
November 2011 Doc ID 022105 Rev 1 1/47

AN3966
Application note

LwIP TCP/IP stack demonstration
for STM32F407/STM32F417 microcontrollers

1 Introduction

STM32F407/STM32F417 microcontrollers feature a high-quality 10/100 Mbit/s Ethernet
peripheral that supports both Media Independent Interface (MII) and Reduced Media
Independent Interface (RMII) to interface with the Physical Layer (PHY).

When working with an Ethernet communication interface, a TCP/IP stack is mostly used to
communicate over a local or a wide area network.

This application note presents a demonstration package built on top of the LwIP
(Lightweight IP) TCP/IP stack which is an open source stack intended for embedded
devices.

This demonstration package contains nine applications running on top of the LwIP stack:

● Applications running in standalone mode (without an RTOS):

– A Web server

– A TFTP server

– A TCP echo client application

– A TCP echo server application

– A UDP echo client application

– A UDP echo server application

● Applications running with the FreeRTOS operating system:

– A Web server based on netconn API

– A Web server based on socket API

– A TCP/UDP echo server application based on netconn API

www.st.com

http://www.st.com

Contents AN3966

2/47 Doc ID 022105 Rev 1

Contents

1 Introduction . 1

2 LwIP stack overview . 6

2.1 Stack features . 6

2.2 Folder organization of the LwIP stack . 7

2.3 LwIP API overview . 7

2.3.1 Raw API . 7

2.3.2 Netconn API . 9

2.3.3 Socket API . 9

2.4 LwIP buffer management . 10

2.4.1 Packet buffer structure . 10

2.4.2 API for managing pbufs . 11

2.5 Interfacing LwIP to STM32F4x7 Ethernet network interface 11

3 STM32F4x7 low level driver overview . 13

3.1 Global Ethernet MAC/DMA functions . 13

3.1.1 Ethernet MAC/DMA configuration parameters . 14

3.2 DMA descriptor handling . 17

3.2.1 DMA descriptors . 17

3.2.2 DMA descriptor handling functions . 19

3.3 PHY control functions . 20

3.4 Hardware checksum . 21

4 Developing applications with LwIP stack . 22

4.1 Developing in standalone mode using the Raw API 22

4.1.1 Model of operation . 22

4.1.2 Example of the TCP echo server demo . 23

4.2 Developing with an RTOS using Netconn or Socket API 26

4.2.1 Model of operation . 26

4.2.2 Example of a TCP echoserver demo using the Netconn API 27

4.3 LwIP memory configuration options . 29

5 Description of the demonstration package . 31

AN3966 Contents

Doc ID 022105 Rev 1 3/47

5.1 Package directories . 31

5.2 Demonstration settings . 32

5.2.1 PHY interface configuration . 32

5.2.2 MAC and IP address settings . 32

5.2.3 STM324xG-EVAL settings . 32

6 Using the demos . 33

6.1 Standalone demos . 33

6.1.1 Httpserver demo . 33

6.1.2 TCP echo client demo . 35

6.1.3 TCP echo server demo . 36

6.1.4 UDP echo client demo . 38

6.1.5 UDP echo server demo . 39

6.1.6 TFTP server demo . 40

6.2 FreeRTOS demos . 41

6.2.1 HTTP server netconn demo . 41

6.2.2 HTTP server socket demo . 42

6.2.3 UDP TCP echo server netconn demo . 42

7 Footprint information . 43

7.1 HTTP server demo . 43

7.2 HTTP server netconn demo . 43

8 Conclusion . 45

9 Revision history . 46

List of tables AN3966

4/47 Doc ID 022105 Rev 1

List of tables

Table 1. TCP Raw API functions . 8
Table 2. UDP Raw API functions . 8
Table 3. Netconn API functions . 9
Table 4. Socket API functions. 9
Table 5. Pbuf API functions . 11
Table 6. ethernet_if.c functions description . 12
Table 7. Global Ethernet MAC/DMA functions . 13
Table 8. MAC configuration parameters of an ETH_InitTypeDef structure. 14
Table 9. DMA configuration parameters of an ETH_InitTypeDef structure. 16
Table 10. DMA descriptor functions . 19
Table 11. PHY control functions . 20
Table 12. LwIP memory configuration options . 29
Table 13. STM324xG-EVAL jumper configurations . 32
Table 14. HTTP server demo footprint . 43
Table 15. Httpserver netconn demo footprint . 44
Table 16. Document revision history . 46

AN3966 List of figures

Doc ID 022105 Rev 1 5/47

List of figures

Figure 1. LwIP folder organization . 7
Figure 2. Pbuf structure . 10
Figure 3. Ethernet DMA descriptor . 17
Figure 4. Ethernet DMA descriptor chaining . 17
Figure 5. STM32F4x7 Ethernet driver buffers and descriptors . 18
Figure 6. Tracking DMA Rx/Tx descriptors to Get/Set . 20
Figure 7. Standalone operation model . 22
Figure 8. LwIP operation model with RTOS . 26
Figure 9. Demonstration package structure. 31
Figure 10. Home page of the HTTP server demo . 34
Figure 11. SSI use in HTTP server demo application . 35
Figure 12. TCP echo client demo . 36
Figure 13. TCP echo server demo. 37
Figure 14. UDP echo client demo . 38
Figure 15. UDP echo server demon . 40
Figure 16. TFTP tool (tftpd32) . 41

LwIP stack overview AN3966

6/47 Doc ID 022105 Rev 1

2 LwIP stack overview

2.1 Stack features
LwIP is a free TCP/IP stack developed by Adam Dunkels at the Swedish Institute of
Computer Science (SICS) and licensed under a modified BSD license.

The focus of the LwIP TCP/IP implementation is to reduce the RAM use while still having a
full scale TCP/IP stack. This makes LwIP suitable for use in embedded systems.

LwIP comes with the following protocols:

● IPv4 and IPv6 (Internet Protocol v4 and v6)

● ICMP (Internet Control Message Protocol) for network maintenance and debugging

● IGMP (Internet Group Management Protocol) for multicast traffic management

● UDP (User Datagram Protocol)

● TCP (Transmission Control Protocol)

● DNS (Domain Name Server)

● SNMP (Simple Network Management Protocol)

● DHCP (Dynamic Host Configuration Protocol)

● PPP (Point to Point Protocol)

● ARP (Address Resolution Protocol)

LwIP has three application programming interface (API) sets:

● Raw API is the native API of LwIP. It enables the development of applications using
event callbacks. This API provides the best performance and code size, but adds some
complexity for application development.

● Netconn API is a high-level sequential API that requires the services of a real-time
operating system (RTOS). The Netconn API enables multi-threaded operations.

● BSD Socket API: Berkeley-like Socket API (developed on top of the Netconn API)

The source code for the LwIP stack can be downloaded at the following link:
http://savannah.nongnu.org/projects/LwIP

Note: This application note is based on LwIP v1.3.2

AN3966 LwIP stack overview

Doc ID 022105 Rev 1 7/47

2.2 Folder organization of the LwIP stack
When unzipped, the LwIP stack files can be found under “\Utilities\Third_Party\LwIP_v1.3.2”
as shown in Figure 1.

Figure 1. LwIP folder organization

● doc: documentation text files

● port/STM32F4x7: files implementing the LwIP port to STM32F4x7

– arch: STM32 architecture port files (used data types,...)

