Evolver手 景	5. 我们生产的高 1必须少于50,000 ny.xls. 其中將有 中輸导点 带的 提	纤维与低热量面 的Evolver设定 列。	他的比率必须至 他已经萌华。權	沙达到3:2. 黄 型的这个画本》	以:, 玉种谷物与 贵有 预定义的					
在本代 低热 注释 Evolv	展型中有几个(重团包的比率) 本模型的另一 rer设定值,因	2.(() () () () () () () () () () () () ()	約束条件。首先 2. 最后,总工作 日使使用的Bake 低Evolver手册 高纤维	5. 我们生产的高。 计必须少于50.000 ny.xls. 其中所有 中醫等者 管約 梁 五种谷物	纤维与低热量面 的Evolver设定 乳。 酵母	包的比率必须至 但已參頻袋。權 松饼	少达到3:2,算 型的这个版本》	以, 五种谷物与 含有预定 (5 6)					
在本代 低热 注 算 Evolv	展型中有几个点 重团包的比率。 本模型的另一 rer设定值,因	23(満足的) 25(ボ达到3:2) (小阪本是可以通 (低卡路里 20,405)	約束条件。首先 2. 最后,总工作 日使使用的Bake 低Evolver手册 高纤维 50,144	5. 我们生产的高 力必须少于50.000 ny.xls.其中所有 中醫等者 管約 梁 五种谷物 36,968 36,968	許維与低茄量面 的Evolver设定 列。 酵母 1,980	包的比率必须至 但已參慎妥。權 松饼 2,495	少达到:2. 型的这个版本 革角面包 3,001	(次、五軒谷街与 会有研究文)的	<u>3数</u> 393				
在末礼 低热过 注释: Evolv	展型中有几个4 電包包的比率。 本模型的另一 rer设定信。因 「約箱数」	23(満足的) 23(満足) 23(市場) 23(市場) 20(405) 0.25 5 (4)	約束条件。首先 2. 委后,总工門 日秋使用約Bake 幅Evolver手量 高纤维 50,144 0.32 5.32	5. 贵们生产的高; 引必须少于50,000 ry.xis. 其中將有 中輸导意音的望 五种谷物 36,968 0.33 0.33	許維与低恭量軍 ・ 的Evolver設定 乳。	他的比率必须至 他已感情察。權 2.495 0.14 0.14	少达到3:2. 算 型的这个版本》 单角面包 3,001 0.43	はた、五种谷物与 会有 苦定 久的 114.5	<u>830</u> 993				
在本代 低热 注释: Evolv 生产 毎 冊 冊	展型中有几个4 影面包的比率。 本樣型的另一 rer设定任,因 的箱数 描价格 描述本	20(満足的) 20(抗助)3:2 (加速)3:2 (加速)3:3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	約束条件。首先 2. 愛信,总工門 日秋使用的Bake 該Evolver手票 50,144 0.32 \$40 \$23	 ・ 供们生产的高	纤维与低热量面 ・ 的Evolver设定 列。	他的比率必须至 他已參填案。僅 2.495 0.14 \$31 \$13	シン法到:2. ま 型的这个版本 算備面包 3,001 0.43 \$51 \$51	は、五种谷物与 金有西定文的 114,5	3 <u>39</u> 993				
在本代 低热 注释 Evolv	展型中有几个小小 最富可的比率。 本樣型的另一 中的箱数 加箱的格 指指的格 為的數	2 (勝夫路里 たまで) (勝夫路里 20,405 0.25 \$42 \$17 5101	約束条件。首先 2. 最后、並工門 設備用約Bake 50.144 0.32 540 523 10046	 サ(1生产的高)	評雄与低恭量重 ・ 的Evolver設定 利。	他的比率必须重 他已感情察。提 2.495 0.14 531 3.349	学法则:2. 拿 型的这个版本 3,001 0.43 \$51 533 1290	25. 五种谷物与 魚有 19家 文的 114,9 355 355	2201 993				
在林 低热 注释: Evolv 生产 電 電 電	無型中有几个」 最重要的比率」 本概型的另一 本概型的另一 本確型定任。因 的箱箱指統本 意收入 影	2 (新満足的) 2 (新达到3: 小阪本是可以通 上 参可以通 20,405 0.25 \$42 \$17 557.010 357.010	約束条件、首先 2. 最后 送工 1日使用的 Bake 第日 50 ,144 0.32 540 523 16046 5205,760	 サ川生产的高	詳違与低先量至 例Evolver设定 第. 第 980 0.30 5.43 5.5140	社会的出来必须至 位已委集系。僅 2,495 0.14 531 513 349 577.345	並送到:2. 算 整伪这个版本 第 3,001 0.43 \$51 533 1290 \$153,051		3 <u>88</u> 393 361 66				
在本代 低熱 注 Evon 毎 毎 毎	監督 電力 小 が に 変 の 、 本 健 型 の 分 ー 、 、 本 健 型 の 分 ー 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	2 (病法足的) 2 (病法) 2 (病) 2 (n) 2 (n)	約束条件、首先 ・ 愛行、差工作 調査 第 5 0 1 4 4 0 3 2 3 1 1 0 4 0 3 2 3 1 1 0 4 0 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1	 サビュ产的高 ・サビュア 50,000 ・サング ・サンジョン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	詳違与低希量面 · 的Evolver设定 男。 簡母 1,980 0.30 5.43 5.24 5.94 5.94 5.94 5.94	20日出半必须到 位已要填拿。使 2,495 0.14 5.13 3.49 5.77,345 5.32,435	至步达到3.2、章 型的这个版本3 单的这个版本3 2001 0.43 \$51 \$53 \$153,051 \$99,033		8 30 1993 5811 66 21				
在未代 低热 注释 Evoh 集 一 一 毎 冊 冊 冊	武型 中有几个1 武型 市台 11 年 本 報型 約 另一 市谷前 教 数 市谷前 教 数 市谷市 約 数 市谷市 1 日 市谷市 1 日 石市 1 日 市谷市 1 日 日 市谷市 1 日	2 (現満足的) 2 (現法) 2 ([]) 2	約束条件, 首先 2. 委后, 送工tr 日使用約Bake 篇Evolver手量 50,144 0.32 \$40 \$2.005,760 \$1,153,312 \$8552,448	 ・ 気112m的高 ・ 気112m的高 ・ 気がの子50,000 ・ ないのうます。 ・ ない	詳違与低素量面 的Evolver設定 第4 1,980 0.33 594 594 \$43 \$24 \$55,140 \$47,520 \$37,620	社会的出来必须至 位記 金箔 学・健 2.495 0.14 5.31 5.33 5.33 5.37,345 5.32,435 5.32,435	经达到9.2. 算 第 的这个版本3 ¥角面包 3,001 0.43 \$51 33 1290 \$153,051 \$99,033 \$54,018 \$54,01	は、五神谷街与 会有世史文明 114,5 355 34,841,8 52,677,3 52,164,5	8 <u>88</u> 9993 581 66 21 45				

重要提示:在我们的示例中,尽管您看到Evolver 找到了一个生成的总 利润为3,940,486 的解法,但您的结果可能比此结果稍高或稍低。这些差 异由 Evolver 与所有其他问题求解算法之间的重要区别造成:这是 Evolver 遗传算法引擎的随机性,它使 Evolver 能够解决各种不同问题, 并找到更佳解法。

在您保存已在其上运行过 Evolver 的任何工作表时(即使在运行 Evolver 之后"恢复"了工作表中的初始值), Evolver 对话框中的所有 Evolver 设置也将随此工作表一起保存。下次打开此工作表时,所有最近的 Evolver 设置将会自动加载。所有其他示例工作表中已预填充了 Evolver 设置,并准备进行最优化。

第四章:应用示例

简介43
广告选择45
按字母顺序排列47
任务分配49
面包厂51
预算分配53
化学平衡55
课程安排程序
代码段组合程序59
达科他:具有约束条件的行程安排63
达科他:具有约束条件的行程安排63 加工车间日程安排65
达科他:具有约束条件的行程安排63 加工车间日程安排65 无线电塔位置67
达科他:具有约束条件的行程安排63 加工车间日程安排65 无线电塔位置67 投资组合平衡69
 达科他:具有约束条件的行程安排
 达科他:具有约束条件的行程安排
 达科他:具有约束条件的行程安排
 达科他:具有约束条件的行程安排

交易者	81
变压器	83
交通	85

本章说明如何在各种实际应用中使用 Evolver。这些应用示例可能不包括 您希望您的模型拥有的所有功能,但是作为构思来源和模板而言,它们是 最有效的。所有示例均说明了 Evolver 如何通过依赖工作表中已存在的关 系来查找解法,因此您的工作表务必准确描绘要尝试解决的问题。

您可以在 EVOLVE32 目录的子目录 "EXAMPLES" 中找到所有 Excel 工作表示例。在本章中,这些示例将按字母顺序排列。示例使用以下的 颜色代码惯例:

- ◆ 蓝色边框单元格。..... Evolver 将进行调整的可调整单元格。
- ◆ 红色边框单元格。..... 目标单元格。

每个示例均提供所有的 Evolver 预选择设置,包括目标单元格、可调整 单元格、求解方法和约束条件。在开始优化之前,最好查看这些对话框 设置。通过学习公式和使用不同的 Evolver 设置,您可以更好地了解 Evolver 的使用方式。此外,这些模型也允许您使用自己的"用户"数 据替换样本数据。如果您决定修改或改编这些示例工作表,您可能希望 使用新名字将其保存,以保留初始示例以供参考。

广告选择

一家广告代理机构必须计算出花费广告费的最有效方式,以最大化目标 受众的覆盖范围。此广告费金额不得超出预算,而且电视广告费金额必 须比广播广告费金额要高。

示例文件:	Advertising Selection.xls
目标:	在预算范围内分配广告采购,并且在广告媒体 中具有各种价格间断。使受众范围最大化。
求解方法:	预算
相似问题:	同时具有其他约束条件的预算类型问题。

Ca	1	(**) =		Advertisi	ng Selectio	n.xls [兼容根	記] - Mic	crosoft Ex	cel			-	-	x
	开始	插入	页面布局	公式	数据 审问	阅 视图	加載项	Evolve	er		0	_	•	×
模型		量 开始	 ● 报表 	- 工具 - -										
	A1	-	(f	x					_		_	-	_	¥
F	1	В		С	D		=	F		G		Н		Ē
1	在这个例 果丝常在 可调单元 /观众/读	■ 〒 1275 子中、我们 电视和杂志 格是单元格 者人数。一个	イレビー 希望确定接触到 上做广告、则可 C5:C9(用蓝色3 严格约束条件)	创最多听众/观众 可享受折扣责率。 突出显示)中的《 自使 单元格 G101	/读者的最有刻 。 导个类别的广告 \于50,000美元	(的广告计划, 厚 (数目, 而輸出単 , 我们还增加了]时满足50,00 元格是单元相 另一个约束桑	10美元的预算 备G13(用 <i>红</i> 1 6件,即电视升	的束条件。 ●突出显示) F支不得超近	该模型说明,如 中接触的影听众 无 线电的开支。				
3	C-#-#14	_		※月	ett-te a	~#		nc.A	- 1 ⁻ 10-	II. A				=
4	/ 百祭7F 由知(15秒	(井日)		叙里	<u>」成本</u> 川 51	650	514 850	ማተአ	3.000	27.000				
6	宅祝(13)の	() [2] () () () () () () () () () () () () ()		5	\$2	700	\$13,500		5,000	25,000				
7	报纸(半页	(广告)		1	\$1.	000	\$1,000		3,500	3,500				
8	广播(30秒	节目)		1	S	300	\$300		500	500				
9	直接邮件(5000封)		1	\$6,	000	\$7,500	3	16,000	16,000				
10														
11			厂告成4	赤	-	7+*		×4		007.450				
12			<u>教</u> 里	电线	2	天心	70 10	忌賊(本) に 人 台 し ***	84	\$37,150				
10			0	\$2,000	33	5,000	ų	历况显入叙		72,000				
14			4	\$1,000	32	2,700								
16	1		12	\$1,000	52	250								
17	L		14	÷1,000	32	.200								
18														
14 4	N NI Char	in the	-											190
	Shee	et1 / Cul					14			1		_		

模型工作原理 我们要做的第一件事是选择一种求解方法,此方法会告知 Evolver 如何 处理变量。有关不同求解方法的描述,请参见第五章:参考资料。

这基本上是一个预算类型问题,同时具有其他约束条件,即电视广告费 必须高于广播广告费。

如何解决问题 Evolver 要调整的变量位于单元格 C5:C9 中。我们将要求 Evolver 使用 "预算"方法来对这些变量进行修改,使每个变量均为自变量值。在单 元格 G13 中使用"SUM"函数计算总受众人数;我们要求 Evolver 将 此单元格中的值最大化。严格约束条件指定电视广告费必须高于广播 广告费。

按字母顺序排列

这是七个名字的列表,我们希望 Evolver 将其按字母顺序排列。尽管此 示例很简单,但 Evolver 也可以处理复杂排序,其中数据相互依赖,或 加权名字更多地依赖模型中的其他信息。

示例文件:	Alphabetize.xls
目标:	按字母顺序排列名称列表。
求解方法:	顺序
相似问题:	超出 Excel 能力范围的任何排序问题。

模型工作原理

"Alphabetize.xls"文件是一个说明 Evolver 排序概率的非常简单的模型。列B包含七个人的名字,而列A包含每个人相应的"身份证"号码。 列D使用 Excel中的 VLOOKUP 函数将列C中所选的数字转换为相应 的名字。单元格 E4:E9使用一个简单的惩罚函数,每次当字母顺序在前 的名字排列在字母顺序在后的名字之后时,此函数会向其分配一个值1。 所有这些错误的和显示在目标单元格 E11中。 如何解决问题

在此模型中,要调整的变量位于列 C (C3:C9)中。我们将要求 Evolver 使用"顺序"求解方法调整单元格 C3:C9。"顺序"求解方法告知 Evolver 重新排列所选值的顺序,尝试对这些变量进行不同的排列,而不是计算 得出新值。我们将要求 Evolver 在单元格 E11 中查找错误总数最接近 0 的值,因为当此目标单元格的值等于 0 时,意味着所有名字以正确顺序 排列。

😌 Evolver - 最优化设置			
常规(G) 运行时间(R) 视图(V) 宏(M)]		
最优化运行时间			
□ 试验(5)	1000		
□ 时间(<u>I</u>)	5	分钟	-
□ 进度(P)			
最大变化(<u>A</u>)	,01	% 💌	
试验次数(№)	100		
□ 公式为真(E)			2
□ 遇到错误时停止(0)	1		
0		确定	取消

通过不在 Evolver "选项"对话框中选择任何停止标准,您告知 Evolver 将一直运行,除非通过单击 Evolver 工具栏上的"停止"按钮,以手动 方式将其停止运行。但是,在此模型中,我们已选择了"最接近的值" 选项,因此,如果 Evolver 找到了一个解法,并且此解法符合"最接近 的值"(即值0),则 Evolver <u>将</u>自动停止运行。

我们使用较小的群体规模,因为关于最佳群体规模的选择,尽管没有快速规则,但一般情况下,当处理的问题所具有的可能解法总数较小时,我们会选择较小的群体规模,从而可以更快速地生成我们关注的最佳执行解法。在此问题中,7个名字只有 5040 种可能顺序。

任务分配

此示例针对涉及资源分配的一个常见问题建立模型。此问题中,经理会 分配 16 名工人执行 16 项任务。按照 1-10 的评分标准对每名工人执行每 项任务的能力进行评级(1 表示不能胜任任务,10 表示可以完美胜任任 务)。此处的难题是使每名工人与一种任务相匹配,从而使工人的整体 生产率最大化。

示例文件:	Assignment of Tasks.xls
目标:	分配 16 名工人完成 16 项任务,从而使整体效 率最大化。
求解方法:	顺序
相似问题:	分配问题、会议日程安排问题(当多数工人愿 意参加会议时),以及为一系列工作确定最佳 机器的问题。

此模型在单元格 B4:Q19 中提供 16×16 个网格,并且已在其中对每名工 人执行其任务的能力进行了评级。网格右侧的"所选任务"列(列 S) 任意分配每名工人完成一项任务。下一列旁边的列(列 U)检查已分配 的每项任务,并输入每名工人执行其任务的评级。最后,整个解法的总 分(单元格 U21 中)是将所有个人评级相加所得出的总和。

- *模型工作原理* 每项任务仅由一人执行,因此数字不可能重复,而且每个数字必须只使用 一次。使用 INDEX()函数将每名工人所执行的任务的评级记录在列 U 中。 在单元格 U21 中,将这些得分相加,以计算出该组分配的总分。
- **如何解决问题** 要求 Evolver 调整位于列 S (S4:S19) 中的"所选任务"变量。我们将要求 Evolver 使用"顺序"求解方法调整这些单元格。此方法会将这些单元格中的现有值打乱,因此在您开始最优化之前,请确保每个值仅表示一项任务。我们将要求 Evolver 查找目标单元格 U21 的最大值,因为此单元格得出的值越高,则表示整体分配越好。

此示例说明了生产决策问题中的一个常见问题,即确定要生产的每种产品的适当数量变得非常困难...即使仅有几种产品。面包厂所有者必须确定要生产的每种面包的箱数,从而使面包厂的总利润最大化。此外,还要确保遵守所描述的限制,例如,员工总工时,以及要生产的产品的正确比率。(注:已在*第三章:Evolver分步介绍*中详细描述了此模型)

示例文件:	Bakery.xls
目标:	确定要烘焙的每种面包的最佳数量,以满足所有配额并 使利润最大化。
求解方法:	菜单
相似问题:	开发投资组合、生产规划

模型工作原理

此问题在行 4 中沿图表的顶部列出要生产的每种面包产品的数量。当我 们调整这些数量变量 (B4:G4) 时,模型会计算出要花费的工时和成本, 以及烘焙该数目的面包可以获得的利润。在要最大化的目标单元格 I11 中将单元格 B11:G11 中的利润相加。

优化目标(_)		最大值				
元(⊆)		=I11				
调整单元范围(U)					
最小值		范围		最大值	值	添加(<u>A</u>)
菜单 20000	<=	=84	<=	100000	整数	删除(L)
	2		-		16.000	
0	<=	=C4:G4	<=	100000	任意值	
0	<=	=C4:G4	<=	100000	任意值	组(G)
0 東条件(<u>N</u>)	<=	=C4:G4	<=	100000	任意值	<u>组(G)</u>
0 東条件(<u>U)</u> 描述	<=	=C4:G4 상3	<= t	100000	任意值 类型	组(<u>G</u>) 添加(<u>D</u>)
0 東条件(U) 描述 接受的高纤维	<=	=C4:G4 公子	<= £	100000 =C4>=1.5*84	任意值 类型 严格	组(G) 添加(D) 编辑(E)

此模型还有三个约束条件。每个列出的约束条件均为严格约束条件。 一个是简单值范围格式的约束条件,另外两个则作为 Excel 公式输入。

如何解决问题 我们要求 Evolver 查找单元格 B4:G4 中可以使单元格 I11 中的值(总利 润)最大化的值(要生产的箱数)。由于找到的每个值与其他值彼此独 立,因此我们将使用"菜单"求解方法。此外,我们还要求 Evolver 遵 守针对单元格 C4、D4 和 I8 的约束条件。

预算分配

一位高级管理人员想要确定在公司的不同部门之间分配资金,从而使利 润最大化的最有效的方法。以下是一个业务模型以及其明年的预计利润。 此模型通过检查年度预算和对广告如何影响销售额之类的问题进行假 设,然后估计明年的利润。这是一个简单模型,但是其说明了如何建立 任何一个模型,并使用 Evolver 在模型中添加输入项,以确定最佳输出项。

示例文件:	Budget Allocation.xls
目标:	在五个部门之间分配年度预算,从而使明年的 利润最大化。
求解方法:	预算
相似问题:	向能够以不同的方法或不同的效率使用任何稀 缺资源(例如劳工、资金、汽油、时间)的实 体分配这些资源。

模型工作原理 文件 "Budget Allocation.xls" 针对公司预算对未来的销售额和利润的 影响来建立模型。单元格 C4:C8(变量)包含将用于这五个部门中每个 部门的预算金额。这些值在单元格 C10 中进行合计,结果就是公司的年 度总预算。此预算由公司制定,并且无法更改。

单元格 F6:F10 根据广告和营销预算计算明年对公司产品的估计需求量。 实际销售额是计算得出的需求量和供应量的最小值。供应量取决于分配 给生产和运营部门的资金。

如何解决问题 通过使用"预算"求解方法调整单元格 C4:C8 中的值,从而使单元格 I16 中的利润最大化。如果要防止 Evolver 尝试负数或不会为部门预算生 成适当解法的数字(例如,全部广告和无生产),请为每个部门的预算 设定每个可调整单元格的独立范围。

"预算"求解方法与"菜单"求解方法的相同之处是尝试确定所选变量的适当"组合"。但是,当您使用预算方法时,与 Evolver 开始最优化之前一样,您需要添加所有变量必须相加为同一个数字的约束条件。

对于任何可以建立模型并在某些特定初始条件下生成结果的过程,均可 以通过 Evolver 进行最优化。此示例说明 Evolver 如何确定不同化学品 (产品和反应物)的含量,从而在反应达到平衡后将自由能降至最低。 在复杂化学过程中,基本成分(试剂)和产品不断进行相互重组,直至 化合物的浓度保持稳定;即达到"平衡"时。在达到平衡后的任何时间 里,试剂在平衡化学品中可能占一定稳定比例(例如5%),而产品也将 占一定稳定比例 (95%)。

示例文件:	Chemical Equilibrium.xls
目标:	根据宽松约束条件(某些化学品的含量与其他化学品的 含量成比例)计算反应环境的自由能,并确定化学品的 含量。
求解方法:	菜单
相似问题:	确定最稳定的市场平衡的条件。

模型工作原理 此问题在单元格 B4:B13 中的变量是要进行混合的化学品含量。单元格 B15 计算总含量,但根据惩罚,必须将其保持在特定范围内。

单元格 F20:F22 中的约束条件是<u>宽松约束条件</u>,这意味着我们将不会强制 Evolver 只接受有效解法;相反,如果某些化学品超出了与其他化学品的预期比例,我们将计算<u>惩罚</u>。这些宽松约束条件使用直接在工作表模型中内建的惩罚函数。惩罚会添加到单元格 F17 的总自由能中,因此,当 Evolver 将目标最小化时,它将查找不会生成惩罚的解法。

如何解决问题 对单元格 B4:B13 使用"菜单"求解方法。将单元格 F17 中的值最小化。

一所大学必须在六个预定义时段内安排 25 门不同的课程。每节课正好延续一个时段。通常,我们可以使用"分组"求解方法处理此问题。但是, 在安排课程时必须符合几个约束条件。例如,生物课和化学课不能同时 上,以便医学预科学生能够在同一学期同时选修这两门课。为了符合这些约束条件,我们使用"日程安排"求解方法。"日程安排"求解方法 与"分组"方法相同,只是带有某些任务必须(或不必)在其他任务之前(或之后或同时)完成的约束条件。

示例文件:	Class Scheduler.xls
目标:	在 6 个时间段内安排 25 节课,并将无法选课的学生的人数 最小化。符合几个针对在某时段安排某课程的约束条件。
求解方法:	日程安排
相似问题:	所有任务具有相同长度,并且可以分配至任何一个离散时 段的任何日程安排问题。此外,还适用于任何带有将某些 项目分配至特定组约束条件的组合问题。

"Class Scheduler.xls"文件包含一个必须符合许多约束条件的典型日程安排问题的模型。单元格 C5:C29 将 25 门课程分配至 6 个时段。总共只有五间教室,因此需在一个时段内安排五节以上的课程,这意味着至少有一节课不能安排。

单元格 K17:M25 包含约束条件;约束条件左侧是约束条件的英文说明。您可以使用数字代码或英语说明作为约束条件。有关日程安排问题约束条件代码表的详细说明可以在<u>第五章:完整参考资料</u>的"求解方法"一节找到。

通过计算以下两个方面来评估每种可能的时间安排: a) 无法同时上的课 程数目,以及 b) 由于教室容量不够,而无法上课的学生人数。最后一个 约束条件防止 Evolver 安排同时上所有的大课。如果只有一节或两节大 课在同一时段内开设,则可以使用较大的教室上课。

单元格 I8:N8 使用 Excel 函数 DCOUNT 计算在每个时段内安排的课程数。然后,右下侧的单元格 I9:N9 计算此时段内无法安排教室的课程数。 在单元格 K10 中合计无法安排教室的所有课程。

如果某一特定课程所需的座位数超出可用的座位数,则单元格 I12:N12 会计算出所缺的座位数,而单元格 K13 会计算出无座位的学生总数。在 单元格 F6 中,将无座位的学生总数与平均课程人数相加,再乘以无法安 排教室的课程数。这样一来,我们就得到一个组合了所有惩罚的单元格, 而且此单元格中的数字越小,则表示日程安排越合理。

如何解决问题 通过更改单元格 C5:C29,将单元格 F6 中的惩罚值最小化。使用"日程 安排"求解方法。选择此求解方法时,您将看到几个相关选项显示在对 话框下侧的"选项"部分。将时段数设置为 6,而将约束条件单元块设 置为 K17:M25。

代码段组合程序

一名 Windows 程序员希望将一个程序拆分为多个代码段,从而 Windows 可以通过仅在内存中保留当前正在使用的代码段而更有效地使用内存。

这是一个将相似项目收集到组中的示例。同一组中的项目之间可以进行 有效的相互作用,而不同组中的项目则难以进行相互作用。当每个项目 直接与任何其他项目进行相互作用却存在自然障碍时(例如,所有计算 机用户均想直接连接到打印机),则有必要将项目拆分成组。有效分组 可以对系统的整体生产率产生显著影响。

示例文件:	Code Segmenter.xls
目标:	将程序例程分成八个不同的代码段,从而可以尽可能快的执行程序。
求解方法:	分组
相似问题:	将工作站收集到LAN群集中,或者将电路收集到微芯片上的区域,从而将组之间的通讯成本降至最低。

