

Using ST6 analog inputs for multiple key decoding

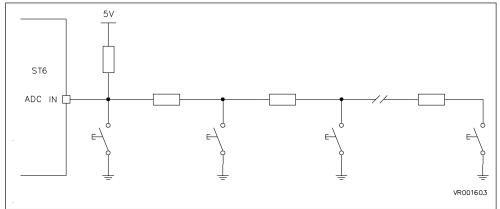
INTRODUCTION

The ST6 on-chip Analog to Digital Converter (ADC) is a useful peripheral integrated into the silicon of the ST6 family members. The flexibility of the I/O port structure allows the multiplexing of up to 13/8 Analog Inputs into the converter in a 28/20 pin device for the ST6210/15 2k ROM and ST6220/25 4k ROM families, enabling full freedom in circuit layout. Many other members of the ST6 family also offer the Analog to Digital converter.

One of the more novel and practical applications of this converter, is to decode a number of keys. The technique is to connect the keys by resistive voltage dividers to the converter inputs. An example of key detection using 10 keys is illustrated in this note.

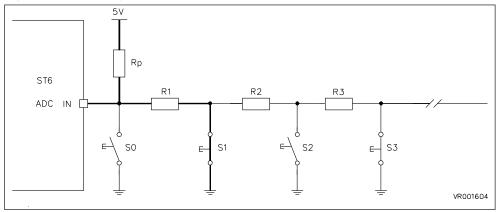
Using the Analog to Digital converter in this fashion does not require a static current and avoids false key detection.

BASIC CIRCUIT


The basic circuit of the key decoder consists of a pull-up resistor connected to the ST6 Analog to Digital converter input with the first key directly switching to ground. The following keys are then connected in sequence to the ADC input through serial resistors. The number of keys which may be detected depends on the tolerance of the resistors used. It can be seen that if more than one key is pressed at the same time, the key detected will be the next key in the chain closest to the ADC input. This also allows the keys in the keyboard to be prioritized.

PRINCIPLE OF OPERATION

The combination of the pull-up resistor, the serial resistors and the pressed key form a resistive voltage divider, generating a different voltage at the ADC input for each key pressed. The serial resistors are selected in order to give an equal distribution of voltage between V_{DD} and V_{SS} for each switch combination to give the best noise margin between keys.


When a key is pressed, the voltage at the ADC input is given by the activated voltage divider. This analog voltage is converted by the ADC and the digital value is used to determine which switch is closed. Two successive conversions may be made to avoid the influence of key bounce.

If the top key is pressed, the voltage measured is always zero. For n keys, the resistor values should be selected such that the voltage for the second key from top is V_{DD}/n , for the 3rd - $2xV_{DD}/n$, for the

2/15

Key Nr	Valid Code Range	Distance to next key				
1	0	24				
2	18-1A	22				
3	30-33	22				
4	49-4E	21				
5	63-68	20				
6	7C-81	22				
7	97-9B	21				
8	B0-B4	22				
9	CA-CD	24				
10	E5-E6	25				

Table 1. Key code ranges

4th - $3xV_{DD}/n$ and for the nth - $(n-1)xV_{DD}/n$. Resistor values from the tolerance set used must be selected to meet this requirement.

The recommended resistor values for a 10-key keyboard with 2% resistors from the E24 series, used with a 10k Ω pull-up resistor, are shown in table 2. If more current can be allowed, then a 1k Ω resistor can be used in which case the serial resistor values should be divided by 10.

Table 2. Used resistors and Tolerance

Resistor	Value ()	-2% ()
Rp	10000	9800
R1	1100	1078
R2	1300	1274
R3	1800	1764
R4	2400	2352
R5	3300	3234
R6	5100	4998
R7	8200	8036
R8	16000	15680
Active Key	R Error Range (LSB)	Distance to next Key
S0	0	24

PRACTICAL LIMITATIONS

Theoretically, for an ideal power supply, ADC and resistors, 255 keys could be detected. Practically however, it is necessary to take into account potential errors coming from:

- the power supply - the key resistivity - the resistor tolerance - the ADC error

The power supply tolerance can normally be neglected providing noise is not present at a frequency within or above the frequency range of the RC delay of the resistive divider, as the ADC reference is normally provided by the power supply of the ST6. For ST6 family members with external ADC reference voltage inputs, AV_{DD} and AV_{SS} may be used instead of V_{DD} and V_{SS}.