– FreeRTOS: LwIP port to STM32F4x7 using FreeRTOS

– Standalone: LwIP port to STM32F4x7 in Standalone mode

● src: source files of the LwIP stack

– api: Netconn and Socket API files

– core: LwIP core files

– include: LwIP include files

– netif: Network interface files

2.3 LwIP API overview
As mentioned above, three types of APIs are offered by LwIP stack:

● Raw API

● Netconn API

● Socket API

2.3.1 Raw API

The Raw API is based on the native API of LwIP. It is used to develop callback-based
applications.

When initializing the application, the user needs to register callback functions to different
core events (such as TCP_Sent, TCP_error,...) . The callback functions will be called from
the LwIP core layer when the corresponding event occurs.

LwIP stack overview AN3966

8/47 Doc ID 022105 Rev 1

Table 1 provides a summary of the Raw API functions for TCP applications.

Table 2 provides a summary of the Raw API functions for UDP applications.

Table 1. TCP Raw API functions

API function Description

TCP connection
setup

tcp_new Creates a new TCP PCB (protocol control block).

tcp_bind Binds a TCP PCB to a local IP address and port.

tcp_listen Starts the listening process on the TCP PCB.

tcp_accept
Assigns a callback function that will be called when a
new TCP connection arrives.

tcp_accepted
Informs the LwIP stack that an incoming TCP
connection has been accepted.

tcp_connect Connects to a remote TCP host.

Sending TCP data

tcp_write Queues up data to be sent.

tcp_sent
Assigns a callback function that will be called when sent
data is acknowledged by the remote host.

tcp_output Forces queued data to be sent.

Receiving TCP data

tcp_recv
Sets the callback function that will be called when new
data arrives.

tcp_recved
Must be called when the application has processed the
incoming data packet (for TCP window management).

Application polling tcp_poll

Assigns a callback functions that will be called
periodically. It can be used by the application to check if
there is remaining application data that needs to be sent
or if there are connections that need to be closed.

Closing and aborting
connections

tcp_close Closes a TCP connection with a remote host.

tcp_err
Assigns a callback function for handling connections
aborted by the LwIP due to errors (such as memory
shortage errors).

tcp_abort Aborts a TCP connection.

Table 2. UDP Raw API functions

API function Description

udp_new Creates a new UDP PCB.

udp_remove Removes and de-allocates a UDP PCB.

udp_bind Binds a UDP PCB with a local IP address and port.

udp_connect Sets up a UDP PCB remote IP address and port.

udp_disconnect Removes a UDP PCB remote IP and port.

udp_send Sends UDP data.

udp_recv Specifies a callback function which is called when a datagram is received.

AN3966 LwIP stack overview

Doc ID 022105 Rev 1 9/47

2.3.2 Netconn API

The Netconn API is a high-level sequential API which has a model of execution based on
the blocking open-read-write-close paradigm.

To function correctly, this API must run in a multi-threaded operation mode where there is a
separate thread for the LwIP TCP/IP stack and one or multiple threads for the application.

Table 3 provides a summary of the Netconn API functions.

2.3.3 Socket API

LwIP offers the standard BSD socket API. This is a sequential API which is internally built on
top of the netconn.

Table 3 provides a summary of the main socket API functions.

Table 3. Netconn API functions

API function Description

netconn_new Creates a new connection.

netconn_delete Deletes an existing connection.

netconn_bind Binds a connection to a local IP address and port.

netconn_connect Connects to a remote IP address and port.

netconn_send
Sends data to the currently connected remote IP/port (not applicable for
TCP connections).

netconn_recv Receives data from a netconn.

netconn_listen Sets a TCP connection into a listening mode.

netconn_accept Accepts an incoming connection on a listening TCP connection.

netconn_write Sends data on a connected TCP netconn.

netconn_close Closes a TCP connection without deleting it.

Table 4. Socket API functions

API function Description

socket Creates a new socket.

bind Binds a socket to an IP address and port.

listen Listens for socket connections.

connect Connects a socket to a remote host IP address and port.

accept Accepts a new connection on a socket.

read Reads data from a socket.

write Writes data on a socket.

close Closes a socket (socket is deleted).

LwIP stack overview AN3966

10/47 Doc ID 022105 Rev 1

2.4 LwIP buffer management

2.4.1 Packet buffer structure

LwIP manages packet buffers using a data structure called pbuf. The pbuf structure enables
the allocation of a dynamic memory to hold a packet content and lets packets reside in the
static memory.

Pbufs can be linked together in a chain. This enables packets to span over several pbufs.

Figure 2. Pbuf structure

● next: pointer to next pbuf in a pbuf chain

● payload: pointer to packet data payload

● len: length of the data content of the pbuf

● tot_len: sum of pbuf len plus all the len fields of the next pbufs in the chain

● ref: (on 4 bits) reference count that indicates the number of pointers that reference the
pbuf. A pbuf can be released from memory only when its reference count is zero.

● flags: (on 4 bits) indicate the type of pbuf.

LwIP defines three types of pbufs, depending on the allocation type:

● PBUF_POOL: pbuf allocation is performed from a pool of statically pre-allocated pbufs
that have a predefined size. Depending on the data size that needs to be allocated, one
or multiple chained pbufs are allocated.

● PBUF_RAM: pbuf is dynamically allocated in memory (one contiguous chunk of
memory for the full pbuf)

● PBUF_ROM: there is no allocation for memory space for user payload, the pbuf
payload pointer points to data in the ROM memory (it can be used only for sending
constant data).

For packet reception, the suitable pbuf type is PBUF_POOL; it allows to rapidly allocate
memory for the received packet from the pool of pbufs. Depending on the size of the
received packet, one or multiple chained pbufs are allocated. The PBUF_RAM is not
suitable for packet reception because dynamic allocation takes some delay. It may also lead
to memory fragmentation.

For packet transmission, depending on the data to be transmitted, the user can choose the
most suitable pbuf type.

next

payload

len

tot_len

flags ref

Room for packet headers

next pbuf structure

MS18173V1

AN3966 LwIP stack overview

Doc ID 022105 Rev 1 11/47

2.4.2 API for managing pbufs

LwIP has a specific API for working with pbufs. This API is implemented in the pbuf.c core
file.

Note: 1 “pbuf” can be a single pbuf or a chain of pbufs.

2 When working with the Netconn API, netbufs (network buffers) are used for
sending/receiving data.

3 A netbuf is simply a wrapper for a pbuf structure. It can accommodate both allocated and
referenced data.

4 A dedicated API (implemented in file netbuf.c) is provided for managing netbufs (allocating,
freeing, chaining, extracting data,...).

2.5 Interfacing LwIP to STM32F4x7 Ethernet network interface
The port of LwIP stack to STM32F4x7 is located in folder “/port/STM32F4x7”.

This demonstration package provides two implementations:

● Implementation without RTOS (standalone)

● Implementation with an RTOS using FreeRTOS (http://www.freertos.org/)

For both implementations, the ethernet_if.c file is used to link the LwIP stack to the
STM32F4x7 Ethernet network interface.

Table 5. Pbuf API functions

API function Description

pbuf_alloc Allocates a new pbuf.

pbuf_realloc Resizes a pbuf (shrink size only).

pbuf_ref Increments the reference count field of a pbuf.

pbuf_free
Decrements the pbuf reference count. If it reaches zero, the pbuf is de-
allocated.

pbuf_clen Returns the count number of pbufs in a pbuf chain.

pbuf_cat
Chains two pbufs together (but does not change the reference count of
the tail pbuf chain).

pbuf_chain Chains two pbufs together (tail chain reference count is incremented).

pbuf_dechain Unchains the first pbuf from its succeeding pbufs in the chain.

pbuf_copy_partial
Copies (part of) the contents of a packet buffer to an application
supplied buffer.

pbuf_take Copies application supplied data into a pbuf.

pbuf_coalesce Creates a single pbuf out of a queue of pbufs.

