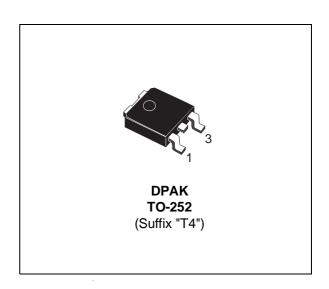


STGD7NB60S

N-CHANNEL 7A - 600V DPAK Power MESHTM IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGD7NB60S	600 V	< 1.6 V	7 A


- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- VERY LOW ON-VOLTAGE DROP (Vcesat)
- HIGH CURRENT CAPABILITY
- OFF LOSSES INCLUDE TAIL CURRENT
- SURFACE-MOUNTING DPAK (TO-252)
 POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH $^{\rm TM}$ IGBTs, with outstanding perfomances. The suffix "S" identifies a family optimized to achieve minimum on-voltage drop for low frequency applications (<1kHz).

APPLICATIONS

- LIGHT DIMMER
- STATIC RELAYS
- MOTOR CONTROL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Reverse Battery Protection	20	V
V_{GE}	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuous) at T _c = 25 °C	15	Α
Ic	Collector Current (continuous) at T _c = 100 °C	7	Α
I _{CM} (●)	Collector Current (pulsed)	60	Α
P _{tot}	Total Dissipation at T _c = 25 °C	55	W
	Derating Factor	0.44	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

November 1999 1/8

THERMAL DATA

R _{thj}	-case	Thermal	Resistance	Junction-case	Max	2.27	°C/W
R _{thi}	j-amb	Thermal	Resistance	Junction-ambient	Max	100	°C/W
Rtho	c-sink	Thermal	Resistance	Case-sink	Тур	1.5	°C/W

ELECTRICAL CHARACTERISTICS $(T_j = 25^{\circ}C)$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_C = 250 \ \mu A$ $V_{GE} = 0$	600			V
V _{BR(ECR)}	Emitter-Collector Breakdown Voltage	IC = 1 mA V _{GE} = 0	20			V
I _{CES}	Collector cut-off (V _{GE} = 0)	$V_{CE} = Max Rating$ $T_j = 25 ^{\circ}C$ $V_{CE} = Max Rating$ $T_j = 125 ^{\circ}C$			10 100	μA μA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20 \text{ V}$ $V_{CE} = 0$			± 100	nA

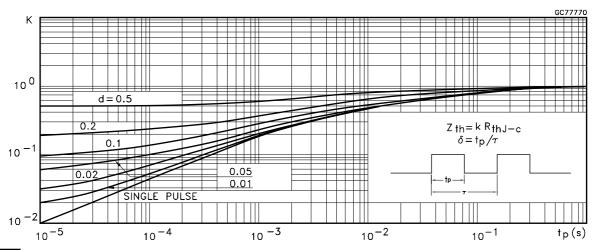
ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$ $I_C = 250 \mu A$	2.5		5	٧
V _{CE(SAT)}	Saturation Voltage	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		1 1.2 1.1	1.4 1.6	> > >

DYNAMIC

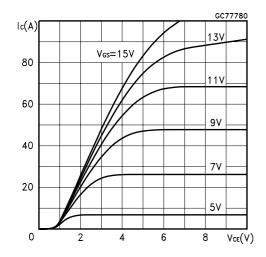
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
G fs	Forward Transconductance	$V_{CE} = 25 \text{ V}$ $I_C = 7 \text{ A}$	4			S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25 V f = 1 MHz V _{GE} = 0		610 65 12	780 85 15	pF pF pF
Q_{G}	Gate Charge	V _{CE} = 400 V I _C = 7 A V _{GE} = 15 V		33		nC
I _{CL}	Latching Current	$V_{clamp} = 480 \text{ V}$ $R_G=1k\Omega$ $T_i = 150 \text{ °C}$	15			Α

SWITCHING ON

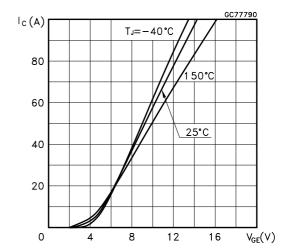

Symbol	Parameter	Test Cor	Min.	Тур.	Max.	Unit	
t _{d(on)}	Delay Time Rise Time	V _{CC} = 480 V V _{GE} = 15 V	$I_C = 7 A$ $R_G = 1 K\Omega$		0.7 0.46		μs μs
(di/dt) _{on}	Turn-on Current Slope	$V_{CC} = 480 \text{ V}$ $R_G = 1 \text{ K}\Omega$	I _C = 7 A V _{GE} = 15 V		8		A/μs
Eon	Turn-on Switching Losses	$T_j = 125$ °C	GL		0.4		mJ

ELECTRICAL CHARACTERISTICS (continued)

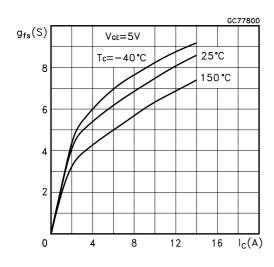
SWITCHING OFF

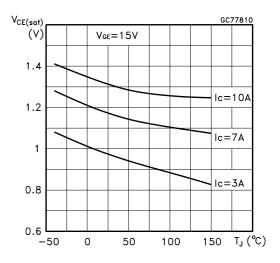

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t_{c} $t_{r}(v_{off})$ t_{f} $E_{off}(**)$	Cross-Over Time Off Voltage Rise Time Fall Time Turn-off Switching Loss	$V_{CC} = 480 \text{ V} \qquad \qquad I_{C} = 7 \text{ A}$ $R_{GE} = 100 \Omega \qquad \qquad V_{GE} = 15 \text{ V}$		2.2 1.2 1.2 3.5		μs μs μs mJ
$\begin{array}{c} t_{c} \\ t_{r}(v_{off}) \\ t_{f} \\ E_{off}(^{**}) \end{array}$	Cross-Over Time Off Voltage Rise Time Fall Time Turn-off Switching Loss	$V_{CC} = 480 \text{ V}$ $I_{C} = 7 \text{ A}$ $V_{GE} = 100 \Omega$ $V_{GE} = 15 \text{ V}$ $V_{GE} = 15 \text{ V}$		3.8 1.2 1.9 5.3		μs μs μs mJ

