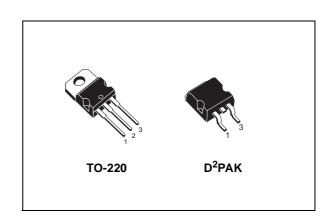


# STB120NH03L STP120NH03L

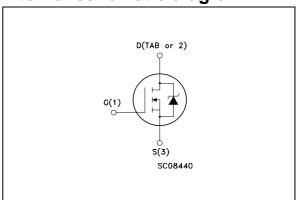
N-Channel 30V - 0.005Ω - 9A - TO-220/D<sup>2</sup>PAK STripFET™ III Power MOSFET for DC-DC Conversion

#### **General features**

| Туре        | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> |
|-------------|------------------|---------------------|----------------|
| STB120NH03L | 30V              | <0.0055Ω            | 9A Note 1      |
| STP120NH03L | 30V              | $<$ 0.0055 $\Omega$ | 9A Note 1      |


- Typical  $R_{DS(on)} = 0.005\Omega$  @ 10V
- R<sub>DS(on)</sub> \*Qg Industry's Benchmark Low
- Conduction Losses Reduced
- Switching Losses Reduced
- Low Threshold Device

#### **Description**


These devices utilizes the latest advanced design rules of ST's proprietary STripFET™ technology. It is ideal in high performance DC-DC converter applications where efficiency is to be achieved at very high output currents.

### **Applications**

 Specifically designed and optimized for high efficiency DC-DC converters



### Internal schematic diagram



#### **Order codes**

| Part Number | Marking   | Package            | Packaging   |
|-------------|-----------|--------------------|-------------|
| STB120NH03L | B120NH03L | D <sup>2</sup> PAK | TAPE & REEL |
| STP120NH03L | P120NH03L | TO-220             | TUBE        |

Rev 1
December 2005

1/14

# 1 Electrical ratings

Table 1. Absolute maximum ratings

| Symbol                             | Parameter                                            | Value      | Unit |
|------------------------------------|------------------------------------------------------|------------|------|
| V <sub>DS</sub>                    | Drain-source Voltage (V <sub>GS</sub> = 0V)          | 30         | V    |
| V <sub>DGR</sub>                   | Drain-gate Voltage ( $R_{GS} = 20k\Omega$ )          | 30         | V    |
| V <sub>GS</sub>                    | Gate-Source Voltage                                  | ± 20       | V    |
| I <sub>D</sub> Note 1              | Drain Current (continuous) at T <sub>C</sub> = 25°C  | 60         | А    |
| I <sub>D</sub> Note 1              | Drain Current (continuous) at T <sub>C</sub> = 100°C | 60         | Α    |
| I <sub>DM</sub> Note 2             | Drain Current (pulsed)                               | 240        | А    |
| P <sub>TOT</sub>                   | Total Dissipation at T <sub>C</sub> = 25°C           | 115        | W    |
|                                    | Derating Factor                                      | 0.77       | W/°C |
| EAS Note 3                         | Single Pulse Avalanche Energy                        | 700        | mJ   |
| T <sub>J</sub><br>T <sub>stg</sub> | Operating Junction Temperature Storage Temperature   | -55 to 175 | °C   |

Table 2. Thermal data

| R <sub>thJC</sub> | Thermal Resistance Junction-case Max           | 1.30 | °C/W |
|-------------------|------------------------------------------------|------|------|
| R <sub>thJA</sub> | Thermal Resistance Junction-amb Max            | 62.5 | °C/W |
| T <sub>I</sub>    | Maximum Lead Temperature For Soldering Purpose | 300  | °C   |

# 2 Electrical characteristics

(  $T_{CASE} = 25$  °C unless otherwise specified )