LwIP stack overview AN3966

12/47 Doc ID 022105 Rev 1

Table 6 provides a summary of the ethernet_if.c functions.

In case of an RTOS implementation, an additional file is used (sys_arch.c). This file
implements an emulation layer for the RTOS services (message passing through RTOS
mailbox, semaphores,etc.). This file should be tailored according to the current RTOS, which
is FreeRTOS in this package.

Table 6. ethernet_if.c functions description

Function Description

low_level_init
Calls the Ethernet driver functions to initialize the STM32F4x7 Ethernet
peripheral.

low_level_output Calls the Ethernet driver functions to send an Ethernet packet.

low_level_input Calls the Ethernet driver functions to receive an Ethernet packet.

ethernetif_init
Calls low_level_init to initialize the Ethernet peripheral and network
interface structure (netif).

ethernet_input Calls low_level_input to receive a packet and provide it to the LwIP stack.

AN3966 STM32F4x7 low level driver overview

Doc ID 022105 Rev 1 13/47

3 STM32F4x7 low level driver overview

The STM32F4x7 Ethernet low level driver is located in the
\Libraries\STM32F4x7_ETH_Driver\ folder.

The set of functions provided in the driver can be divided into the following categories:

● Global Ethernet MAC/DMA configuration/control functions

● DMA descriptors handling functions

● DMA configuration/control functions

● PHY control functions

● Power Management (PMT) functions

● MAC Management Counters (MMC) functions

3.1 Global Ethernet MAC/DMA functions
Table 15 provides a summary of the Global Ethernet MAC/DMA functions used for the
configuration of the media access control (MAC) and direct memory access (DMA) features.

Table 7. Global Ethernet MAC/DMA functions

Function Description

ETH_DeInit Resets the Ethernet peripheral.

ETH_StructInit Fills a configuration structure for an Ethernet peripheral with the
default config (see below).

ETH_Init Initializes the Ethernet peripheral (MAC/DMA) registers with the
required configuration.

ETH_Start Starts the Ethernet MAC/DMA operation.

ETH_MACTransmissionCmd Enables or disables MAC transmission.

ETH_MACReceptionCmd Enables or disables MAC reception.

ETH_GetFlowControlBusyStatus Checks flow control Busy flag.

ETH_InitiatePauseControlFrame Initiates a Pause frame (full-duplex only).

ETH_BackPressureActivationCmd Enables or disables Back pressure mechanism (half duplex mode).

ETH_GetMACFlagStatus Gets MAC flags status.

ETH_GetMACITStatus Gets MAC interrupts status.

ETH_MACITConfig Configures MAC interrupts.

ETH_MACAddressConfig Configures a MAC address.

ETH_GetMACAddress Gets configured MAC address.

ETH_MACAddressPerfectFilterCmd Enables or disables MAC perfect filtering for a selected MAC
address.

ETH_MACAddressFilterConfig Configures the MAC address filtering mode.

ETH_MACAddressMaskBytesFilterConf
ig

Selects MAC address bytes on which filtering will be performed.

STM32F4x7 low level driver overview AN3966

14/47 Doc ID 022105 Rev 1

3.1.1 Ethernet MAC/DMA configuration parameters

The configuration structure for an Ethernet MAC/DMA is ETH_InitTypeDef.This
structure is composed of the following MAC and DMA configuration parameters.

Table 8. MAC configuration parameters of an ETH_InitTypeDef structure

Parameter Description Default value*

ETH_AutoNegotiation Enables PHY Auto-Negotiation.
ETH_AutoNegotiation_Ena
ble

ETH_Watchdog

Enables or disables Watchdog timer during
frame reception.

– When enabled, the MAC allows no more than
2048 bytes to be received.

– When disabled, the MAC can receive up to
16384 bytes.

ETH_Watchdog_Enable

ETH_Jabber

– When enabled, the MAC allows no more than
2048 bytes to be sent.

– When disabled, the MAC can send up to 16384
bytes.

ETH_Jabber_Enable

ETH_InterFrameGap
Selects the minimum IFG between frames during
transmission.

ETH_InterFrameGap_96Bit

ETH_CarrierSense Enables the Carrier Sense. ETH_CarrierSense_Enable

ETH_Speed Sets the Ethernet speed: 10/100 Mbps ETH_Speed_100M

ETH_ReceiveOwn

Enables the ReceiveOwn.

ReceiveOwn enables the reception of frames
when the TX_EN signal is asserted in Half-
Duplex mode.

ETH_ReceiveOwn_Enable

ETH_LoopbackMode Enables the internal MAC MII Loopback mode.
ETH_LoopbackMode_Disabl
e

ETH_Mode
Selects the MAC duplex mode: Half-Duplex or
Full-Duplex mode

ETH_Mode_FullDuplex

ETH_ChecksumOffload
Enables the IPv4 checksum checking for
received frame payloads for TCP/UDP/ICMP
packets.

ETH_ChecksumOffload_Dis
able

ETH_RetryTransmission
Enables the MAC attempt retries transmission
when a collision occurs (Half-Duplex mode).

ETH_RetryTransmission_E
nable

ETH_AutomaticPadCRCStri
p

Enables the Automatic MAC Pad/CRC Stripping.
ETH_AutomaticPadCRCStri
p_Disable

ETH_BackOffLimit Selects the BackOff limit value. ETH_BackOffLimit_10

ETH_DeferralCheck
Enables the deferral check function (Half-Duplex
mode).

ETH_DeferralCheck_Disab
le

ETH_ReceiveAll
Enables the reception of all frames by the MAC
(No filtering).

ETH_ReceiveAll_Disable

ETH_SourceAddrFilter Enables Source Address Filter mode.
ETH_SourceAddrFilter_Di
sable

AN3966 STM32F4x7 low level driver overview

Doc ID 022105 Rev 1 15/47

Note: The Default Value is the value configured by calling the ETH_StructInit function.

ETH_PassControlFrames
Sets the forwarding mode of the control frames
(including unicast and multicast Pause frames).

ETH_PassControlFrames_B
lockAll

ETH_BroadcastFramesRece
ption

Enables the reception of Broadcast frames.
ETH_BroadcastFramesRece
ption_Disable

ETH_DestinationAddrFilt
er

Sets the destination filter mode for both unicast
and multicast frames.

ETH_DestinationAddrFilt
er_Normal

ETH_PromiscuousMode Enables Promiscuous filtering mode.
ETH_PromiscuousMode_Dis
able

ETH_MulticastFramesFilt
er

Selects the Multicast frames filter mode:
None/HashTableFilter/PerfectFilter/PerfectHashT
ableFilter.

ETH_MulticastFramesFilt
er_Perfect

ETH_UnicastFramesFilter
Selects the Unicast frames filter mode:
HashTableFilter/PerfectFilter/PerfectHashTableFil
ter

ETH_UnicastFramesFilter
_Perfect

ETH_HashTableHigh This field holds the higher 32 bits of Hash table. 0x0

ETH_HashTableLow This field holds the lower 32 bits of Hash table. 0x0

ETH_PauseTime
This field holds the value to be used in the Pause
Time field in the transmit of a control frame.

0x0

ETH_ZeroQuantaPause
Enables the automatic generation of Zero-
Quanta Pause control frames.

ETH_ZeroQuantaPause_Dis
able

ETH_PauseLowThreshold
Configures the threshold of the Pause to be
checked for automatic retransmission of Pause
frame.

ETH_PauseLowThreshold_M
inus4

ETH_UnicastPauseFrameDe
tect

Enables the MAC detection of the Pause frames
(with MAC Address0 unicast address and unique
multicast address).

