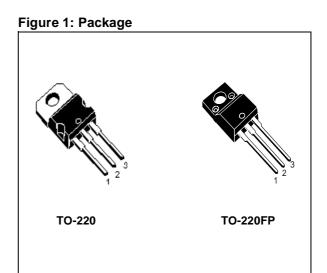
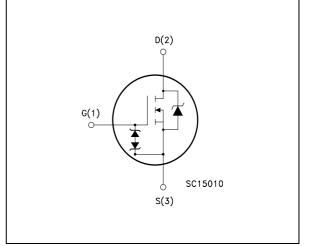
STP9NK80ZSTF9NK80ZN-CHANNEL 800V -0.9Ω - 7.5A TO-220/TO-220FPZener-Protected SuperMESH™MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	ID	Pw
STP9NK80Z	800 V	<1.2 Ω	7.5 A	150 W
STF9NK80Z	800 V	<1.2 Ω	7.5 A	35 W


- TYPICAL $R_{DS}(on) = 0.9\Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- IMPROVED ESD CAPABILITY
- 100% AVALANCHE RATED
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING REPEATIBILITY

DESCRIPTION


The SuperMESH[™] series is obtained through an extreme optimization of ST's well established strip-based PowerMESH[™] layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOS-FETs including revolutionary MDmesh[™] products.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- IDEAL FOR OFF-LINE POWER SUPPLIES
- SMPS

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STP9NK80Z	P9NK80Z	TO-220	TUBE
STF9NK80Z	F9NK80Z	TO-220FP	TUBE

STP9NK80Z - STF9NK80Z

Symbol	Parameter	Val	Unit	
		TO-220	TO-220FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	80	0	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	80	0	V
V _{GS}	Gate- source Voltage	± 3	60	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	7.5	7.5 (*)	Α
ID	Drain Current (continuous) at T _C = 100°C	4.7	4.7 (*)	А
I _{DM} (•)	Drain Current (pulsed)	30	30 (*)	А
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	150	35	W
	Derating Factor	1.20	0.28	W/°C
V _{ESD(G-S)}	Gate source ESD(HBM-C=100pF, R=1.5KΩ)	400	00	V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5		V/ns
VISO	Insulation Withstand Voltage (DC)	-	2500	V
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150 -55 to 150		℃ ℃

Table 3: Absolute Maximum ratings

(•) Pulse width limited by safe operating area

(1) I_{SD} ≤7.5A, di/dt ≤200Å/µs, V_{DD} = 80% V_{(BR)DSS}

(*) Limited only by maximum temperature allowed

Table 4: Thermal Data

		TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case Max	0.83	3.6	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5		°C/W
Τı	Maximum Lead Temperature For Soldering Purpose	350		°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	7.5	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	350	mJ

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 7: On/Off

Symbol	Parameter	Parameter Test Conditions		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	800			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 50	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 100 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 3.75 A		0.9	1.2	Ω

Table 8: DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V _, I _D = 3.75 A		7.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		1900 180 38		pF pF pF
C _{oss eq.} (3)	Equivalent Output Capacitance	$V_{GS} = 0V$, $V_{DS} = 0V$ to 640V		75		pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$V_{DD} = 400 \text{ V}, I_D = 3.75 \text{ A}$ R _G = 4.7 Ω V _{GS} = 10 V (see Figure 19)		26 19 58 18		ns ns ns ns
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	$\label{eq:VD} \begin{array}{l} V_{DD} = 640 \ V, \ I_D = 7.5 A, \\ R_G = 4.7 \Omega, \ V_{GS} = 10 V \\ (\text{see Figure 20}) \end{array}$		12 10 24		ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\label{eq:VD} \begin{array}{l} V_{DD} = 640 \text{V}, \ \text{I}_{D} = 7.5 \ \text{A}, \\ V_{GS} = 10 \text{V} \\ \text{(see Figure 22)} \end{array}$		60 12 35	84	nC nC nC