Table 3. On/off states

| Symbol               | Parameter                                                | Test Conditions                                                 |                        | Min. | Тур.           | Max.             | Unit     |
|----------------------|----------------------------------------------------------|-----------------------------------------------------------------|------------------------|------|----------------|------------------|----------|
| V <sub>(BR)DSS</sub> | Drain-Source Breakdown<br>Voltage                        | I <sub>D</sub> = 250μA                                          | V <sub>GS</sub> = 0    | 30   |                |                  | V        |
| I <sub>DSS</sub>     | Zero Gate Voltage Drain<br>Current (V <sub>GS</sub> = 0) | $V_{DS}$ = Max Rating,<br>$V_{DS}$ = Max Rating, $T_{C}$ =125°C |                        |      |                | 1<br>10          | μA<br>μA |
| I <sub>GSS</sub>     | Gate Body Leakage Current (V <sub>DS</sub> = 0)          | V <sub>GS</sub> = ±20V                                          |                        |      |                | ±100             | μΑ       |
| V <sub>GS(th)</sub>  | Gate Threshold Voltage                                   | $V_{DS} = V_{GS}$                                               | I <sub>D</sub> = 250μA | 1    | 1.8            | 2.5              | V        |
| R <sub>DS(on)</sub>  | Static Drain-Source On<br>Resistance                     | $V_{GS} = 10V$ $I_D = 30A$ $V_{GS} = 5V$ $I_D = 30A$            |                        |      | 0.005<br>0.006 | 0.0055<br>0.0105 | $\Omega$ |

Table 4. Dynamic

| Symbol                                                   | Parameter                                                         | Test Conditions                                                      | Min. | Тур.              | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|------|-------------------|------|----------------|
| g <sub>fs</sub> Note 4                                   | Forward Transconductance                                          | $V_{DS} = 10V$ $I_D = 30A$                                           |      | 40                |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $V_{DS} = 15V$ , $f = 1MHz$ , $V_{GS} = 0$                           |      | 4100<br>680<br>70 |      | pF<br>pF<br>pF |
| Rg                                                       | Gate Input Resistance                                             | f = 1MHz Gate DC Bias=0<br>Test Signal Level=20mV<br>Open Drain      |      | 1.3               |      | Ω              |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>     | Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge      | $V_{DD}$ =15V, $I_{D}$ = 60A<br>$V_{GS}$ =10V<br>Figure 14 on page 7 |      | 57<br>11.8<br>7.3 | 77   | nC<br>nC<br>nC |
| Qoss Note 5                                              | Output Charge                                                     | V <sub>DS</sub> = 16V V <sub>GS</sub> = 0                            |      | 27                |      | ns             |
| Qgls Note 6                                              | Third-quadrant Gate Charge                                        | V <sub>DS</sub> < 0 V <sub>GS</sub> = 10V                            |      | 55                |      | ns             |

**5**//

Table 5. Switching times

| Symbol              | Parameter                         | Test Conditions                                                                              | Min. | Тур.     | Max. | Unit     |
|---------------------|-----------------------------------|----------------------------------------------------------------------------------------------|------|----------|------|----------|
| t <sub>d(on)</sub>  | Turn-on Delay Time<br>Rise Time   | $V_{DD} = 15V, I_D = 30A,$ $R_G = 4.7\Omega, V_{GS} = 10V$ Figure 13 on page 7               |      | 16<br>95 |      | ns<br>ns |
| t <sub>d(off)</sub> | Off voltage Rise Time<br>FallTime | $V_{DD}$ = 15V, $I_D$ = 30A,<br>$R_G$ = 4.7 $\Omega$ , $V_{GS}$ = 10V<br>Figure 15 on page 7 |      | 48<br>23 |      | ns<br>ns |

Table 6. Source drain diode

| Symbol                                                 | Parameter Test Conditions                                                    |                                                                                           | Min. | Тур.            | Max.      | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|-----------------|-----------|---------------|
| I <sub>SD</sub><br>I <sub>SDM</sub>                    | Source-drain Current<br>Source-drain Current (pulsed)                        |                                                                                           |      |                 | 60<br>240 | A<br>A        |
| V <sub>SD</sub> Note 4                                 | Forward on Voltage                                                           | I <sub>SD</sub> = 30A V <sub>GS</sub> = 0                                                 |      |                 | 1.4       | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse Recovery Time<br>Reverse Recovery Charge<br>Reverse Recovery Current | $I_{SD}$ = 60A, di/dt = 100A/µs,<br>$V_{DD}$ = 30V, $T_{J}$ =150°C<br>Figure 15 on page 7 |      | 46<br>64<br>2.8 |           | ns<br>nC<br>A |

Note: 1 Value limited by wire bonding

- 2 Pulse width limited by safe operating area
- 3 Starting  $T_J = 25$ °C,  $I_D = 30A$ ,  $V_{DD} = 15V$
- 4 Pulsed: pulse duration = 300µs, duty cycle 1.5%
- 5  $Q_{oss} = C_{oss} *_{\Delta} V_{IN}$ ,  $C_{oss} = C_{gd} + C_{ds}$ . See Power losses calculation
- 6 Gate charge for synchronous operation.