ETH_UnicastPauseFrameDe
tect_Disable

ETH_ReceiveFlowControl
Enables the MAC to decode the received Pause
frame and disables its transmitter for a specified
time (Pause Time).

ETH_ReceiveFlowControl_
Disable

ETH_TransmitFlowControl
Enables the MAC to transmit Pause frames (Full-
Duplex mode) or the MAC back-pressure
operation (Half-Duplex mode).

ETH_TransmitFlowControl
_Disable

ETH_VLANTagComparison
Selects the 12-bit VLAN identifier or the
complete 16-bit VLAN tag for comparison and
filtering.

ETH_VLANTagComparison_1
6Bit

ETH_VLANTagIdentifier Holds the VLAN tag identifier for receive frames. 0x0

Table 8. MAC configuration parameters of an ETH_InitTypeDef structure (continued)

Parameter Description Default value*

STM32F4x7 low level driver overview AN3966

16/47 Doc ID 022105 Rev 1

Table 9. DMA configuration parameters of an ETH_InitTypeDef structure

Parameter Description Default value

ETH_DropTCPIPChecksumEr
rorFrame

Enables the dropping of TCP/IP Checksum Error
Frames.

ETH_DropTCPIPChecksumEr
rorFrame_Disable

ETH_ReceiveStoreForward Enables the Receive store and forward mode.
ETH_ReceiveStoreForward
_Enable

ETH_FlushReceivedFrame Enables the flushing of received frames.
ETH_FlushReceivedFrame_
Enable

ETH_TransmitStoreForwar
d

Enables Transmit store and forward mode.
ETH_TransmitStoreForwar
d_Enable

ETH_TransmitThresholdCo
ntrol

Selects of the threshold level of the Transmit
FIFO.

ETH_TransmitThresholdCo
ntrol_64Bytes

ETH_ForwardErrorFrames
Enables the forward to the DMA of erroneous
frames.

ETH_ForwardErrorFrames_
Disable

ETH_ForwardUndersizedGo
odFrames

Enables the Rx FIFO to forward Undersized
frames (frames with no Error and length less
than 64 bytes) including pad-bytes and CRC).

ETH_ForwardUndersizedGo
odFrames_Disable

ETH_ReceiveThresholdCon
trol

Selects the threshold level of the Receive FIFO.
ETH_ReceiveThresholdCon
trol_64Bytes

ETH_SecondFrameOperate

Enables the Operate on second frame mode,
which enables the DMA to process a second
frame of Transmit data even before obtaining the
status for the first frame.

ETH_SecondFrameOperate_
Disable

ETH_AddressAlignedBeats Enables address-aligned beats.
ETH_AddressAlignedBeats
_Enable

ETH_FixedBurst
Enables AHB Master interface fixed burst
transfers.

ETH_FixedBurst_Enable

ETH_RxDMABurstLength
Indicates the number of beats in an Rx DMA
burst transfer.

ETH_RxDMABurstLength_32
Beat

ETH_TxDMABurstLength
Indicates the number of beats in a Tx DMA burst
transfer.

ETH_TxDMABurstLength_32
Beat

ETH_DescriptorSkipLengt
h

Specifies the number of words to skip between
two unchained descriptors (Ring mode).

0x0

ETH_DMAArbitration Selects the DMA Tx/Rx arbitration.
ETH_DMAArbitration_Roun
dRobin_RxTx_1_1

AN3966 STM32F4x7 low level driver overview

Doc ID 022105 Rev 1 17/47

3.2 DMA descriptor handling

3.2.1 DMA descriptors

The transfer of Ethernet packets between Transmit/Receive FIFOs and memory is
performed by direct memory access (DMA) using transfer descriptors.

Figure 3 illustrates the format of an Ethernet DMA descriptor.

Note: The following description does not apply to enhanced DMA descriptors.

Figure 3. Ethernet DMA descriptor

As shown in Figure 3, the DMA descriptor can have two formats:

● The descriptor points to one data buffer only and the Next Descriptor field points on
next DMA descriptor for allowing descriptors chaining mechanism

● The descriptor can point to two data buffers, Buffer1 and Buffer2

In the STM32F4x7 Ethernet driver, the selected DMA descriptor format is the one allowing
descriptor chaining as shown in Figure 4.

Figure 4. Ethernet DMA descriptor chaining

Note: 1 An Ethernet packet can span over one or multiple DMA descriptors.

2 One DMA descriptor can be used for one Ethernet packet only.

3 The last descriptor in the chain points to the first descriptor for forming a ring of descriptors.

MS18176V1

Control / Status Information

Buffer1 Count / Buffer2 Count

Buffer1 Address

Buffer2 Address / Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Buffer1 Count & Buffer2 Count

Buffer1 Address

Buffer2 address

Control / Status

Buffer1

Buffer2

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Option 1 Option 2

MS18177V1

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Descriptor 0 Descriptor 1 Descriptor n

STM32F4x7 low level driver overview AN3966

18/47 Doc ID 022105 Rev 1

Figure 5 illustrates the buffer and descriptor allocation model in memory for the STM32F4x7
Ethernet driver.

Figure 5. STM32F4x7 Ethernet driver buffers and descriptors

As shown in Figure 5, the following arrays are statically allocated in the STM32F4x7
Ethernet driver:

● Two arrays for the DMA descriptors, one for DMA Rx and another for DMA Tx:

ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB],
DMATxDscrTab[ETH_TXBUFNB];

● Two arrays of driver buffers, one array for receive buffers and another array for transmit
buffers:

uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE];

uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE];

where:

– ETH_RXBUFNB: number of driver receive buffers

– ETH_TXBUFNB: number of driver transmit buffers

– ETH_RX_BUF_SIZE: size in bytes of a receive buffer

– ETH_TX_BUF_SIZE: size in bytes of a transmit buffer

The default values for these parameters as defined in file stm32f4x7_eth.h are:

– ETH_RXBUFNB = 4

– ETH_TXBUFNB = 2

– ETH_RX_BUF_SIZE = 1524 (max size of Ethernet packet (1522) + 2 bytes for
32-bit alignment)

– ETH_TX_BUF_SIZE = 1524 (max size of Ethernet packet (1522) + 2 bytes for
32-bit alignment)

The above parameter values can be changed depending on user specific application
needs. This can be done by enabling CUSTOM_DRIVER_BUFFERS_CONFIG and writing
custom values in the stm32f4x7_eth_conf.h configuration file.

MS18178V1

Control / Status
Buffer Count

Buffer Address
Next Descriptor
Control / Status

Buffer Count

Buffer Address
Next Descriptor
Control / Status

Buffer Count
Buffer Address
Next Descriptor

DMA Rx or Tx Descriptors array Rx or Tx buffers array

Buffer 1

Buffer 2

Buffer 3

Buffer nControl / Status
Buffer Count

Buffer Address
Next Descriptor

AN3966 STM32F4x7 low level driver overview

Doc ID 022105 Rev 1 19/47

Note: The Ethernet driver allows to have a buffer size (ETH_RX_BUF_SIZE or
ETH_TX_BUF_SIZE) that does not exceed the maximum Ethernet packet size (1522 bytes).
Ethernet packets (received or to be transmitted) exceeding the configured buffer size will
span over multiple buffers (or descriptors).

3.2.2 DMA descriptor handling functions

Table 10 provides a summary of the main driver functions used for handling DMA
descriptors.

Table 10. DMA descriptor functions

Function Description

ETH_DMARxDescChainInit Initializes DMA Rx Descriptor chain (as shown in
Figure 5).