The sensitivity of the key can normally be neglected, as the resistance of the divider is high in comparison to it. If the key resistivity is significant, it should be added to the "serial" pull-down resistance of the different dividers. The key resistivity variation must also be added to the tolerance of the serial pull-down resistor (see resistor tolerance following).

The resistor tolerance affects the tolerance of the dividers. Two situations must be taken into account:

a) minimum value of pull-up combined with maximum values of pull-down = maximum voltage of the divider at the ADC input.

b) maximum value of the pull-up combined with the minimum values of pull-down = minimum voltage at the ADC input. These two cases give the maximum voltage variation of each divider (see Table 3). The voltage variation ranges of two dividers must not overlap otherwise the key cannot be decoded, even with an ideal converter.

Active Key	R -2%()	R +2% ()
S0	0	0
S1	1078	1122
S2	2352	2448
S3	4116	4284
S4	6468	6732
S5	9702	10098
S6	14700	15300
S7	22736	23664
S8	38416	39984
S9	88396	92004

Table 3. Effective Divider Resistors RX

Realistic converters require a margin between the range of variation. In the case of a significant variation in the key resistivity, the maximum resistivity of the key has to be added to the value of the pull-down resistor in case a). For case b) no error needs to be added as the resistivity cannot be less than 0 Ω . The linearity of the ADC converter of the ST6 is normally specified for (2 LSB, therefore a minimum distance of 4 LSB is needed between the edges of the resistance tolerance ranges. For the best results, a minimum of 8 LSB should be used (see Table 4).

				-		
Active Key	V (Rxmin-Rpmax)			V (Rxmax-Rpmin)		
Active Key	V	hex.	dec.	V	hex.	dec.
S0	0.00	00	0	0.00	00	0
S1	0.48	18	24	0.51	1A	26
S2	0.94	30	48	1.00	33	51
S3	1.44	49	73	1.52	4E	78
S4	1.94	63	99	2.04	68	104
S5	2.44	7C	124	2.54	81	129
S6	2.95	97	151	3.05	9B	155
S7	3.45	B0	176	3.54	B4	180
S8	3.95	C9	201	4.02	CD	205

Table 4. Voltage at the ADC-Input, Converter Results (5V supply)

Table 5. AD-Converter Results

Active Key	R Error Range (LSB)	Distance to next Key	Valid Key Range
S0	0	24	0-0
S1	2	22	18-1A
S2	3	22	30-33
S3	4	21	49-4E
S4	5	20	63-68
S5	5	22	7C-81
S6	5	21	97-9B
S7	4	22	B0-B4
S8	3	24	C9-CD
S9	2	25	E5-E6

EXTENSION FOR WAKE UP

ST6 family members with the Analog input capacity can also generate a wake-up operation (from WAIT or STOP modes) on the pressing of a key. This can be achieved by a modification of the circuit shown in figure 1. The pull-up resistor is not connected to V_{DD} but to an additional I/O port bit. During key polling, this additional port bit is set to output mode active high, thus effectively switching V_{DD} to the pull-up resistor. The resistance of the pull-up resistor must be high enough to give no significant voltage drop, or the resulting error must be calculated and taken into account. The other I/O bit is used as the Analog input to the ADC as in the original circuit. During the wait for the key press, the first I/O pin, used to pull the pull-up resistor high to V_{DD} while polling, is switched into a high impedance state (e.g. open drain output mode). The second I/O pin, used as the ADC input while polling, is switched to the interrupt input with pull-up mode. The internal pull-up is in the range of 100k, in comparison to the 1k -10k of the external resistor used during polling. If any key is now pressed an interrupt will be generated if the voltage at the second I/O pin is below the Schmitt trigger low level threshold. The serial resistors in the keyboard chain must not be too high in this case, therefore the maximum number of keys is reduced in comparison to the normal mode.