开始 插入	页面布局 5	201 DE	軍用 视	15 2090	Evolv	ver			N.	8 -
2 2. 2. Th	▲ 根表・ ◆ 生用工具 ● 単数・									
Million Con	TB									
42 -	6 5									-
A	В	C	D	E	F	G	н і	J	ĸ	
时间。"说用王"花 诗解说用王和计算总	图显示每个函数被任 时间。	可其他品质调用的	改變。 對鮮、 堂上	(#833.0023 80	⇒ 8.80 E 8 €	396.82307.	VIALEERT			
时间。"说明里"范 诗解说用亚和计算总	西皇帝帝不高勤被任(时间。	可其他品质调用的	31章。 新闻, 室上	.#013.0023 20	-809880	meno.	VALUERT	百分段内一次	i Bi chanartí Ri	
时间, " 说用里" 范 诗解读用臣和计里思	5154/2010 Hit.	· · · · · · · · · · · · · · · · · · ·	水业, 新鲜、 室上	.#013.0023 @			VIALECRT	在分段内一次) 第分段一次3	通话的时间 通话的时间	
対応、" 通用量" 応 連載通用型和计型形 分数分配	5155卷小品的试道: frix. 通数指数 0	R英山田台湾市的 通び回 30023	9 1117	11 1409	41 2966		VIAGECRT	在分段内一次 調分段一次	通过的时间 通过的时间 总计时间 133	391
対応、・液明里、花 液解液用的 体解液用的 分配分配 4 7	5158/281111 HR.	第二本会会は「市内」 通び、回 3.0023 23.0040	9.1117 70.4821	11.1409	41.2968 26.0149	8.0205	VALUENT	在分段内一次 第分級一次1	直流的时间 通话的时间 	391
한국, · (洪明王· 元 과왕(洪州도や나코의 分段分配 4 7 6	5115号小品数状態が デバー・	通信間 3.0023 23.0040 18.4156	2.1117 9.1117 70.4821 32.0117	11.1409 12.0935 61.0109	41.2966 26.0149 51.0370	8.0205	VIALDERT	在分段内一次) 第分段一次)	直成的时间 直话的时间 	391
封京、・漢明里・元 決解調用王や计道部 分配分配 4 7 6 8	5月元年小昌武校任 付任	道话和 3.0023 23.0040 18.4156 27.2063	9.1117 9.1117 70.4821 32.0117 77.0194	11.1409 12.0935 61.0109 73.0885	41.2966 26.0149 51.0370 75.0328	8.0205	VIALEC	在分段内一次) 第分段一次	直近的时间 通话的时间 	391
対応、「項用量" 応 神経の単位ない 単形	西京市市・高宏校区 付点、 通数指数 0 1 2 3 4	 通信間 3.0023 23.0040 18.4156 27.2083 13.0215 	9.1117 9.1117 70.4821 32.0117 77.0194 60.0802	11.1409 12.0935 61.0109 73.0885 9.1117	41.2968 26.0149 51.0370 75.0328 31.6913	8.0205	28.0461	在分段的一次 第分是一次	通过的时间 通过的时间 	391
98.44 98.45 98.96 98.96 4 7 6 8 8 8 5	5日三年十三日 世代 時代 通数指数 0 1 2 3 4 5	道信用 3.0023 23.0040 18.4156 27.2083 13.0215 19.0543	9.1117 9.1117 70.4821 32.0117 77.0194 60.0802 77.0520	11.1409 12.0935 61.0109 73.0885 9.1117 41.0237	41.2966 26.0149 51.0370 75.0328 31.6913 9.0531	8.0205 31.0201 63.0660	29.0401 34.7616	亚分段内一的 募分段一位	重动的时间 通过的时间 	391
+1に、・1を用。た 小師にちたいまた。 分数分配 4 7 6 8 8 6 4 4		建试用 3.0023 23.0040 18.4166 27.2063 13.0215 19.0543 76.0258	9.1117 70.4821 32.0117 77.0194 60.0802 77.0520 43.0331	11.1409 12.0935 61.0109 73.0885 9.1117 37.0190	41.2966 26.0149 51.0370 75.0328 31.6913 9.0531 41.2180	8.0205 31.0201 63.0660 63.0508	29.0461 34.766 53.0408	在分段内一次 開分發一次	連续的时间 通过的时间 	391
러년, * 대학원* 5년 14월 13년 5년 11년 11년 11년 11년 11년 11년 11년 11년 11년	5月1日本 - 日本 -	連ば回 3.0023 23.0040 18.4156 27.2083 13.0215 19.0543 76.0258 75.0347	9.1117 70.4821 32.0117 77.0194 60.0802 77.0520 43.0331 49.0301	11.1409 12.0935 61.0109 73.0885 9.1117 41.0237 37.0190 7.0259	412966 412966 510370 750328 316913 9.0631 412100 76.0357	8.0205 31.0201 63.0566 65.0768	29.0461 34.7615 59.0408	在分段内一的 幕分段一切	唐 <i>纪的时间</i> 唐弘的时间 ————————————————————————————————————	391
+1に、・1(本田)* 元) (本部) (本) (本) (本) (本) (本) (本) (本) (本	5月二年十三次世代 (前代) (前代) (前代) (前代) (前代) (前代) (前代) (前代	通信目 3.0023 23.0040 18.4156 27.2083 13.0215 19.0543 76.0258 75.0347 9.0260	9.1117 70.4821 32.0117 77.0194 60.0802 77.0520 43.0331 49.0301 76.0283	11.1409 12.0935 61.0109 73.0885 9.1117 41.0237 37.0190 7.0259	41,2966 26,0149 51,0370 75,0328 9,0631 41,2100 54,1332	8.0205 31.0201 63.0660 65.0768 65.0788	29.0451 34.7616 59.0408	在分段内一次 第分是一次	道 25分时间 通 25分时间 - 五计时间 133	391
11年、「北京市下市」では、 11年に、「日本市」では、 11年に、 1		法社会会会選手的 (第二年前の) 3.0023 23.0040 18.4156 27.2063 13.0215 19.0543 76.0258 75.0347 9.0260 36.0479	3.1117 70.4821 32.0117 77.0194 60.0802 77.0520 43.0331 49.0301 76.0283 34.0160	11.1409 12.0935 61.0109 73.0885 9.1117 37.0190 7.0259 56.0242 27.0246	412966 25.0149 51.0370 75.0328 31.6913 9.0531 41.2180 76.0357 54.1332 36.0196	8.0205 31.0201 63.0508 65.0788 48.0249	29.0461 24.7615 59.0408	正分配有一次 第分是一次	通 3205时间 通 3256时间 	391
11年、「日本田」で、 「日本日」では、 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本		連ば間 3.0023 23.0040 18.4156 22.2003 13.0215 19.0543 70.0250 36.0479 9.0240 36.0477	9.1117 70.4821 32.0117 77.0194 60.0802 77.0520 74.0033 34.0160 7.0714	111 1409 12.0935 61.0109 73.0885 9.1117 41.0237 37.0190 7.0259 55.0242 27.0245	412966 26,0149 51,0370 75,0328 31,6913 9,0631 41,2100 76,0357 54,1332 36,0166 12,0559	8.0205 31.0201 63.0508 65.0788 48.0249	28.0461 34.7616 59.0408	在分股内一次 開分身一次	. 고난테에 133 프라아메에 133	391
11年まで、 では年期であり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時にあり、 の時に、 の時にあり、 の時に、 の時にあり、 の時に、 の時に、 の時に、 の時に、 の時に、 の時に、 の時に、 の時に	3月二日一日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	建 (公和 3.0023 23.0040 16.4156 19.0543 13.0215 19.0543 75.0256 75.0347 9.0260 36.0709 36.0709	9.1117 70.4821 32.0117 77.058 43.0301 49.0301 76.0283 34.0160 7.0714 50.1764	11.1409 12.0935 51.0109 73.0885 9.1117 77.0190 7.0259 27.0246 72.0245	41,2968 41,2968 51,0370 75,0328 31,6913 9,0631 41,2169 54,1332 36,0196 12,0659 47,0378	8.0205 31.0201 63.0508 65.0788 48.0249	29.0465 34.7616 59.0408	在分配有一次 第分是一次	通 <i>试的</i> 时间 通过统时间 	391

模型工作原理

Windows 程序员通常以此方式拆分程序,以提高程序效率。当需要运行 另一个分段中的例程时,Windows 将丢弃正在调用的段,而从磁盘中读 入已调用的段。如果将一个 2 Mb 的程序拆分成 80 个分段,每个分段 20 Kb,则只要可用内存有 20 Kb,就可以运行此程序。但是,为了在可接 受的性能下运行程序,必须认真组织代码段。作为调用方,调用另一个 分段中的函数比调用同一个分段中的函数要花费更多时间。将跨段调用 的次数最小化被称为代码分段问题。

由于可以在拆分整个应用程序的前提下最优化应用程序的某些部分,因此我们将使用 Evolver 对其进行整体最优化。

"Code Segmenter.xls"示例文件假设已使用某个特定分段对应用程序 进行了编译。应用程序仍以用户运行的方式运行,而性能追踪例程保持 追踪每个函数调用所有其他函数的次数。因此,这些结果表示应用程序 典型使用中调用的性质。关于具备不同分段策略的应用程序的速度,我 们可以从这些结果中进行预测。

此工作表使用自定义函数"SegCost"。SegCost计算用户运行程序所要 花费的时间,其中程序以用户获取典型使用统计量的方式运行。此函数 通过计算分段间和分段内调用的次数,并将每种调用的次数与每种调用 的成本相乘来得出花费的时间。此处,我们假设分段间调用(或近程调 用)需要7个时钟周期,而分段内调用(或远程调用)需要34个时钟周 期,所有386计算机均为此情况。

SegCost 函数作为 Excel VBA 宏写入,如下所示:

End Function

Function segCost(segs, calls, inP, outP) As Double

Dim inCost#, outCost#, total#, temp#, tempPtr# Dim i%, j%, wide%, funcNumber%, ThisSeg%, OtherSeg% Dim NumCalls%, NumInCall%, NumOutCall%, SegOrder\$, CallOrder\$ SegOrder = Application.Names("segs").RefersTo CallOrder = Application.Names("calls").RefersTo NumInCall = 0 NumOutCall = 0 inCost = Range("k2") outCost = Range("k2") outCost = Range("k3") total = 0 wide = Range(CallOrder).Columns.Count For i = 1 To Range(SegOrder).Rows.Count ThisSeg = Range(SegOrder).Rows(i) For j = 1 To wide

temp = Range(CallOrder).Rows(i).Columns(j) If temp <> 0 Then funcNumber = Int(temp) OtherSeg = Range(SegOrder).Rows(funcNumber + 1) NumCalls = 10000 * (temp - funcNumber) If ThisSeg = OtherSeg Then temp = NumCalls * inCost NumInCall = NumInCall + 1 Else temp = NumCalls * outCost NumOutCall = NumOutCall + 1 End If total = total + temp End If Next Next segCost = total

此样本应用程序共有 80 个函数。每个函数相互调用的次数会存储在"调用"范围 (C5:I104) 内。我们会创建 80×80 个矩阵来表示调用模式,但是在调用约 250 个函数之后,此 *n×n* 的方法将不再可用,因为 Excel 列的限制为 256 列(而且,此方法还需要占用大量内存)。

相反,我们使用简洁表示法表示调用模式。首先,我们假设函数最多 只能调用某特定数目的其他函数。在示例文件中,我们假设7列为上限; 这也是调用范围的列宽为7列的原因,但是此限制是任意的。同时, 我们还假设函数被任何其他函数调用的次数不能超过9999次。

让我们看一看从单元格 C5 开始进行调用的函数 1。函数 1 调用 4 个函数: 3、9、81 和 41。调用的第 1 行 C5:I5 中包含每个被调用函数的一个 实数 (例如, 3.0023)。整数部分 (例如 3)表示被调用的函数,而分数 部分乘以 10,000 (例如 .0023 x 10,000 = 23)则表示在应用程序的典型使 用中,函数 1 调用函数 3 的次数。因此, 9.1117 表示函数 1 调用函数 9 的 次数为 1,117 次,并依此类推。此简洁格式可以节省内存,并充分利用 Excel 中有限的可用列。

单元格 A5:A104("段"范围)中包含向每个函数分配的段的数目。 单元格 K4 调用"SegCost"函数计算当前分段策略的整体性能。

如何解决问题 通过调整单元格 A5:A104 将单元格 K4 中的值最小化。使用"分组" 方法。"分组"求解方法告知 Evolver 将变量排列为 x 组,其中 x 表示 开始最优化时,可调整单元格中的不同值的数目。

达科他:具有约束条件的行程安排

一家房地产公司需要以某种顺序评估其在北达科他州的房地产,从而使 某些房地产较其他房地产更早得到访问。与典型的推销员旅行问题相似, 此问题的目标是在一组城市之间找到确保每座城市只访问一次的最短路 线。但是,我们在此处添加了约束条件,必须使某些城市较其他城市更 早得到访问(例如,城市4安排在城市2之前)这意味着我们不能使用 "顺序"求解方法,而是使用"项目"求解方法。

项目是对一组任务进行排序,其中的某些任务必须排在其他任务之前。 您可以将"项目"求解方法与自己的自定义函数结合使用,以确定项目 的最佳计时(根据任意数目的标准的组合,例如,完成时间、资源利用 情况等)。

示例文件:	Dakota.xls
目标:	在北达科他州的 41 座城市之间计划一条路线,此路线须 是所有城市之间的最短路线,同时应确保某些城市较其 他城市更早得到访问。
求解方法:	项目
相似问题:	重新安排项目日程,以平衡资源利用。安排机械加工车 间中的工作流程,以减少总时间,同时确保某些工作较 其他工作更早完成。

模型工作原理

单元格 F3:F43 中包含城市的访问顺序。单元格 H10 根据城市的顺序和 坐标 (x,y) 位置(单元格 C3:D43 中)计算路线的总长度。单元格 H10 使 用自定义函数 "BigRouteLength"来加快总路线长度的计算速度。

单元格 J3:L43 包含优先任务。此表格显示哪些城市(任务)必须排在其他城市之前。八个城市(1、2、3、4、5、7、11 和 13)中的某些城市必须比其他城市更早得到访问。

如何解决问题 通过更改单元格 F3:F43,将 H10 中的总路线长度最小化。使用"项目" 求解方法,并将优先任务设置为 J3:L43。在"可调整单元组设置"对话 框的"优先任务"字段中设置这些引用单元。

😌 Evolver - 可调整单元组设置			×
常规(G) 运算符(O)			
定义			
描述(2)			
求解方法(5)	项目		•
最优化参数			
交叉率(<u>C</u>)	.5		
突变率(<u>M</u>)	.1	•	
优先任务(P)	=J3:L43		
		确定	取消

加工车间日程安排

一间金工车间需要确定安排一组工作日程的最佳方法,这组工作需要分为不同的步骤,并在不同的机器上完成。每项工作由五项任务组成,并 且所有任务必须按顺序完成。每项任务必须在一台特定机器上完成,而 且需要在指定时间内完成任务。共有五项工作和五台机器。

单击工作表顶部的"重画日程表"按钮,系统将会重画显示每项工作任务安排在什么时间完成的柱形图。

示例文件:	Job Shop Scheduling.xls
目标:	将单件工作(任务)分配至不同的机器,从而使完成所 有工作的总时间最小化。
求解方法:	顺序
相似问题:	日程安排或项目管理问题

模型工作原理 单元格 D5 计算完工时间,或计算从安排的第一项任务开始到安排的最后一项任务结束,期间所消耗的时间。我们希望将该总时间数最小化。 需要以不同的方式排列单元格 G11:G35 中的变量(任务),从而确定最值分配顺序。工作表中的方程式计算出每项任务在所需机器上的完成速度。

如何解决问题 选择一组可调整单元格 G11:G35,并选择"顺序"求解方法。将单元格 D5 中的值最小化。
无线电塔位置

一家广播电台需要在一个共有十二个主要社区的地区建造三座无线电塔。每个社区具有不同的居民规模,而且每个无线电塔具有不同强度的广播范围。目标是无线电塔的建造位置可以使无线电塔在广播半径之内拥有最大数量的潜在听众。

位置问题的更复杂示例可能是几家工厂的选址问题,从而使其满足以下条件: a) 邻近供应商和客户, b) 坐落在不太昂贵且开阔的土地上,以及 c) 附近有大量经技术培训的劳动力。有关对最佳位置的其他影响因素(例如,税收优惠政策),也可以添加到此模型中。然后, Evolver 可以在 x,y、甚至 x,y,z 坐标空间中确定最佳位置。

示例文件:	Radio Tower Location.xls
目标:	确定三座无线电塔的最佳 x,y 坐标,从而使广播范围内 的潜在听众群体的数量最大化。
求解方法:	菜单
相似问题:	确定可以使仓库与商店之间的必要运输距离最短化的仓 库位置。确定消防站的位置,从而可以使用有限数量的消 防站达到对居民的最佳覆盖,包括住房密度之类的因素。

Rad	io Tower Location	.xls [兼容樓	[式] - Micro	soft Excel			-	= ×
开始 插入 页面布局 公式	式 数据 审阅	视图	加戴项	Evolver		(0 -	a x
撰型定义 提型 提型 最优化 工具								
								×
	F C U		L K	1 14	M	0	D	
	F G H		JK	L IVI	IN	0	P	
将通整单元体65:08(用蓝色突出显示)中的 总人口最大化。	5天线电塔(x,y)坐标位	·宜、尝试在单	元格017(用缸)	色突出显示)中将:	无线电塔能够表	1000 E 曲的		
1		位于		金田樹的新東		_		
1	城镇 人	し 教 X	t 与无f Y A	戦电塔的距离 B C	被覆盖?			
1 2 3 4 无线电塔位置表	<mark>城镇 人</mark> Alma 2	200 17	t 与无的 Y A 43 11.18	浅电塔的距离 B C 25.71 30.08	被覆盖? 是	200		
1 2 3 4 无线电塔位置表 5 无线电塔 X Y 范围	<mark>城镇 人</mark> Alma 2 Auburn 4	位置 数 X 100 17 10 28	t 与无的 Y A 43 11.18 38 16.76	3. 世界的距离 B C 25.71 30.08 20.62 18.03	被覆盖? 是	200 410		
1 2 3 4 5 大线电塔位置表 5 大线电塔位置表 4 5 大线电塔位置表 1 6 A 12 33 18	<mark>城镇 人</mark> Alma 2 Auburn 4 Antonito 8	数 X 100 17 10 28 50 37	与无线 Y A 43 11.18 38 16.76 27 25.71	30.08 30.08 30.02 30.02 30.02 30.02 30.08 3	被覆盖? 是 是 否	200 410 0		
1 2 3 4 无线电塔位置表 5 5 5 5 5 6 6 7 8 2 3 18 10 10 10 10 10 10 10 10 10 10	<mark>城镇 人</mark> Alma 2 Auburn 4 Antonito 8 Appleton 14	位置 数 X 000 17 10 28 50 37 23 36	上 与无线 Y A 43 11.18 38 16.76 27 25.71 12 31.89	380日期の 1800日日 1810	被覆盖? 是 是 否	200 410 0 0		11
1 2 3 - 4 无线电塔位置表 5 无线电塔位置表 6 A 12 33 18 7 B 23 18 10 6 45 32 5	<mark>城鎮 人</mark> Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow	位置 数 X 200 17 10 28 50 37 23 36 85 27	与无线 Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02	出版 出版 <thl> 出版 出版 出版</thl>	被覆盖? 是是否否。 否否。	200 410 0 0		
1 2 3 无线电塔位置表 5 无线电塔位置表 6 A 12 33 16 6 A 12 33 16 8 23 18 10 C 45 32 5	<mark>城鎮 人</mark> Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow Byers 6	次 数 X 100 17 10 28 50 37 23 36 85 27 24 22	与元4 Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21	被覆盖? 是是一是一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	200 410 0 0 624		
1 2 3 4 无线电塔位置表 5 5 5 5 5 5 5 5 5 5 5 7 8 2 3 18 10 6 8 2 3 18 10 6 9 10 10 10 10 10 10 10 10 10 10	Mgia A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6		Image: system Image: system Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47 27 7.21 20 7.60	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34	被 一是一一一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一	200 410 0 0 624 690		
1 2 3 - 4 无线电塔位置表 5 - 5 - 6 A 12 33 18 7 B 23 18 10 6 - 45 32 5 9 - - - -	Jigiti A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Cedar 5 Dable 15		Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47 27 7.21 30 7.62 4 20.81	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34 12.65 26.08	被覆盖 。 是是无所不不是是是不	200 410 0 0 624 690 530		E
1 2 3 7 4 5 5 7 4 5 7 4 5 7 4 7 4 7 4 6 7 8 10 10 10 10 10 10 10 10 10 10	Jigita A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Cedar 5 Dobbs 16	位置 数 X 000 17 10 28 50 37 23 36 85 27 24 22 90 8 30 19 25 6 26 50	Image: Heat State S	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34 12.65 26.08 22.02 48.01 38.18 13.93	被覆 是是无所不不是是无不不	200 410 0 0 624 690 530 0		Ŧ
1 2 3 4 7 5 7 6 7 8 7 8 10 5 9 10 11 5 12 40 10 12 40 10 12 40 10 12 40 10 10 10 10 10 10 10 10 10 1	域値 人 Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Cathage 6 Cedar 5 Dobbs 16 Dover 5	Kall Kall 30 X 300 17 110 28 550 37 23 36 85 27 24 22 90 8 330 19 25 6 26 50 90 127	Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34 12.65 26.08 22.02 48.01 38.18 13.93	被 ≣是是 否 否 是 是 否 否 否	200 410 0 0 624 690 530 0 0 0		Ŧ
1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Math A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Cedar 5 Dobbs 16 Dover Fitchburg Fitchburg 5 Greenwich 13	Kar Kar 300 17 100 28 550 37 23 36 85 27 24 22 90 8 330 19 25 6 26 50 901 27 007 18	मृत्र: मृत्र: Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47 27 7.21 30 7.62 4 29.61 45 13.42	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34 22.02 48.01 38.18 13.93 10.77 30.90	被 是是 否 否 是 是 否 否 是 是 否 否 更	200 410 0 0 624 690 530 0 0 0 1307		Ŧ
1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Miti A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Cedar 5 Dobbs 16 Dover 7 Fitchburg 5 Greenwich 13	次 次 30 17 10 28 50 37 23 36 85 27 24 22 90 8 30 19 25 6 26 50 91 27 107 18	F F A 43 11.18 38 16.76 27 25.71 12 31.89 12 31.89 7 30.02 14 21.47 27 7.21 30 7.62 4 29.61 45 39.85 8 29.15 45 13.42 13.42	B C 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34 12.65 26.08 22.02 48.01 10.77 30.00 27.46 29.97	被 是是不不不是是是不不不是	200 410 0 624 689 530 0 0 0 1307		
1 2 3 子 4 子 5 子 7 8 7 8 10 2 11 5 40 45 12 40 13 10 14 20 16 10 17 10	Value A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 14 Byers 6 Carthage 6 Cedar 5 Dobbs 16 Dover 5 Fitchburg 5 Greenwich 13	位置 数 X 00 17 10 28 50 37 23 36 85 27 24 22 90 8 30 19 25 6 26 50 91 27 007 18	Image: blue blue blue blue blue blue blue blue	また。 また、 また、 また、 また、 また、 また、 また、 また、	被覆 是 是 否 否 否 是 是 否 否 否 不 是 是 。 否 否 否 。 。 。 。 。 。 。 。 。 。 。 。 。 。	200 410 0 0 624 680 530 0 0 0 0 0 1307 3761		Ŧ
1 2 3 7 4 7 5 5 7 5 7 8 6 7 7 8 2 3 18 8 2 3 18 8 2 3 18 10 5 5 18 10 5 5 18 10 5 5 18 10 5 5 18 10 5 5 18 10 5 5 18 10 5 5 18 10 5 5 18 10 5 5 5 5 5 5 5 5 5 5 5 5 5	kiti A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Cathage 6 Cathage 6 Cedar 5 Dobbs 16 Dover Fitchburg 5 Greenwich 13	位置 数 X 00 17 10 28 50 37 23 36 85 27 24 22 90 8 30 19 25 6 26 50 91 27 07 18	Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47 27 7.62 30 7.62 30 7.62 30 7.62 30 7.62 4 29.61 45 39.85 8 29.15 45 13.42	出版 出版 出版 L	後覆盖? 是是是否否否是是否否否是 是是否否否是	200 410 0 0 624 690 530 0 0 0 0 1307 3761		
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	Mili A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Cedar 5 Dobbs 16 Dover Fitchburg 5 Greenwich 13	位置 数 X 00 17 10 28 50 37 23 36 85 27 24 22 90 8 30 19 25 6 26 50 91 27 007 18	Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47 27 7.21 30 7.62 4 29.61 45 39.85 8 29.15 45 13.42	次日本の範定者 B 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.93 11.70 30.81 4.12 29.21 17.49 37.34 12.65 26.08 22.02 48.01 12.65 26.08 22.02 48.01 13.93 10.77 30.00 27.46 29.97 9	被覆盖? 是是不否不不是是不不不不是是不不不不是。 众总数:	200 410 0 0 624 690 530 0 0 0 1307 3761		
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 20 \\ 10 \\ 1$	Mga A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Cedar 5 Dobbs 16 Dover 5 Fitchburg 5 Greenwich 13	夜子 数 X 000 17 10 28 50 37 23 36 85 27 24 22 90 8 330 19 25 6 99 27 24 22 90 8 330 19 25 6 90 91 277 18	Y A 43 11.18 38 16.76 27 25.71 12 31.89 7 30.02 14 21.47 27 7.21 30 7.62 4 29.61 45 39.85 45 13.42	B C 25.71 30.08 20.62 18.03 16.64 9.43 11.70 30.81 4.12 29.21 17.49 37.34 12.62 26.08.01 38.18 13.93 10.77 30.93 10.77 30.97	被覆盖? 是是不不不是是是不不不是是是不不不是是。 众总数:	200 410 0 624 690 530 0 0 1307 3761		
1 2 3 $\frac{1}{2}$	Image A Alma 2 Auburn 4 Antonito 8 Appleton 14 Barrow 9 Byers 6 Carthage 6 Carthage 6 Cedar 5 Dobbs 16 Dover 7 Fitchburg 5 Greenwich 13	夜子 数 X 000 17 100 28 500 37 23 36 85 27 24 22 90 8 300 19 25 6 26 50 901 27 907 18	Y A 43 11.18 38 16.76 27 25.71 12 3189 7 30.02 14 21.47 27 7.21 4 29.61 4 29.61 4 29.61 4 29.61 4 29.61 45 39.85 8 29.15 45 13.42	R B C 25.71 30.08 25.71 30.08 20.62 18.03 16.64 9.43 14.32 21.03 30.81 4.12 29.21 17.70 30.81 17.49 37.34 12.65 26.08 22.02 48.01 13.93 10.77 30.00 27.46 29.97	被覆蓋? 是是否否否是是是否否否 是是是否否 不可 了 是 是 。 不 了 了 是 。 。 " " " " " " " " " " " " " " " " " "	200 410 0 624 690 530 0 0 0 1307 3761		

模型工作原理

文件"Radio Tower Location.xls"针对二维地形建立模型,其中的五座 无线电塔位置决定可以覆盖的听众数量。单元格 C6:D8 包括三座塔的 x,y 坐标。模型中的插图包括两个元素:一个是通过 Windows"画笔" 程序粘贴的关于人口密度(绿色)的位图图片;另一个是自动重新计算 以显示塔位置的 Excel 散点图。

十个社区均表示为单点位置。此 Excel 模型在 K4:M15 中计算社区与塔 之间的距离,以确定是否已覆盖所有社区(是)或未覆盖所有社区(否)。 在单元格 O17 中计算所有被覆盖社区的总人口(我们希望将此数字最 大化)。

如何解决问题 通过调整单元格 C6:D8 中的塔位置,将单元格 O17 中所覆盖的总人口数 最大化。使用"菜单"求解方法,并将变量范围设置为0至50(位置区 域的限制)。

"菜单"求解方法告知 Evolver 以其认为合适的方式调整所选变量。与面包烘焙的"菜单"求解方法案例一样,我们尝试确定"基本成分" (x,y 坐标)的适当组合,以生成最佳解法。

投资组合平衡

一位经纪人有一份 80 种证券的列表,每种证券的货币价值不同。这位经纪人希望将这些证券组合成五种投资组合,每种投资组合的总价值将尽量接近。

这是一个称为装箱问题的一般性问题的示例。在货船的货仓内装货,尽 量使各个货仓间的重量均衡,这是另一个示例。如果要将数百万个小项 目装入几个组中(例如,将小麦装入货仓),估计会进行大致相等的分 布,使重量上不存在较大差异。但是,可以采用完全不同的方式装入几 十包不同重量和/或大小的货物,而且有效的装货方法可以对以手动方 式确定的平衡进行改进。

示例文件:	Portfolio Balancing.xls
目标:	将证券列表拆分为五种不同的投资组合,而且各种投资 组合彼此间的总价值应尽量接近。
求解方法:	分组
相似问题:	建立综合能力大致相当的团队。将集装箱装入货船的货 仓内,并且使重量平均分布。

"Portfolio Balancing.xls"针对典型的分组分配建立模型。列A包含特定证券的识别号码,而列B说明每种证券的货币价值。列C将每种证券分配至五种投资组合其中之一。在设置分组或装箱类问题和使用"分组"求解方法时,您必须确保在开始Evolver之前,每个组(1-5)在当前方案中至少表示一次。

单元格 F6:F10 计算五种投资组合中每种投资组合的总价值。通过屏幕外数据库标准(列I中)和单元格 F6:F10 中的"DSUM()"公式来完成此计算。因此,例如单元格 F6 使用 DSUM 计算已分配给组 5 (列C中)的列 B 中的所有值的总和。

单元格 F12 使用 "STDEV()"函数计算总投资组合价值中的标准差。这就提供了一种衡量各种投资组合总价值接近程度的方法。此图表显示每种投资组合的总价值,并在目标值上画一条基准线;此基准线显示如果所有的投资组合价值均相同,每种投资组合所在的位置。

如何解决问题 通过调整单元格 C5:C104 将单元格 F12 中的值最小化。使用"分组" 方法,并确保1、2、3、4和5每个数值在列C中至少出现一次。

> "分组"求解方法告知 Evolver 将变量排列为 x 组, 其中 x 表示开始 最优化时,可调整单元格中的不同值的数目。

投资组合

一对年轻夫妇拥有许多不同类型的投资资产,并且每项投资都具有各自的收益、潜在增长和风险。通过组合将各种权重相乘的几个公式,这对 夫妇已自定义了一种"得分",说明任意一个特定投资组合满足其需求的程度。

示例文件:	Portfolio Mix.xls	
目标:	根据您的当前风险/回报需求,确定可以使利润最大 最佳投资组合。	化的
求解方法:	预算	
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Portfolio Mix.xls (陳容模式) - Microsoft Excel	= x
模型定义 役置	2表 → 2月工具 → 2均 →	
模型 最优化		
A2 - C		×
 ・「須重」 方法、以保住所有の日本 ・「須重」 方法、以保住所有の日本 ・ ・<!--</th--><th>学校/学校的12 VHAEUROLALOV / 1919年日以子び/1944日7 1977年194日 1997 1997年2000年2017年1月19日 全部(四単元降C11平五元)第時在1000時的重直。产品综合(1997)第合安美增长、合理的年产</th><th></th>	学校/学校的12 VHAEUROLALOV / 1919年日以子び/1944日7 1977年194日 1997 1997年2000年2017年1月19日 全部(四単元降C11平五元)第時在1000時的重直。产品综合(1997)第合安美增长、合理的年产	
4 5 页广交别 投》	资狙合权重 潜在增长半 当前产量 忌收益 卜行风险	
6 (京市市场 7 国内反視(鉄 平衡) 成长与收益 10 成长 11 税极成长 12 国际影響 13 資金 13 資金 15 (元本学市地区案	0.00% 0.0% 6.0% 6.0% 0.0% 12.13% 0.0% 9.0% 9.0% (10.0%) 13.24% 4.0% 6.0% 10.0% (20.0%) 0.00% 6.0% 4.0% (10.0%) (20.0%) 4.34% 9.0% 10.0% (30.0%) (40.0%) 18.06% 11.0% 1.0% 12.0% (40.0%) 14.34% 11.0% 1.0% 12.0% (40.0%) 10.92% 4.5% 2.5% 7.0% (30.0%) 100.00% 45% 2.5% 7.0% (30.0%)	
10 時世元年4世元年 17 当前产量 18 危收选 19 港在下行风险 20 可提多的风险 21 起行可提多风险 % 22 资产组合总分 14 ↔ ▶ Sheet1 ◆	2.84% 10,75% -34.43% -30.0% -4.43% 0.1813	