ETH_DMATxDescChainInit Initializes DMA Tx Descriptor chain (as shown in
Figure 5)

ETH_CheckFrameReceived Checks if the frame is received (polling method on
OWN bit and other flags of DMA RX descriptor).

ETH_Get_Received_Frame Gets received frame (when using a polling method).

ETH_Get_Received_Frame_interru
pt

Gets received frame (when using an interrupt
method for detecting received packets).

ETH_Prepare_Transmit_Descripto
rs

Prepares DMA TX descriptors for transmitting a
packet (data should already be copied in driver
buffers).

ETH_GetRxPktSize Gets the size of a received packet.

ETH_GetDMATxDescFlagStatus Gets flag status of a DMA TX descriptor.

ETH_GetDMARxDescFlagStatus Gets flag status of a DMA RX descriptor.

ETH_DMATxDescTransmitITConfig Configures Interrupts for a DMA TX descriptor.

ETH_DMARxDescReceiveITConfig Configures Interrupts for a DMA RX descriptor.

ETH_EnhancedDescriptorCmd(1)

1. Enhanced descriptors must be used if IPv4 checksum offload is activated. The enhanced descriptor format
is enabledeither by: uncommenting USE_ENHANCED_DMA_DESCRIPTORS in stm32f4x7_eth_conf.h file, or,
by calling the ETH_EnhancedDescriptorCmd() function.

Enables or disables the Enhanced descriptor
structure.

ETH_DMATxDescChecksumInsertion
Config

Enables or disables TCP/UDP/ICMP checksum
insertion for transmitted packets.

ETH_DMATxDescCRCCmd Enables or disables CRC generation for transmitted
packets.

ETH_DMATxDescShortFramePadding
Cmd

Enables or disables adding padding to short frame to
be transmitted.

STM32F4x7 low level driver overview AN3966

20/47 Doc ID 022105 Rev 1

Note: The Ethernet driver maintains two global pointers for Rx/Tx DMA descriptor tracking, for the
next packet to be received or to be transmitted:

__IO ETH_DMADESCTypeDef *DMATxDescToSet;

__IO ETH_DMADESCTypeDef *DMARxDescToGet;

Figure 6. Tracking DMA Rx/Tx descriptors to Get/Set

3.3 PHY control functions
Table 11 provides a summary of the functions implemented for PHY control by the
STM32F4x7 Ethernet driver.

Note: The PHY configuration options (Reset delay, Configuration delay, Status register Speed and
Duplex mask values) are defined in the stm32f4x7_eth_conf.h configuration file. These
values change from a PHY to another, so the user has to update this value depending on
the external PHY used.

MS18179V1

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Rx Descriptor 0 Rx Descriptor 1 Rx Descriptor n

DMARxDescToGet

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Control / Status

Buffer Count

Buffer Address

Next Descriptor

Tx Descriptor 0 Tx Descriptor 1 Tx Descriptor n
DMATxDescToSet

Table 11. PHY control functions

Function Description

ETH_ReadPHYRegister Reads a PHY register.

ETH_WritePHYRegister Writes a data into a PHY register.

ETH_PHYLoopBackCmd Enables or disables the PHY loopback mode.

AN3966 STM32F4x7 low level driver overview

Doc ID 022105 Rev 1 21/47

The PHY is mainly accessed during the initialization time (by ETH_Init driver function) to:

● Reset the PHY.

● Enable the PHY auto-negotiation mode or manually select the mode of operation (Full-
speed/Low-speed, Half-duplex/Full-duplex).

● If the PHY auto-negotiation mode is selected, the application needs to poll the PHY or
use a PHY interrupt in order to obtain the result of auto-negotiation (speed, duplex
mode).

3.4 Hardware checksum
The STM32F4x7 Ethernet controller has an embedded hardware checksum accelerator to
off-load the CPU from generating, inserting and verifying the checksums of the IP, UDP, TCP
and ICMP protocols.

The checksum for TCP, UDP or ICMP is calculated over a complete frame, and then
inserted into its corresponding header field. Due to this requirement, this function is enabled
only when the Transmit FIFO is configured for Store-and-Forward mode.

Note: By default, the hardware checksum is enabled. To disable this feature, “comment” the
specific CHECKSUM_BY_HARDWARE defined in the LwIPopts.h file under the \inc project
folder.

Developing applications with LwIP stack AN3966

22/47 Doc ID 022105 Rev 1

4 Developing applications with LwIP stack

4.1 Developing in standalone mode using the Raw API

4.1.1 Model of operation

In standalone mode, the model of operation is based on continuous software polling to
check if a packet is received.

When a packet is received, it is first copied from the Ethernet driver buffers into the LwIP
buffers. In order to copy the packet as fast as possible, the LwIP buffers (pbufs) should be
allocated from the pool of buffers (PBUF_POOL).

When a packet has been copied, it is handed to the LwIP stack for processing. Depending
on the received packet, the stack may or may not notify the application layer.

LwIP communicates with the application layer using event callback functions. These
functions should be assigned before starting the communication process.

Figure 7. Standalone operation model

Poll for packet reception

New packet received ?

Copy packet from driver
buffers to lwiP buffers

Processing of the packet by
the lwIP stack

Processing of application
assigned callback function

Application
notification needed?

No

No

Yes

Yes

MS18174V1

AN3966 Developing applications with LwIP stack

Doc ID 022105 Rev 1 23/47

For TCP applications, the following common callback functions must be assigned:

● callback for incoming TCP connection event, assigned by TCP_accept API call

● callback for incoming TCP data packet event, assigned by TCP_recev API call

● callback for signalling successful data transmission, assigned by TCP_sent API call

● callback for signalling TCP error (after a TCP abort event), assigned by TCP_err API
call

● Periodic callback (every 1 or 2 s) for polling the application, assigned by TCP_poll API
call

4.1.2 Example of the TCP echo server demo

The TCP echo server example provided in the \Project\Standalone\tcp_echo_server folder
is a simple application that implements a TCP server which echoes any received TCP data
packets coming from a remote client.

To test the demo, use echotool.exe PC client utility. This utility is located in the
\Utilities\Third_Party\PC_Software folder. (Refer to Section 6.1.3: TCP echo server demo for
more details about testing the demo).

The following example provides a description about the firmware structure. It is an extract
from the main.c file.

int main(void)
{

...

 /* configure Ethernet (GPIOs, clocks, MAC, DMA) */
 ETH_BSP_Config();

 /* Initilaize the LwIP stack */
 LwIP_Init();

 /* tcp echo server Init */
 tcp_echoserver_init();

 /* Infinite loop */
 while (1)
 {
 /* check if any packet received */
 if (ETH_CheckFrameReceived())
 {
 /* process received Ethernet packet */
 LwIP_Pkt_Handle();
 }
 /* handle periodic timers for LwIP */
 LwIP_Periodic_Handle(LocalTime);
 }
}

Developing applications with LwIP stack AN3966

24/47 Doc ID 022105 Rev 1

Example description:

● ETH_BSP_Config function is called to initialize the Ethernet peripheral (GPIOs, Clocks,
MAC and DMA options).

● LwIP_Init function is called to initialize the LwIP stack internal structures and for
starting stack operations.

● tcp_echoserver_init function is called to initialize the TCP echo server application (see
below).

● In the infinite while loop, software polls for packet reception using Ethernet driver
ETH_CheckFrameReceived function. When a packet is received, it should be handled
by the LwIP stack using function LwIP_Pkt_Handle.

● LwIP_Periodic_Handle function is called in order to handle certain LwIP internal
periodic tasks (protocol timers, retransmission of TCP packets,...).