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				7.5 30	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 7.5 \text{ A}, V_{GS} = 0$			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 7.5 A, di/dt = 100A/µs V _{DD} = 35V, T _j = 25°C (see Figure 20)		530 4.5 17		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 7.5 A, di/dt = 100A/µs V _{DD} = 35V, T _j = 150°C (see Figure 20)		690 6.4 17		ns μC Α

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Figure 3: Safe Operating Area for TO-220

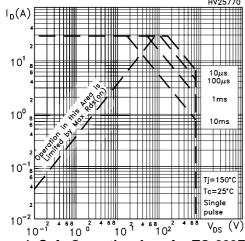
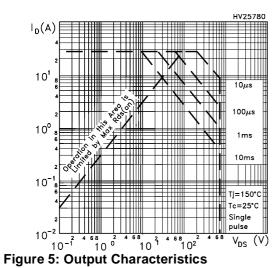



Figure 4: Safe Operating Area for TO-220FP

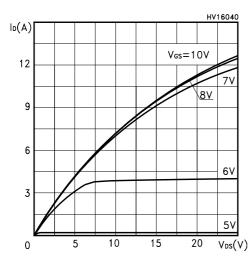


Figure 6: Thermal Impedance for TO-220

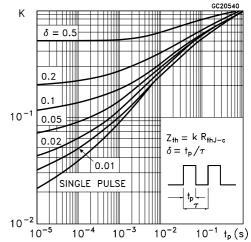
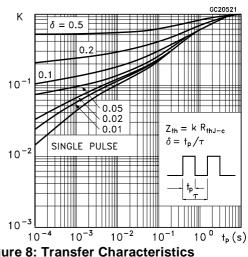



Figure 7: Thermal Impedance for TO-220FP

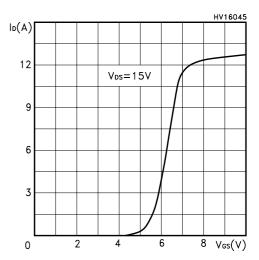


Figure 9: Transconductance

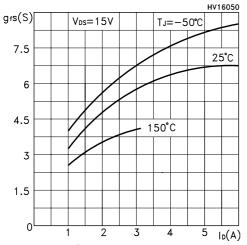
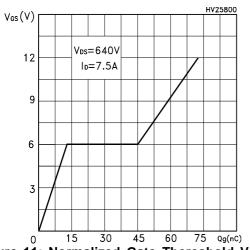
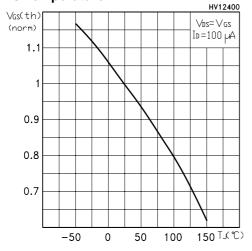
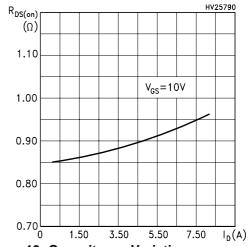
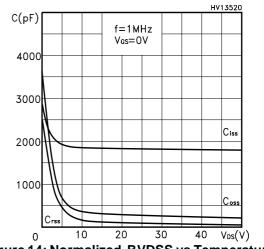


Figure 10: Gate Charge vs Gate-source Voltage


Figure 11: Normalized Gate Thereshold Voltage vs Temperature

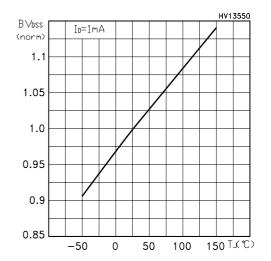

Figure 12: Static Drain-source On Resistance

Figure 13: Capacitance Variations

Figure 15: Normalized On Resistance vs TemperatureS

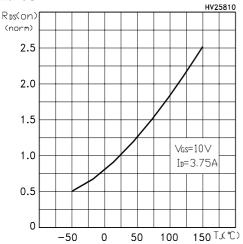
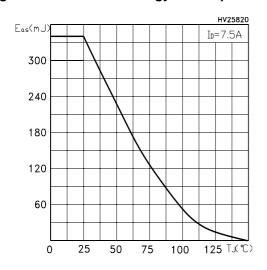
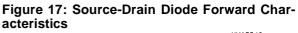
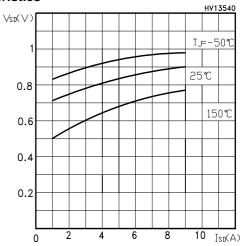