模型工作原理 这是一个尝试在损失风险与投资回报之间达到平衡的典型财务模型。在 列C中分配列A中所列的每项资产的某些权重。此模型将投资组合中的 每项资产所占的权重与回报率相乘,以生成单元格 C18中的总回报率。 同时,我们还在单元格 C19中计算总风险值,此值不应高于单元格 D19 中所列的可接受风险值。

如何解决问题 单元格 C22 中的总"得分"反映出,在减去任何风险的惩罚值后,总回 报率在可接受的百分比之上。我们将此得分最大化。

一家广播电台在一个有十个主要社区的地区购买了三座废弃且不能工作的无线电塔。该广播电台要购买全新的广播发射器,并将其安装在无线 电塔内,以再次使用其进行广播。

由于预算有限,因此目标是在发射器上花费最少的资金,但发射器仍然 可以覆盖周围的所有9个社区。我们假设一个线性定价模型,其中发射 器的成本直接与其功率相关,因此我们将寻求购买功率最低的发射器, 而此模型应易于创建实际发射器的类型和价格的查找表。

示例文件:	Power Stations.xls
目标:	为每座旧无线电塔确定最小(最便宜)的发射器,但仍 然可以覆盖周围的所有十个社区。
求解方法:	菜单
相似问题:	集覆盖问题,其中需要通过少数明确定义的集来描述一 批元素。

模型工作原理

此示例与无线电塔位置示例 (Radio Tower Location.xls) 非常相似,但不同的是,此处位置已固定,并且单元格 E5:E7 中塔的功率范围是要调整的变量。我们在要将其中的值最小化的目标单元格 E12 中将三座塔的功率成本相加。

单元格 K4:M12 计算每个社区与三座塔之间的距离,而且如果一个社区 与其中一个发射器所要覆盖的范围足够接近,则会在列 N 中返回一个 TRUE。所有这些约束条件均已列入名称为*是否已覆盖所有地区?*的单 严格约束条件中。此约束条件包含一个公式 AND(\$N\$4:\$N\$12),仅当 列 N 中的所有值均为 TRUE 时,此公式才会返回 TRUE。

如何解决问题 通过调整单元格 E5:E7 中塔的半径,将单元格 E12 中所需的功率成本最小化。使用"菜单"求解方法,并将变量范围设置为 0 至 100。使用 Excel 公式格式输入的单严格约束条件如上所述。

我们随时都可以采用许多方式来订购项目,但数量折扣使我们难以确定 购买项目的最具成本效益的方式。此模型包含一个简单价格表,列出了 特种溶剂的数量折扣价格。您必须至少购买 155 公升的该溶剂,包括小 型桶、中型桶、大型桶和特大型桶。

尝试购买每种桶型的适当数量,从而使成本最小化。

示例文件:	Purchasing.xls
目标:	花费最少的费用购买 155 公升的溶剂。
求解方法:	菜单
相似问题:	相反:制定一份最统一且最合理的定价表,以提高订单数量。

G		(° -) =			Purchasing	g.xls [兼容	更式] - Micro	soft Excel				-		X
C	开始	插入	页面布局	公式	数据	审阅 视	图 加载项	Evolver]			0.		x
模型		2 万始	 ● 报表 	▼ 工具 ▼ ▼										
相	塑	最优化	I	l										
	A11	-	(• ;	fx										≽
	А	В	С	D	E	F	G	Н		J	K		L	-
	Evolver使	·用 '菜单')	解决方法确定和 1显示)中的总	需要购买的每~ 成本最小化。	个集碳箱的数: 同时确保购到	量,这些数值在 (丁单元格 199	在单元格H13:H16 要求的溶剂数量	(用蓝色突出显 -	示) 中显 和	示. 目标是使)	¥.)			
1 2 3 4	JUNKIS					伦敦发展台	240							
1 2 3 4 5	JUNKIS	規模		1	3	按照数量定 7	音价 10	15						
1 2 3 4 5 6		規模	3 升	1	3 \$33	按照数量定 7 \$32	行 10 \$32	15 \$30						
1 2 3 4 5 6 7 8	小 中	規模	3升 6升 0升	1 \$34 \$40 \$96	3 \$33 \$37 \$87	按照数量 近 7 \$32 \$35 \$83	10 \$32 \$34 \$75	15 \$30 \$31 \$70						
1 2 3 4 5 6 7 8 9	小 中 大 超大	<u>規模</u> 1 1	3升 6升 0升 4升	1 \$34 \$40 \$96 \$130	3 \$33 \$37 \$87 \$122	按照数量页 7 \$32 \$35 \$83 \$112	10 \$32 \$34 \$75 \$106	15 \$30 \$31 \$70 \$95						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 17 18	小 中 大 超大	<u>規模</u> 1 1	3 3 1 6 3 0 3 1 4 9	1 \$34 \$40 \$96 \$130	3 \$33 \$37 \$87 \$122	按照数量算 7 \$32 \$35 \$83 \$112	2 10 532 534 575 \$106	15 \$30 \$31 \$70 \$95 数量 5 6 9 2 88	3H 15 36 90 28	単衍 \$33 \$33 \$33 \$130 谷成本	6 b c b c c c c c c c c c c			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 16 17 18 19	小 中 大 超大	<u>現</u> 模 1 1 1	3)) 6 Л 9 Л 4 Л	1 \$34 \$40 \$96 \$130	3 \$33 \$37 \$87 \$122	按照数量 算 7 \$32 \$35 \$83 \$112	竹 10 532 534 575 \$106 現极 小 中 大 超大	15 \$30 \$31 \$70 \$95 数量 5 6 9 2 总量 褒求的数量	3 15 36 90 28 169 155	单价 \$33 \$33 \$33 \$130 总成本	62 \$165 \$222 \$747 \$260 \$1,394			
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 9	小 中 大 超大 ・ ・)) Shee	<u>現</u> 模 1 1 1	3 } 6 } 0 } 4 }	1 \$34 \$40 \$90 \$130	3 \$33 \$37 \$122	按照数量 貨 7 \$32 \$35 \$83 \$112	竹 532 534 \$75 \$106 現极 小 中 大 超大	15 \$30 \$31 \$70 \$95 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	# 15 36 90 28 169 155	单价 \$33 \$37 \$83 \$130 送成本	62 4 \$165 \$222 \$747 \$260 \$1,394		Þ	

模型工作原理

此溶剂的桶型包括 3、6、10 和 14 公升桶。单元格 D6:H9 列出了每种桶型的价格表。单元格 H13:H16 包括要购买的每种桶型的数量。列 K 计算 采购每种桶型的成本,而单元格 K18 计算总成本。此模型允许您将要求 的采购数量(单元格 I19)从 155 更改为您所需的数目。单元格 I18 包括 已采购的总公升数,因此该单元格中的数字一定不能低于单元格 I19 (155) 中要求的数字。单严格约束条件是已购买的数量要超过所要求的数量。

由于我们需要购买 155 公升的此溶剂,因此我们可以选择购买 11 个特大型桶(154 公升)和一个小型桶(3 公升),总计 157 公升。根据价格表,总成本为 1,200 美元。但是,在运行最优化后,系统会向您提供更具成本效益的组合。

如何解决问题

通过调整单元格 H13:H16 中要购买的溶剂数量,将成本最小化。使用"菜单"求解方法来调整数值,并将这些变量范围设置在1至20之间。您不能只购买一桶溶剂中的一部分,因此我们将通过勾选"可调整单元"对话框中的"整数"选项要求 Evolver 只选择整数。由于采购的溶剂数量不能少于155公升,因此输入一个指定 I18>155 的单严格约束条件。

推销员问题

一位推销员必须对指定地区的每座城市访问一次。哪一条路线是访问每 座城市的最短可行路线?这是一个典型的最优化问题,而且如果涉及大 量城市 (>50),则很难用传统方法来解决。

一个类似的问题可以是确定在工厂中完成任务的最佳顺序。例如,与其他方式相比,在使用了白色颜料后,可能更易于使用黑色颜料。在 Evolver中,这类问题均可以通过**顺序**求解方法得到完美解决。

示例文件:	Salesman Problem.xls
目标:	确定 n 座城市之间的最短路线, 而且每座城市应访问一次。
求解方法:	顺序
相似问题:	以最快方式规划电路板的钻孔问题。

"Salesman Problem.xls"文件通过查找表中的距离,计算到各个城市 进行旅行的路线长度。列A包含具体城市的识别号码。列B包含这些号 码代表的名称(带有"查找"函数)。自上而下显示的城市顺序(及其 号码)代表访问这些城市的顺序。例如,如果您在单元格 A3 中输入 "9",则表示渥太华是第一座要访问的城市。如果在 A4 中输入"6" (哈利法克斯市),则哈利法克斯市将是第二座要访问的城市。

表中城市间的距离从 C25 行开始向下表示。表中距离是对称的(从 A 到 B 的距离与从 B 到 A 的距离相同)。但是,更切合实际的模型可能包括不对称的距离,表示从一个方向旅行更加困难(由于收费公路、可用交通工具、逆风和上坡等)。

现在,必须使用函数计算这些城市之间的路线长度。总路线长度将存储 在单元格 G2 中,这是我们希望最优化的单元格。为了达到这一目的, 我们使用 "RouteLength"函数。这是 "Salesman Problem.xls" 文件中 的自定义 VBA 函数。

如何解决问题 通过调整单元格 A3:A22 将单元格 G2 中的值最小化。使用"顺序"方法,并确保在您开始最优化之前,数值 1-20 已经在可调整单元格 (A3:A22)中。

"顺序"求解方法告知 Evolver 重新安排所选的变量,并尝试对现有变量进行不同的排列。

作为 "Evolver III" 号航天飞机的发射人员,您必须计算出每枚推进火箭的燃料量和方向,以使用最少的燃料将航天飞机送至目的地。更好的解法可能是利用太阳的重力 "长鞭"效应来节省燃料。

示例文件:	Space Navigator.xls
目标:	使用尽可能少的燃料将宇宙飞船送到目的地。利用附近 恒星的重力向目的地移动。
求解方法:	菜单
相似问题:	过程控制问题

1 121	р П Лій	▲ 投表・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・														
	最优化	IA														
A1 P	•	R R	8	T	-11	v	w x	¥ 7	AA	AB	AC.		D	AF	AF	
##1505	tis (Rgen	H EM) (00)(0100	IN YEAR	volvertett, G	C data an	TE 84		9. X 22#								
879年23- 単元将Q16 元将Q16 (1943 (用型色用 (用成色用出品)	(1557) (*))(4)(1) (*) (*(25))(52) (*)	1963) 164 (Jan 1713) 171 (Jan 1713) 171 (Jan	www.meter.ca >个目的起现单	2 (9742)	()正单: \$58.5 () : 注約(目的)	6. 59472 2.	8. X £>≢								
8098X- #7508 75081	944 (RZER (RCEREE)	(53年) 中約4000 5) 中位日約3章。 5 爆炸 方向改考	100-10-10 100-10-1020 方向	www.mitt. G 小吉竹起耳羊 速度 Vx	. 2399/1 2 (2792 2 (2792	x (23	ia. snárž L	t. x t∋≇			• •					
80742X- #755Q3 755Q34		(4.5.4) 中約404(5) (5) 中世刊の8章、R (1) 中世刊の8章、R (1) 中世刊の8章、R (1) 中約40(5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	たってまた。 たっかに、 たっか 方 内 1.570796 5.000057	whereitate, G 小日村起車# 速度 Vx 0	Vy Classic Vy	x 0	0. 59472	8. x 2⊃#								
5 17年23、 単元写Q25 元写Q16 1 1 2	(月二日月日日 (月二日月日日 現現 (月二日月日日 (月二日月日日 (月二日月日日) (月二日月日日) (月二日月日日) (月二日月日日) (月二日月日日) (月二日月日日) (月二日月日日) (月二日月日日) (月二日月日日) (月二) (月二) (月二) (月二) (月二) (月二) (月二) (月二	(土王市) 中(363457 (中区市約18章) 河 (京) 中区市約18章, 河 (京) 中田(京) 中田(市田) 中田(市田)) (田) 中田(市田)) (田) 中田(田)) (田) 中田(田)) (田)) (田) 中田(田)) (田)) (田)) (田) 田)) (田)) (田)) (田)) (大字 大字 5.008687 5.008687 5.627217	2014年3月度、G → 日村2日本 建筑 V× 0 9.453248 20.65751	Vy 0 14 68184 0 14 68184 0 14 68184 0 0 0 0 0 0 0 0 0 0 0 0 0	(22.4) 54.42 (2.3) 54.55 (2.3)	11、日田央下型 21、 マ 14 68184 68 16555	8. x 2≫≇	1		•					
8 17 18 X - # 75 19 03 75 19 03 6 1 2 3	- - - - - - - - - - - - - -	ビニ王中) 中がゆ:3450 か) 中世刊的主意。 同	ボッキ (日本) ボット (日本) (2014年後年、G 二日市地工業 建設 V× 0 9 455248 20.69791 -0.153624	· 보호 (현대의 전체 전 (현재의 전체 전 (현재 해외 전 (현재 해외 14 68184 140.8376	(2.1 (2.1 (2.1) (2	14.68194 14.68194 14.68194 199 185.55 210.003	t. x t⊃≠	1							
日本 本元写GAS 元写GAS の 日 同 同 の 1 2 3 4	(用工会用 d) (用工会用 d) (用工会用 d) (用工会用 d) (用工会用 d) (17.85702 9.313032 19.12451 10.54125	(上三寺) 中約618457 (水) 中位号的主意, 可 (水) (水) (水) (水) (水) (水) (水) (水) (水) (水)	500 500 500 500 500 500 500 500 500 500		Uy 0 14 68184 54 46325 140.8376 -24.00081	(23) (2)) (2))	12. 51741×2. 1 2 1 4 55154 210.003 155.9222	6. X 194	•					•		
日77年23- 単元昭G35 元昭G35 元昭G35 日 1 2 3 4 5 4 5		E 三 元 つ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	500 500 500 500 500 500 500 500 500 500	Katter Katter V× 0 8.453248 20.69791 -0.153624 39.98247 39.99247	Vy 0 14 68184 54 6852 40 6816 -24 08081 -4 62277 6 08419	(224) 4043 (2) 425, 827 (2) 425, 827 (2) 425, 827 (2) 453248 (3) 15116 (2) 99754 (2) 70286 (2) 70286 (2) 70286 (2) 70286	は、 日 で で し で し で し で し で し で し で し で し で し で し で し で し で し で し で し で し つ つ つ し つ し つ つ つ つ つ つ つ つ つ つ つ つ つ	6. x 194						9		
日77年23- 単元昭G35 元昭G35 日 1 2 3 4 5 6 7	構成 (単位を用止系 の 17.85702 19.12451 10.54125 20.34513 22.82759 17.65002	生 三中) 中川ゆコ 553 () 中 三月 約 年 二 月 約 年 二 月 約 年 二 月 約 年 二 月 約 年 三 月 約 年 三 月 約 年 三 月 約 日 二 月 約 日 二 月 約 日 三 月 約 日 三 月 約 日 三 月 約 日 三 月 1 日 三 月 1 日 三 日 三 日 三 日 三 日 三 日 三 日 三 日 三 日 三 日	500 500 500 500 500 500 500 500 500 500		Vy 0 14.68184 54.40352 140.8354 -4.402877 6.03081 -4.402877 5.535413 25.33678	(2) (2) (2) (2) (2) (2) (2) (2)	は、日田県本盤 で、日田県本盤 で 1468156 210,003 185,525 210,003 185,525 210,003 185,525 210,003 185,525 210,003 185,525 210,555	6. x ¢>≠								
BTFREX- 単元版G3161 元禄G161 0 1 2 3 4 5 6 7 9	構成 (年亡世界日本 の 1775702 5 313032 19 12461 10 54125 20 34513 22 62789 17 66066 4 423476	t ニ 王中ン のけるは 457 t の か の の ける は 457 ガ 作 3 大 7 作 3 パ 7 作 3 大 7 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	2744 1570796 5.022217 9.655785 10.87195 13.32542 12.9054 13.41167 15.80474		Vy 0 14 68184 54 40357 4 402877 6 935413 25 33676 31 33378	1 2 ± 868.3	 (一) 2000年日日 (一) 2000年日 (一) 2000年日<td>6. x t∋=</td><td></td><td></td><td></td><td>63</td><td></td><td>9</td><td></td><td></td>	6. x t∋=				63		9		
BTPREX- 単元版GAS 元版GAI4 0 0 1 2 3 4 5 6 7 7 9 10	構成 (単正世界世景 の 17.85702 9.313032 19.324513 22.85739 17.650056 4.423476 16.1256		2714 1.570796 5.009687 5.627217 9.655735 10.37195 13.32595 13.35595 13.35595 13.35595 13.35595 13.35595 13.3559555 13.3559555555555555555555555555555555555	terretary, G the second se	Vy 0 14.68184 54.4352 140.8376 6.335413 25.33676 31.36311	(23) (23) (23) (23) (23) (23) (24) (25) (ст. 5 (т. 4 к 4 к 4 к 4 к 4 к 4 к 4 к 4 к 4 к 4	6. x 2>=				63		%		

模型工作原理 单元格 Q5:R15 包括十个时阶中每个时阶的火箭爆炸规模和方向值。我 们希望将其值最小化的单元格 Q16 只是在十个时阶 (Q4:Q13) 中已燃烧 的所有燃料的总和。

严格约束条件为: a) 宇宙飞船的最终位置应在其目的地的 10 水平单位和 b) 10 个垂直单位之内。

如何解决问题 将单元格 Q16 中的值最小化。利用单元格 Q5:R13,创建一个使用"菜单"求解方法的可调整单元格组。由于模型使用"弧度"表示爆炸方向,因此"爆炸"单元格 (Q5:Q13)的范围应在 0 至 300 之间,而"方向"单元格 (R5:R13) 的范围则应在 -3 至 3 之间。一个"弧度"大约是 57 度。

您正在 S&P 500 上进行交易,而且您已确定技术分析比传统的基础分析 可以提供更准确的股票预测。此外,一旦您构建了一个系统,就可以节 省您的时间。从表面上看,您似乎可以遵循无数个可能规则进行交易, 但只有当您一直遵循其中的少数几个规则时,才会产生可观利润。智能 计算机搜索可以帮助您确定在某个特定的历史时期内,哪些规则帮助您 赚取的利润最多。

示例文件:	Trader.xls
目标:	确定在某个特定时间段内将产生最高回报的三个规则。
求解方法:	菜单
相似问题:	确定将产生最佳结果的最佳移动平均线;任何规则确定 或标准确定问题

模型工作原理 此模型使用几个可调整单元格组解决整体问题。每个交易日会评估三个 规则。如果所有三个条件均为真,则计算机将会在该天买入,否则将会 卖出。(一个更为切实可行的交易系统将不会只买进或卖出,而是有时 还会持有手中的股票。)

通过单元格 C5:E8 中的一组四个数字描述一个规则,这些数字表明以下 几件事情:1)规则引用的数据源,2)数据值是高于还是低于临界值,3)确 定规则是否为真的临界值,以及4)确定是否应当查看值自身,或查看昨 天的值或自昨天至今的变化的修饰符值。

临界值的范围从 0 到 1,并且表示数据源范围的百分比。例如,如果数量范围从 5,000 到 10,000,则临界值 0.0 将与数量 5,000 匹配,临界值 1.0 将与数量 10,000 匹配,而临界值 0.5 将与数量 7,500 匹配。此系统允许规则引用任何数据源,而无需考虑数据源具有的值。

如何解决问题 全部使用"菜单"求解方法创建可调整单元格组。应单独创建 C5:E5、 C6:E6、C7:E7和 C8:E8中的每一行,从而可以轻松为每个组分配其各自的选项,例如整数和范围。F5:F8中列出了每组变量的设置。将单元格 E10 中的值最大化,这会调用一个使用这些规则模拟交易的宏。在历史数据 库中,每天模拟交易后所产生的总利润会返回到单元格 E10中。

变压器

该 2 绕组变压器的评级必须为 1080 VA,并且满载损失在 28 瓦以下,表面散热不超过 0.16 瓦/平方厘米。将成本最小化,同时遵守性能标准。

示例文件:	Transformer.xls
目标:	将变压器的初始和运营成本最小化。
求解方法:	菜单
相似问题:	电路设计、电桥设计

0.		· (* ·) =		Transformer.xls	東容模	式] - Mici	rosoft Exce	el			- =	x
	开始	插入	页面布局	公式 数据	审阅	视图	加戴项	Evolver		0		X
模型			 展表 ▼ 小 实用工具 ● 帮助 ▼ 	Į.								
梼	塑	最优化	耳具									
	A1	-	\int_{X}									*
- 1	A	В	CI	DE		F	G	H I	J	٢		1
1 2 3 4 5 6 7 8	麦	宽度 高度 度	1.0033 3.753 4.8013 1.188 2.0343 8.231									
9 10 11 12 13 14 15 16 17 18	當量 要压价统成素能 制 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	价格 寿命(以年为 遗失率) 遗失率)	\$0.60 \$0.14 其单位 20 yrs \$0.20 0.77 0.5 0.5	成本 初始成本 营业成本 总成本 <u>软约束条件</u> VA评级 = 108	5	54.424099 30593.067 30647.491 惩罚	15 6 7 0					
19 20 21 22 23 24 25	计算 VA评级 与VA目标 满载损失 散发的热 核心容量	的距离 量	1955 0 7648.3 26.235 22.709	损失 <= 28瓦 热量 < 0.16瓦/ 约束成本	平方厘米	7620.266 26.075398 \$38,294	9 3 •					
14 4	>> > Sh	eetl 🖓					4				*	I
就绪							Œ	90	% 😑 –) .

模型工作原理

将评级、负载损失和散热约束条件编码为宽松约束条件。我们通过惩罚 未满足要求和无效的解法来创建一个宽松约束条件。与必须符合的严格 约束条件不同,此模型允许 Evolver 尝试一些无效解法,但是由于这些 无效解法受到您模型中检查违背状况的函数的惩罚,它们将在您的目标 单元格中生成很差的结果。因此,随着时间的推移,此模型会将这些无 效解法从不断进化的可能解法群体中丢弃。

如果问题没有受到较为严格的约束,则宽松约束模型可能比严格约束模型的效果更好。此模型还允许 Evolver 接受真正好的解法,即使它略微达不到约束条件,但是与符合了所有约束条件,但并不是非常好的解法相比,此解法会更有价值。

如何解决问题 计算单元格 F11 和 F12 中的材料成本(初始成本)和运营成本(电价乘 以消耗的电量)。将这些成本与 F18:F20 中设置的惩罚函数相结合,生 成单元格 F22 中的最终约束成本。使用"菜单"求解方法将此目标单元 格中的值最小化。

交诵

我们能够以多便宜的成本在全国范围内用卡车运输物品?此标准问题从 较早的 Microsoft 求解器示例中扩展而来。

"尽量降低在大都市需求中心附近将物品从工厂运往仓库的运输成本, 同时不超过每家工厂的供应量,但能满足每个大都市地区的需求。"

要使此问题更加切实可行,需要更改运输成本使其不再呈线性排列, 但应根据所需的卡车数量做相应更改。一辆卡车能够装载6件物品,因此 运输14件物品就需要3辆卡车(装载6+6+2件物品)。

示例文件:	Transportation.xls
目标:	以尽可能便宜的方式用卡车将物品从三家工厂运往五个 仓库。
求解方法:	菜单
相似问题:	设计通讯网络

模型工作原理 单元格 C5:G7 中包含从每家工厂运往每个仓库的物品的数量。C13:G13 计算运输这些物品所需的卡车数量。严格约束条件为:1)每家工厂的总 运输量应少于或等于此工厂现有的供应量,以及2)所有工厂运往每个仓 库的总运输量应高于或等于仓库的所需数量。这样可以确保每个仓库均 获取所需的数量,而且制造厂也不会负担过重。

如何解决问题 对使用 0 到 500 之间整数的单元格 C5:G7 使用"菜单"求解方法。输入针 对每家工厂的一组严格约束条件,其指定工厂的运输量 <= 工厂供应量。 输入针对每个仓库的另一组严格约束条件,其指定仓库的总运输量 >= 仓库需求量。将单元格 B22 中的运输成本最小化。

第五章: Evolver 参考指南

模型定义命令	89
可调整单元范围	90
可调整单元组	
菜单求解方法	
顺序求解方法	95
分组求解方法	96
预算求解方法	
项目求解方法	
日程安排求解方法	
交叉和突变率	
时间块数和约束单元格	
优先任务	
运算符	
约束条件	
添加 — 添加约束条件	
简单和公式约束条件	
宽松约束条件	104
"最优化设置"命令	107
"最优化设置"命令 – "常规"选项卡	
"最优化设置"命令 – "运行时间"选项卡	
"最优化运行时间"选项	109
"最优化设置"命令 – "视图"选项卡	
"最优化设置"命令 — "宏"选项卡	111
"开始最优化"命令	112
"实用工具"命令	113
"应用程序设置"命令	
"约束条件求解器"命令	114

Evolver 观察器	11	17
"Evolver 观察器"—	"进度"选项卡11	17
"Evolver 观察器" -	"摘要"选项卡12	20
"Evolver 观察器" -	"日志"选项卡12	21
"Evolver 观察器" -	"群体"选项卡12	22
"Evolver 观察器" -	"多样性"选项卡 12	23
"Evolver 观察器"—	"停止选项"选项卡 12	24

模型定义命令

定义模型的目标、可调整单元格和约束条件

选择 Evolver "模型定义" 命令(或单击 Evolver 工具栏上的"模型" 图标), "模型"对话框将会显示。

😌 Evolver -	模型					
最忧化目标(<u>○</u>) 单元(<u>⊂</u>)		最大值 \$A\$1			.	
可调整单元范围(L	Ŋ					
最小值		范围		最大值	值	添加(<u>A</u>)
	_	_	_	_		
约束条件(<u>N</u>)						
描述		公:	式		类型	添加(<u>D</u>)
						编辑(E)
						册除(<u>1</u>)
0					确定	取消

Evolver"模型"对话框。

Evolver"模型"对话框用于指定或描述 Evolver 的最优化问题。在开始时,此对话框在每个新的 Excel 工作簿中显示为空白,但它会在每个工作簿中保存其信息。这意味着再次打开工作表时,此对话框会以相同方式进行填充。此对话框的每个组件如本节中所述。

"模型"对话框中的选项包括:

• 最优化目标。最优化目标选项确定 Evolver 要搜索的答案的类型。 如果选择最小值, Evolver 将查找生成目标单元格的最小可能值的变 量值(最小-1e300)。如果选择最大值, Evolver 将搜索生成目标单 元格的最大可能值的变量值(最大+1e300)。

如果选择*目标值*, Evolver 将搜索生成目标单元格的值的变量值,此 值应尽量接近您指定的值。当 Evolver 找到生成此结果的解法时, Evolver 将自动停止运行。例如,如果您指定 Evolver 应找到最接近 14 的结果, Evolver 可能找到生成诸如 13.7 或 14.5 之类的值的方案。 请注意,13.7 比 14.5 更接近 14; Evolver 不会关注生成的值是大于 还是小于您指定的值,它只查看与值的接近程度。

 单元格。单元格或目标单元格包含您的模型的输出项。将为 Evolver 生成的每种"试验解法"生成此目标单元格的值(即可调整单元格 的可能值的所有组合)。目标单元格应包含一个与可调整单元格相 关的公式(直接或通过一系列计算)。可以使用标准 Excel 公式(如 SUM())或用户定义的 VBA 宏函数来生成此公式。通过使用 VBA 宏 函数,您可以使 Evolver 评估非常复杂的模型。

当 Evolver 搜索一种解法时,它使用目标单元格的值作为评级或 "适应度函数"来评估每种可能方案的优良程度,并确定哪些变量 值应继续进行交叉生成,哪些变量值应该"丢弃"。在生物进化中, "死亡"是确定哪些基因能继续在整个群体中繁衍的"适应度函 数"。在构建模型时,您的目标单元格必须反映任何特定方案的适 应度或"优良程度",因此在 Evolver 计算概率时,它能够准确测 量其进度。

可调整单元范围

*可调整单元范围*表显示每个包含 Evolver 可以调整的单元格或值的范围, 以及输入的有关这些单元格的描述。每组可调整单元格在水平行中列出。 **可调整单元组**中可以包括一个或多个可调整单元格范围。"可调整单元 组"中的所有单元格范围共享一个公用求解方法、交叉率、突变率和运 算符。

由于可调整单元格包含问题的变量,因此您必须至少定义一组可调整单元格来使用 Evolver。大多数问题仅使用一组可调整单元格描述,但更复杂的问题可能需要同时使用不同的解法进行求解的不同的变量块。此独特结构允许从多个可调整单元格组中轻松构建极为复杂的问题。

以下选项可以用于输入"可调整单元范围":

- 添加。通过单击"可调整单元"列表框旁边的"添加"按钮,添加新的可调整单元格。选择要添加的单元格或单元格范围,然后在可调整单元范围表中显示一个新行。在此表格中,您可以输入范围内单元格的最小值和最大值,以及要检验的"值"类型 范围内的整数值,或任意值。
- 最小值和最大值。在您指定可调整单元格的位置后,"最小值和最大值"条目会设置每个可调整单元格的可接受值的范围。默认情况下,每个可调整单元格均使用负无穷与正无穷之间的实数(双精度浮点)值。