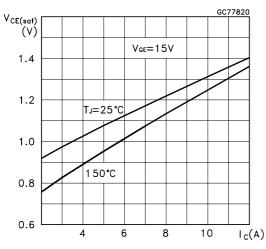
Thermal Impedance

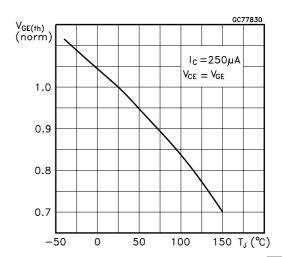


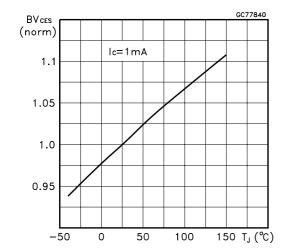
^(*) Pulse width limited by safe operating area
(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(**)Losses Include Also The Tail (Jedec Standardization)

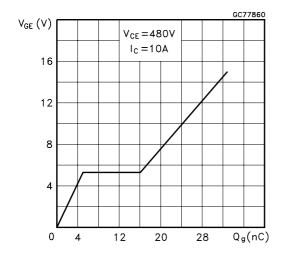

Output Characteristics

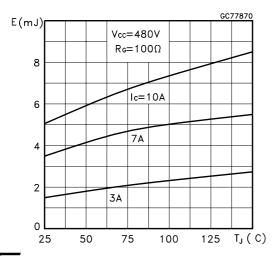

Transfer Characteristics

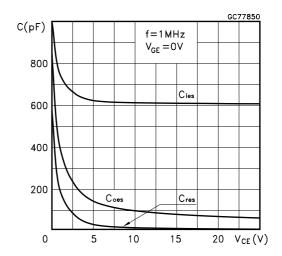

Transconductance

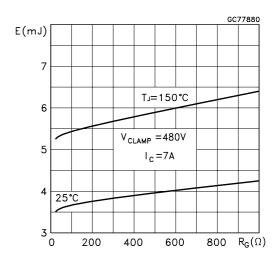

Collector-Emitter On Voltage vs Temperature

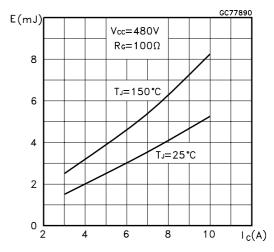

Collector-Emitter On Voltage vs Collector Current


Gate Threshold vs Temperature


Normalized Breakdown Voltage vs Temperature


Gate Charge vs Gate-Emitter Voltage


Off Losses vs Temperature


Capacitance Variations

Off Losses vs Gate Resistance

Off Losses vs Collector Current

Switching Off Safe Operatin Area

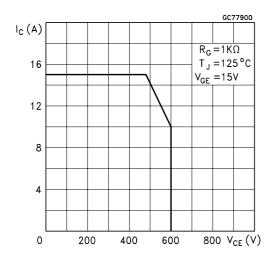
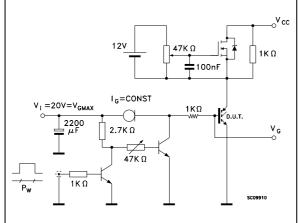
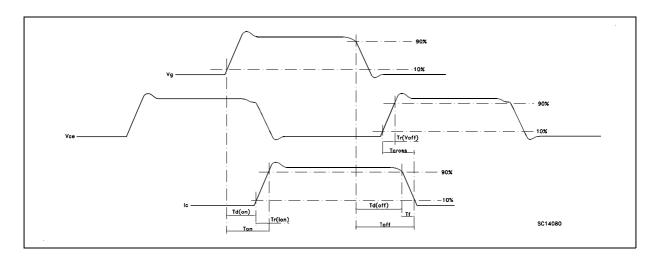



Fig. 1: Gate Charge test Circuit


FAST DIODE $L=100\mu H$

 $^{3.3}_{\mu}$ F 1000 ₽В μ F V_{CC} , D.U.T. SC09920

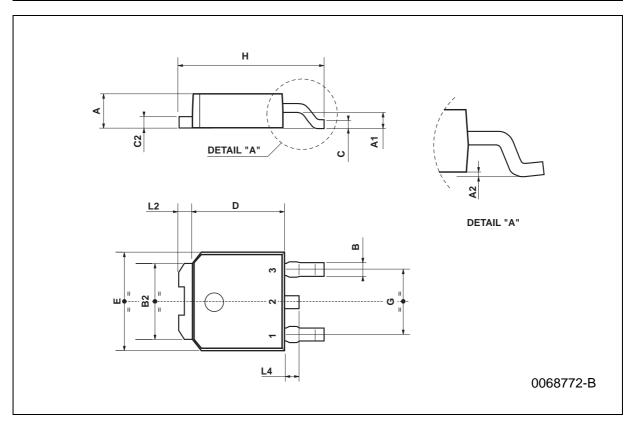

Fig. 2: Test Circuit For Inductive Load Switching

Fig. 3: Switching Waveforms

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm		inch		
Divi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023		0.039

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4