## 2.1 Electrical chraracteristics (curves)

Figure 1. Safe Operating Area

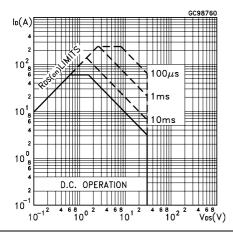



Figure 2. Thermal Impedance

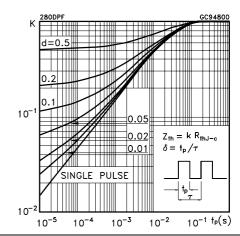
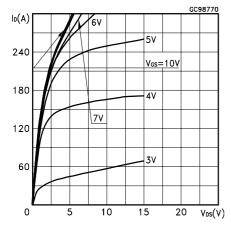




Figure 3. Output Characteristics

Figure 4. Transfer Characteristics



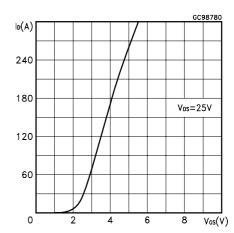
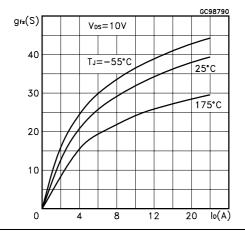




Figure 5. Transconductance

Figure 6. Static Drain-Source on Resistance



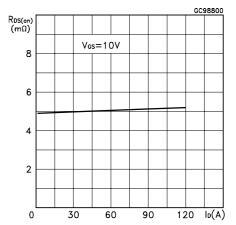
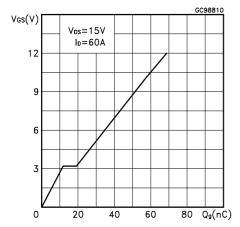




Figure 7. Gate Charge vs Gate-Source Voltage Figure 8. Capacitance Variations



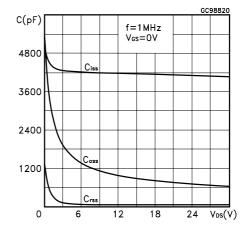
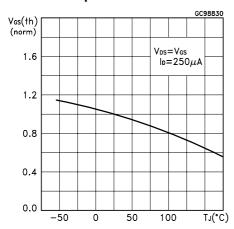




Figure 9. Normalized Gate Threshold Voltage Figure 10. Normalized on Resistance vs vs Temperature Temperature



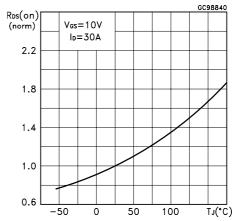



Figure 11. Source-drain Diode Forward
Characteristics

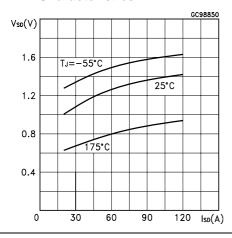
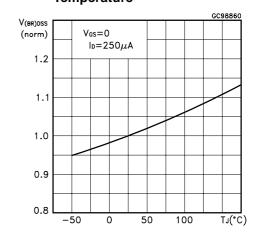




Figure 12. Normalized Breakdown Voltage vs Temperature



## 3 Test circuits

Figure 13. Switching Times Test Circuit For Resistive Load

R<sub>L</sub> 2200 3.3 μF V<sub>DD</sub> V<sub>DD</sub> P<sub>W</sub> D.U.T.