范围设置是需要严格执行的约束条件。Evolver将不允许任何变量使用设置范围之外的值。在可以改进 Evolver 的性能时,最好为您的变量设置更加具体的范围。例如,对于一个特定变量,您可能知道数字不能为负,或者 Evolver 应只使用 50 到 70 之间的值。

 范围。在范围字段中输入要调整的单元格的引用。通过使用鼠标选择 电子表格中的区域,输入范围名称或键入诸如 Sheet1!A1:B8 之类的有 效 Excel 引用来输入此引用。范围字段可以用于所有求解方法。但是, 对于菜单和预算方法,可以添加最小值、最大值和值选项,以允许输 入可调整单元格的范围。

注:通过向变量分配紧密范围,您可以限制搜索范围,并加速 Evolver 收敛解法。但是,请注意不要将变量范围限制得太紧密;这可能会 妨碍 Evolver 查找优化解法。

 值。"值"条目允许您指定 Evolver 应将指定范围内的所有变量视为整数(如22),而不是实数(如22.395)。此选项仅适用于 "菜单"和"预算"求解方法。默认设置是将变量视为实数。

如果您的模型使用变量从表格中查找项目(HLOOKUP()、VLOOKUP()、 INDEX()和 OFFSET()等),请确保打开"整数"设置。请注意,"整 数"设置影响所选范围内的<u>所有</u>变量。如果您希望将其中一些变量视为 实数,而将另一些视为整数,您可以创建两组可调整单元格,而不是一 组,并将一组视为整数,而将另一组视为实数。只需"添加"一个菜单 可调整单元格组,然后将"值"条目设置为"任意值"。接下来,"添 加"另一个单元格范围,此次选择"整数"设置,并且只选择整数可调 整单元格。

可调整单元组

每组可调整单元格可以包含多个单元格范围。这允许您构建一个具有 "层次结构"的相关单元格范围的组。在该组中,每个单元格范围均具 有自己的"最小值-最大值"范围约束条件。

"可调整单元组"中的所有单元格范围共享一个公用**求解方法、交叉率、** 突变率和运算符。这些均在可调整单元组设置对话框中指定。通过单击 可调整单元范围表旁边的组按钮访问此对话框。您可以创建一个在其中 添加可调整单元格范围的新组,或编辑一个现有组的设置。

😌 Evolver - 可调整单元组设置		
常规(G) 运算符(<u>O</u>)		
定义		
描述(D)	生 成的約数	
	主成的相致	
求解方法(<u>5</u>)	菜单	-
最忧化参数		
	5	
父父举(<u>()</u> 突东东(M)	15	
天文羊(凹)	.13	
	确定	取消

"可调整单元组设置"对话框中的常规选项卡上的选项包括:

- 描述。描述对话框和报表中的可调整单元格范围组。
- 求解方法。选择用于组中每个可调整单元格范围的"求解方法"。

😔 Evolver - 可调整单元组设置		×
常规(G) 运算符(<u>O</u>)		
定义		
描述(D)		8
求解方法(5)	菜单	
最优化参数	分组 顺序 — 项目	
交叉率(<u>C</u>)	来里 日程安排	
突变率(<u>M</u>)	.1	
0	确定 取消	

当您选择要由 Evolver 进行调整的单元格范围时,您也可以指定在调整 这些可调整单元格时要应用的"求解方法"。其实,每种求解方法都是 一个完全不同的遗传算法,具有各自的最优化选择、交叉和突变例程。 每种求解方法以一种不同的方式调整变量的值。

例如,"菜单"求解方法将选中的每个变量视为菜单中的基本成分;每 个变量的值可以独立于其他变量的值进行更改。相反,"顺序"求解方 法则在可调整单元格之间交换值,并对单元格中的初始值重新进行排序。

Evolver 共有六种求解方法。三种求解方法(菜单、顺序和分组)使用 完全不同的算法。其他三种求解方法是前三种求解方法的*子级*,并添加 了其他约束条件。

以下部分描述每种求解方法的函数。要更好地了解如何使用每种求解方法,我们建议您研究软件随附的示例文件(请参见<u>第四章:应用示例</u>)。

菜单求解方法

在各种求解方法中, "菜单"求解方法是最简单且最常用的类型。如果要 调整的一组变量相互之间可以独立改变时,请使用"菜单"求解方法。将 每个变量视为蛋糕中每个基本成分的数量; 当您使用"菜单"求解方法 时,您将告知 Evolver 生成这些变量的数量,以确定最佳搭配。针对菜 单变量的唯一约束条件是设置<u>范围</u>(最高值和最低值),这些值必须处 于设置的范围之间。在"可调整单元"对话框的*最小值和最大值*字段中 设置这些值(例如,1到100),同时也指明 Evolver 是否应尝试<u>整数</u>(1、2、7)或实数(1.4230024、63.72442)。

以下示例说明在调用 Evolver 之前位于某个工作表中的一组变量值, 以及在使用"菜单"求解方法后,所生成的两个新方案的可能形式。

一组初始变量值	一组可能菜单值	另一组可能菜单值
23.472	15.344	37.452
145	101	190
9	32.44	7.073
65,664	14,021	93,572

顺序求解方法

"顺序"求解方法是第二常用的求解方法类型,排在"菜单"求解方法 之后。顺序是一组项目的排列,而您在其中尝试确定排列一组特定值的 最佳方式。与要求 Evolver 生成所选变量的值的"菜单"和"预算"求 解方法不同,"顺序"求解方法要求 Evolver 使用模型中的现有值。

一个顺序可以表示要执行的一组任务的顺序。例如,您可能需要确定完成1、2、3、4和5五项任务的顺序。"顺序"求解方法将会搅乱这些值,因此一种方案可能是3、5、2、4、1。由于 Evolver 只尝试初始工作表中的变量值,因此在使用"顺序"求解方法时,不需要为可调整单元格输入"最小值-最大值"范围。

以下示例说明在调用 Evolver 之前位于某个工作表中的一组变量值, 以及在使用"顺序"求解方法后,所生成的两个新方案的可能形式。

一组初始变量值	一组可能顺序值	另一组可能顺序值
23.472	145	65,664
145	23.472	9
9	65,664	145
65,664	9	23.472

分组求解方法

如果您的问题涉及多个要分为多个组的变量,应使用"分组"求解方法。 Evolver 创建的不同组的数量将等于开始最优化时在可调整单元格中显 示的唯一值的数量。因此,在您构建您系统的模型时,请确保每个组至 少表示了一次。

例如,假设50个单元格的范围包含的值只有2、3.5和17。当您选择50 个单元格并使用"分组"求解方法调整这些值时,Evolver将50个单元 格中的每个单元格分配到3个组(2、3.5或17)其中之一。所有组均至 少由一个可调整单元格表示;这与将50个变量中的每个变量投掷到几个 "块"中的其中一个的方式一样,而且确保每个块中至少有一个变量。 另一个示例是将1s、0s和-1s分配到交易系统,以指明买入、卖出和持 仓头寸。与"顺序"求解方法一样,"分组"求解方法要求Evolver 排 列现有值,因此没有要定义的"最小-最大"范围或"整数"选项。

注:当使用"分组"求解方法时,不能将任何单元格设置为空白,除非 您希望其中的一个组显示为0.0。

如果将"整数"选项设置为"开"且范围设置为从1到3(或存在的组数)时,您可能注意到使用"分组"求解方法近似于使用"菜单"求解 方法。"菜单"求解方法与"分组"求解方法的差异在于执行搜索的方 式。这两种方法的*选择、突变和交叉*例程不同;"分组"求解方法更关 注所有变量的值,因为其可以将一个组中的一组变量与另一个组中的一 组变量进行交换。

以下示例说明在调用 Evolver 之前位于某个工作表中的一组变量值, 以及在使用"分组"求解方法后,所生成的两个新方案的可能形式。

一组初始变量值	一组可能分组值	另一组可能分组值
6	6	8
7	6	7
8	8	6
8	7	7

使用"分组"求解方法时,"可调整单元组设置"对话框中会有 2 项附加设置:

• 组名(可选)。此设置允许用户指定包含数字组身份代码的范围。 通常, Evolver 从可调整范围中读取组身份代码。例如,如果可调 整范围是 A1:D1,而且范围中包含数字1、1、3、2,则 Evolver 将 使用 1、2 和 3 作为组身份代码。但是,组的数量可能多于可调整 单元格的数量;例如,我们可能需要将单元格 A1:D1 表示的项目分 配到组1 至5 中。在这种情况下,"组名"设置将允许用户指定一 个包含五个单元格的范围,同时将数字1 到5 用作最优化过程中的 组身份代码。 必须使用的所有组。如果勾选此选项,则每个解法将具有每个组中的成员。例如,如果可调整单元格是A1:D1,而组身份代码是1、2和3,则 Evolver将不会尝试将1分配到所有4个单元格的解法(缺少2和3)。此外,如果未选中复选框,也可能使用此解法。

预算求解方法 "预算"求解方法与"菜单"求解方法相似,但不同之处在于所有变量 值的总和必须为一个特定数字。此数字是开始最优化时变量值的总和。

> 例如,您可能需要确定在几个部门之间分配年度预算的最佳方式。"预 算"求解方法将使用各部门当前值的总和,并将此总和用作要最优化分配 的总预算。以下是使用"预算"求解方法后,可能看似两个新方案的示例。

一组初始预算值	一组可能预算值	另一组可能预算值
200	93.1	223.5
3.5	30	0
10	100	-67
10	.4	67

项目求解方法

将会尝试许多值,但所有值的总和仍为223.5。

"项目"求解方法与"顺序"求解方法相似,只是某些项目(任务)必须位于其他项目之前。您可以在项目管理中使用"项目"求解方法,以 重新排列任务的顺序,但此顺序将始终符合优先约束条件。

如果包含任务顺序的可调整单元格位于一列,而不是一行,则将更容易 处理和理解使用项目求解方法建模的问题。这是因为此求解方法预计采 用垂直方式(而非水平方式)来排列优先任务单元格,如果可调整单元 格也呈垂直排列,将会使工作表检查更为容易。

在指定可调整单元格的位置之后,您应在对话框的优先任务部分中指定 优先任务单元格的位置。这是一个描述哪些任务必须位于其他任务之后 的单元格表。此求解方法使用此表重新排列方案中变量的顺序,直到符 合优先约束条件。可调整单元格中每项任务的优先任务范围中应包含一 行。从优先任务范围的第一列开始,应在单独的列中列出该行任务所依 据的各任务的识别号码。

此项目	必须在以下	项目之后.		
1	6	9		
2	1	6	3	
3	1			
4	9	12		
5				
6	9	1	2	
7	3	4		
8				
9	12	3	1	

如何为"项目"求解方法设置引用单元的示例。

优先任务范围应指定为 n 行 m 列,其中 n 为项目(可调整单元格)中的 任务数,而 m 为任何一个任务所具有的最大优先任务数。

以下示例说明在调用 Evolver 之前位于某个工作表中的一组变量值,以 及在使用具有约束条件(2必须始终位于1之后,而4必须始终位于2之 后)的"项目"求解方法后,所生成的两个新方案的可能形式。

一组初始变量值	一组可能项目值	另一组可能项目值
1	1	1
2	3	2
3	2	4
4	4	3

日程安排求解方法

日程安排类似于分组;它属于任务与时间的分配。每项任务假设为花费 相同的时间,如同学校中同样课时长度的课程。但是,与分组不同,"日 程安排"求解方法的"可调整单元组设置"对话框使您可以直接指定要 使用的时段(组)数。请注意,当您选择"日程安排"方法时,此对话 框的下部将出现几个相关选项。

最优化参数	
交叉率(<u>⊂</u>)	.5
突变率(M) 约束条件单元(<u>A</u>)	=L20:N28
时间块数(№)	6

在*最优化参数*部分中,您将发现其中还提供了可以附加的约束单元格范围。此范围可以是任何长度,但必须准确分为三列。可以识别的约束条件有8类:

- 1) (与)第1和第3列中的任务必须在同一时段内出现。
- 2) (不与一起)第1和第3列中的任务不能在同一时段内出现。
- 3) (早于)第1列中的任务必须在第3列中的任务之前出现。
- 4) (在)第1列中的任务必须在第3列中的时段内出现。
- 5) (不晚于)第1列中的任务必须与第3列中的任务在同一时间或之前出现。
- 6) (不早于)第1列中的任务必须与第3列中的任务在同一时间或之 后出现。
- 7) (不在)第1列中的任务不能在第3列中的时段内出现。
- 8) (晚于)第1列中的任务必须在第3列中的任务之后出现。

您可以为约束条件输入数字代码(1至8)或英文说明(*晚天、不在等*)。 (注: Evolver 的所有语言版本均可以识别为约束条件输入的英文说明以 及其转换形式)。符合问题中指定的所有约束条件。要创建约束条件,请 在您的工作表中找到一个空位置并创建一个表,其中左右列表示任务, 而中间列表示约束条件的类型。数字1至8表示上面所列的约束条件的 类型。在开始最优化之前,约束条件范围中的单元格内必须包含约束条 件数据。

此任务	约束条件	此任务
5	4	2
12	2	8
2	3	1
7	1	5
6	2	4
9	3	1

以下示例说明在调用 Evolver 之前位于某个工作表中的一组变量值, 以及在使用"日程安排"求解方法后,所生成的两个新方案可能形式。

一组初始变量值	一组可能日程安排值	另一组可能日程安排值	
1	1	1	
2	1	3	
3	3	1	
1	1	2	
2	2	2	
3	3	2	

注: 当您选择"日程安排"求解方法时,将始终使用从1 开始的整数 (1、2、3...),无论可调整单元格中的初始值如何。

交叉和突变率

当您的问题似乎具有无限可能性时,搜索优化解法所遇到的关键难题之 一是决定将重点集中在何处。换言之,应投入多少计算时间来查看"解 法空间"的新领域,以及应投入多少时间来微调群体中已证明效果相当 不错的解法?

遗传算法之所以成功,很大一部分应归功于其本身能够保持这种平衡。 遗传算法的结构允许"繁殖"良好的解法,但也保留了"不太适合的" 组织以保持多样性,并希望隐藏的"基因"可以证明其对最终解法的重 要性。 交叉和突变是两个可以影响搜索范围的参数,而 Evolver 允许用户提前 以及在进化过程中更改这些参数。这样一来,知识丰富的用户可以通过 确定遗传算法应将其重点集中在何处来帮助完成该算法。在大多数情况 下,不需要调整默认的交叉和突变设置(分别为.5和.1)。如果您希望 针对您的问题微调此算法、进行比较研究或仅为了试验,此处对这两个 参数进行了简要介绍:

 交叉。交叉率可以设置在 0.01 和 1.0 之间,它反映了未来的方案或 "组织"将会包含上一代的父组织中信息组合的可能性。经验丰富 的用户可以通过微调 Evolver 在针对复杂问题方面的性能来更改此 比率。

换言之,0.5 的比率表示子孙组织中约 50% 的变量值来自某个父对象,而剩余的值来自其他父对象。0.9 的比率表示子孙组织中约 90% 的值将来自第一个父对象,而 10% 来自第二个父对象。交叉率 1 表示将不会发生交叉,因此将仅评估这些父对象的克隆。

Evolver 使用的默认比率为 0.5。在 Evolver 开始解决问题后, 您可以通过使用 "Evolver 观察器"来更改交叉率(请参见本章的 "Evolver 观察器"一节)。

 突变率。突变率可以设置在 0.0 和 1.0 之间,它反映了未来的方案将 会包含某些随机值的可能性。较高的突变率仅表示将更多的突变或 随机的"基因"值引入群体。由于突变发生在交叉之后,因此将突 变率设置为1(100%随机值)可以有效阻止交叉产生任何效果,而 Evolver 将生成完全随机的方案。

如果优化解法的所有数据均位于群体中的某个位置,则单独的交叉 运算符将足以在最后拼凑解法。突变已证实是生物界中的一种强大 力量,出于许多相同原因,遗传算法中也需要发生突变:保持单个 组织的多样化群体是至关重要的,这样可以防止群体变得过于僵化, 而无法适应动态环境。如同在遗传算法中一样,动物界中通常是基 因突变最终导致产生关键的新功能。

在大多数情况下,不需要调整默认的突变设置,但经验丰富的用户可 通过微调 Evolver 在针对复杂问题方面的性能来更改此设置。如果 Evolver 的群体基本相同,并且没有在过去的数百次试验中找到新的 解法,则用户可能需要提高突变率。典型的设置变化为 .06 到 .2。在 Evolver 开始解决问题后,您可以通过使用"Evolver 观察器"来动态 更改突变率(请参见本章后面的"Evolver 观察器"一节)。

在"突变率"字段的下拉列表中选择*自动*,即可选择自动突变率调整。自动突变率调整允许 Evolver 在组织明显"老化"时自动增加 突变率;也就是说,其在整个延长数量的试验中一直保持不变。对 于许多模型,尤其是不知其最佳突变率的模型,选择"自动"可以 更快地获得更好的结果。 有关这些选项的更多信息,请参见本章*求解方法*一节中的日程安排求解 方法。

优先任务 有关这些选项的更多信息,请参见本章*求解方法*一节中的*项目*求解方法。

运算符

单元格

时间块数和约束

与"菜单"求解方法配合使用时, Evolver 将包括可选择的遗传算子。 单击"可调整单元组设置"对话框中的运算符选项卡,允许您选择在为 一组可调整单元格生成可能值时使用的特定遗传算子(如启发式交叉或 边界突变)。此外,您还可以使 Evolver 自动检验所有可用的运算符, 并确定用于您的问题的最佳运算符。

😌 Evolver - 可调整单元组设	置		
常规(G) 运算符(O)			
运算符			
默认父对象选择集	V		
默认突变			
默认交叉			
默认回溯			
算术交叉			
启发式交叉			
柯西突变			
边界突变			
不均匀突变			
线性			
本地搜索			
		确定	En Alt
		- 明定	

遗传算法使用遗传算子从当前成员中创建群体的新成员。Evolver 采用 的两种遗传算子类型为*突变和交叉*。突变运算符可以确定"基因"(变 量)是否将发生随机变化以及如何发生变化。交叉运算符可以确定群体 中的两个成员对如何交换基因来生成"子孙",这可能是比其任一"父 对象"更好的答案。 Evolver 包括以下专用遗传算子:

- **算术交叉** 通过采用算术方式结合两个父对象来创建新子孙(与交 换基因相反)。
- ◆ 启发式交叉 使用由父对象生成的值来确定如何生成子孙。沿着最 佳方向搜索并提供局部微调。
- ◆ **柯西突变** 旨在大多数时候使变量产生较小的变化,但可偶尔产生 较大的变化。
- ◆ **边界突变** 旨在快速最优化以单调方式影响结果的变量,并且可以 在不违反约束条件的情况下设置为其最大范围。
- ◆ **不均匀突变** 随着计算的试验的增多,产生的突变将越来越小。 这允许 Evolver 对答案进行"微调"。
- ◆ 线性 旨在解决优化解法位于由约束条件定义的搜索空间边界的问题。此突变和交叉运算符对极其适合解决线性最优化问题。
- ◆ **本地搜索** 旨在于先前解法的附近搜索解法空间,从而在提供改进 的方向上扩大搜索范围,在产生较坏结果的方向上缩小搜索范围。

根据最优化问题的类型,不同的突变和交叉组合可能会产生比其他更好的结果。在"可调整单元组设置"对话框的"运算符"选项卡中,如果使用"菜单"求解方法,则可以选择任意数目的运算符。做出多个选择时,Evolver将检验所选运算符的有效组合,以确定用于您的模型的最 佳运算符。运行之后,*最优化摘要表*将根据每个选定运算符在运行过程 中的表现来对其进行排名。对于同一模型的后续运行,仅选择效果最佳 的运算符可以更快、更好地执行最优化。

注: 创建多个可调整单元格组时,请检查以确保几个不同的可调整单元 格组中不包含电子表格单元格。每个可调整单元格组应包含唯一的可调 整单元格,因为第一组可调整单元格中的值将被忽略并改写为第二组可 调整单元格中的值。如果您认为需要通过多个求解方法来说明问题,请 考虑如何将变量拆分为两个或更多的组。
约束条件

Evolver 允许您输入要使解法有效而必须符合的约束条件或条件。已输入的约束条件将显示在"模型定义"对话框的**约束条件表**中。

添加 — 添加约束 条件

单击约束条件表旁边的*添加*按钮可以显示约束条件设置对话框,您可以 在此对话框中输入约束条件。使用此对话框,您可以输入所需的约束条 件类型,以及其描述、类型、定义和评估时间。

🚭 Evolver - 约束条件i	2番 🛛 🗙
描述(<u>D</u>)	
约束条件类型	
 严格(丢弃不符合约束条件 宽松(不赞成不符合约束条件) 	±的解决方案)(<u>H</u>) ξ件的解决方案)(<u>5</u>)
惩罚函数(P)	=100*(EXP(偏差/100)-1)
定义	,
条目样式(E)	简单
最小值(<u>N</u>)	要约束的范围(R) 最大值(X)
ا تھ ا،	<= _ <u>■</u> <= _
0	确定取消

约束条件类型

您可以在 Evolver 中指定两种类型的约束条件:

- 严格,或必须符合才能使解法有效的条件(即严格约束条件可以是C10<=A4;在这种情况下,如果解法为C10生成的值大于单元格A4的值,则此解法将被丢弃)。
- 宽松,或我们希望尽可能符合,但可能会为了大大改进适应度或目标单元格结果而愿意做出让步的条件(即宽松约束条件可以是C10<100;C10的值可以超过100,但是,当此情况发生时,为目标单元格计算的值将会根据您输入惩罚函数而减小)。

简单和公式约束 条件

可以使用两种格式的输入约束条件 – *简单和公式*。您可以为约束条件输入的信息类型取决于您选择的格式。

 简单格式 — 简单格式允许使用简单的 <、<=、>、>= 或 = 关系输入 约束条件,其中单元格与输入的数字进行比较。典型的简单约束条 件为:

0<A1 的值<10

其中,在*单元范围*框中输入A1,在*最小值*框中输入0,而在*最大值*框中输入10。可以从下拉列表框中选择所需的运算符。如果使用简单值范围格式的约束条件,您可以只输入一个"最小"值、一个"最大"值或同时输入二者。输入的最小值和最大值必须是采用简单值范围约束条件格式的数值。

• 公式格式 – 公式格式允许您输入任何有效的 Excel 公式作为约束条件,例如 A19<(1.2*E7)+E8。Evolver 将检查输入的公式估值是 TRUE 还是 FALSE,以查看解法是否已符合约束条件。

宽松约束条件

宽松约束条件是我们希望尽可能符合,但可能会为了大大改进适应度或目标单元格结果而愿意做出让步的条件。如果不符合宽松约束条件,则会引起目标单元格中出现远离其优化值的变化。由不符合宽松约束条件所引起的变化量将使用在指定宽松约束条件时输入的惩罚函数来进行计算。

😌 Evolver - 约束条件设置	
描述(D)	
约束条件类型	
○ 严格 (丢弃不符合约束条件的角	ī決方案)(⊞)
◉ 宽松 (不赞成不符合约束条件的)解决方案)(5)
惩罚函数(P)	⊨100*(EXP(偏差/100)-1)
定义	
条目样式(E)	简单
最小值(<u>N</u>)	要约束的范围(<u>R</u>) 最大值(<u>X</u>)
0 🛅 <= 💌	<= ▼ 0
	确定取消

有关惩罚函数的更多信息,如下所示:

• 输入惩罚函数。Evolver 具有默认惩罚函数,此函数在您首次输入宽松约束条件时显示。但是,可以在不符合宽松约束条件时,输入任何有效的 Excel 公式来计算要应用的惩罚数额。输入的惩罚函数应包括关键字偏差,此关键字表示约束条件超出其限制时所依据的绝对量。每次重新计算时,Evolver都会检查是否已符合宽松约束条件;如果不符合,它将在输入的惩罚公式中加入偏差量,然后计算要应用到目标单元格的惩罚数额。

您可以在计算的目标单元格值中添加或减去惩罚数额,以降低其 "最佳"程度。例如,如果在 Evolver"模型"对话框的最优化目标 字段中选择最大值,则将从计算的目标单元格值中减去惩罚。

 查看输入的惩罚函数的影响。Evolver包括一个Excel工作表 PENALTY.XLS,此工作表可以用于评估不同的惩罚函数对特定的宽 松约束条件和目标单元格结果的影响。

PENALTY.XLS 允许您从模型中选择一个希望分析其影响的宽松约束条件。然后,您可以更改惩罚函数,以查看此函数如何将未符合的宽松约束条件的特定值设为特定的惩罚目标值。例如,如果宽松约束条件为A10<100,您可以通过 PENALTY.XLS 查看在使用数值 105 计算单元格A10 时,目标值将会是多少。

• **查看已应用的惩罚。**在由于不符合宽松约束条件而应用惩罚时,可以在"Evolver观察器"中查看所应用的惩罚数额。此外,惩罚值还会显示在"最优化日志"工作表中,您可以在最优化之后选择创建此工作表。

*注:如果您使用*停止对话框中的更新可调整单元值选项在工作表中放置 解法,则电子表格中显示的已计算目标单元格结果<u>将不会包括</u>任何因 不符合宽松约束条件而应用的惩罚。检查"最优化日志"工作表,以查 看惩罚目标单元格结果以及因每个不符合的宽松约束条件而施加的惩罚 数额。

在工作表公式中执行宽松约束条件。您可以在工作表的公式中直接执行惩罚函数。如果在工作表中直接执行宽松约束条件,则不应当在主 Evolver 对话框中输入宽松约束条件。有关在您的工作表中执行惩罚函数的更多信息,请参见第九章: Evolver 附加说明中的"宽松约束条件"一节。

"最优化设置"命令

"最优化设置"命令—"常规"选项卡

定义最优化的常规设置

"最优化设置"对话框的"常规"选项卡显示有关总体规模、显示更新 以及随机数生成器种子的设置。

😔 Evolver - 最优化设置			×
常规(G) │ 运行时间(R) │ 视图(Y) │ 宏(M) │			
最优化参数			
	50		
随机数生成器种子(<u>A</u>)	自动	-	
		确定	取消

"常规"选项卡上的最优化参数选项包括:

- 总体规模。总体规模可以告知 Evolver 在任何特定时间应在内存中存储的组织(或完整的变量组)数量。尽管仍有许多关于针对不同问题使用的最佳总体规模的争议与研究,但我们通常建议在您的群体中使用 30-100 个组织,具体取决于问题的大小(越大的群体适用于越大的问题)。通常的观点是较大的群体确定解法所需要的时间较长,但更有可能因为其更多样化的基因群而找到一个全局答案。
- 随机数生成器种子。"随机数生成器种子"选项允许您为 Evolver 中使用的随机数生成器设置开始种子值。在使用同一种子值时,只 要尚未修改模型,最优化就会为同一模型生成完全相同的答案。种 子值必须是范围1到2147483647中的一个整数。

"最优化设置"命令—"运行时间"选项卡

定义最优化的运行时间设置

"最优化设置"对话框的"运行时间"选项卡显示确定最优化的运行时间的 Evolver 设置。这些停止条件可以指定在最优化的过程中 Evolver将如何以及在何时停止。选择"开始最优化"命令后, Evolver将会连续运行,搜索更好的解法并运行试验,直到符合所选的停止标准。您可以打开任意数目的这些条件,或者如果您想让 Evolver 无限制地进行搜索(直到您将其停止),则完全不需要这些条件。当选中多个条件时,只要符合其中一个选中条件, Evolver 就会停止。您也可以覆盖这些选择,并使用"Evolver 观察器"或"进度"窗口中的"停止"按钮随时手动停止 Evolver。

😌 Evolver - 最优化设置			×				
常规(G) 运行时间(R) 视图(V) 宏(M)	1						
最优化运行时间	最优化运行时间						
▼ 试验(<u>5</u>)	1000						
□ 时间(I)	5	分钟	Ŧ				
 	.01 100	% y					
□ <u>公式为真(E)</u>			ж. 				
「週到错误时停止(0)	1						
0		确定	取消				

"最优化运行时间"

选项

"运行时间"选项卡上的最优化运行时间选项包括:

• **试验** – 设置此选项后, Evolver 会在生成特定数目的试验解法后 停止。

如果在尝试不同的建模方法时比较 Evolver 的效率,"试验"设置 将尤其有用。通过更改问题的建模方式,或选择不同的求解方法, 您可以提高 Evolver 的效率。使模型运行指定数目的试验将指明 Evolver 如何有效收敛某个解法,无论选定的变量数目、使用的计算 机硬件的速度或屏幕重画时间有何不同。Evolver 最优化摘要表在比 较运行之间的结果时也非常有用。有关最优化摘要表的更多信息, 请参见本章的"Evolver 观察器 – 停止选项"一节。

- 时间 设置此选项后, Evolver 会在经过特定的小时数、分钟数或 秒数后停止优化方案。此条目可以是任何正实数(600、5.2 等)。
- 进度 设置此选项后, Evolver 会在目标单元格中的改进少于指定量(更改标准)时停止优化方案。您可以指定检查改进的试验次数(整数)。同时,可以在最大变化字段中输入一个百分比值(如1%)作为最大变化值。

假设我们要尝试将目标单元格的平均值最大化,在经过 500 次试验 之后,到目前为止确定的最佳答案为 354.8。如果"*进度*"选项是选 择的唯一停止条件,则 Evolver 将在第 600 次试验时暂停,并且只 有在最后 100 次试验中至少找到答案 354.9 时才能继续。换言之, Evolver 的答案在最后 100 次试验中没有获得至少 0.1 的改进,因此 它假设很难找到更多的改进,并停止了搜索。对于更复杂的问题, 在确定是否仍有充分的改进可以继续之前,您可能希望增加 Evolver 运行的试验次数 (500)。