Figure 3. Keyboard wake-up circuit

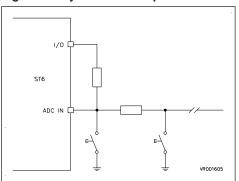


Figure 4. Keyboard reading

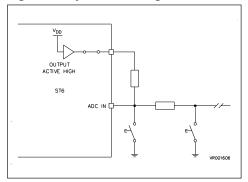
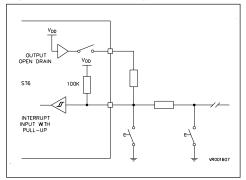



Figure 5. Interrupt configuration

APPENDIX A: Key Input by Polling

	-	-		
· ·	*******	******	***************************************	***
;*				*
		*		
;*			SGS-THOMSON GRAFING	*
;*				*
;*		APPL	ICATION NOTE 431 - ST6	*
*				
;*				*
;*	Use	of ADC	inputs for multiple key decoding	*
;*				*
*				
;*			uilt A/D converter of any ST6 it is easy to	*
;*			small routine which enables ONE port pin, con-	*
;*	figure	ed as an	n ADC input, to decode up to ten different switche	∋s*
		*	*	
;*			necessary is to set one port pin as an ADC input	*
;*	Then t	the prog	gram runs in an endless loop until one of the	*
;*	connor	stad kay	ve is nuched	*
, *	connec	lieu kej	ys is pushed.	
;*	The va	alue fro	om the ADC data register is then used to decide	*
;*			ram will continue, on reaction to the key-push.	*
*		ie prog.		
;*				*
;*******	******	******	*****	***
			;***REGISTERS***	
			·	
ddrpb	.def	0c5h	;port B data direction register	
orpb	.def	0cdh	;port B option register	
drpb	.def	0c1h	;port B data register	
adr	.def	0d0h	;A/D data register	
adcr	.def	0d1h	;A/D control register	
a	.def	Offh	;accumulator	
u	·uci	01111	, accumara con	
			:***CONSTANTS***	
			,CONSTANTS	
innall	0.011	000h	used for setting all nine input	
inpall	.equ		;used for setting all pins input	h 0
peg1_2 peg2_3	.equ .equ	00ch 025h	;border to distinguish between switch1 and switc ;border to distinguish between switch2 and switc	
peg3_4	.equ	029h	; border to distinguish between switch2 and switc	
peg4_5	.equ	058h	;border to distinguish between switch4 and switc	h5
peg5_6	.equ	072h	; border to distinguish between switch5 and switc	
peg6_7 peg7 8	.equ .equ	08ch 0a5h	;border to distinguish between switch6 and switc ;border to distinguish between switch7 and switc	
peg8 9	.equ	Obeh	:border to distinguish between switch8 and switc	

<pre>ldi ddrpb,inpall ;sets all port B pins low - all input ldi orpb,01h ;option register: ;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low ;- pb0 becomes analog input</pre>	peg9_10	.equ	0d9h ;border	to distinguish between switch9 and switch10
ldi orpb,01h ;option register: ;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low				
ldi orpb,01h ;option register: ;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low				
ldi orpb,01h ;option register: ;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low				
ldi orpb,01h ;option register: ;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low				
ldi orpb,01h ;option register: ;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low				
;sets bit b0 high, the rest low ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low		ldi	ddrpb,inpall	;sets all port B pins low — all input
ldi drpb,01h ;direction register: ;sets bit b0 high, the rest low		ldi	orpb,01h	;option register:
;sets bit b0 high, the rest low				;sets bit bO high, the rest low
		ldi	drpb,01h	
;— pb0 becomes analog input				
; pb1-7 become input with pull-up, but ; are not used here (only one pin may be				
; analog input for A/D at the same time)				
ldi adcr,30h ;A/D control register:		ldi	ador.30h	
; 0011 0000activate A/D converter		141		
; -start conversion				; -start conversion
; -disable A/D interrupt				; -disable A/D interrupt
loop: jrr 6,adcr,loop ;loop until the End Of Conversion bit is	loop:	jrr	6,adcr,loop	;loop until the End Of Conversion bit is
;set (indicator that a conversion has				
;been completed)		7.1		
ld a,adr ;load acc with the result of the A/D		Id	a,adr ;load a	
;conversion ;now the result is compared with the				,
; values which represent the different			; values whic	h represent the different
;switches	,			
swl: cpi a,peg1_2 ;compare with peg1_2	sw1:			
jrnz sw2 ;A/D result was smaller than peg1_2 jp s1 ; - switch1 was pressed: jump to s1		0		
jp sl ; — switchl was pressed: jump to sl		ĴΡ	51	; — Switchi was pressed: Jump to Si
sw2: cpi a,peg2_3 ;compare with peg2_3	sw2:	cpi	a.peg2 3	:compare with peg2 3
jrnz sw3 ;A/D result was smaller than peg2_3				
jp s2 ; - switch2 was pressed: jump to s2		jp	s2	
sw3: cpi a,peg3_4 ;compare with peg3_4	sw3:	cpi	a,peg3_4	
jrnz sw4 ;A/D result was smaller than peg3_4		0		
jp s3 ; - switch3 was pressed: jump to s3		jp	s3	; — switch3 was pressed: jump to s3
sul, oni a nogl 5	cul.	cni	a nogl 5	.compare with pogd 5
sw4: cpi a,peg4_5 ;compare with peg4_5 jrnz sw5 ;A/D result was smaller than peg4_5	SW4:			
jp s4 ; - switch4 was pressed: jump to s4		*		, , , , , , , , , , , , , , , , , , , ,
		νr		,