Figure 15. Test Circuit For Inductive Load Switching and Diode Recovery Times

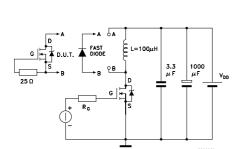



Figure 16. Unclamped Inductive Waveform

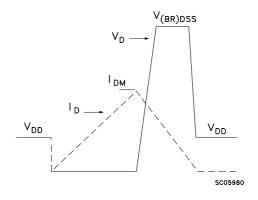



Figure 14. Gate Charge Test Circuit

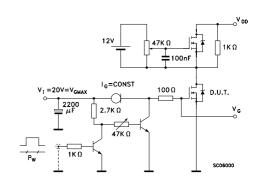
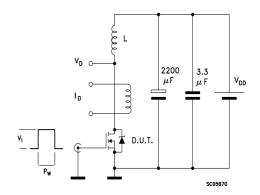
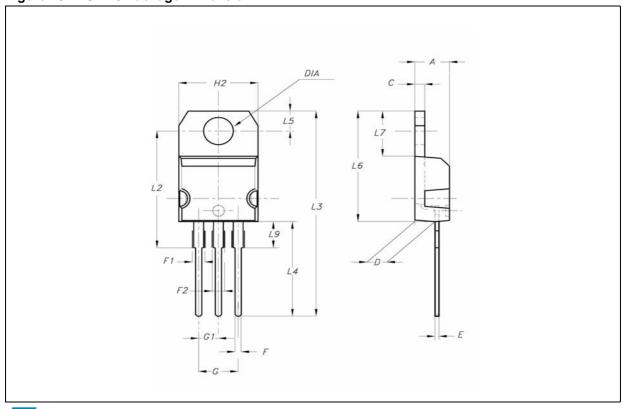




Figure 17. Unclamped Inductive Load Test Circuit



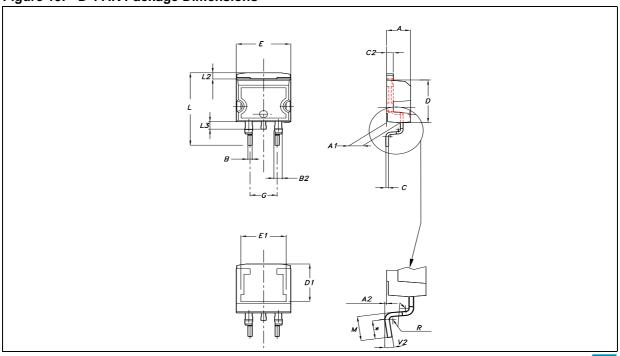

# 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <a href="https://www.st.com">www.st.com</a>

Table 7. TO-220 Mechanical Data

|      |       |      | Dimensions |       |       |       |
|------|-------|------|------------|-------|-------|-------|
| Def  |       | mm   |            |       | inch  |       |
| Ref. | Min.  | Тур. | Max.       | Min.  | Тур.  | Max.  |
| Α    | 4.40  |      | 4.60       | 0.173 |       | 0.181 |
| b    | 0.61  |      | 0.88       | 0.024 |       | 0.035 |
| b1   | 1.15  |      | 1.70       | 0.045 |       | 0.067 |
| С    | 0.49  |      | 0.70       | 0.019 |       | 0.028 |
| D    | 15.25 |      | 15.75      | 0.600 |       | 0.620 |
| Е    | 10.0  |      | 10.40      | 0.394 |       | 0.409 |
| е    | 2.4   |      | 2.7        | 0.094 |       | 0.106 |
| e1   | 4.95  |      | 5.15       | 0.195 |       | 0.203 |
| F    | 1.23  |      | 1.32       | 0.048 |       | 0.052 |
| H1   | 6.2   |      | 6.6        | 0.244 |       | 0.260 |
| J1   | 2.40  |      | 2.72       | 0.094 |       | 0.107 |
| L    | 13.0  |      | 14.0       | 0.512 |       | 0.551 |
| L1   | 3.5   |      | 3.93       | 0.138 |       | 0.155 |
| L20  |       | 16.4 |            |       | 0.646 |       |
| L30  |       | 28.9 |            |       | 1.138 |       |
| öΡ   | 3.75  |      | 3.85       | 0.148 |       | 0.152 |
| Q    | 2.65  |      | 2.95       | 0.104 |       | 0.116 |