这是最常用的停止条件,因为它为用户提供了一种有效的方法,可 以在改进率减慢,并且 Evolver 似乎未找到任何更好的解法时停止 Evolver。如果您正在"Evolver 观察器"的"进度"选项卡上查看 最佳结果的图表,您将看到在符合此条件并停止 Evolver 之前,图 表暂时呈稳定或水平状态。"*进度*"实际上只是一种自动执行您能 够自己通过图表执行的所有操作的方法 – 使图表运行直到改进呈 平稳状态。

- 公式为真。此停止条件可以在最优化过程中输入(引用)的 Excel 公式的估值为 TURE 时停止最优化。
- **遇到错误停止。**此停止条件可以在为目标单元格计算出错误 值时停止最优化。

注: 您也可以不选择停止条件,此时 Evolver *将一直运行,直到您按* Evolver 观察器 窗口中的"停止"按钮。

"最优化设置"命令—"视图"选项卡

定义最优化的视图设置

"最优化设置"对话框的"视图"选项卡包含确定在最优化过程中显示的内容的 Evolver 设置。

😔 Evolver - 最优化设置			X
常规(g) 运行时间(R) 视图(V) 宏(M)			
最优化期间			
□ 开始时将 Excel 最小化(N)			
☑ 显示 Excel 重新计算(<u>5</u>)	每个新的最佳试验		•
☑ 记录所有试验(២)			
]		
		明ル	HX.(F]

"视图"选项卡上的选项包括:

- 开始时将 Excel 最小化。此选项选择在最优化开始时将 Excel 最小化。
- 显示 Excel 重新计算。此选项指定通过每个新的最佳试验,或在每个试验结束时更新 Excel。

记录所有试验。此选项指定 Evolver 连续记录每个新执行的试验。您可以在"Evolver 观察器"窗口中查看此日志。

"最优化设置"命令—"宏"选项卡

定义要在最优化过程中运行的宏

在最优化以及每种试验解法的过程中,VBA 宏可以在不同时间运行。 这一点允许用户开发在最优化过程中调用的自定义计算。

🚭 Evolver - 最优化设置		×
常规(g) 运行时间(R) 视图(V) 宏(<u>M)</u>		
运行 Excel 宏	宏名和	R:
□ 在最优化开始时(A)		
□ 在每次试验重新计算之前(E)		
□ 在每次试验重新计算之后(N)		
□ 在存储输出项之后(E)		
□ 在最优化结束时(Z)		
<u>@</u>	确定	

在最优化过程中,可以在以下时间执行宏:

- **在最优化开始时** 在单击"运行"图标之后运行宏;在生成的第一 个试验解法之前。
- 在每次试验重新计算之前 在重新计算每次执行的试验之前运行宏。
- 在每次试验重新计算之后 在重新计算每次执行的试验之后运行宏
- **在存储输出项之后** 在每次执行试验并存储目标单元格的值之后 运行宏。

在最优化结束时 – 在完成最优化时运行宏。

此功能允许在最优化过程中进行只能通过使用宏来执行的计算。此类由 宏执行的计算示例是不断重复的"循环"计算,并需要从外部来源中获 得新的数据。

宏名称定义要运行的宏。

"开始最优化"命令

开始一个最优化

选择"开始最优化"命令或单击"开始最优化"图标可以开始活动 模型和工作薄的最优化。只要 Evolver 正在运行,您就会看到下面的 Evolver 进度窗口。

Evolver)	<u> </u>
试验:	2968 (767 次有效)
运行时间:	00:00:06
初始值:	2164545
最佳值:	3508002.7717
3	

"进度"窗口显示:

- **试验**或已执行的总试验次数,**有效次数**表示符合其中所有约束 条件的试验的次数。
- 运行时间或运行中消耗的时间
- 初始值或目标单元格的初始值。
- 最佳值或要最小化或最大化的目标单元格的当前最佳值。

"进度"窗口的 Evolver 工具栏上的选项包括:

- 显示 Excel 更新选项。选择更新 Excel 显示的方法:每次试验时、 基于每个新的最佳试验或从不。请注意,在某些情况下,屏幕将独 立于这些设置进行更新,例如在暂停最优化时。
- **显示 Evolver 观察器**。显示整个"Evolver 观察器"窗口。
- 运行。单击"运行"图标可以使 Evolver 根据 Evolver"模型"对话框中的当前描述开始搜索解法。如果暂停 Evolver,您仍能够单击 "运行"图标来继续搜索更好的解法。
- **暂停。**如果您想要暂停 Evolver 进程,只需单击"暂停"图标即可 临时"冻结"Evolver 进程。暂停时,您可能需要打开并浏览 "Evolver 观察器",以及更改参数、查看整个群体、查看状态报告 或复制图表。
- 停止。停止最优化。

"实用工具"命令

"应用程序设置"命令

显示可以在其中设置程序默认值的"应用程序设置"对话框

各种不同的 Evolver 设置均可以设置默认值,每次 Evolver 运行时将会使用这些默认值。这些默认值包括停止默认设置、默认的交叉率和突变率以及其他默认值。

Evolver - 应用程序设置		×
三 常规		^
语言	简体中文	
显示欢迎屏幕	真	
三报表		
报表放置位置	新工作簿	
- 重复使用同一新工作簿	假	
三停止默认设置		
最优化摘要	真	
记录所有试验	假	
记录进度条步进	假	
最终可调整单元值	最佳值	
三 目标默认设置		
最优化目标	最大值	
三可调整单元组默认设置		
交叉率	.5	
突变率	.1	
己用的所有组	耳	
息体規模	50	
随机数种子	目动	
试验	版	
- 试验次数	1000	
时间	- 1段	
- 时间砖度	5	
- 単 <u>い</u> 米森	分刊	
进度	版	
- 以日分応調重	具	-
	确定	፪ 取消

"约束条件求解器"命令

运行约束条件求解器

"约束条件求解器"可以提高 Evolver 处理模型约束条件的能力。当 Evolver 运行最优化时,其假设初始可调整单元格值符合所有严格约束 条件,即初始解法有效。如果不是这种情况,此算法可能需要运行多次 试验才能找到第一个有效解法。但是,如果一个模型包含多个约束条件, 则哪些可调整单元格值将符合所有这些约束条件可能并不显而易见。

如果 Evolver 模型包含多个严格约束条件,并且由于所有解法无效而使 最优化失败,您将收到通知并可以运行"约束条件求解器"。"约束条 件求解器"在特殊模式中运行最优化,该模式的目的是查找符合所有严 格约束条件的解法。采用与常规最优化相同的方式向用户显示最优化进 度。进度窗口显示初始和最佳解法中符合的约束条件的数量。

Evolver j	<u>井度</u>
试验:	1093
运行时间:	00:00:23
初始值:	符合1个约束条件
最佳值:	符合9个约束条件

"进度"窗口中的一个按钮允许用户切换到"Evolver 观察器"。在 "约束条件求解器"模式下,进度、摘要、日志、群体和多样性选项卡 中提供了最优化进度的详细信息,这与在常规模式最优化中相同。在"约 束条件求解器"模式下,观察器包含一个名为约束条件求解器的附加选 项卡。此选项卡显示最佳、初始和最新解法的每个严格约束条件的状态 (符合或不符合)。

E	Evolver 观察器								
ſ	进度(P) 摘要(S) 日志(L) 总体(U) 多样性(D) 约束条件求解器(V) 停止选项(N)								
	严格约束条件	ŧ							
	最佳试验	初始试验	最新试验	描述	公式				
	符合	不符合	符合	已覆盖 Alma	=\$P\$21 = 0				
	符合	不符合	符合	已覆盖 Auburn	=\$P\$22 = 0				
	符合	不符合	符合	已覆盖 Antonito	=\$P\$23 = 0				
	符合	不符合	符合	已覆盖 Appleton	=\$P\$24 = 0				
	符合	不符合	符合	已覆盖 Barrow	=\$P\$25 = 0				
	符合	不符合	符合	已覆盖 Byers	=\$P\$26 = 0				
	符合	不符合	符合	已覆盖 Carthage	=\$P\$27 = 0				
	符合	符合	符合	已覆盖 Cedar	=\$P\$28 = 0				
	符合	不符合	符合	已覆盖 Dobbs	=\$P\$29 = 0				
	符合	不符合	符合	已覆盖 Dover	=\$P\$30 = 0				
	约束条件数 = 10 最佳试验 = 符合 10 个约束条件(试验编号 1130) 初始试验 = 符合 1 个约束条件 试验次数 = 1130 时间 = 00:00:26								
	0 😰 🤇	à			确定				

当找到符合所有严格约束条件的解法时,"约束条件求解器"最优化将 自动停止;也可以通过单击"进度"窗口或"Evolver观察器"中的按 钮来停止此最优化。在运行"约束条件求解器"后,您可以在"Evolver 观察器"的"停止选项"选项卡中选择保留最佳、初始或最新解法,这 与在常规模式最优化中相同。

请注意,在运行之前不需要设置"约束条件求解器"。它使用模型中的 指定设置,只需更改最优化目标:新目标是查找符合所有严格约束条件 的解法。

Evolver 观察器

Evolver"进度"窗口工具栏上的放大镜图标可以显示"Evolver观察器"。"Evolver观察器"负责管理和报告所有 Evolver 活动。

在"Evolver 观察器"中,您可以更改参数和分析最优化的进度。您还可以在"Evolver 观察器"底部的状态栏中查看有关问题的实时信息以及有关 Evolver 进度的信息。

"Evolver 观察器"—"进度"选项卡

显示目标单元格值的进度图表

"Evolver 观察器"中的进度选项卡以图表形式显示所选目标单元格的结果如何根据试验发生变化。

进度图表在X轴上显示试验计数,在Y轴上显示目标单元格值。可以通 过单击轴界限并将轴拖至新的刻度值来重新调节进度图表。或者,右键 单击进度图表可以显示图表选项对话框,您可以在此对话框中对此图表 进行进一步自定义。

"图表选项" 对话框

"图表选项"对话框显示可以控制在所显示图表上使用的标题、图例、 缩放和字体的设置。

<mark>佔</mark> 图表选项			
「标题」 ×轴 ×轴 曲线 图例	其他		
☑ 显示标题(D)			,
标题(<u>T</u>)	自动		•
描述(<u>E</u>)	自动		•
格式	▼ 自动(A)		
颜色(<u>C</u>)			-
标题字体(E)	Tahoma 10		>
描述字体(<u>O</u>)	Tahoma 7		>
			На они
<u> </u>		開定	

"Evolver 观察器"—"摘要"选项卡

显示可调整单元格值的详细信息

"Evolver 观察器"中的**摘要**选项卡显示在最优化过程中检验的可调整 单元格值的摘要表,以及用于调整模型中每个可调整单元格组的交叉率 和突变率的工具。

Evolver 观察器							
进度(P) 摘要(5) 日志(L) 总体(U) 多样性(D) 停止选项(W)							
可调整单元	值						
	试验	结果	B4	C4	D4	E4	F4
最佳试验	4183	3675933.1	22190	50309.7290	35812.5488	17408.1717	67298.94
初始试验	1	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.93
最新试验	5000	3675933.1	22190	50309.7290	35812.5488	17408.1717	67298.94
•							•
可调整单元	组设置						
	 .					_	
显示的新	H(G)	B4,C4:G4				<u> </u>	
交叉率(<u>c</u>)	4			0.5	000	
突变率(M)				▶ 0.1	000]	
	_						
0	· · · · · · · · · · · · · · · · · · ·						

可调整单元格组设置允许您在运行问题时更改遗传算法的交叉率和突变 率。此处所做的任何更改都将覆盖这些参数的初始设置并将立即生效, 这会影响在**显示的组**字段中选择的群体(或可调整单元格组)。

我们几乎总是建议使用默认交叉率 0.5。对于突变,如果您想要找到最佳 解法并愿意等待更长时间,则可以在许多模型中将突变率提升至高达 0.4。将突变值设置为1(最大值)将采用完全随机推测,因为 Evolver 在 执行交叉之后执行突变。这意味着在为创建子孙解法而交叉两个选定的 父对象之后,此解法 100% 的"基因"将变异为随机数字,从而有效地 使交叉变得毫无意义(有关更多信息,请参见索引中的"交叉率,作用" 和"突变率,作用")。

"Evolver 观察器"—"日志"选项卡

显示在最优化过程中运行的每次试验的日志

"Evolver 观察器"的日志选项卡显示在最优化过程中运行的每次试验的摘要表。此日志包括目标单元格、每个可调整单元格以及输入的约束 条件的结果。只有在"最优化设置"对话框的视图选项卡中选择选项记录所有试验时,才会提供日志。

Evolver 观察番								
进度(P) 摘要(S) 日志(L) 总体(L) 多样性(D 停止选项(M)								
显示 所有试验 ▼								
试验	消耗的时间	结果	B4	C4	D4	E4	E 🔺	
1	00:00:07	2164545	20405	50144	36968	1980		
2	00:00:09	2400000.68	20405	50144	50048.8712	1980		
3	00:00:09	2393253.33	20405	50144	36968	1980	1520	
4	00:00:09	2200117.12	20405	38029.3514	36968	1980		
5	00:00:09	2752941.72	20405	61794.5021	36968	1980	2418	
6	00:00:09	2409405.57	20405	50144	36968	1980		
7	00:00:09	N/A	20405	50144	12019.5198	1980		
8	00:00:09	2649194.78	20405	60629.4519	34473.1520	1980	2201	
9	00:00:09	N/A	74813	50144	96760.9297	1980	2254	
10	00:00:09	2973814.18	25845	60629.4519	42947.2930	1980	2401	
11	00:00:09	N/A	20405	19838.5338	36968	1980		
12	00:00:09	2841367.97	25301	56550.3601	42349.3637	1980	2186	
13	00:00:09	2855311.15	20405	50144	36968	38336.1135		
14	00:00:09	N/A	20405	50144	36968	62874.0056		
4							•	
0	2						确定	

"显示"选项可以选择显示**所有试验**或仅包含**进度条步进**的试验(即其中的最优化结果已得到改进)的日志。日志内容包括:

- 1) 消耗的时间,或最优化的开始时间
- 2) 迭代, 或运行的迭代次数
- 3) 结果,或您要尝试最大化或最小化的目标单元格值,包括宽松约束 条件的惩罚
- 4) 输入列,或用于可调整单元格的值
- 5) 约束条件列,显示是否符合您的约束条件

"Evolver 观察器"—"群体"选项卡

列出当前群体中每个组织(每个可能的解法)的所有变量

群体表是一个网格,其列出了当前群体中每个组合(每个可能的解法)的所有变量。这些组织("Org n")按从最差到最好的顺序进行排名。由于该表列出了群体中的所有组织,因此"Evolver设置"对话框中的"总体规模"设置将确定此处会列出多少个组织(默认为50个)。此外,该图表的第一列将显示每个组织目标单元格的结果值。

E	volv	er 观察器			_				
ſ	进度(<u>P</u>) 摘要(5)	日志(」) 总	<u>体(U)</u> 多样	性(D) 停止;	选项(<u>N</u>)			
		结果	B4	C4	D4	E4	F4	G4 🔺	
	1	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	2	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	3	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	4	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	5	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755 _	
	6	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	7	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	8	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	9	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	10	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	11	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	12	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	13	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	14	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	15	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	
	16	3672574.2	22188	50309.2399	36965.5542	16142.2910	67298.9396	4397.3755	-
	0	8						确定	

"Evolver 观察器"—"多样性"选项卡

显示当前群体中所有变量的彩色图

"多样性"选项卡上的图根据以下标准为可调整单元格值分配颜色:指 定单元格的值在存储于内存中特定点处的整个组织(解法)群体内的差 异程度。(使用遗传最优化术语,这表明基因群中存在的多样性。)图 中的每个垂直图形条对应于一个可调整单元格。每个图形条中的横纹表 示此可调整单元格在不同组织(解法)中的值。通过将特定可调整单元 格的最小值和最大值之间的范围划分成16个长度相等的间隔,来为这些 条纹分配颜色;每个间隔都由不同的颜色表示。例如,在本图片中表示 第二个可调整单元格的垂直图形条为单色,这一事实意味着此单元格在 内存中的每种解法内的值均相同。

"Evolver 观察器"—"停止选项"选项卡

显示用于最优化的停止选项

当您单击**停止**按钮时, "Evolver 观察器"对话框的**停止选项**选项卡将 会显示。此选项卡包括可以用于通过可调整单元格的最佳计算值更新工 作表、恢复初始值以及生成最优化摘要报表的选项。

单击"确定"可以删除 Evolver 的解法群体,并将选定的值放置在您的 电子表格中。如果您希望保存有关 Evolver 会话的所有信息(包括群体 值、试验运行的时间和次数),请确保选择创建最优化摘要报表。

Evolver 观察器	
进度(P) 摘要(S) 日志(L) 总体(U) 多样性(D) 停止选项(N)	
将显示在工作簿中的可调整单元值更新到	
○ 最佳值(B)	
○ 初始值(○)	
○ 最新值(<u>T</u>)	
要生成的报表	
▼ 最优化摘要(M)	
□ 记录所有试验(<u>A</u>)	
□ 记录进度条步进(R)	

如果已符合其中一个用户指定的停止条件(已评估要求的试验次数,已 消耗要求的分钟数等),也将显示此对话框。停止警报提供了三个用于 更新电子表格中的可调整单元格值的选择:最佳值、初始值和最新值。

- 最佳值。接受 Evolver 的结果并结束 Evolver 对更好解法的搜索。 选中此选项时,系统会将 Evolver 在其搜索中找到的最佳方案值放 置在电子表格的可调整单元格中。
- 初始值。在运行 Evolver 之前将可调整单元格恢复到其初始值, 并结束 Evolver 对更好解法的搜索。
- **最新值**。使 Evolver 将上次计算的值放置在工作表的最优化中。 "上次计算的值"选项在调试模型时非常有用。

要生成的报表选项可以生成用于报告和比较运行结果的最优化摘要表。 "报表"选项包括:

最优化摘要。此摘要表包含了诸如运行的日期和时间、所使用的最优化设置、为目标单元格计算的值以及每个可调整单元格的值之类的信息。

对于比较连续最优化的结果,此报表将非常有用。

• 记录所有试验。此报表记录执行的所有试验的结果。

PH NA TERMS O/2 200 NA	40	- 0 +						Book	2 - Micn	osoft Exo	el :		-
AI C D E P G H I J X L AI - - A - - A - - A - - A - - A - - A - - A - - A - - A - - A - - A - - A - - A -	开始	版入	页面在局	in an	816 5	10 10	8.0	Evolver					υ.
日本の 工具 A1 - の A A1 - 0 B C D E F G H I J K L A1 - 0 0 A A K	× 9		日日日 - √ 5月1日 ● 8日 -										
A1 - C A Exolower: 記法所有試验 KTA :: 建築師一 2: 2010年月19日12:12:22:4 室: Exemption 1: 0:00:017 52; 165; 555 20; 455 50; 456 50;		糖代化	TR										
B C D F F G B I J K L VADers: はスポッド 1 0000107 12,465,45 10,45	A 1		(f.										
Volver: 記法所有試验 ける				c	D	F		ić.	н	T	T	x	1
ND INTEGRITIT Park Park C 4 Park	141: 20	skery.ads	12:12:24										
1 0:00:011 42,146,565 20,455 50,144 50,592 24,455 20,101 符合 符合 2 0:00:001 42,040,001 50,445 50,692 1,900 2,445 3,001 符合 符合 符合 3 0:00:009 42,033,001 20,465 5,164 50,692 1,900 2,445 3,001 符合 符合 符合 4 0:00:009 42,033,013 20,465 5,144 5,968 1,900 2,445 1,611 符合 符合 符合 符合 符合 76 符合 76 774 7746 符合 76 7746	之: Da	keryads	12:12:24	/# 16 40 -1 10		可调整机	元	_	-	_	-	产格约束条件	
2 0:00:09 ¥2,400,001 20,405 50,144 50,946 1,960 2,445 3,001 評金 評金 3 0:00:09 \$2,299,253 \$2,405 \$3,468 \$1,960 2,445 \$3,001 評金 評金 4 0:00:09 \$2,209,171 20,465 \$1,448 \$1,660 ?466 \$1,600 ?762 ?762 5 0:00:09 \$2,209,171 20,465 \$1,468 \$1,800 \$2,465 \$1,410 ?762 <	1 1 1 20	ill0年6月16日 skery.xds 试验	12:12:24	清耗的时间	结果	이해분4 84	A元 C4	D4	84	F4	64	产植约束条件 可模受的高纤维与低热量面包比率	可接受的五种谷物与低热量面包
3 0:00:09 52,392,573 20,405 56,9144 36,984 1,980 15,201 701 評金 評金 評金 4 0:00:09 \$2,200,171 \$2,405 \$1,640 \$1,890 \$1,501 \$701 ?761 ?742 ?742 ?745 \$1,643 ?761 ?742 ?746 ?7476<	1 1 20	ilu#oHitta ikery.ds 试验 1	12:12:24	消耗的时间 0:00:07	結果 \$2, 164, 545	미대보 4 84 20,405	A.R. C4 50, 144	D4 36, 968	E4 1, 980	F4 2, 495	64 3, 001	产植约束条件 可获受的高纤维与低热量面包比率 符合	可接受的五种谷物与新热量面包 符合
4 0+00:09 \$2,200,117 204,005 \$3,029 30,998 1,990 2,495 15,419 円金 円金 円金 円金 日本 10:00:09 \$2,753,945 20,405 1,590 2,495 15,419 ,700 2,495 15,401 円金 円金 円金 円金 日本 10:00:09 \$2,75,945 16,501 46 30,968 1,900 2,495 3,601 円金 円金 円金 円金 円金 日本 10:00:09 \$2,75,945 16,501 46 30,968 1,900 2,495 3,601 円面 日本 10:00:09 \$2,75,945 16,501 46 30,968 1,900 2,495 3,601 円面 日本 10:00:09 \$2,75,945 16,501 46 30,146 46,951 1,900 2,495 3,601 円面 日本 10:00:09 \$2,75,945 16,501 46 30,146 46,951 1,900 2,495 3,601 円面 日本 10:00:09 \$2,75,945 16,501 46,951 1,900 2,495 3,601 円面 円面 円面 円面 円面 円面 円面 日本 10:00:09 \$2,75,945 16,501 2,497 1,900 2,495 3,601 円面	2:00	ikeryada ikeryada ikes 1 2	1 12:12:24	清純的时间 0:00:07 0:00:09	結果 \$2,164,545 \$2,400,001	म अर्थ 84 20, 405 20, 405	C4 50,144 50,144	D4 36, 968 50, 049	E4 1, 980 1, 980	F4 2,495 2,495	64 3,001 3,001	严格约束条件 可接受的高纤维与低热量面包比率 符合 符合	可接受的五种谷物与低热量面包 符合 符合
5 0:00:09 52,715,942 02,059 52,178,942 02,089 75,189 700 71,189 701 評金 評金 評金 評金 評金 評金 ? ? 0:00:09 \$2,045,96,144 12,020 7,445 1,000 7,445 1,000 ? ? ? ? ? ? 0,00:09 \$2,045,96,164 12,020 1,980 2,445 1,000 ? <th?< th=""> <th?< th=""> ?</th?<></th?<>	2: Do	1 ckery.ads	12:12:24	済延的时间 0:00:07 0:00:09 0:00:09	結果 \$2,164,545 \$2,400,001 \$2,393,253	可调整4 84 20,405 20,405 20,405	6.72 C4 50, 144 50, 144 50, 144	D4 36, 968 50, 049 36, 968	E4 1,980 1,980 1,980	F4 2,495 2,495 15,201	64 3,001 3,001 3,001	产临约束条件 可获受的高纤维与 <u>低热</u> 量面包比率 符合 符合 符合	可接受的五种谷物与低热量面包 符合 符合 符合
6 0100109 82,049,045 20,405 50,144 50,164 50,100 2,495 50,001 符合 符合 符合 7 0100109 82,045 50,414 50,1001 1,000 2,495 5,001 符合 不行台 8 0100109 82,645,195 20,405 50,404 7,911,1900 22,012 3,001 符合 符合 符合 符合 1 1 7,413 50,144 67,911,1900 22,012 3,001 7 7 7 7 1 1 7 7 1 1 0 1 <td< td=""><td>2: Do</td><td>1004-04108 ikery.ats ikery.ats 1 2 3 4</td><td>1 12:12:24</td><td>清純的时间 0:00:07 0:00:09 0:00:09 0:00:09</td><td>結果 \$2,164,545 \$2,400,001 \$2,393,253 \$2,200,117</td><td>aj (0.5.4 B4 20, 405 20, 405 20, 405 20, 405</td><td>C4 50, 144 50, 144 50, 144 50, 144 38, 029</td><td>D4 36, 968 50, 049 36, 968 36, 968</td><td>E4 1,980 1,980 1,980 1,980</td><td>F4 2, 495 2, 495 15, 201 2, 495</td><td>64 3,001 3,001 3,001 16,419</td><td>产植约束条件 可我受的高纤维与低热量面包比率 符合 符合 符合</td><td>可接受的五种谷物与幺熟量面包 符合 符合 符合</td></td<>	2: Do	1004-04108 ikery.ats ikery.ats 1 2 3 4	1 12:12:24	清純的时间 0:00:07 0:00:09 0:00:09 0:00:09	結果 \$2,164,545 \$2,400,001 \$2,393,253 \$2,200,117	aj (0.5.4 B4 20, 405 20, 405 20, 405 20, 405	C4 50, 144 50, 144 50, 144 50, 144 38, 029	D4 36, 968 50, 049 36, 968 36, 968	E4 1,980 1,980 1,980 1,980	F4 2, 495 2, 495 15, 201 2, 495	64 3,001 3,001 3,001 16,419	产植约束条件 可我受的高纤维与低热量面包比率 符合 符合 符合	可接受的五种谷物与幺熟量面包 符合 符合 符合
T 0:00:09 N/A 10,405 00,104 12,002 1,980 2,445 1,001 符合 不符合 8 0:00:09 \$\$\$2,645,150 \$\$0,465 \$\$\$,001 符合 10 10 10 10 10 50,465 \$	2: Da	ikery.ds ikery.ds 1 2 3 4 5	12:12:24	済純的时间 0:00:07 0:00:09 0:00:09 0:00:09 0:00:09	結果 \$2,164,545 \$2,400,001 \$2,293,253 \$2,200,117 \$2,752,942	a b 4 20,405 20,405 20,405 20,405 20,405 20,405	C4 50, 144 50, 144 50, 144 38, 029 61, 795	D4 36, 968 50, 049 36, 968 36, 968 36, 968	E4 1,980 1,980 1,980 1,980 1,980	F4 2, 495 2, 495 15, 201 2, 495 24, 180	64 3,001 3,001 3,001 16,419 3,001	产植约束条件 可提受的高纤维与低热量面包比率 符合 符合 符合 符合 符合	可接受的五种谷物与长热量面包 符合 符合 符合 符合 符合
8 0:00:09 82,445,155 20,405 69,627 34,473 1,980 22,012 3,001 評金 評金 評金 9 0:00:09 82,475 45,615 1,900 25,622 3,001 不符金 不符金 10 0:00:09 82,973,614 25,445 60,629 42,941 1,980 24,017 3,001 評金 評金 11 0:00:09 87.47 20,445 1,980 24,017 3,001 評金 評金 # 最优化 集集 数代化 信任者 (0) 10 10 10 10 10,010 第 10 17.47 19,800 24,017 3,001 評金 評金 11 0:00:09 87.4 20,455 1,980 2,495 3,001 評評金 176 176	1 ME 20	1044-671011 ikery.ds 1 2 3 4 5 6	12:12:24	ACO 10:00 0:00:07 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09	結果 \$2, 164, 545 \$2, 400, 001 \$2, 393, 253 \$2, 200, 117 \$2, 752, 942 \$2, 409, 405	PJ (3) (3) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	C4 50, 144 50, 144 50, 144 50, 144 38, 029 61, 195 50, 144	D4 36, 968 50, 049 36, 968 36, 968 36, 968 36, 968	E4 1,980 1,980 1,980 1,980 1,980 1,980	F4 2, 495 2, 495 15, 201 2, 495 24, 180 2, 495	c4 3,001 3,001 16,419 3,001 16,604	产植的变多种 可最受的高纤维与低热量面包比率 符合 符合 符合 符合 符合	可接受的五种谷物与私先型面包 符合 符合 符合 符合 符合 符合
9 0100109 KVA 194,813 594,146 96,761 1,960 22,542 3,001 不符合 不符合 10 0100109 K3,975,845 56,252 4,274 1,580 32,407 3,001 符合 符合 11 0100109 KVA 20,405 19,839 36,988 1,980 2,495 3,001 不符合 符合 #1 単代化単語 単代化日本 使代化日本 (1011年日 101)		104+67161 skery.ds 1 2 3 4 5 6 7	12.12.24	AKOPM 0:00:07 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09	检果 \$2, 164, 545 \$2, 400, 001 \$2, 393, 253 \$2, 200, 117 \$2, 752, 942 \$2, 409, 406 \$/A	PJ P4 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405	C4 50, 144 50, 144 50, 144 38, 029 61, 795 50, 144 50, 144	D4 36, 968 50, 049 36, 968 36, 968 36, 968 36, 968 12, 020	E4 1,980 1,980 1,980 1,980 1,980 1,980 1,980	F4 2, 495 2, 495 15, 201 2, 495 24, 180 2, 495 2, 495	64 3,001 3,001 3,001 16,419 3,001 16,604 3,001	产植的家华件 可接受的高好 接与低热 繁重包比率 符合 符合 符合 符合 符合 符合	可提受的五种谷鞅与私热量面包 符合 符合 行合 符合 符合 符合 不符合
10 0:00:09 15:273,514 25,545 00,629 42,547 1,580 24,017 3,001 符合 符合 11 0:00:09 WA 20,455 19,539 35,568 1,580 2,495 3,017 不符合 符合 ■ 単位化母素 最优化日本、硬化日本(0)、193-1		1104-67161 skery.ds 1 2 3 4 5 6 7 8	1121228	AKP PM 0:00:07 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09	林果 \$2, 164, 545 \$2, 400, 001 \$2, 393, 253 \$2, 200, 117 \$2, 752, 942 \$2, 409, 406 K/A \$2, 649, 195	可調整 4 84 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405	C4 50, 144 50, 144 50, 144 38, 029 61, 795 50, 144 50, 144 60, 629	D4 36, 968 50, 049 36, 968 36, 968 36, 968 36, 968 12, 020 34, 473	E4 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980	F4 2, 495 2, 495 15, 201 2, 495 24, 180 2, 495 2, 495 22, 012	64 3,001 3,001 3,001 16,419 3,001 16,604 3,001 3,001	产格约束与作 可提交的高好缘与长热量面包比率 符合 符合 符合 符合 符合 符合 符合 符合	可使失的五种合物与优美量面包 符合 符合 符合 符合 符合 符合
11 0:00:09 取人 20,405 19,839 36,968 1,980 2,495 3,001 不符合 符合 M<単体化器器		1049-071041 1049-071041 1 2 3 4 5 6 7 8 9		3A 9C 49 #1 (4) 0:00:07 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09	林県 \$2, 164, 545 \$2, 400, 001 \$2, 93, 253 \$2, 200, 117 \$2, 752, 942 \$2, 409, 408 取/A \$2, 649, 195 取/A	可調整4 20,405 20,405 20,405 20,405 20,405 20,405 20,405 20,405 74,813	C4 50, 144 50, 144 50, 144 50, 144 38, 029 61, 795 50, 144 50, 144 60, 629 50, 144	D4 36, 968 50, 049 36, 968 36, 968 36, 968 36, 968 12, 020 34, 473 96, 761	E4 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980	P4 2, 495 2, 495 15, 201 2, 495 24, 180 2, 495 2, 495 22, 012 22, 542	c4 3, 001 3, 001 3, 001 16, 419 3, 001 16, 604 3, 001 3, 001 3, 001	产级约支5件 可数类的高纤维与长热量描色比率 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合	可提受的五种谷物与 长共量面 也 符合 符合 符合 符合 符合 符合 符合 符合 符合 子合 子合
N 最优化最終」最优化日志 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		104-04104 ikery.ds 1 2 3 4 5 6 7 8 9 10	112228	ACC 10 1000 010000 00000 00000 000000 000000 000000	塩果 \$2, 164, 545 \$2, 400, 001 \$2, 393, 253 \$2, 752, 942 \$2, 409, 405 K/A \$2, 649, 195 K/A \$2, 973, 814	9 (19 (20, 405) 20, 405 20, 805 20,	A,32 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 60, 629 50, 144	D4 36, 968 50, 049 36, 968 36, 968 36, 968 36, 968 12, 020 34, 473 96, 761 42, 947	E4 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980 1, 980	F4 2, 495 2, 495 15, 201 2, 495 2, 495 2, 495 2, 495 22, 012 22, 542 24, 017	c4 3, 001 3, 001 3, 001 16, 419 3, 001 16, 604 3, 001 3, 001 3, 001	产级的发生作 可数变的高纤维与发热量面包比率 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合	可获受的五种谷物与长美重面 的 符合 符合 符合 符合 不符合 不符合 不符合
		ikery.ds ikery.ds 1 2 3 4 5 6 7 8 9 10 11	11111118	3A 96.09 91 94 0:00:07 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09 0:00:09	な果 \$2, 164, 545 \$2, 400, 001 \$2, 393, 253 \$2, 200, 117 \$2, 752, 942 \$2, 409, 405 K/A \$2, 649, 195 K/A \$2, 973, 814 K/A	••••• •••• 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405 20, 405	A,32 C4 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 50, 144 60, 629 50, 144 60, 629 19, 839	D4 36, 968 50, 049 36, 968 36, 968 36, 968 36, 968 12, 020 34, 473 96, 761 42, 947 36, 968	E4 1,980 1,980 1,980 1,980 1,980 1,980 1,980 1,980 1,980 1,980	P4 2, 495 2, 495 15, 201 2, 495 24, 180 2, 495 22, 012 22, 542 22, 642 22, 495	G4 3, 001 3, 001 3, 001 16, 419 3, 001 16, 604 3, 001 3, 001 3, 001 3, 001 3, 001	产量的复合件 可有受的高针体与优热重要也比率 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合	可提先的五种分类与长热素面包 符合 符合 符合 符合 符合 符合 符合 符合 符合