sw5:	cni	2 DOGE 6	;compare with peg5_6
SWJ.	cpi	a,peg5_6	
	jrnz	sw6	;A/D result was smaller than peg5_6
	jр	s5	; — switch5 was pressed: jump to s5
sw6:	cpi	a,peg6_7	;compare with peg6_7
	jrnz	sw7	;A/D result was smaller than peg6_7
	jр	s6	; — switch6 was pressed: jump to s6
sw7:	cpi	a,peg7_8	;compare with peg7_8
	jrnz	sw8	;A/D result was smaller than peg7_8
	jр	s7	; — switch7 was pressed: jump to s7
sw8:	срі	a,peg8_9	;compare with peg8_9
	jrnz	sw9	;A/D result was smaller than peg8_9
	jp	s8	; — switch8 was pressed: jump to s8
sw9:	cpi	a,peg9_10	;compare with peg9_10
	jrnz	sw10	;A/D result was smaller than peg9_10
	jp	s9	; -> switch9 was pressed: jump to s9
	01		
sw10:	jp	s10	;A/D result was greater than peg9_10
			; - switch10 was pressed: 0
		; —> switchl	0 was pressed: s10
			;
			the reaction to the individual key presses
;*** are	to be ir	ncluded here.	
s1:			
s2:			
s3:			
s4:			
s5:			
s6:			
s0: s7:			
s7: s8:			
s9:			
s10:			