Figure 16: Avalanche Energy vs Temperature

Figure 18: Unclamped Inductive Load Test Circuit

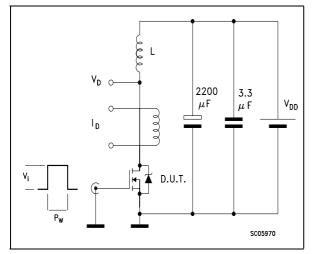
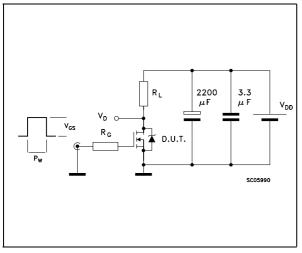
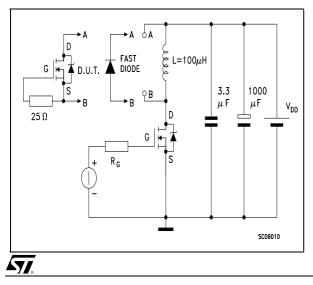
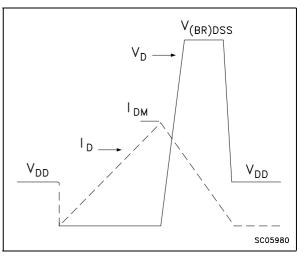


Figure 19: Switching Times Test Circuit For Resistive Load

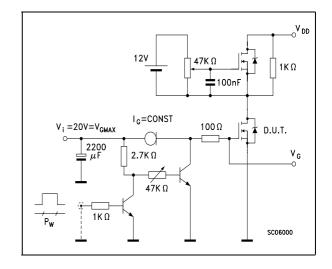
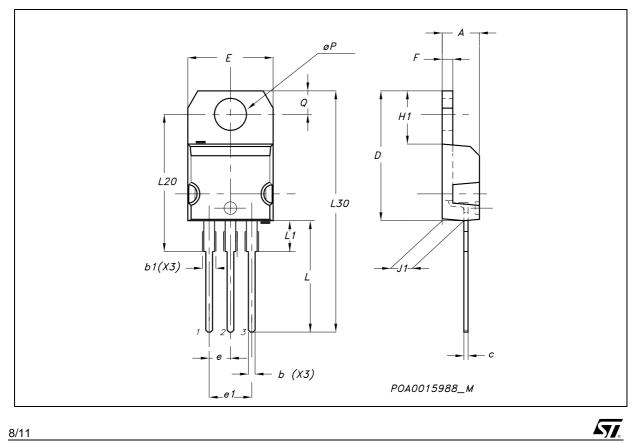
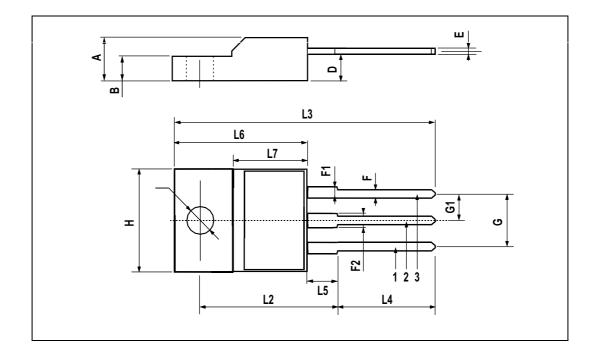

Figure 20: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 21: Unclamped Inductive Wafeform



STP9NK80Z - STF9NK80Z

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116



8/11

ым		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

STP9NK80Z - STF9NK80Z

Table 10: Revision History

Date	Revision	Description of Changes
18-May-2005	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America