• 记录进度条步进。此报表记录改进了目标单元格结果的所有试验的 结果。

1 =						Book2	- Microso	ft Excel		
开始 新入	-	25	88 8	10 M	-	Evolver				÷ -
ER SEE FR	● 招致・									
a Mistric	IA									
A1 -	(* fe							2 1 2	1 10	
执行人:微软用户 日期:2010年6月16日	F 12:12:35									
执行人: 微软用户 日期: 2010年6月16日 模型: Bakery.shs	E 12:12:35									
教行人: 微软用户 日期: 2010年6月16日 模型: Bakery.xis 议会	E 12:12:35	的时间	结果		R.				广格约束各件 研究会会学校 145 年代2011年1	*****
执行人: 微软用产 日期: 2010年6月16日 概型: Bakery.xis 试验 1	а 12:12:35 Э.Н Он	的时间 00-07 1	結果 \$2,164,545	可调整年 04 20,405	C4	D4	E4	F4 G4	产植的束条件 可我受的高纤维与 <u>机热量面包比利</u> 河会	可接受的五种音物与核类量面包: 用合
執行人: 微软用产 日期: 2010年6月16日 概型: Bakery.xis 试验 1 2	9 12:12:35 37 M 0:0	00:07 1 00:07 1	结果 \$2, 164, 545 \$2, 400, 001	可调整年 194 20,405 20,405	C4 50, 144 50, 144	D4 36, 968 50, 049	E4	F4 64 495 3,001 495 3,001	厂基约束各件 可提交的高升级与新共富面包比项 刊合	可提受的五种容勢与私色量面包 河谷 河谷 河谷
执行人:微软用产 日期:2010年6月16日 模型:Bakery.ds 试验 1 2 5	3 12:12:35 37.02 0:0 0:0	00:07 1 00:07 1 00:09 1	结果 \$2,164,545 \$2,400,001 \$2,752,942	可加生 14 20,405 20,405 20,405 20,405	C4 50, 144 50, 144 61, 795	D4 36, 968 50, 049 36, 968	E4 1,980 2, 1,980 2, 1,980 24	F4 G4 495 3,001 495 3,001 ,180 3,001	产格约束各件 可我受的高好维与 <u>私央家</u> 面包比J 符合 符合 符合	可很受的五种谷物与私先量面包: 河谷 河谷 河谷
快行人: 御牧用户 日期: 2010年6月16日 概型: Bakery xis 就勉 1 2 5 10	3 12:12:35 37 H 0:1 0:1 0:1 0:1	00:07 1 00:07 1 00:09 1 00:09 1 00:09 1	結果 \$2,164,545 \$2,400,001 \$2,752,942 \$2,973,814	可调整年 84 20,405 20,405 20,405 25,845	C4 50, 144 50, 144 61, 795 60, 629	D4 36, 968 50, 049 36, 968 42, 947	E4 1,980 2, 1,980 2, 1,980 2, 1,980 24 1,980 24	F4 G4 495 3,001 495 3,001 ,180 3,001 ,017 3,001	严格传来各件 可提受的高好修与延兴量面包比考 符合 符合 符合 符合 行合	斯格曼的五种谷物与新先量面包 符合 符合 符合 符合 符合 书合 书合
執行人: 微软用户 日期: 2010年6月16日 模型: Bokery sta 试验 1 2 5 10 15	3 12:12:35 37.66 0:1 0:1 0:1 0:1 0:1 0:1	00:07 1 00:09 1 00:09 1 00:09 1 00:09 1	\$2,164,545 \$2,400,001 \$2,752,942 \$2,973,814 \$3,003,586	可调整年 14 20,405 20,405 20,405 25,845 25,845 25,301	C4 50, 144 50, 144 61, 795 60, 629 59, 581	P4 36, 968 50, 049 36, 968 42, 947 42, 349	E4 1,980 2, 1,980 2, 1,980 2, 1,980 24 1,980 24 8,069 21	P4 G4 495 3,001 180 3,001 ,180 3,001 ,017 3,001 ,864 3,001	产都纳束各件 可接受的高升编与截美量面包比考 符合 符合 符合 符合	· 可提供的工作容易与优势需要相比 符合 符合 符合 符合
執行人: 御知用产 日期: 2010年6月16日 概型: Rekery.ds 減監 1 2 5 10 15 18	3 12:12:35	00:07 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1	\$\$\mathcal{k}\$ \$2, 164, 545 \$2, 400, 001 \$2, 752, 942 \$3, 973, 814 \$3, 008, 586 \$3, 215, 855	可调整年 10,405 20,405 20,405 25,845 25,845 25,301 24,812	C4 50, 144 50, 144 61, 795 60, 629 59, 581 58, 637	D4 36, 968 50, 049 36, 968 42, 947 42, 349 46, 357	E4 1,980 2, 1,980 2, 1,980 24 8,069 21 14,669 23	P4 G4 495 3,001 180 3,001 ,180 3,001 ,017 3,001 ,975 3,001	广卷构束备件 可我受的高好 像与私热 富颜包比将 刊金 刊金 刊金 刊金 刊金 刊金 刊金	K 可获受的五种容易与联先重新也已 可定 符合 符合 符合 符合 符合 符合
執行人: 清软用产 日期: 2010年6月16日 概型: Riskery.sls	3 12:12:35 37 M 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1	00:07 1 00:07 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1	44 /k \$2, 164, 545 \$2, 400, 001 \$2, 752, 942 \$2, 973, 814 \$3, 008, 586 \$3, 215, 865 \$3, 577, 229	4 (3) (4) (4) (4) (4) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	C4 50, 144 50, 144 61, 795 60, 629 59, 581 58, 637 50, 144	P4 36, 968 50, 049 36, 968 42, 947 42, 349 46, 357 36, 968	E4 1,980 2, 1,980 2, 1,980 24 1,980 24 8,069 21 14,669 23 1,980 80	P4 G4 495 3,001 495 3,001 ,180 3,001 ,017 3,001 ,864 3,001 ,975 3,001	广县约束各件 可是专的高好修订纸 共重调包比3 符合 符合 符合 符合 符合 符合	可能受的互种容物与其热量面包。 可会 可会 可会 可会 可会 可容 行名 行名
時行人:調助(用)か 日間: 2010年6月16日 信意: Inskery.sts 1 2 1 2 5 10 15 18 19 44	E 12:12:35	00:07 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1	st% s 2, 164, 545 s 2, 400, 001 s 2, 750, 942 s 2, 973, 814 s 3, 0108, 586 s 3, 215, 855 s 3, 517, 229 s 3, 611, 117	町 頃愁 年 <u>84</u> 20, 405 20, 405 25, 845 25, 845 25, 812 20, 405 20, 405	C4 50, 144 50, 144 61, 793 69, 581 58, 637 50, 144 50, 144	B4 36, 968 50, 049 36, 968 42, 947 42, 349 46, 357 36, 968 36, 968	E4 1,980 2, 1,980 2, 1,980 24 1,980 24 8,069 21 14,669 21 14,669 80 9,206 75	P4 G4 495 3,001 495 3,001 ,180 3,001 ,017 3,001 ,864 3,001 ,975 3,001 ,975 3,001 ,232 3,001	广杨竹东专作 可提支的高 打地与就赴京直也比 准 符合 符合 符合 符合 符合 符合	可我受的五件容易与私色重要包 符合 符合 符合 符合 符合 符合 符合 符合
★行人:第150周か 日期:2010年6月16日 日間:2010年6月16日 2010年7月16日 10 10 15 10 15 18 19 44 50	2 12:12:35	00:09 1 00:09 1 00:00 1 00:000 1 00:00 100 100 10000000000	结果 \$2,164,545 \$2,400,001 \$2,752,942 \$3,008,586 \$3,577,229 \$3,611,117 \$3,616,661	4 (1962) 104 20,405 20,405 25,845 25,845 26,301 24,812 20,405 20,405 21,123	C4 50, 144 61, 795 60, 629 59, 581 56, 537 50, 144 50, 144 50, 144	D4 36, 968 50, 049 36, 968 42, 947 42, 349 46, 373 36, 968 36, 968 36, 968	E4 1,980 2, 1,980 24 1,980 24 1,980 24 1,980 24 1,980 20 1,980 80 9,206 85 9,134 74	P4 64 496 3,001 495 3,001 ,017 3,001 ,917 3,001 ,917 3,001 ,917 3,001 ,917 3,01 ,917 3,01	广结约支令件 可在今的高升量与就会重量也比4 符合 符合 符合 符合 符合 符合 符合 符合 符合	可得受的五件容物与低热量面包 符合 件合 件合 件合 件合 件合 件合 件合 件合 件合 件合 件合 件合
執行人: 認知戶 日期: 2010年6月16日 概型: Beiery xit 就能 1 2 5 10 15 15 18 19 44 50 54	E 12:12:35	00:07 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:10 1 00:10 1	st (k) st, 464, 545 st, 460, 001 st, 752, 942 st, 973, 814 st, 0108, 586 st, 215, 865 st, 215, 865 st, 517, 229 st, 611, 117 st, 612, 147 st, 612, 147 st, 627, 135	「「調整非 B4 20,405 20,405 25,845 25,845 20,405 20,405 20,405 21,123 21,052	C4 50, 144 61, 795 60, 629 58, 681 58, 637 50, 144 50, 144 50, 144	D4 36, 968 50, 049 36, 968 42, 947 42, 349 46, 357 36, 968 36, 968 36, 968 36, 968	E4 1,980 2, 1,980 2, 1,980 2, 1,980 24 1,980 80 9,206 75 9,134 74 16,612 67	P4 G4 496 3,001 496 3,001 ,180 3,001 ,017 3,001 ,975 3,001 ,977 3,001 ,977 3,001 ,505 3,115 ,506 3,116	// 最终要专作 可称文的高好地与私热意面包比/ 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合	· · · · · · · · · · · · · · · · · · ·
(執行人: 第82用户 目類: 2010年6月16日 現況: Statkey site (7 12:12:35	00:07 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:09 1 00:10 1 00:10 1 00:10 1	44 (R) 52 , 164, 545 52 , 460, 001 52 , 752, 942 53 , 973, 814 53 , 026, 565 53 , 517, 229 53 , 611, 117 53 , 614, 661 53 , 623, 156 53 , 631, 796	w (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	C4 50, 144 50, 144 61, 795 60, 629 59, 581 58, 637 50, 144 50, 144 50, 144 50, 144	D4 36, 968 50, 049 36, 968 42, 947 46, 357 36, 968 36, 968 36, 968 36, 968 36, 968	E4 1,980 2, 1,980 2, 1,980 24 1,980 24 4,669 23 1,980 80 9,206 75 9,134 74 16,612 61 16,612 61 16,612 65	P4 G4 436 3,001 436 3,001 ,180 3,001 ,017 3,001 ,975 3,001 ,977 3,001 ,973 3,001 ,974 3,001 ,975 3,001 ,975 3,001 ,976 3,001 ,976 3,001 ,975 3,001 ,976 3,001 ,976 3,001 ,976 3,013 ,976 3,014 ,976 3,013 ,976 3,013 ,976 3,103	广杨代发专件 可在于的高计量与就会重要也比才 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合	· 可得受的五件容易与低务量面包 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合 符合

第六章:最优化

最优化方法	129
有关登山算法	
Excel Solver	135
Evolver 与 Solver 何时使用 Evolver	
问题类型	139
线性问题 非线性问题 基于表格的问题 组合问题	

我们已经在教程中看到了一些最优化问题的示例。有些最优化问题与其 他问题相比较难解决。对于诸如确定 1000 座城市之间最短路线的难题, 查看每个可能的解法是不可行的。这种做法在最快的计算机上也需要计 算数年。

要解决此类问题,在所有可能解法的子集中进行搜索是必不可少的。通过研究这些解法,我们可以得知如何找到更好的解法。这可以通过*算法*来完成。算法仅仅是如何解决问题的逐步描述。例如,所有计算机程序都是通过结合众多算法构建的。

让我们先来研究大多数解决问题的算法是如何表示问题的。大多数问题 可以划分为三个基本组成部分:输入项、某些类型的函数和生成的输 出项。

查找:指定此项:获得最佳值:

问题组成部分	输入项	函数	输出项
在 Evolver/Excel 中	变量	模型	目标

让我们假设我们的最优化问题包含两个变量: X 和 Y。在将其放入方程 式时,这两个变量生成一个结果 =Z。我们的问题是确定生成最大 Z 值 的 X 和 Y 的值。我们可以将 Z 看做一个"等级",它表明了任何特定的 X、Y 配对的效果。

查找:指定此项:获得最佳值:

可能的方案或解法的"地形"。

X和Y值的每次交叉都将生成一个Z高度。此"地形"的高峰和低谷分别表示较好和较差的解法。通过查看每种解法来搜索此函数的最大值或最高点将会花费极其长的时间,即使使用功能强大的计算机和最快的程序。'请记住,我们仅为 Excel 提供函数本身,而不是函数的图表,所以我们能像处理此二维问题一样轻松地处理 200 维问题。因此,我们需要一个可以使我们进行少量计算,但仍可获得最高生产率的方法。

^{*}在我们的图表中,函数显示为平滑地型。在我们处理简单平滑(可微分)函数的极少数情况中,可以使用微积分来确定最小值和最大值。但是,大多数现实问题不能使用此类平滑函数进行描述。

有关登山算法

让我们来看一种称为登山的简单算法。登山算法的工作方式如下:

- 1) 从地形上的某个随机点开始(采取随机推测)。
- 2) 朝着一些任意方向移动一小段距离。
- 3) 如果您移动到一个较高的新点,则停止不动并重复步骤2。如果 新点较低,则返回到您的原点并重新尝试。

登山每次仅尝试一种解法或方案。我们将使用黑点(•)来表示一个可能的解法(一组X、Y和Z的值)。如果我们将点放置在随机起点处,我们希望登山法将该点引至图表上的最高点。

在上图中,我们可以清楚地看到我们希望该点上升到右侧的山顶处。 但是,我们知道这一点是因为我们已经看到了整个地形。随着算法的运行, 它可以立即看到其周围的地形,但并非整个地形;<u>它看得见树木,但看</u> <u>不到森林。</u> 在大多数现实问题中,地形并非如此平稳且需要数年来进行计算,所以 我们只计算当前方案和附近紧随的方案。假设该点是一个蒙着眼睛的人, 此刻正站在平稳起伏的山丘中间。如果采用登山算法,他将会向每个方 向迈出一步,但仅在其感觉到较高的地势时进行移动。此人将成功向前 行走,并且最终会在周围的地势都低于其所在位置的山顶上停止。这似 乎十分简单。但是,我们遇到了一个非常严重的问题,如果此人从另一 个地方出发... 他爬错了山丘! (请参见下表)。

如果从一个略微不同的位置(右图)出发, 则即使采用平滑函数,登山仍会失败。

登山只能找到最近的山顶或*局部最大值*。因此,如果您的问题具有一个 崎岖不平的解法地形,则如同最切合实际的模型一样,登山不大可能会 找到最高的山丘,甚至是其中之一。

登山还有另一个问题;我们如何真正确定我们当前位置周围的地形? 如果地形采用平滑函数描述,则其可能会使用微分(一种微积分方法) 来确定哪个方向具有最陡峭的山坡。如果地形是中断的或不可微分 (现实问题中更有可能),则我们需要计算附近方案的"适应度"。 例如,假设一家银行雇佣了一名警卫,负责从上午9:00至下午5:00守卫 银行,但银行必须为该警卫提供两次(2)半小时的休息时间。我们必须 依据有关效率/疲劳比的一般规则,并考虑一天内不同层次的客户活动, 以尝试确定最合适的休息时间。我们可以先试行不同的值班休息组合并 对其进行评估。如果我们当前使用休息时间为上午11:00和下午3:00的 时间表,则可以计算周围方案的生产率:

方向	休息时间 1 (x)	休息时间 2 (y)	- 得分"(z)
当前解法	上午 11:00	下午 3:00	= 46.5
西方方案	上午 10:45	下午 3:00	= 44.67
东方方案	上午 11:15	下午 3:00	= 40.08
北方方案	上午 11:00	下午 3:15	= 49.227
南方方案	上午 11:00	下午 2:45	= 43.97

如果我们有3个可调整单元格(休息时间),而不是2个,我们将需要 查看8个不同的方向。事实上,如果我们只有50个变量(对于中型问题 十分合理),则我们将需要计算2⁵⁰次生产率,或超过一千万亿种方案, 但仅仅只为一名警卫!!

可以对登山做出修改以提高其查找全局最大值(整个地形中最高的山丘) 的能力。登山在处理单一模式(单峰)的问题时极其有用,这就是为什 么有些分析程序采用此方法的原因。然而,对于复杂和/或大型问题, 此方法将非常有限。

Excel Solver

Excel 包含一种称为 *Solver* 的最优化实用工具。它与 Evolver 的功能略 有相似:查找优化解法。Solver 可以解决两种类型的问题:线性问题和 简单的非线性问题。它使用线性编程例程解决线性问题。这种经典的数 学方法通常称为单一法,此方法将始终查找小型、纯粹线性问题的理想 答案。

与其他大多数**婴儿求解程序相同**, Microsoft Solver 还可以使用**登山**例程 (尤其是 GRG2 例程)来解决非线性问题。登山例程从当前的变量值开 始,并慢慢对其进行调整,直到模型的输出项不再有所提高。这意味着 具有多个可能解法的问题也许无法通过 Solver 得到很好的解决,因为 Solver 在某个*局部*解法上结束,并且无法跳过**整体**解法(请参见 下图)。

可能解法的地形。

此外,Solver 还要求您的模型所表示的函数是连续函数。这表示输出项 应随着输入项的调整平稳变化。如果您的模型使用查找表、从其他程序 中获取噪声、实时数据、包含随机成分或涉及假定规则,则此模型将急 剧变化且不连续。Solver 将无法解决此类问题。

Solver 还对变量数和问题中的约束条件数 (200) 加以限制,超过此限制 时您必须求助更强大的方法。

Evolver 与 Solver

Excel Solver 和 Evolver 都各有其优缺点。一般来说, Solver 解决小型简单问题时速度较快,但 Evolver 是解决许多其他类型问题的唯一方法。此外,您可能会发现对于更大型、更复杂的问题("现实情况中"经常出现的类型), Evolver 将会找到比 Solver 更好的答案。

Evolver 可以为其查找答案的问题种类要远远多于 Solver。几乎所有可以在 Excel 中建模的数字问题都可以使用 Evolver 进行最优化。

尤其值得一提的是, Evolver 可以找到线性、非线性、基于表格或随机 数字问题的优化解法。它可以采用这些特质的任意组合来解决问题。 Evolver 还可以生成现有值的排列、重新排序这些值,或以不同方式对 这些值分组以找到优化解法。事实上,只要您有一个带有变量的电子表 格模型,并且可以调整这些变量来影响模型的输出项, Evolver 就能够 以智能化方式查找数千个方案并跟踪最佳方案来自动化搜索过程。

Evolver 的遗传算法进程比 Solver 更适于进行中断;您可以随时停止 Evolver 进程并查看 Evolver 到目前为止找到的最佳解法。然后,您可 以对问题本身进行更改,并从您停止的位置继续此进程。例如,在一个 工作日程安排问题中,您可能希望确定向机器分配的最佳任务。当一台 机器可以使用时,您可以停止遗传算法进程,以确定要为该机器分配的 最佳任务。然后,此任务可以从该问题中忽略,而最优化可以继续剩余 的工作。

使 Evolver 能够处理所有这些类型的问题的遗传算法通常比 Solver 和 其他传统的数学或统计方法要慢。某些类型的问题具有众所周知且经过 精心微调的可用最优化例程。在此类情况下,您可以通过使用自定义方 法更快地找到答案,而不是 Evolver 中使用的通用方法。

何时使用 Evolver

一般来说,应在以下情况下使用 Evolver:

- 1) 传统算法无法生成良好的整体解法。
- 2) 问题过大并且/或者包含超过算法能够处理的变量数量。
- 3) 问题过于复杂以至无法通过其他任何方法解决。
- 4) 您的模型涉及了随机数、查找表、假定陈述或禁止使用传统求解程序 的任何其他不连续函数。
- 5) 您不知道解法可能是什么,并因此尚未开始猜测传统求解程序必须从 何处开始其搜索。
- 6) 您希望可以使问题(X 必须等于Y)中的某些"严格"约束条件更加 "宽松",并因此更加准确(X 应等于Y,否则我会丢失某些Z), 从而研究更大范围内可能更好的解法,即使获取这些解法会违反某些 约束条件。
- 7) 您宁愿为问题迅速找到一个相当好的解法,也不愿为了一个绝佳解法 而等待较长时间。
- 8) 您需要许多接近最佳解法的备择解法。
- 9) 你希望将一个简单、强大的搜索算法嵌入到自己的自定义应用程序中 (有关详细信息,请参见"Evolver Developer Kit")。

注:如果时间允许,除其他方法外,还可以始终使用 Evolver 检查解法的准确性。尽管需要的时间可能比其他方法更多,但 Evolver 可以找到的更好解法,可能最值得您投入时间。

请记住,由于 Evolver 不需要知道问题的"具体细节",因此对于用户 不了解其中的线性编程方法、最优化理论、数学或统计的问题,Evolver 也可以解决。使用 Evolver 时,用户仅需设置变量(包含可调整的值的 单元格)、目标(包含输出项的单元格),以及 Evolver 在搜索优化解 法时可能使用的值的描述。
问题类型

通常对几种不同类型的问题进行最优化。如果您了解这些类型的问题,则能够更好地将 Evolver 应用到自己的模型。

线性问题

在线性问题中,所有输出项都是输入项的简单线性函数,如 y=mx+b。 如果问题只使用简单的数学运算(例如,加法、减法),以及 Excel 函 数(例如,TREND()和 FORCAST()),则表示变量之间存在纯粹的线 性关系。

由于计算机的出现和 George Dantzig 单一法的发明,线性问题一直很容易解决。简单的线性问题可以通过线性编程实用工具以最快且最准确的方式解决。当您选中"假设线性模型"复选框后,Excel 中随附的 Solver 实用工具也将成为线性编程工具。然后,Solver 将使用线性编程例程快速找到理想的解法。如果您的问题可以采用纯粹的线性术语表示,则应使用线性编程。不巧的是,大多数现实问题无法以线性方式描述。

非线性问题 如果制造并运送 5,000 个零部件的成本为 5,000 美元,则制造并运送 1 个 零部件的成本将会是 1 美元吗?实际情况可能并不是如此。零部件工厂 的装配线仍需消耗能源,文书工作仍需通过各部门填写和处理,材料仍 将采取批量方式购买,货车仍需相同数量的汽油来运送零部件,而且无 论装载量如何,仍需支付货车司机一天的工资。大多数现实问题不会涉 及具有简单线性关系的变量。这些问题涉及了乘法、除法、指数,以及 内建 Excel 函数,如 SQRT()和 GROWTH()。当变量相互共享一种不成 比例的关系时,问题将成为非线性问题。

非线性问题的最佳示例是化学工厂中制造过程的管理。假设我们想要混 合一些化学反应物并最终获得一种化学产品。此化学反应的速率可能会 根据可用的反应物量而呈非线性变化;在某一时刻,催化剂将变成饱和 且过量的反应物,而起到阻碍作用。下图显示了这种关系:

^{*}有关 Microsoft Solver 实用工具的更多信息,请参见 Excel 的用户指南。

如果我们只需确定可以获得最高反应速率的反应物最低含量,则只需在 图表上的任何位置开始并沿着曲线向上攀升,直至到达顶点。这种查找 答案的方法称为登山。

如果 a) 正在研究的是平滑函数,并且 b) 初始变量值位于最高山脉的一侧,登山将始终可以找到最佳答案。如果未满足任一条件,则登山能够 以局部解法结束,而不是整体解法。

高度非线性问题(实践中经常出现的类型)在整个复杂地形中有多种 可能的解法。如果一个问题有多个变量,并且/或者涉及的公式非常嘈 杂或弯曲,则即使采用不同的起始点尝试数百次,也可能无法通过登山 找到最佳答案。最有可能的是找到一个次优化的极其局部的解法(请参 见下图)。

登山算法可以确定局部最大值, 但并非整体最大值。

噪声数据:登山算法无效, 即使尝试多次。

Evolver 不使用登山算法,而是使用一种随机的直接搜索方法,称为遗 传算法。这使 Evolver 可以在问题的解法空间中随意跳动,以查看多种 输入值组合,而不会在遇到局部最优值时停滞不前。此外,Evolver 还 可以使较好的方案彼此"交流",以获得有关整体解法的地形外观的有 价值信息,然后使用此信息来更好地推测哪种方案可能会取得成功。如 果您有一个复杂或高度非线性的问题,您应当且必须经常使用 Evolver。

Evolver 可以生成多个可能的方案,然后 根据其收到的反馈来完善搜索。

基于表格的问题 许多问题需要使用查找表和数据库。例如,在选择不同材料的购买数量时,您可能需要查看不同数量的价格。

表格和数据库会使问题不连续(不平滑)。这使登山例程与 Solver 一样 很难找到优化解法。但是, Evolver 不要求其评估的函数中存在连续性, 并且可以为基于表格的问题,甚至是使用多个大型相关表格的问题找到 良好解法。

如果您的问题涉及了从数据库或 Excel 数据表(其中,表项目的索引为 变量或变量的函数)中查找值,则需要使用 Evolver。如果您只在表格 中查找单个常数项(无论输入变量的值如何,都将在表格中检索到相同 记录),则您实际上只处理一个常数,并且或许可以有效地使用 Solver。

组合问题

记录),则您实际上只处理一个常数,并且或许可以有效地使用 Solver。 有一大类与目前所研究过的数字问题极其不同的问题。这种输出项涉及 现有输入变量顺序的更改,或输入项子集分组的问题称为组合问题。这 些问题通常难以解决,因为其通常需要指数时间;即解决含有 4 个变量 的问题所需要的时间量可能是 4 x 3 x 2 x 1,而将变量数加倍至 8 会使解 决时间上升至 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1,或因子为 1,680。变量数目翻 了一倍,但必须检查的可能解法的数量却增加了 1,680 倍。例如,为棒 球队选择首发阵容就是一个组合问题。对于 9 名队员,您可以从这 9 人 中选择一人作为第一击球手。然后,可以从剩余的 8 人中选择一人作为 第二击球手,剩余的 7 人中将有一人成为第三击球手,依次类推。因此, 使用 9x8x7x6x5x4x3x2x1 (9 的阶乘)种方法选择一个 9 名队员的阵容。 这大约是 362,880 种不同的次序。现在,如果将队员的人数翻一倍,则将 有 18 的阶乘个可能的阵容,或 6,402,373,705,000,000 个可能的 阵容!