Function tcp_echoserver_init has the following code:

void tcp_echoserver_init(void)
{
 /* create new tcp pcb */
 tcp_echoserver_pcb = tcp_new();

 if (tcp_echoserver_pcb != NULL)
 {
 err_t err;

 /* bind echo_pcb to port 7 (ECHO protocol) */
 err = tcp_bind(tcp_echoserver_pcb, IP_ADDR_ANY, 7);

 if (err == ERR_OK)
 {
 /* start tcp listening for echo_pcb */
 tcp_echoserver_pcb = tcp_listen(tcp_echoserver_pcb);

 /* initialize LwIP tcp_accept callback function */
 tcp_accept(tcp_echoserver_pcb, tcp_echoserver_accept);
 }
 else
 {
 printf("Can not bind pcb\n");
 }
 }
 else
 {
 printf("Can not create new pcb\n");
 }
}

AN3966 Developing applications with LwIP stack

Doc ID 022105 Rev 1 25/47

Example description:

● LwIP API calls tcp_new to allocate a new TCP protocol control block (PCB)
(tcp_echoserver_pcb).

● The allocated TCP PCB is bound to a local IP address and port using tcp_bind
function.

● After binding the TCP PCB, tcp_listen function is called in order to start the TCP
listening process on the TCP PCB.

● Finally a tcp_echoserver_accept callback function should be assigned to handle
incoming TCP connections on the TCP PCB. This is done using tcp_accept LwIP API
function.

● Starting from this point, the TCP server is ready to accept any incoming connection
from remote clients.

The following example shows how incoming TCP connections are handled by
tcp_echoserver_accept user callback function. This is an extract from this function.

static err_t tcp_echoserver_accept(void *arg, struct tcp_pcb
*newpcb, err_t err)
{

...

 /* allocate structure es to maintain tcp connection infos */
 es = (struct tcp_echoserver_struct *)mem_malloc(sizeof(struct
tcp_echoserver_struct));
 if (es != NULL)
 {
 es->state = ES_ACCEPTED;
 es->pcb = newpcb;
 es->p = NULL;

 /* pass newly allocated es structure as argument to newpcb */
 tcp_arg(newpcb, es);

 /* initialize LwIP tcp_recv callback function for newpcb */
 tcp_recv(newpcb, tcp_echoserver_recv);

 /* initialize LwIP tcp_err callback function for newpcb */
 tcp_err(newpcb, tcp_echoserver_error);

 /* initialize LwIP tcp_poll callback function for newpcb */
 tcp_poll(newpcb, tcp_echoserver_poll, 1);

 ret_err = ERR_OK;

 ...
}

Developing applications with LwIP stack AN3966

26/47 Doc ID 022105 Rev 1

Example description:

● The new TCP connection is passed to tcp_echoserver_accept callback function
through newpcb parameter.

● An es structure is used to maintain the application status. It is passed as an argument
to the TCP PCB “newpcb” connection by calling tcp_arg LwIP API.

● A TCP receive callback function, tcp_echoserver_recv, is assigned by calling LwIP API
tcp_recv. This callback will handle all the data traffic with the remote client.

● A TCP error callback function, tcp_echoserver_error, is assigned by calling LwIP API
tcp_err .This callback will handle TCP errors.

● A TCP poll callback function, tcp_echoserver_poll, is assigned by calling LwIP API
tcp_poll to handle periodic application tasks (such as checking if the application data
remains to be transmitted).

4.2 Developing with an RTOS using Netconn or Socket API

4.2.1 Model of operation

The model of operation when working with an RTOS has the following characteristics:

● The TCP/IP stack and the application run in separate tasks.

● The application communicates with the stack through sequential API calls that use the
RTOS mailbox mechanism for inter-process communication. The API calls are blocking
calls. This means that the application task will be blocked until a response is received
from the stack.

● An additional task which is “the network interface task” is used to get any received
packets from driver buffers and provide them to the TCP/IP stack using the RTOS
mailbox. This task is informed of a packet reception using the Ethernet receive interrupt
service routine.

Figure 8. LwIP operation model with RTOS

MS18175V1

Application
(HTTP,TFTP,...) task

TCP/IP
stack task

Network Interface
Task

Blocking Sequential

Packet Transfer
to stack

Packet
Reception

Ethernet
ISR

Semaphore

(read, write,...)API Call

AN3966 Developing applications with LwIP stack

Doc ID 022105 Rev 1 27/47

4.2.2 Example of a TCP echoserver demo using the Netconn API

From the application point of view, the Netconn API offers a simpler way for developing
TCP/IP applications other than the raw API. This is because it has a more intuitive
sequential API.

The following example shows a TCP echoserver demo developed with the Netconn API.
This is an extract of the main.c file.

int main(void)
{

...

 /* configure Ethernet (GPIOs, clocks, MAC, DMA) */
 ETH_BSP_Config();

 /* Initilaize the LwIP stack */
 LwIP_Init();

 /* Initialize tcp echo server */
 tcpecho_init();

...

/* Start scheduler */
 vTaskStartScheduler();

 /* We should never get here as control is now taken by the
scheduler */
 for(;;);
}

Example description:

● LwIP_Init function initializes the LwIP stack. This includes the creation of the LwIP
TCP/IP stack task.

● tcpecho_thread TCP echo server task is created in tcpecho_init function.

void tcpecho_init(void)
{
 sys_thread_new("tcpecho_thread", tcpecho_thread, NULL,\
DEFAULT_THREAD_STACKSIZE, TCPECHO_THREAD_PRIO);
}

The TCP echo server thread has the following code:
static void tcpecho_thread(void *arg)
{
 struct netconn *conn, *newconn;
 err_t err;

 LwIP_UNUSED_ARG(arg);

 /* Create a new connection identifier. */

Developing applications with LwIP stack AN3966

28/47 Doc ID 022105 Rev 1

 conn = netconn_new(NETCONN_TCP);

 if (conn!=NULL)
 {
 /* Bind connection to well known port number 7. */
 err = netconn_bind(conn, NULL, 7);

 if (err == ERR_OK)
 {
 /* Tell connection to go into listening mode. */
 netconn_listen(conn);

 while (1)
 {
 /* Grab new connection. */
 newconn = netconn_accept(conn);

 /* Process the new connection. */
 if (newconn)
 {
 struct netbuf *buf;
 void *data;
 u16_t len;

 while ((buf = netconn_recv(newconn)) != NULL)
 {
 do
 {
 netbuf_data(buf, &data, &len);
 netconn_write(newconn, data, len, NETCONN_COPY);
 }
 while (netbuf_next(buf) >= 0);

 netbuf_delete(buf);
 }

 /* Close connection and discard connection identifier. */
 netconn_close(newconn);
 netconn_delete(newconn);
 }
 }
 }
 else
 {
 printf(" can not bind TCP netconn");
 }
 }
 else
 {
 printf("can not create TCP netconn");
 }
}

AN3966 Developing applications with LwIP stack

Doc ID 022105 Rev 1 29/47

Example description:

● Netconn_new API function called with NETCONN_TCP parameter will create a new
TCP connection.

● The newly created connection is then bound to port 7 (echo protocol) by calling
Netconn_bind API function.

● After binding the connection, the application starts the listening process on the
connection by calling Netconn_listen API function.

● In the infinite while(1) loop, the application waits for a new connection by calling the API
function Netconn_accept. This API call will block the application task when there is no
incoming connection.

● When there is an incoming connection, the application can start receiving data by
calling netconn_recv API function. Incoming data is received in a netbuf.