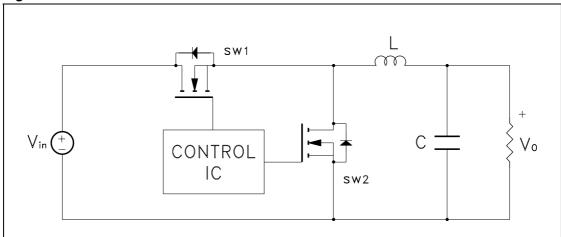
Figure 18. TO-220 Package Dimension




**5**//

Table 8. D<sup>2</sup>PAK Mechanical Data

|      | Dimensions |      |       |       |       |       |
|------|------------|------|-------|-------|-------|-------|
| D-4  |            | mm   |       |       | inch  |       |
| Ref. | Min.       | Тур. | Max.  | Min.  | Тур.  | Max.  |
| Α    | 4.4        |      | 4.6   | 0.173 |       | 0.181 |
| A1   | 2.49       |      | 2.69  | 0.098 |       | 0.106 |
| A2   | 0.03       |      | 0.23  | 0.001 |       | 0.009 |
| В    | 0.7        |      | 0.93  | 0.028 |       | 0.037 |
| B2   | 1.14       |      | 1.7   | 0.045 |       | 0.067 |
| С    | 0.45       |      | 0.6   | 0.018 |       | 0.024 |
| C2   | 1.21       |      | 1.36  | 0.048 |       | 0.054 |
| D    | 8.95       |      | 9.35  | 0.352 |       | 0.368 |
| D1   |            | 8    |       |       | 0.315 |       |
| Е    | 10         |      | 10.4  | 0.394 |       | 0.409 |
| E1   |            | 8.5  |       |       | 0.334 |       |
| G    | 4.88       |      | 5.28  | 0.192 |       | 0.208 |
| L    | 15         |      | 15.85 | 0.591 |       | 0.624 |
| L2   | 1.27       |      | 1.4   | 0.050 |       | 0.055 |
| L3   | 1.4        |      | 1.75  | 0.055 |       | 0.069 |
| М    | 2.4        |      | 3.2   | 0.094 |       | 0.126 |
| R    |            | 0.4  |       |       | 0.015 |       |
| V2   | 0°         |      | 8°    | 0°    |       | 8°    |


Figure 19. D<sup>2</sup>PAK Package Dimensions



10/14

## 5 Appendix A

Figure 20. Buck Converter: Power Losses Estimation



The power losses associated with the FETs in a Synchronous Buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

The low side (SW2) device requires:

- Very low R<sub>DS(on)</sub> to reduce conduction losses
- Small Qgls to reduce the gate charge losses
- Small Coss to reduce losses due to output capacitance
- Small Qrr to reduce losses on SW1 during its turn-on
- The Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to source
- voltage to avoid the cross conduction phenomenon;

The high side (SW1) device requires:

- Small Rg and Ls to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Qg to have a faster commutation and to reduce gate charge losses
- Low R<sub>DS(on)</sub> to reduce the conduction losses.

Table 9. Power losses calculation

|                        |              | High Side Switching (SW1)                                                           | Low Side Switch (SW2)                      |
|------------------------|--------------|-------------------------------------------------------------------------------------|--------------------------------------------|
| Pconduction            |              | $R_{	ext{DS(on)SW1}}*I_{	ext{L}}^{2}*oldsymbol{\delta}$                             | $R_{DS(on)SW2} * I_L^2 * (1 - \delta)$     |
| Pswitching             |              | $V_{\text{in}} * (Q_{\text{gsth(SW1)}} + Q_{\text{gd(SW1)}}) * f * \frac{I_L}{I_g}$ | Zero Voltage Switching                     |
| Pdiode                 | Recovery (1) | Not applicable                                                                      | $V_{in} * Q_{rr(SW2)} * f$                 |
| ruiode                 | Conduction   | Not applicable                                                                      | $V_{_{f(SW2)}}*I_{_{L}}*t_{_{deadtime}}*f$ |
| Pgate(Q <sub>G</sub> ) |              | $Q_{g(SW1)}*V_{gg}*f$                                                               | $Q_{gls(SW2)}*V_{gg}*f$                    |
| P <sub>Qoss</sub>      |              | $\frac{V_{in} * Q_{oss(SW1)} * f}{2}$                                               | $\frac{V_{in} * Q_{oss(SW2)} * f}{2}$      |

<sup>1.</sup> Dissipated by SW1 during turn-on

Table 10. Paramiters meaning

| Parameter         | Meaning                                      |  |
|-------------------|----------------------------------------------|--|
| d                 | Duty-cycle Duty-cycle                        |  |
| Q <sub>gsth</sub> | Post threshold gate charge                   |  |
| Q <sub>gls</sub>  | Third quadrant gate charge                   |  |
| Pconduction       | On state losses                              |  |
| Pswitching        | On-off transition losses                     |  |
| Pdiode            | Conduction and reverse recovery diode losses |  |
| Pgate             | Gate drive losses                            |  |
| P <sub>Qoss</sub> | Output capacitance losses                    |  |

# **6** Revision History

| Date        | Revision | Description of changes |
|-------------|----------|------------------------|
| 12-Dec-2005 | 1        | First release          |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