Evolver 的遗传算法以智能化方式搜索可能的排列。这比搜索*所有*可能 性更为实际,并且比纯粹查看随机排列更为有效;可以保留良好方案中 的子次序并使用其来创建更好的方案。

第七章:遗传算法

简介	145
历史	145
生物示例	147
数字示例	149

Evolver 使用遗传算法搜索模型的最佳答案。Evolver 是一款由 Palisade Corporation 开发的 Excel 最优化插件,所使用的遗传算法就 是根据 Evolver 改编。本章提供了有关遗传算法的背景信息,以便深入 了解如何使用其来对模型进行优化。

历史

遗传算法由密歇根大学的 John Holland 于 20 世纪 70 年代初期首次提出。生物系统能够执行甚至是最强大的超级计算机也不敢涉足的任务, 这种轻松便捷给 Holland 留下了深刻的印象;动物可以完美地识别 对象、理解和转化声音,并且通常几乎可以瞬间浏览动态环境。

几十年来,科学家们已承诺要在计算机中复制这些功能,但我们刚刚开始认识到这是多么困难的任务。大多数科学家都认为显示这些特质的所 有复杂生物系统都是按此方式进化。

进化(至少理论如此)以惊人的能力通过相对简单且自我复制的构成要素,按照以下一些简单规则生成系统:

1) <u>进化发生在染色体级别</u>。组织不会进化, 仅充当携带和传送基因的容器。它是以动态方式随着每个重新排列的基因改变的染色体。

2) <u>大自然往往会制造出更多的染色体副本,这些副本将生成更"合适"的组织</u>。如果一个组织存活了足够长的时间并且健康,则其基因更有可能通过繁殖遗传给新一代的组织。此原则通常称为"适者生存"。请记住,"适者"是一个相对术语;与当前群体中将要"成功"的其他组织相比,某个组织仅需要适合。

3) <u>必须保持群体中的多样性</u>。从表面上看,大自然中会频繁发生随机突 变,以确保组织中的变化。这些基因突变通常会为物种的生存带来一个 有用且甚至是关乎生命的特征。通过更为广泛的可能组合,减小了能够 摧毁群体的共同弱点(病毒等)或与同系繁殖相关的其他问题对群体的 影响。

进化论

我们将进化分解成这些基本构成要素之后,在计算世界中应用这些方法 将变得更加容易,并且真正开始向更为流畅、行为更自然的计算机迈进。

Holland 开始将这些进化特性应用到代表染色体的简单数字字符串中。他首先将自己的问题编码为二进制字符串(行"1"和"0")来代表染 色体,然后让计算机生成许多这种"位"串以形成其整个群体。对能够 评估和排名每个位串的适应度函数进行编程,而那些被认为是最"适 合"的字符串将通过"交叉"例程与其他字符串交换数据,以创建"子 孙"位串。Holland 甚至使其数字染色体从属于"突变"运算符,此运算符在生成的"子孙"染色体中注入随机性以保留群体中的多样性。此 适应度函数替代的是生物界中死亡的角色;它确定了哪些字符串足够好 可以继续繁殖,而哪些将不再保留在内存中。

程序可以在内存中保存特定数量的此类"染色体",而整个字符串"群体"将继续进化,直到其最大化适应度函数。然后,将结果解码回其初始值以显示解法。作为这一领域的先驱, John Holland 现在仍然非常活跃,并且现在已有数百名科学家和学者加入。他们将自己的大部分时间都投入到了这一富有希望的传统线性编程、数学和统计方法的替代方法中。

Holland 的原始遗传算法十分简单,但功能相当强大,它可以找到各种问题的优化解法。如今,许多自定义程序只是使用此原始遗传算法的略加修改版本来解决非常庞大且复杂的现实问题。

遗传算法的现代 化改造

由于学术界对遗传算法的兴趣不断增大,因此开始将遗传算法的强大计算能力转移到主流台式计算机上,像 Microsoft Windows 和 Excel 之类的标准使复杂模型的设计和维护更为简单。使用实数(而不是位串)表示消除了编码和解码染色体方面存在的困难。

现在,随着各类研讨会、书籍、杂志文章和知识丰富的顾问人员的出现, 遗传算法的受欢迎程度越来越高。遗传算法国际研讨会已重点关注实际 应用,这是摆脱其他"人工智能"技术的成熟表现。许多世界 500 强公 司定期采用遗传算法来解决现实问题,从经纪公司到发电厂、电话公司、 连锁餐厅、汽车制造商及电视网络。事实上,您可能以前就已经间接地 使用了遗传算法! 让我们看一个生物界的简单进化示例(小规模)。我们在这里所讲的"进 化"是指有关群体中基因分布或频率中的任何变化。当然,有关进化的一 件有趣的事情就是它往往会引导群体不断地去适应它们所生活的新环境。

设想我们正在观察一群老鼠。这些老鼠有大和小两种尺寸,并且包含两种颜色 – 浅色或深色。我们的群体由以下八只老鼠组成:

有一天,猫来到了老鼠附近,并且开始捕食这些老鼠。结果是深色和较小的老鼠很难被猫发现。因此,对于是否能够长时间躲避猫而不被捕食并繁殖下一代,不同的老鼠有不同的机率。这样就影响了下一代老鼠的 类型。假设当前这一代老鼠在繁殖之后很快死去,则下一代的老鼠可能 会如下所示:

请注意,大老鼠、浅色老鼠,尤其是浅色的大老鼠很难长时间存活并进 行繁殖。这种情况将在下一代中继续。

现在,该群体大部分由深色的小老鼠组成,因为这些老鼠比其他类型的老 鼠更适合在这种环境下生存。同样,由于能吃到的老鼠越来越少,猫开始 挨饿,也许那些更喜欢以青草作为午餐的猫将能够更好地适应,并将它们 喜爱青草的基因遗传给下一代猫。这就是"适者生存"的核心概念。更确 切地说,它能够表达为"生命的延续"。在进化期间,作为群体中最健康 的单身汉是毫无用处的,因为必须繁殖才能使基因影响后代。 假设有一个包含两个变量 X 和 Y,并生成结果 Z 的问题。如果针对每个可能的 X 和 Y 值来计算和绘制生成的 Z,我们将会看到解法"地形"的形成 (另在<u>第六章:最优化</u>中进行讨论)。自我们尝试查找最大的"Z"值 以来,此函数的高峰为"良好"解法,而低谷为"较差"解法。

当使用遗传算法来最大化函数时,我们会先随机创建几个可能的解法或 方案(黑点),而不仅仅是一个起始点。然后,我们将针对每个方案计 算函数的输出项,并将每个方案绘制成一个点。接下来,按照海拔从最 佳到最差的顺序对所有方案进行排名。我们保留上半部分的方案,丢弃 其他方案。

首先,创建可能解法的整个"群体"。 有些解法将优于(高于)其他解法。

然后,对它们进行排名并保留 产生较好结果的解法。

剩余三个方案中的每个方案将自行复制,从而将方案数目调回到 6。现 在来到了有趣的部分:这6个方案中的每个方案都由两个可调整的值组 成(绘制为X和Y坐标)。这些方案随机相互配对。现在,每个方案都 将其两个可调整值的第一个与其伙伴中的相应值进行交换。例如:

	之前	之后
方案1	3.4, 5.0	2.6, 5.0
方案 2	2.6, 3.2	3.4, 3.2

这种操作称为交换,或**交叉**。当我们的6个方案随机配对并执行交叉时, 我们可以获得一组新方案,如下所示:

在上例中,我们假设3个初始方案a、b和c与副本A、B、C进行配对 形成了对aB、bC、bA。然后,这些对将交换第一个可调整单元格的值, 在我们的图表中这相当于交换点对之间的x和y坐标。随着方案群体的 "死亡"和"出生"的循环,其刚刚经历了一代。 请注意,有些新方案生成的输出项比我们在原来一代中看到的任何一个都低(较低的海拔)。但是,某个方案已在最高山丘的高处移动,这表示进度。如果我们让群体进化为另一代,则可以看到以下类似场景:

您可以看到方案群体的平均表现如何超过上一代进行提高。在此示例中, 没有留下很大的改进空间。这是因为只有6个组织,每个组织只有2个 基因,而且无法创建新的基因。这表示有一个有限的**基因群。**该基因群 是群体中所有组织的所有基因的总和。

遗传算法可以通过复制生物进化中的更多内在优势来变得更加强大;这 将增加每个组织的基因数量,增加群体中的基因数量,并允许偶然的随 机突变。此外,我们还可以选择其生存和繁殖更像是自然发生的方案: 让略有偏差的随机元素接近那些表现更好的元素,而不是简单地选择最 佳表现者进行繁殖(即使是最大且最强壮的狮子也可能会被闪电击中)!

所有这些方法都促进了基因的改良,并有助于保持基因群中的多样性, 从而保留所有可用的基因类型,以备其在不同组合中变得有用的情况。 Evolver 可以自动执行所有这些方法。

第八章: Evolver 附加说明

添加约束条件	155
范围约束条件	155
严格约束条件 – 自定义	156
宽松约束条件	157
惩罚函数	157
输入惩罚函数	157
查看输入的惩罚函数的影响	158
查看已应用的 惩罚	158
在工作表中输入宽松约束条件	159
惩罚函数的更多示例	159
使用惩罚函数	160
多目标问题	161
提高速度	162
如何执行 Evolver 的最优化	164
选择	164
交叉	164
突变	165
替换	165
约束条件	165

在我们搜索最佳答案时,现实问题通常具有许多必须符合的约束条件。 例如,在查找成本最低的变压器设计的教程中,其中一个约束条件是变 压器必须保持冷却,散热不得超过0.16瓦/平方厘米。

符合模型中所有约束条件的方案称为可行或"有效"解法。有时很难为 模型找到可行的解法,更不用说找到最佳的可行解法。这可能是因为问 题非常复杂,只有少量可行的解法,或者因为过度指定了问题(约束条 件过多或某些约束条件与其他约束条件冲突),并且没有可行的解法。

约束条件有三种基本类型:<u>范围</u>约束条件,或可调整单元格中放置的取 值范围,必须始终符合的<u>严格</u>约束条件,以及我们希望尽可能符合,但 可能会为了大大改进适应度而愿意做出让步的<u>宽松约束条件</u>。

范围约束条件

最简单的严格约束条件是施加在变量自身上的约束条件。通过在每个变量上设置特定<u>范围</u>,我们可以限制 Evolver 将要搜索的可能解法的总数,从而进行更有效的搜索。在"模型"窗口的"可调整单元范围"部分中输入最小值和最大值,以告知 Evolver 每个变量可以接受的值范围。

😌 Evolver -	模型				
最优化目标(<u>O</u>) 单元(<u>C</u>)		最大值 =I11			
可调整单元范围([J				
最小值		范围	最大值	值	添加(<u>A</u>)
三米甲	<=	=B4:E4	<= 5000 📆	任意值	删除(L)
约束条件(\)					组(G)
描述		大公	:	类型	添加(<u>D</u>)
		=\$G\$13	3:\$G\$15<\$I\$13:\$I\$15	严稽	编辑(E)
0				确定	取消

Evolver 将只对指定单元格尝试介于 0 到 5,000 之间的值。

第二种施加在变量上的严格约束条件内置在 Evolver 的每个<u>求解方法</u> (菜单、顺序、分组等)中。例如,当我们使用"预算"求解方法调整变 量时,就意味着 Evolver 被严格约束为只尝试相加了相同数量的值组。与 范围设置相同,此严格约束条件也可以减少必须搜索的可能解法的数量。

"模型"对话框中的整数选项也属于严格约束条件,它告知 Evolver 在调整变量值时仅尝试整数值(1、2、3等),而不是实数(1.34、2.034等)。

严格约束条件 — 自定义

不属于 Evolver 变量约束条件的所有约束条件都可以使用"约束条件设置"对话框输入。

😌 Evolver - 约束条件设置		X
描述(0)		
约束条件类型		
 严格(丢弃不符合约束条件的解 宽松(不赞成不符合约束条件的) 	(决方案)(<u>H)</u> (解决方案)(S)	
惩罚函数(P)	=100*(EXP(偏差/100)-1)	<u></u>
定义	,	
条目样式(E)	简单	
最小值(<u>N)</u> 0	要约束的范围(R)	
 @		

注:与自然界的进化方式相同,遗传算法解决问题的能力主要在于其可以随意研究多种可能解法的组合,并自然而然地偏向于最佳解法。如果 我们禁止Evolver 查看不符合要求的解法,则遗传算法最优化进程可能 会出现问题。

如果工作表中的初始方案本身符合约束条件,则 Evolver 将始终可以轻松地找到符合严格约束条件的解法。这可以使 Evolver 知道有效解法空间中的起始点。如果您不知道符合约束条件的方案,则使用任何初始方案运行 Evolver,它将尽力找到符合约束条件的方案。

宽松约束条件

强制程序只查找符合所有约束条件的解法会导致无法找到可行的解法。 通常,拥有大概可行的解法更为有用,但此类解法中可能会有少量解法 未能满足约束条件。

使用必须符合的"严格约束条件"的替代方法是使用"宽松约束条件" 重新配置问题;这是 Evolver **尽量满足的**约束条件。这些宽松约束条件 通常更为切合实际,并允许 Evolver 尝试更多选择。在高度限制的问题 中(其中没有很多符合您的所有要求的可能解法),如果允许 Evolver 获 得有关*接近于*满足约束条件的一些解法的反馈,则其遗传算法将更有可 能找到最佳解法。

当约束条件为设计目的时(如"生产两倍于刀数量的叉"),完全满足 约束条件则往往并不是那么重要:尤其是在获得一个完美均衡的生产日 程安排时,需要长达一天的最优化过程。在这种情况下,一个*几乎*符合 约束条件(产量为40%的叉、23%的刀、37%汤匙)的良好问题解法通 常比等待了一整天发现也许没有解法要好一些,因为不可能符合*所有*约 束条件。

惩罚函数
 宽松约束条件可以通过使用
 您初函数
 宽松约束条件可以通过使用
 您初函数
 在 Evolver 在查找解法时绝不能使用特定值,而是我们允许研究那些
 "无效"值,但我们将相应地对这些解法做出惩罚。例如,您的问题可能涉及使用约束条件"您只能使用三辆货车"来确定配送货物的最有效
 途径。更准确的模型将包括一个允许您使用更多辆卡车,但在利润中增加了巨大成本的惩罚函数。惩罚函数可以在"约束条件设置"对话框中指定,或通过添加表示惩罚函数的公式直接在模型中输入。

输入惩罚函数

😌 Evolver - 约東条件设置		×	
描述(<u>D</u>)			
约束条件类型			
◎ 严格 (丢弃不符合约束条件的解决方案)(出)			
💿 宽松 (不赞成不符合约束条件的	的解决方案)(5)		
惩罚函数(P)	⊨100*(EXP(偏差/100)-1)		
定义			
条目样式(E)	简单 ▼		
最小值(<u>N</u>)			
0 🔛 <= 💌			
	確定 取消		

Evolver 具有默认惩罚函数,此函数在您首次输入宽松约束条件时显示。 但是,可以在不符合宽松约束条件时,输入任何有效的 Excel 公式来计 算要应用的惩罚数额。输入的惩罚函数应包括关键字*偏差*,此关键字表 示约束条件超出其限制时所依据的绝对量。在试验解法结束时,Evolver 会检查是否已符合宽松约束条件;如果不符合,它将在输入的惩罚公式 中加入偏差量,然后计算要应用到要最小化或最大化的目标单元格值的 惩罚数额。

您可以在目标单元格值中添加或减去惩罚数额,以降低其"最佳"程度。 例如,如果在 Evolver"模型"对话框的*查找*字段中选择了*最大值*,则 将从目标单元格值中减去惩罚数额。

Evolver包括一个Excel工作表PENALTY.XLS,此工作表可以用于评估不同的惩罚函数对特定的宽松约束条件和目标单元格结果的影响。

PENALTY.XLS 允许您从模型中选择一个希望分析其影响的宽松约束条件。然后,您可以更改惩罚函数,以查看此函数如何将未符合的宽松约束条件的特定值设为特定的惩罚目标值。例如,如果宽松约束条件为A10<100,您可以通过 PENALTY.XLS 查看在使用数值 105 计算单元格A10 时,目标值将会是多少。

查看已应用的 惩罚

查看输入的惩罚

函数的影响

在由于不符合宽松约束条件而应用惩罚时,可以在"Evolver 观察器" 中查看所应用的惩罚数额。此外,惩罚值还会显示在"最优化日志"工 作表中,您可以在最优化之后选择创建此工作表。

在工作表中输入 惩罚函数也可以直接在工作表中输入。<u>布尔惩罚函数</u>将针对不符合指定 *宽松约束条件* 约束条件的所有方案分配设定的惩罚。例如,如果您想让单元格 B1 (供 应量)中的值至少与单元格 A1 (需求量)中的值一样大,则可以在另一

应量)中的值至少与单元格 A1 (需求量)中的值一样大,则可以在另一 个单元格中创建此惩罚函数: =*IF(A1>B1,-1000,0)。*如果将此单元格的 结果添加到目标单元格的值,则每当 Evolver 尝试违反此约束条件的解 法时(即供应量不能满足需求量),要最大化的目标单元格的值将显示 一个比实际结果少 1,000 的值。违反此约束条件的任何解法都会为目标 单元格生成一个较低的值,并且 Evolver 最终将"消除"这些组织。

您也可以使用比例惩罚函数,此函数可以针对违反约束条件的严重程度 更准确地对解法进行惩罚。这在现实情况中往往更为实际,因为其中供 应量不太能满足需求的解法会比供应量甚至没有接近需求量的解法要好 一些。简单的比例惩罚函数可以计算约束条件的目标值与其实际值之间 的绝对差。例如,在 A1 (需求量)不应超过 B1 (供应量)的同一示例 中,我们应分配以下惩罚函数: =*IF(A1>B1, (A1-B1)^2, 0)*。此类惩罚函 数可以衡量接近要符合的约束条件的程度,并通过对 A1 与 B1 之间的差 进行平方来增大该差值。现在,我们的惩罚会根据解法违反约束条件的 严重程度进行变化。

惩罚函数的更多 示例

例如,假设您创建了一个制造模型,其中的一个约束条件是使用的木材 量 应 等 于 使 用 的 塑 料 量。此 约 束 条 件 在 "AmountWood" = "AmountPlastic"时得到满足。我们想要找到包含相同数量的这两种材 料的解法,所以我们创建一个惩罚函数来阻止偏离我们目标的解法。公 式 "=ABS(AmountWood-AmountPlastic)"可以计算要使用的木材量和塑 料量之间的绝对(非负数)差。通过使用 ABS()函数,我们可以在 AmountWood 比 AmountPlastic 多 20,或 AmountPlastic 比 AmountWood 少 20 时得到相同的惩罚值。现在,当我们最优化模型时,我们的目标是 将此绝对差最小化。

假设我们改为施加以下约束条件:木材量必须是塑料量的两倍。惩罚函 数将会是:

=ABS(AmountWood-AmountPlastic*2)

另一种可能的约束条件是木材量应**不少于**塑料量的两倍。上一个示例在 木材量过多时应用惩罚,而在此示例中,我们只关注木材量是否不足; 如果 AmountWood 是 AmountPlastic 的十倍,则我们不希望应用惩罚。 相应的惩罚函数将会是:

> =IF(AmountWood<AmountPlastic*2, ABS(AmountPlastic*2-AmountWood),0)

如果 AmountWood 的大小至少是 AmountPlastic 的两倍,则惩罚函数 返回 0。否则,它将计算 AmountWood 的值比 AmountPlastic 的两倍 小多少。

使用惩罚函数

在模型中创建惩罚函数来描述宽松约束条件后,您可以将其与正常的目标单元格公式结合以获取受约束的目标单元格公式。在下面显示的示例中,如果单元格 C8 计算项目的总成本,并且单元格 E3:E6 包含 5 个惩罚函数,则您可以在单元格 C10 中创建一个诸如 =SUM(C8, E3:E6) 之类的公式。

C10 🗾 🗲 🥌 SUM (C8, E3:E6)						
	A	В	С	D	E	
1		项目成本				
2			\$4,500		约束	
3			\$300		25	
4			\$46,500		30	
5			\$1,200		12	
6			\$24,300		80	
7			\$76,800			
8		总计	\$153,600			
9						
10			\$153,747			
11						

创建一个可以将约束条件添加到总成本的单元格,并将此单元格的值最小化。

这样可以在 C8 的成本中加上 E 列中的惩罚,从而在 C10 中获取受约束 或惩罚的成本函数。请注意,如果这是一个最大化问题,您将在初始目 标单元格中减去惩罚值,而不是加上惩罚值。现在,当您使用 Evolver 时, 您只需选择此受约束的单元格 C10 作为将要对其值进行最优化的目标 单元格。

当 Evolver 尝试对受约束的目标单元格值进行最优化时,惩罚函数会 趋向于强制搜索符合约束条件的方案。最后,Evolver 将获得属于良好 答案且符合或几乎符合所有约束条件(惩罚函数将具有接近0的值)的 解法。

多目标问题

您可能只能在 Evolver 的目标单元格字段中指定一个单元格,但仍可以 通过创建一个可将两个目标合二为一的函数来解决多个目标。例如,作 为一名聚合物科学家,您可能会尝试制造一种柔韧而坚固的物质。您的 模型将计算特定化学物组合所产生的强度、韧性和重量。要使用的每种 化学物的数量是此问题的可调整变量。

由于您想要最大化物质的强度(单元格S3),并最大化其韧性(单元格F3),因此您将要创建一个包含以下公式的新单元格:=(S3+F3)。这将 是新的目标单元格,此单元格的数字越大,则整体解法就越好。

如果韧性比强度更重要,我们可以将目标单元格中的公式更改为 =(S3+(F3*2))。这样一来,按特定量提高韧性的方案将会比按相同量提 高强度的方案显得更好一些(生成更高的适应度"得分")。

如果您想要最大化物质的强度(单元格S5),并且最小化其重量(单元格W5),您将要创建一个包含以下公式的新单元格:=(S5^2)-(W5^2)。当结构坚固轻巧时,此公式将生成较大的数值,当结构薄弱笨重时,将 生成较小的数值,而对于薄弱轻巧和坚固笨重方案,则生成相等的平均 值。因此,您将使用此新单元格作为目标单元格,并最大化其平均值来 满足这两个目标。

提高速度

在使用 Evolver 解决问题时,您将使用 Evolver 已编写的例程库来控制 进程,并使用 Excel 的电子表格评估函数来检查不同的方案。实际上, Evolver 所消耗的时间中很大一部分被 Excel 占用,因为其要计算您的电 子表格。有许多方法可以加快 Evolver 最优化和 Excel 重新计算过程的 速度。

- ◆ Evolver 的速度与计算机处理器的速度直接相关。Pentium/2.0ghz 的速度大约是 Pentium/1.0ghz 的两倍。这表示 Evolver 在相同的 时间内将能够评估两倍多的试验。
- ◆ 尽量避免在窗口中重新绘图。在屏幕上绘制图形和数字都需要时间, 有时最优化就花费了一半以上的时间!如果您的工作表中包含图表或 图形,它们将明显减慢重新计算的时间。您可以通过关闭 Evolver "模 型"对话框中的更新显示选项或最小化 Excel 工作表,告知 Excel 在 Evolver 解决问题时不要花费时间来进行绘图。此外,您可以通过观 察状态栏来查看解决问题的速度有多快。
- ◆ 当 Evolver 或多或少地收敛于一个解法,并且在一段时间内(例如,过去的1000次试验)对最佳解法没有改进时,您可能希望增加突变率以允许 Evolver 扩大其对解法的搜索范围,而不是继续使用主要交叉来完善当前群体中的解法。您可以通过"Evolver 观察器"使用"群体设置"命令来增加突变率。
- ◆ 更严格地设置可调整单元格必须介于其中的范围;这将为 Evolver 创建一个必须在其中搜索解法的较小区域,并因此加快此进程的速 度。请确保您的范围足以允许 Evolver 随意研究所有现实解法。

如何执行 Evolver 的最优化

在本节中,我们将更具体地说明如何执行 Evolver 的最优化算法。

注: 您不需要只是为了使用 Evolver 而了解此材料。

Evolver 所采用遗传算法技术(如*菜单和顺序*求解方法)中的大部分都 是以过去十年内遗传算法领域的学术成就为依据。但是,Evolver中包 含的大多数派生求解方法,以及多组可调整单元格、回溯、策略和概率 功能则是 Evolver 独有的。

Evolver 使用稳态方式。这意味着每次只能替换一个组织,而不能替换整个"世代"。此稳态技术已证实与世代替换方法的效果相同或者更出 色。要确定 Evolver 已运行的等量的"世代",请获取其已研究的单个 试验的数量并除以群体的大小。

在创建新组织时, Evolver 会从当前的群体中选择两个父对象。适应度 得分较高的组织更有可能被选为父对象。

在 Evolver 中,采用基于排名的机制来选择父对象。排名方式提供了一条平滑的选择概率曲线,而不是某些选择父对象进行繁殖的机率与其适应度成正比的遗传算法系统。这可以防止良好的组织从一开始就完全控制进化。

由于每种求解方法调整变量的方式不同,因此 Evolver 将采用针对此类型问题最优化的不同交叉例程。

基本的"菜单"求解方法使用统一的交叉例程来执行交叉。这意味着不 会在某一时刻突然中断特定方案中的变量列表并分别处理两个区块(称 为"单点"或"两点"交叉),而是通过随机选择将要属于某一组或另 一组的项目来形成两个组。传统的 *x* 点交叉可能会使搜索偏向无关紧要 的变量位置,而统一的交叉法则被认为能够更好地保存方案,并且可以 从两个父对象中生成任何方案。

uniform crossover - A given % of the organism is randomly selected.

选择

交叉

"顺序"求解方法使用与 L. Davis 的《Handbook of Genetic Algorithms》 (遗传算法手册)^{*}中所述的顺序交叉运算符相似的算法来执行交叉。此 求解方法将从一个父对象中随机选择项目,在另一个父对象中找到项目 的位置,并按照在第一个父对象中出现的相同顺序将剩余项目复制到第 二个父对象中。这样可以在创建一些新的子次序时保留初始父对象中的 部分子次序。

与交叉相同,可以为每种不同的求解方法自定义突变方法。基本的"菜 单"求解方法通过单独查看每个变量来执行突变。您可以为组织中的每 个变量生成一个介于0和1之间的随机数,如果变量获得的数值小于或 等于突变率(例如,0.06),则此变量将发生突变。突变的数量和性质 由专有算法自动确定。变量的突变包含使用随机生成的数值(位于其取 值范围内)对其进行替换。

为保留所有初始值,"顺序"求解方法通过交换组织中部分变量的位置 来执行突变。执行的交换数量按照突变率设置(从 0 到 1)的增加和减 少成比例地进行增加或减少。

替换 由于 Evolver 使用排名顺序而不是世代替换方法,因此表现最差的组织 将始终使用通过选择、交叉和突变创建的新组织来进行替换,无论其适 应度"得分"如何。

约束条件 采用 Palisade 的专有"回溯"技术执行严格约束条件。如果新的子孙违 反某些外部施加的约束条件,则 Evolver 将对子孙的其中一个父对象进 行回溯,从而更改该子孙,直到其属于有效的解法空间。

突变

^{*} Davis, Lawrence (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.