● The application can get the received data by calling netbuf_data netbuf API function.

● The received data is sent back (echoed) to the remote TCP client by calling
Netconn_write API function.

● Netconn_close and Netconn_delete are used to respectively close and delete the
Netconn connection.

4.3 LwIP memory configuration options
LwIP has several memory configurations options. These options allow the user to tune the
allocated RAM memory usage depending on performance needs and on application
memory constraints.

The user options for LwIP are changed in file LwIPopt.h

Table 12 provides a summary of the main options for RAM memory use.

Table 12. LwIP memory configuration options

LwIP memory option Definition

MEM_SIZE
LwIP heap memory size: used for all LwIP dynamic memory
allocations.

MEMP_NUM_PBUF Total number of MEM_REF and MEM_ROM pbufs.

MEMP_NUM_UDP_PCB Total number of UDP PCB structures.

MEMP_NUM_TCP_PCB Total number of TCP PCB structures.

MEMP_NUM_TCP_PCB_LISTEN Total number of listening TCP PCBs.

MEMP_NUM_TCP_SEG Maximum number of simultaneously queued TCP segments.

PBUF_POOL_SIZE Total number of PBUF_POOL type pbufs.

PBUF_POOL_BUFSIZE Size of a PBUF_POOL type pbufs.

TCP_MSS TCP maximum segment size.

TCP_SND_BUF TCP send buffer space for a connection.

TCP_SND_QUEUELEN Maximum number of pbufs in the TCP send queue.

TCP_WND Advertised TCP receive window size.

Developing applications with LwIP stack AN3966

30/47 Doc ID 022105 Rev 1

As shown in Table 12, LwIP memory has two main types:

● Heap memory for all dynamic allocations defined by MEM_SIZE.

● Pool memory for static pool structures defined by MEMP_NUM_xx and PBUF_POOL_xx.

The allocation from these two types of memory will define the total size of memory allocated
to LwIP. Below are some recommendations when setting these options:

● MEM_SIZE should be set high when the application needs to send a lot of data to be
copied from application buffers to the LwIP send buffer.

● PBUF_POOL_BUFSIZE should be set according to the average size of packets to be
received.

● PBUF_POOL_SIZE should be tuned as high as possible in order to achieve the best
receive data rate.

● TCP_SND_BUF limits the sender buffer space (data queued to be transmitted). For
optimal performance, this parameter should be equal to the TCP window size of the
remote host. Keep in mind that every active connection might buffer this amount of
data, so make sure there is enough RAM (defined by MEM_SIZE) or limit the number of
concurrently active connections.

● TCP_WND is the advertised receive window and should be tuned as high as possible in
order to achieve the best performance.

AN3966 Description of the demonstration package

Doc ID 022105 Rev 1 31/47

5 Description of the demonstration package

5.1 Package directories
When unzipped, the package has the structure shown in Figure 9.

Figure 9. Demonstration package structure

The demonstration package contains nine applications running on top of the LwIP stack.

● Standalone demos:

– A Web server

– A TFTP server

– A TCP echo client application

– A TCP echo server application

– A UDP echo client application

– A UDP echo server application

● FreeRTOS demos:

– A Web server based on the netconn API

– A Web server based on the socket API

– A TCP/UDP echo server application based on the netconn API

Project
workspaces

LwIP stack

LwIP source code

FreeRTOS demos

Standalone demos

STM324xG-EVAL
board dedicated files

FatFs files

FreeRTOS files

LwIP application layer and
Ethernet interface files

STM32 Standard libraries

Description of the demonstration package AN3966

32/47 Doc ID 022105 Rev 1

5.2 Demonstration settings

5.2.1 PHY interface configuration

The demonstration firmware is used to interface the PHY with both MII and RMII modes.To
select the required PHY interface mode, open the main.h file and choose one of the two
“defines”:

● #define MII_MODE

● #define RMII_MODE

In the MII mode, the PHY clock can be taken from the external crystal or provided by the
STM32 via the MCO pin if both MII_MODE and PHY_CLOCK_MCO are defined in the
main.h file.

Note: In the RMII mode, you have to provide the 50 MHz clock by soldering a 50 MHz oscillator
(ref SM7745HEV-50.0M or equivalent) on the U3 footprint located under CN3 and also by
removing the jumper from JP5. This oscillator is not provided with the board. For more
details, please refer to UM1461 STM3240G-EVAL evaluation board user manual.

5.2.2 MAC and IP address settings

The default MAC address is set to: 00:00:00:00:00:02. To change this address, modify the
six bytes defined in the main.h file.

The IP address can be set either as a static address, equal to 192.168.0.10, or as a
dynamic address, assigned by a DHCP server.

The IP address configuration mode is selected in the main.h file:

● Uncomment #define USE_DHCP to configure the IP address by DHCP

● Comment #define USE_DHCP to use the static address (192.168.0.10)

Note: If you choose to configure the IP address by DHCP and the application does not find a
DHCP server on the network to which it is already connected, the IP address is then
automatically set to the static address (192.168.0.10).

5.2.3 STM324xG-EVAL settings

In order to run the software, configure the STM324xG-EVAL board as shown in Table 13.

Note: Throughout this document, the STM324xG-EVAL board refers to STM3240G-EVAL and
STM3241G-EVAL boards.

Table 13. STM324xG-EVAL jumper configurations

Jumper MII mode configuration RMII mode configuration

JP5
1-2: provide 25MHz clock by external crystal

2-3: provide 25MHz clock by MCO at PA8
Not fitted

JP6 2-3: MII interface mode is enabled. 1-2: RMII interface mode is enabled.

JP8 Open: MII interface mode is selected.
Closed: RMII interface mode is
selected.

AN3966 Using the demos

Doc ID 022105 Rev 1 33/47

6 Using the demos

The STM32F4x7 LwIP package comes with several demos that use the different API sets.

The examples come in two folders:

● Standalone: single-threaded application examples using the Raw API

● FreeRTOS: multi-threaded application using FreeRTOS with the Netconn or Socket API

6.1 Standalone demos

6.1.1 Httpserver demo

The HTTP server demo shows an implementation of a web server with the following
features:

● URL parsing

● support of CGI (Common Gateway Interface)

● support of SSI (Server Side Includes)

● dynamic Header generation

● support of HTTP Post request

In order to test the HTTP server demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client.
Depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option is used to retarget
the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

4. If “USE_ DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

5. After an IP address assignment (either a static or a dynamic address), the user can
start the demo.

6. On the remote PC, open a web client (Mozilla Firefox or Internet Explorer) and type the
board’s IP address in a web browser. By default, the following static IP address is used:
192.168.0.10

Using the demos AN3966

34/47 Doc ID 022105 Rev 1

Figure 10. Home page of the HTTP server demo

Server Side Includes (SSI)

SSI is a method used to dynamically include dynamic data in HTML code.

This is done by placing a specific tag inside the HTML code of the web page. The tag should
have the following format: <!--#tag-->

For the ADC conversion page, the following tag is used inside the HTML code: <!--#t-->

When there is a request for the ADC webpage (which has a “.shtml” extension), the server
will parse the webpage and when the tag is found, it will be replaced by the ADC conversion
value.

AN3966 Using the demos

Doc ID 022105 Rev 1 35/47

Figure 11. SSI use in HTTP server demo application

Common Gateway Interface (CGI)

The CGI is a standard web technique used to execute a request coming from a client on the
server side and then to return a response to the client.

In LwIP, the CGI offered works only with GET method requests and can handle up to 16
parameters encoded in the URI. The CGI handler function executed on the server side
returns a HTML file that the HTTP server sends to the client.