ANALOG KEYBOARD

APPENDIX B: Key Input by Interrupt

;* + ;* SGS-THOMSON GRAFING * ;* * APPLICATION NOTE 431 - ST6 ;* ;* ;* Use of ADC inputs for multiple key decoding * ;* ;* With the inbuilt A/D converter of any ST6 it is easy to * ;* implement a small routine with which you can recognize ;* if one of nine connected keys is pushed by creating an ;* interrupt. The program can then decide how it will react * ;* to the key pushed. ;* + :***REGISTERS*** ddrpb .def Oc5h ;port B data direction register orpb .def Ocdh ;port B option register drpb .def Oc1h ;port B data register ior .def 0c8h ;interrupt option register adr .def OdOh ;A/D data register adcr .def Od1h ;A/D control register Offh :accumulator .def а :***CONSTANTS*** 000h ;used for setting all pins input inpall .equ peg1 2 00ch ;border to distinguish between switch1 and switch2 .equ peg2_3 025h ;border to distinguish between switch2 and switch3 .equ peg3_4 ;border to distinguish between switch3 and switch4 03eh .equ peg4_5 .equ ;border to distinguish between switch4 and switch5 058h peg5_6 .eau 072h :border to distinguish between switch5 and switch6 peg6_7 .equ 08ch ;border to distinguish between switch6 and switch7 peg7_8 0a5h ;border to distinguish between switch7 and switch8 .equ peg8_9 ;border to distinguish between switch8 and switch9 .equ 0beh : en kint (enable key-interrupt) sets the registers in a way that pushing ; any key will cause an interrupt. This subroutine must be called to ; re-enable the key interrupt (e.g. after handling the key service routine)

```
en_kint:
           ldi
                  ddrpb, inpall ; sets all port B pins low - all input
           ldi
                  orpb,02h
                                 ;option register:
                                  : sets bit b1 high. the rest low
           ldi
                  drpb.01h
                                  ;data register:
                                  ; sets bit b0 high, the rest low
                                  ;- pb0 becomes input, no pull-up, no int
                                     pb1 becomes input with pull-up and int.
                                     pb2-7 become input with pull-up, but
                                      are not used here
           ldi
                  ior,10h
                                  ; interrupt option register:
                                  ;- set D4: enable all interrupts
                                      reset D5: falling edge on int.input(#2)
                                  :
           ret
                                  ;return to the calling address
;*** hd_kint (handle key interrupt) interrupt service routine
;*** evaluates the data resulting in pushing a key.
;*** Interrupt vector #2 (Off4h and Off5h) must point (jump) to hd_kint.
hd_kint:
          ldi
                  drpb.03h
                                 ;data register:
                                  ; 0000 0011
           ldi
                  ddrpb,01h
                                  :data direction register:
                                  ; 0000 0001
                                  ; - pb0 becomes output
           ldi
                  orpb,03h
                                  ;option register:
                                  : 0000 0011
                                  : - pb0: push-pull output
                                  ; - pb1: ADC-input
                                      pb2-7 become input with pull-up, but
                                  ;
                                       are not used here
                                  ;A/D control register:
           ldi
                  adcr,30h
                                  ; 0011 0000 - -activate A/D converter
                                                 -start conversion
                                                 -disable A/D interrupt
                                  ;
loop:
           jrr
                  6,adcr,loop
                                  ;waits until the End Of Conversion
                                  : bit is set (indicator that a conversion
                                  ; has been completed)
                                  :load acc with the result of the A/D
           1d
                   a.adr
                                  ; conversion
                                  ;now the result is compared with the
                                  ; values which represent the different
                                  ; switches
```

ANALOG KEYBOARD

sw1:	cpi jrnz jp		;compare with peg1_2 ;A/D result was smaller than peg1_2 ; — switchl was pressed: jump to s1
sw2:	cpi	a,peg2_3	;compare with peg2_3
	jrnz	sw3	;A/D result was smaller than peg2_3
	jp	s2	; — switch2 was pressed: jump to s2
sw3:	cpi	a,peg3_4	;compare with peg3_4
	jrnz	sw4	;A/D result was smaller than peg3_4
	jp	s3	; — switch3 was pressed: jump to s3
sw4:		a,peg4_5 sw5 s4	;compare with peg4_5 ;A/D result was smaller than peg4_5 ; — switch4 was pressed: jump to s4
sw5:	cpi	a,peg5_6	;compare with peg5_6
	jrnz	sw6	;A/D result was smaller than peg5_6
	jp	s5	; — switch5 was pressed: jump to s5
sw6:	cpi	a,peg6_7	;compare with peg6_7
	jrnz	sw7	;A/D result was smaller than peg6_7
	jp	s6	; — switch6 was pressed: jump to s6
sw7:	cpi	a,peg7_8	;compare with peg7_8
	jrnz	sw8	;A/D result was smaller than peg7_8
	jp	s7	; — switch7 was pressed: jump to s7
sw8:	cpi	a,peg8_9	;compare with peg8_9
	jrnz	sw9	;A/D result was smaller than peg8_9
	jp	s8	; — switch8 was pressed: jump to s8
sw9:	jp	s9	;A/D result was bigger than peg8_9 ; — switch9 was pressed: jump to s9 ;
		s handling the ncluded here	reaction to the individual key presses

ANALOG KEYBOARD

Table 6. Revision history

Date	Revision	Description of changes
September 1992	1	Initial release
19-June-2008	2	Logo modified

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong -India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com