附录 A: Evolver 自动化

VBA

Evolver 随附一套建立使用 Evolver 功能的自定义应用程序的完整宏语 言。Evolver 的自定义函数可以在 Visual Basic for Applications (VBA) 中用于设置和运行最优化,并显示最优化结果。有关此编程接口的更多 信息,请参见可以通过 Evolver "帮助"菜单获取的 Evolver Developer Kit 帮助文档。

附录 B: 故障排除/问与答

故障排除/问与答

本节回答某些关于 Evolver 的常见问题,让您随时了解常见问题、难题 和建议。在阅读完本节后,您可以按本手册起始章节中所列的电话号码 致电 Palisade 客户支持。

- 问题: 为什么我无法从 Evolver 获得有效答案?
- 回答: 确保正确设置 Evolver 对话框。大多数问题与变量的设置有关。 每个可调整单元格组应当为唯一,因为无法使用多个求解方法来 处理单个单元格或单元格范围。
- 问题: Evolver 是否可以处理概念或范畴,而不只是数字?
- 回答: 由于数字只是符号,因此 Evolver 不能直接处理各种数据。在 Excel 中使用查找表来在整数和文本字符串之间转换。最后, Evolver(与所有计算机程序一样)只能处理数字,但是您的界 面可以使用这些数字来表示和显示任何字符串。
- 问题: 即使我采用相同的方式填写对话框,并让 Evolver 运行同样长的时间,为什么 Evolver 有时还能找到不同的解法?
- 回答: 与生物界中的自然选择案例一样, Evolver 遗传算法在搜索解法时并不是始终按照相同的路径(除非您使用固定随机数生成器种子)。相反,"不可预测性"使 Evolver 可以解决更多类型的问题,并且经常可以找到比传统方法更好的解法。Evolver 的遗传算法引擎不只是执行一系列预先编程的命令,或者通过数学公式插入值,而是以更有效的方式同时尝试多个随机假设方案,然后通过多个也包含随机元素的"适者生存"运算符来对搜索进行优化。

- 问题: 为什么找到的最佳解法没有变化?
- 回答: 您可能在 Evolver "模型"对话框中指定了错误的目标单元格。 Evolver 查找此空白单元格,而值没有改变的原因是由于单元格 中没有公式。要修复此问题,请显示 Evolver "模型"对话框, 并选择正确的目标单元格;即准确反映每种解法好/坏的单元格。 正确的目标单元格具有直接或间接与 Evolver 要调整的变量(可 调整单元格)相关的公式。
- 问题: 我的电子表格模型中的某些单元格包含"####"符号。
- **回答:** 如果单元格过小而不能显示其中的所有内容时,将显示几个 "####"符号。增加单元格大小。
- 问题: Evolver 正常运行,但有没有获得更好结果的简单方法?
- 回答: 请考虑放宽问题中的约束条件,包括变量范围。通过惩罚函数将 <u>严格</u>约束条件更改为宽松约束条件(请参见"第八章: Evolver 附加说明"中的"添加约束条件")。Evolver可以尝试的限制 过多则可能会妨碍 Evolver 对可以产生更好结果的可能领域的 研究。请牢记,让 Evolver 研究可能性领域的时间越长,则找到 优化解法的可能性就越高。有关如何微调 Evolver 的更多理念, 请参见"第八章: Evolver 附加说明"。

Evolver 可以运行的方案越多,则结果就越好。通过关闭用于显示更新的"每次重新计算"选项来加快 Evolver 进程的速度。

附录 C: 其他资源

其他学习资源

以下列表是有关遗传算法的精选书籍,以及与人工生命相关的资料。星号 (*) 表示 Palisade 重点推荐。

书籍

- Bolles, R.C., & Beecher, M.D. (Eds.). (1988). Evolution and Learning. Lawrence Erlbaum.
- Beer, R.D. (1990). Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology. Academic Press.
- Davis, Lawrence (1987). Genetic Algorithms and Simulated Annealing. Palo Alto, CA: Morgan Kaufman.
- * Davis, Lawrence (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
- Darwin, Charles (1985). On The Origin of Species. London: Penguin Classics. (originally 1859)
- * Dawkins, Richard. (1976). The Selfish Gene. Oxford University Press.
- Eldredge, N. (1989). Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks. McGraw-Hill.
- Fogel, L., Owens, J., and Walsh, J. (1966). Artificial Intelligence through Simulated Evolution. New York: John Wiley and Sons.
- Goldberg, David (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley Publishing.
- Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press.
- Koza, John (1992). Genetic Programming. Cambridge, MA: MIT Press.
- * Langton, C.L. (1989). Artificial Life. MIT Press. [ALife I]
- Levy, Steven (1992). Artificial Life. New York: Pantheon.
- Meyer, J.-A., & S.W. Wilson (Eds.). (1991). Proceedings of the First International Conference on Simulation of Adaptive Behavior: From Animals to Animats. MIT Press/Bradford Books.
- * Proceedings of the Sixth International Conference (ICGA) on Genetic Algorithms (1995). San Mateo, CA: Morgan Kaufman Publishing. (Also available; the first five ICGA proceedings).

- Proceedings of the Workshop on Artificial Life (1990). Christopher G. Langton, Senior Editor. Reading, MA: Addison-Wesley Publishing.
- Rawlins, Gregory (1991). Foundations of Genetic Algorithms. San Mateo, CA: Morgan Kaufman Publishing.
- Richards, R.J. (1987). Darwin and the Emergence of Evolutionary Theories of Mind and Behavior. U. Chicago Press.
- Williams, G.C. (1966). Adaptation and Natural Selection. Princeton U. Press.

论文

- * Antonoff, Michael (October, 1991). Software by Natural Selection. <u>Popular</u> <u>Science</u>, p. 70-74.
- Arifovic, Jasmina (January, 1994). Genetic Algorithm Learning and the Cobweb Model. In Journal of Economic Dynamics & Control v18 p.3
- * Begley, S (May 8, 1995). "Software au Naturel" In Newsweek p. 70
- Celko, Joe (April, 1993). Genetic Algorithms and Database Indexing. In <u>Dr.</u> <u>Dobb's Journal</u> p.30
- Ditlea, Steve (November, 1994). Imitation of Life. In Upside Magazine p.48
- Gordon, Michael (June, 1991). User-based Document Clustering by Redescribing Subject Descriptions with a Genetic Algorithm. In <u>Journal of</u> <u>the American Society for Information Science</u> v42 p.311
- Hedberg, Sara (September, 1994). Emerging Genetic Algorithms. In <u>AI</u> <u>Expert</u>, p. 25-29.
- Hinton, G.E., & Nowlan, S.J. (1987). How Learning Can Guide Evolution. In <u>Complex Systems</u> 1: p.495-502.
- * Kennedy, Scott (June, 1995). Genetic Algorithms: Digital Darwinism. In <u>Hitchhicker's Guide to Artificial Intelligence</u> Miller Freeman Publishers
- Kennedy, Scott (December, 1993). Five Ways to a Better GA. In <u>AI Expert</u>, p. 35-38
- Lane, A (June, 1995). The GA Edge in Analyzing Data. In AI Expert p.11
- Lee, Y.C. (Ed.). (1988). Evolution, learning, and cognition. In <u>World</u> <u>Scientific</u>.
- Levitin, G and Rubinovitz, J (August, 1993). Genetic Algorithm for Linear and Cyclic Assignment Problem. In <u>Computers & Operations Research</u> v20 p.575
- Marler, P., & H.S. Terrace. (Eds.). (1984). The Biology of Learning. Springer-Verlag.
- Mendelsohn, L. (December, 1994) Evolver Review In <u>Technical Analysis of</u> <u>Stocks and Commodities</u>. p.33

- Maynard Smith, J. (1987). When Learning Guides Evolution. In <u>Nature</u> 329: p.761-762.
- Murray, Dan (June, 1994). Tuning Neural Networks with Genetic Algorithms. In <u>AI Expert</u> p.27
- Wayner, Peter (January, 1991). Genetic Algorithms: Programming Takes a Valuable Tip from Nature. In <u>Byte Magazine</u> v16 p.361

杂志与通讯

- Advanced Technology for Developers (monthly newsletter). Jane Klimasauskas, Ed., High-Tech Communications, 103 Buckskin Court, Sewickley, PA 15143 (412) 741-7699
- AI Expert (monthly magazine). Larry O'Brien, Ed., 600 Harrison St., San Francisco, CA 94107 (415) 905-2234. *Although AI Expert ceased publishing in the spring of 1995, its back issues contain many useful articles. Miller-Freeman, San Francisco.
- Applied Intelligent Systems (bimonthly newsletter). New Science Associates, Inc. 167 Old Post Rd., Southport, CT 06490 (203) 259-1661
- Intelligence (monthly newsletter). Edward Rosenfeld, Ed., PO Box 20008, New York, NY 10025-1510 (212) 222-1123
- PC AI Magazine (monthly magazine). Joseph Schmuller, Ed., 3310 West Bell Rd., Suite 119, Phoenix, AZ 85023 (602) 971-1869
- Release 1.0 (monthly newsletter). Esther Dyson, Ed., 375 Park Avenue, New York, NY 10152 (212) 758-3434
- Sixth Generation Systems (monthly newsletter). Derek Stubbs, Ed., PO Box 155, Vicksburg, MI, 49097 (616) 649-3592

模拟简介

如果您是初次接触模拟,或者想要了解更多有关此技术的背景资料,以 下书籍和论文可能会有帮助:

- * Baird, Bruce F. <u>Managerial Decisions Under Uncertainty</u>: John Wiley & Sons, Inc. 1989.
- * Clemen, Robert T. Making Hard Decisions: Duxbury Press, 1990.
- Hertz, D.B. "Risk Analysis in Capital Investment": HBR Classic, Harvard Business Review, September/October 1979, pp. 169-182.
- Hertz, D.B. and Thomas, H. <u>Risk Analysis and Its Applications</u>: John Wiley and Sons, New York, NY, 1983.
- Megill, R.E. (Editor). <u>Evaluating and Managing Risk</u>: PennWell Books, Tulsa, OK, 1984.
- Megill, R.E. <u>An Introduction to Risk Analysis, 2nd Ed</u>.: PennWell Books, Tulsa, OK, 1985.
- Morgan, M. Granger and Henrion, Max, with a chapter by Mitchell Small, <u>Uncertainty</u>: Cambridge University Press, 1990.
- Newendorp, P.D. <u>Decision Analysis for Petroleum Exploration</u>: Petroleum Publishing Company, Tulsa, Okla., 1975.
- Raiffa, H. Decision Analysis: Addison-Wesley, Reading, Mass., 1968.
模拟和蒙特卡罗技术的技术参考

如果您想要更深入地了解模拟、抽样技术和统计原理,以下书籍可能会 非常有用:

- Iman, R. L., Conover, W.J. "A Distribution-Free Approach To Inducing Rank Correlation Among Input Variables": Commun. Statist.-Simula. Computa.(1982) 11(3), 311-334
- * Law, A.M. and Kelton, W.D. <u>Simulation Modeling and Analysis</u>: McGraw-Hill, New York, NY, 1991,1982.
- Rubinstein, R.Y. <u>Simulation and the Monte Carlo Method</u>: John Wiley and Sons, New York, NY, 1981.

拉丁超立方体抽样技术的技术参考

如果您对相对较新的超立方体抽样技术感兴趣,以下资源可能会非常有用:

- Iman, R.L., Davenport, J.M., and Zeigler, D.K. "Latin Hypercube Sampling (A Program Users Guide)": Technical Report SAND79-1473, Sandia Laboratories, Albuquerque (1980).
- Iman, R.L. and Conover, W.J. "Risk Methodology for Geologic Displosal of Radioactive Waste: A Distribution - Free Approach to Inducing Correlations Among Input Variables for Simulation Studies": Technical Report NUREG CR 0390, Sandia Laboratories, Albuquerque (1980).
- McKay, M.D, Conover, W.J., and Beckman, R.J. "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code": Technometrics (1979) 211, 239-245.
- Startzman, R. A. and Wattenbarger, R.A. "An Improved Computation Procedure for Risk Analysis Problems With Unusual Probability Functions": SPE Hydrocarbon Economics and Evaluation Symposium Proceedings, Dallas (1985).

模拟使用示例和案例研究

如果您想要了解在实际情况中使用模拟技术的案例研究,请参见以下资源:

- Hertz, D.B. and Thomas, H. <u>Practical Risk Analysis An Approach Through</u> <u>Case Histories</u>: John Wiley and Sons, New York, NY, 1984.
- * Murtha, James A. <u>Decisions Involving Uncertainty</u>, An <u>@RISK Tutorial for</u> <u>the Petroleum Industry</u>: James A. Murtha, Houston, Texas, 1993
- Newendorp, P.D. <u>Decision Analysis for Petroleum Exploration</u>: Petroleum Publishing Company, Tulsa, Okla., 1975.
- Pouliquen, L.Y. Risk Analysis in Project Appraisal: World Bank Staff Occasional Papers Number Eleven. John Hopkins Press, Baltimore, MD, 1970.
- * Trippi, Robert R. and Truban, Efraim, <u>Neural Networks: In Finance and</u> <u>Investing</u>: Probus Publishing Co., 1993

词汇

对于有关任何术语的其他信息,请参考以下章节中的 Evolver 索引。

- **算法** 一种以数学为基础且用于解决某种特定问题的递进方法。所有计算机程 序均通过组合多种算法进行构建。
- **可调整单元格** 电子表格单元格, Evolver 可以对其值进行调整,以尝试优化目标单元 格的值。可调整单元格是一个变量值,并且应始终包含一个简单数字, 而不是一个方程式。
- **婴儿求解程序** 行业用语,查找输入项的简单软件程序,其使用线性编程技术的组合或基本的登山算法来生成所需的输出项。"婴儿求解程序"通常采用猜测法,然后再对答案进行改进,以找到"局部"解法,而不是"整体"解法。
- **单元格** 单元格是电子表格中用于存储数据的基本单位。在每个 Excel 工作表中, 最多可以有 256 列和 16,000 行, 单元格总数超过 4 百万个。
- **约束条件** 约束条件是指一个方案若要被视为有效而应当符合(宽松约束条件)或 必须符合(严格约束条件)的条件。
- **连续分布** 一种概率分布,其中最小值与最大值之间的任何值均有可能出现(具有 有限概率)。 *请参见"离散分布"*
- **交叉** 在遗传学领域,交叉是指在减数分裂过程中,在同源染色单体之间交换 等效遗传物质。在 Evolver 中,术语交叉用于表示相当于交换的计算, 其中变量之间的交换会产生新的方案组合。
- **累积分布** 累积分布或累积分布函数是一组点,其中每个点都等于以最小值开始, 以随机变量的相关值结束的概率分布积分。 *请参见"累积频率分布"、"概率分布"*
- **累积频率分布** 累积频率分布是用于 Evolver 的输出和输入累积分布的术语。累积分布 通过累积频率分布范围内的频率(逐步增加图形条高度)进行构造。累 积分布可以是一条"向上倾斜"的曲线,其中分布描述了小于或等于任 何变量值的值出现的概率。此外,累积曲线也可以是一条"向下倾斜" 的曲线,其中分布描述了大于或等于任何变量值的值出现的概率。 *请参见"累积分布"*

因变量 因变量在某些方面是一个取决于当前模型中其他变量的值的变量。一方 面,不确定的因变量的值可以根据方程式(作为其他不确定模型变量的 函数)计算。此外,因变量可以从基于随机数的分布中得到,此随机数 与用于抽取自变量样本的随机数相关。 *请参见"自变量"*

确定性 术语 "确定性"表示不存在与特定值或变量相关的不确定性。

- **对话** 在计算机屏幕上显示的窗口,用于请求用户提供信息。也称为"对话 框"。Evolver 主要包含两种对话框; Evolver"模型"对话框和"可调 整单元"对话框。
- **离散分布** 一种概率分布,其中在最大值与最小值之间仅出现有限数目的离散值。 *请参见"连续分布"*

字段 数据输入的基本单位。根据字段类型不同,一个字段可以包含文本、 图片或数字。Evolver 中的大多数字段请求用户输入电子表格单元格的 位置,或者与 Evolver 行为方式相关的选项。

- **适应度函数** 适应度函数是一个可以计算任何建议的解法对特定问题是好还是坏的公式。此术语通常作为对生物学领域"适应度"的类推在遗传算法中使用。 在使用遗传算法解决问题时,准确的适应度函数设计非常关键。
- **函数** 在 Excel 中,函数是一个预定义公式,其使用一个值执行运算并返回一 个值。Excel 包含数百个内建公式(如 "SUM"),这些公式节省了时 间、空间,并且可以提高效率。例如,您可以键入SUM(A1:A6)而不用 键入 A1+ A2+ A3+ A4+ A5+ A6 就可以获得相同的结果。
- **频率分布** 频率分布是针对 Evolver 输出概率分布和输入直方图分布(直方图)的 正式术语。频率分布由数据构建,方法是将值按类排列并使用图形条的 高度来表示值在任何类中的出现频率。出现的频率与概率对应。
- **遗传算法** 一个用于改进某些运算结果的程序,方法是反复尝试多个可能的解法, 然后再次生成并组合更好解法的组成部分。此过程受生物界进化过程 (适者再生)的启发,并且与进化过程在本质上相似。
- **世代** 在遗传算法领域,每种全新的"子孙"解法群体就是新的"世代"。某些遗传算法例程立即对所有群体成员进行配对,并创建一个全新"世代"的子孙组织来替换先前群体。Evolver 一次评估和替换一个组织(排名顺序),因此本文档中不使用术语"世代"。这种稳态法的工作方式与世代替换相同。
- **基因型** 在生物学中,基因型是指个体的基因组成。此术语通常是指个体基因的 总计。在遗传算法研究中,基因型用于描述被评估为问题的可能解法的 人工"染色体"。
- **整体最大值** 特定函数的最大可能值。复杂函数或模型可以具有多个局部最大值,但 只能有一个整体最大值。

- **可调整单元格组** 每组变量以及处理它们的方式就是一个可调整单元格组。Evolver 将在 Evolver "模型"对话框的变量部分列出所有可调整单元格组。此结构允 许您作为多个可调整单元格组构建和描述复杂问题。
- *严格约束条件* 必须始终符合的约束条件。例如,变量范围在菜单问题中是严格约束 条件;一组介于10和20之间的变量绝不能有小于10或大于20的值。 另请参见宽松约束条件。
- 高阶矩 高阶矩是概率分布的统计量。此术语通常分别是指偏度和峰度、第三个 和第四个阶矩。第一个和第二个阶矩分别是平均值和标准差。请参见"偏 度"、"峰度"、"平均值"和"标准差"
- **登山算法** 一个最优化程序,该程序从特定方案开始,以较小步进将此方案向着可以在最大程度上对其进行改进的方向反复移动。登山算法快速且简便, 但是也有两个缺点。第一个,可能需要做大量工作才能确定可以实现最 大改进的方向。第二个,此算法通常攀登距离最近的山丘或局部最大值。 这一点会妨碍此算法在复杂问题中查找整体最大值。
- **自变量** 自变量是一个在任何方面都不与当前模型中的任何其他变量的值相关的 变量。通过从相应概率分布中抽取一个样本来确定不确定自变量的值。 在抽取此样本时,不用考虑为模型中的任何其他变量抽取的任何其他随 机样本。 *请金 叫"田峦*景"

请参见"因变量"

- **送代** 在模拟过程中,一次迭代就是用户模型的一次重新计算。模拟由多次重新计算或迭代组成。在每次迭代过程中,根据所有不确定变量的概率分 布对它们进行一次抽样,并使用这些抽样值重新计算模型。 *这也称为模拟试验*
- **峰度** 峰度用于测量分布的形状。峰度指示分布的平坦或尖锐程度。峰度值越高,则分布的顶部越尖。 *请参见"偏度"*
- **拉丁超立方体法** 拉丁超立方体抽样是在模拟建立过程中使用的相对较新的分层抽样技术。与蒙特卡罗类型的技术不同,分层抽样技术趋向于强制收敛少数几 个样本中的已抽样分布。 *请参见"蒙特卡罗法"*
- *局部最大值* 特定函数在特定值范围内的最大可能值。局部最大值存在于函数变量的 一组值中,如果稍微更改任何或所有变量的值,则会从函数生成较小的 结果。(与整体最大值相对)。

平均值 一组值的平均值是该组所有值相加除以该组值的数目所得到的值。 *同义词:期望值*

模型 针对本手册的目的,模型是现实情况在 Excel 中的数字表示。

- **蒙特卡罗法** 蒙特卡罗法指的是在模拟建模过程中对随机变量进行抽样的传统方法。 由于完全采用随机方式在分布范围内选择样本,因此需要将大量样本用 于高度偏态分布或长尾分布的收敛。 *请参见"拉丁超立方体法"*
- **最可能的值** 最可能的值或众数是一组值中最常出现的值。在直方图和结果分布中, 它是类或条中概率最大的中心值。
- **突变** 在生物界中,基因突变是有效自然选择所需的物种变化的来源。同样, 遗传算法使用突变技术来保持可能方案群体中的多样性。
- **最优化**查找变量值的过程,从而将函数的输出项最大化(尽可能大)或最小化(尽可能小)。对于只带有少数几个变量且平稳变化的函数,方程式求解最优化非常简便,但对于许多现实问题却非常困难。一般情况下,复杂问题需要一个搜索机制。Evolver使用基于遗传算法的优化搜索机制。
- 组织 群体中的内存块,用于存储一组变量值(方案)。
- (惩罚函数 一个电子表格方程式, Evolver 可以使用此方程式来惩罚未能满足某些标准的方案。惩罚函数用于帮助最小化方案的负面影响,或者实现多个目标。与严格约束条件不同,惩罚函数允许研究无效解法;惩罚函数只是使这些解法看起来差,从而使群体可以在进化时远离这些解法。布尔惩罚可以打开或关闭,其按相同的量惩罚所有无效解法。比例惩罚则更灵活,其按违反约束条件的严重程度来按比例分配惩罚。
- **百分位数** 百分位数是数据集中值的增量。百分位数将数据分为 100 个相等部分, 并且每个部分包含值总数的 1%。例如,位于第 60 个百分位数的值表示 数据集中有 60% 的值低于该值,而有 40% 的值高于该值。
- **显型** 在生物学领域,显型是一种可以观测的个体特点,其来自基因之间及基因与环境之间的交互作用。在遗传算法研究中,显型用于描述组成一个完整解法或"染色体"的单个变量或"基因"。(请参见"基因型")
- **群体** Evolver 的整组方案均保存在内存中,新方案也在内存中生成。Evolver 为系统中的每个可调整单元格组保留一个可能解法的群体。
- 概率
 概率用于衡量值或事件发生的机率。可以通过将模拟数据作为频率来测量概率,方法是将值或事件的出现次数除以出现的总次数。此计算返回介于0和1之间的值,然后可以通过乘以100将值转换成百分数。
 请参见"频率分布"、"概率分布"

概率分布 概率分布或概率密度函数是频率分布的正式统计术语,它由一组无限多的值构建,其中类的大小可以无穷小。 *请参见"频率分布"* **随机数发生器** 随机数发生器是一个用于选择随机数字的算法,范围通常介于0到1之间。这些随机数相当于从最小值为0、最大值为1的均匀分布中抽取的 样本。此类随机数是将其转换成从特定分布类型中所抽取样本的其他例 程的基础。

请参见"随机样本"、"种子"

- **随机样本** 随机样本是一个从描述随机变量的概率分布中选择的值。根据抽样"算法"随机抽取此类样本。由此类算法抽取的大量随机样本构建的频率分布与此算法设计用于的概率分布非常相似。
- **范围** 在 Evolver 中:

用户设置允许在 Evolver 调整某个变量时尝试的范围,或最高值和最低 值。尽管这不是解决问题所必须的,但设置这些范围可以限定概率,从 而缩小 Evolver 搜索的范围。

在 Excel 中:

工作表中的一个连续单元块,由左上角的单元格和右下角的单元格定义 (例如,A5:C9 描述一个包含 15 个单元格的范围)。

- **方案** 电子表格模型中变量的一组值。每个方案最常代表一种可能的解法。
- **模拟** 模拟是一种让模型(例如 Excel 工作表)使用不同的输入值进行多次计 算的技术,目的是为了获得可能在不确定情况中出现的所有可能方案的 完整表示。
- **偏度** 偏度用于测量分布的形状。偏度指明分布中的不对称程度。偏态分布在 峰值或最可能值的一侧有更多的值 — 尾部比其他的更长。偏度为0表示 一个对称分布,而负偏度表示分布向左偏。正偏度表示分布向右偏。*请* 参见"峰度"
- **解法** 任何特定系统均包含许多可以生成输出项的输入函数。在 Evolver 中, "解法"最常指一种可能的变量组合,而不是最佳组合。
- **宽松约束条件** 如果不必符合约束条件,则可以将这些约束条件指定为宽松约束条件, 而不是严格约束条件。通过在 Evolver 中指定惩罚函数或将惩罚函数添 加到目标单元格的适应度函数来指定宽松约束条件。

如有可能,通常最好使用宽松约束条件。原因如下: 1.首先, Evolver 解 决宽松约束问题的速度通常会更快; 其次,宽松约束模型通常会找到一 个几乎符合所有宽松约束条件的极佳解法,这样比符合严格约束条件的 一般解法更有价值。

求解方法 Evolver 提供六种求解方法,每种方法使用自定义算法来解决特定类型的问题。对于在问题中所选的每组变量,用户必须分配要在这些变量上使用的求解方法。这六种求解方法是:分组、顺序、菜单、预算、项目和日程安排。

标准差标准差用于测量分布中值的离散范围。其等于方差的平方根。 *请参见"方差"*

随机 随机是不确定性、风险的同义词。 *请参见"风险"、"确定性"*

状态栏 状态栏显示在 Excel 窗口的底部,并显示 Evolver 的当前活动。

- *适者生存* 适者生存的概念表示能更好地适应外部环境的生物才最有可能长时间存 活,并在群体的下一代中繁殖和传播自己的基因。
- **目标单元格** 要将其中的值最小化或最大化的电子表格单元格。在 Evolver "模型" 对话框中设置此单元格(选择 Evolver "模型定义"命令或"模型" 图标)。

试验 Evolver 为问题中的每个变量生成值,然后重新计算评估方案的过程。

Е

Fyolver	
定义	13
教程	10
Evolver	
为什么要使用?	16
Evolver	100
う Microsoft Solver	136
何时使用	137
Evolver	10,
功能	128–41
Evolver 观察器	36, 117
Excel Solver(请参见 Solver	135
G	
GRG 例程	135
	155
B	
Readme 文件	10
S	
Solver	135
与 Evolver	136
/ 告选择示例	45
<u>ابد m</u>	
上 之 に と に	
分组求解方法	
示例	59, 69
描述	96
分钟数	109

化学平衡示例	55
太空导航员示例	79
无线电塔位置示例	67
日程安排示例	63
日程安排求解方法	
示例	57
描述	98

五划

世代	
不使用它的原因	164
代码段组合程序示例	59
加工车间示例	65
发电站示例	73
可调整单元格	26, 90
目标单元格	25, 90, 182

六划

交叉率	120, 150
如何执行	164
作用	100
交易者示例	81
交通示例	85
任务分配示例	49
回溯	165
百分位数	180
约束条件	155-60
实施	165
观察器	36, 117
问题	
线性	139
组合	141
非线性	139–40
基于表格	141

七划

严格约束条件	29, 103
局部解法	
与整体解法	135
技术规格	164
投资组合平衡示例	69
投资组合示例	71
求解方法	
分组	96

示例	59, 69
日程安排	98
示例	57
作为约束条件	156
项目	97
示例	63
顺序	95
示例	49, 65, 77
预算	97
示例	45, 53, 71, 73
菜单	95
示例	47, 51, 55, 67, 75, 79, 81, 83, 85
状态栏	117, 182
词汇	177
运算符	101
连续模型	135

人划

单一法	139
图表	36, 117
图表进度	
图片	34
学习 Evolver	10
线性问题	139
组合问题	128–41
采购示例	75
非线性问题	139–40
变压器示例	83

九划

按字母顺序排列的示例	47
突变率	120
如何执行	165
作用	100
适应度函数	21, 90
选择例程	164
重画屏幕	
图片	34
面包厂示例	51
项目求解方法	
示例	63
描述	97
顺序求解方法	
示例	49, 65, 77
描述	95

十划

值92	
宽松约束条件	29, 103, 104, 157
课程安排程序示例	57
速度,提高	162
预算分配示例	53
预算求解方法	
示例	45, 53, 71, 73
描述	97

十一划

停止条件	109
简介	33
基于表格的问题	141
基因群	151
推销员问题示例	77
推销员旅行示例	77
教程	10
添加 — 添加约束条件	103
菜单求解方法	
示例	47, 51, 55, 67, 75, 79, 81, 83, 85
描述	95

1	 七
	 XIJ

惩罚函数	
示例	159
使用	160
解释	157
替换方法	165
最优化	
方法	129
示例	133
定义	15
最优化目标	25, 90
最优化运行时间选 项	109
登山	131
Solver 的使用	135
示例	139
描述	139–40
遗传算子	101, 102
遗传算法	
为什么要使用?	16

十三划

数据库 解法的地形	141 130
十四划	
算法, 定义	129
十六划	
整体解法 与局部解法	135
整数	92