In the HTTP server demo, this method is used to control the four LEDs: LED1, LED2, LED3
and LED4 on the STM32F4x7 evaluation board.

6.1.2 TCP echo client demo

This demo is used to test a basic TCP connection. In this demo, the STM32 acts as a TCP
client that connects to the TCP server. The client sends a string and the server echoes back
the same string to the client.

In order to test the TCP echo client demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client. Also,
depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option enables you to
retarget the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

4. If “USE_ DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

5. After the IP address assignment (either a static or a dynamic address), the user can
start the demo.

Using the demos AN3966

36/47 Doc ID 022105 Rev 1

6. On the remote PC, open a command prompt window. (In Windows, select Start > All
Programs > Accessories > Command Prompt.)

7. At the command prompt, enter:

C:\>echotool /p tcp /s

where:

– /p tcp is the TCP protocol (TCP protocol)

– /s is the actual mode of connection (Server mode)

8. When you press the Key button on the STM324xG-EVAL board, the client sends a
string and the server echoes back the same string to the client.

Figure 12 shows an example of this command string and the module’s response.

Figure 12. TCP echo client demo

Note: Please ensure that the remote PC IP address is the same IP address as the one defined in
the main.h file (192.168.0.11).

6.1.3 TCP echo server demo

This demo is used to test a basic TCP connection. In this demo, the STM32 acts as a TCP
server that waits for client requests. It simply echoes back whatever is sent.

In order to test the TCP echo server demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client. Also
depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option is used to retarget
the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

4. If “USE_ DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

AN3966 Using the demos

Doc ID 022105 Rev 1 37/47

5. After an IP address assignment (either a static or a dynamic address), the user can
start the demo.

6. On the remote PC, open a command prompt window. (In Windows, select Start > All
Programs > Accessories > Command Prompt.)

7. At the command prompt, enter:

C:\>echotool IP_address /p tcp /r 7 /n 15 /t 2 /d Testing
LwIP TCP echo server

where:

– IP_address is the actual board’s IP address. By default, the following static IP
address is used: 192.168.0.10

– /p tcp is the protocol (TCP protocol)

– /r is the actual remote port on the echo server (echo port)

– /n is the number of echo requests (for example, 15)

– /t is the connection timeout in seconds (for example, 2)

– /d is the message to be sent for echo (for example, “Testing LwIP TCP echo
server”)

Figure 13 shows an example of this command string and the module’s response.

Figure 13. TCP echo server demo

Note: Statistics providing the number of received and corrupted packets are given at the end of the
test.

Using the demos AN3966

38/47 Doc ID 022105 Rev 1

6.1.4 UDP echo client demo

This demo is used to test a basic UDP echo connection. In this demo, the STM32 acts as a
UDP client that connects to a UDP server.

In order to test the UDP echo client demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client. Also,
depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option is used to retarget
the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

4. If “USE_ DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

5. After the IP address assignment (either a static or a dynamic address), the user can
start the demo.

6. On the remote PC, open a command prompt window. (In Windows, select Start > All
Programs > Accessories > Command Prompt.)

7. At the command prompt, enter:

C:\>echotool /p udp /s

where;

– /p udp is the protocol (UDP protocol)

– /s is the actual mode of connection (Server mode)

8. When you press the Key button on the STM324xG-EVAL board, the client sends a
string and the server echoes back the same string to the client.

Figure 14 shows an example of this command string and the module’s response.

Figure 14. UDP echo client demo

Note: Please ensure that the remote PC IP address is the same IP address as the one defined in
the main.h file (192.168.0.11).

AN3966 Using the demos

Doc ID 022105 Rev 1 39/47

6.1.5 UDP echo server demo

This demo is used to test a basic UDP connection. In this demo, the STM32 acts as a UDP
server that waits for client requests.

In order to test the UDP echo server demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client. Also,
depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option is used to retarget
the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

4. If “USE_ DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

5. After the IP address assignment (either a static or a dynamic address), the user can
start the demo.

6. On the remote PC, open a command prompt window. (In Windows, select Start > All
Programs > Accessories > Command Prompt.)

7. At the command prompt, enter:

C:\>echotool IP_address /p udp /r 7 l/ 7 /n 15 /t 2 /d
Testing LwIP UDP echo server

where:

– IP_address is the actual board’s IP address. By default, the following static IP
address is used: 192.168.0.10

– /p udp is the protocol (UDP protocol)

– /r is the actual remote port on the echo server (echo port)

– /l is the actual local port for the client (echo port)

– /n is the number of echo requests (for example, 15)

– /t is the connection timeout in seconds (for example, 2)

– /d is the message to be sent for echo (for example, “Testing LwIP UDP echo
server”)

Using the demos AN3966

40/47 Doc ID 022105 Rev 1

Figure 15 shows an example of this command string and the module’s response.

Figure 15. UDP echo server demon

Note: Statistics providing the number of received and corrupted packets are given at the end of the
test.

6.1.6 TFTP server demo

The TFTP server is a file transfer application that needs a remote TFTP client. The files are
transferred to and from the microSD card located on the STM324xG-EVAL board.

The TFTP server waits for a request from a remote TFTP client. The STM324xG-EVAL
board must be connected through a remote PC to download or upload a file. To do this, a
TFTP client must be installed on the remote PC. This can be done by using the tftpd32 tool,
which can be found at http://tftpd32.jounin.net

In order to test the tftpserver demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client. Also,
depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option is used to retarget
the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

4. If “USE_ DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

5. After the IP address assignment (either a static or a dynamic address), the user can
start the demo.

6. On the remote PC, open the TFTP client (for example, TFTPD32), and configure the
TFTP server address (host address in TFTPD32).

7. Start transferring files to and from the microSD card located on the STM324xG-EVAL
board.

AN3966 Using the demos

Doc ID 022105 Rev 1 41/47

Figure 16 gives an overview of the tftpd32 tool.

Figure 16. TFTP tool (tftpd32)

Note: Make sure that the microSD™ card is plugged into the dedicated connector (CN6) prior to
downloading/uploading a file from/to the STM324xG-EVAL board.

6.2 FreeRTOS demos

6.2.1 HTTP server netconn demo

The HTTP server netconn demo shows an implementation of a web server application
based on the netconn API. This demo is used to connect to the STM324xG-EVAL board
from the web browser and to load HTML pages.

This demo has two HTML pages. The first one contains general information about
STM32F4x7 microcontrollers, the demonstration package and the LwIP stack. The second
one contains the list of running tasks and their status. This page is automatically updated
every second.

In order to test the HTTP server netconn demo, follow these steps:

1. Be sure of the correct jumper settings in the STM324xG-EVAL board.

2. In the main.h file, uncomment “USE_DHCP” option to enable the DHCP client. Also,
depending on your needs, you can uncomment/comment other options such as
“SERIAL_DEBUG” or “USE_LCD”. The “SERIAL_DEBUG” option is used to retarget
the printf function to serial port (COM1) for debug purposes.

3. Build and program the demo code into the STM32F4x7 Flash memory.

Your IP adress

Board IP

Directory for
local files to
receive/send on
the board side

Get a file from
the STM324xG-
EVAL microSD

Configure the Tftpd32 tool: TFTP client
must be enabled

File browser:
select the file to
send

Directory for
remote file to
receive/send on
the board side

Put a file into the
STM324xG-EVAL
microSD card

Using the demos AN3966

42/47 Doc ID 022105 Rev 1

4. If “USE_DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation.

5. After the IP address assignment (either a static or a dynamic address), the user can
start the demo.

6. On the remote PC, open a web client (Mozilla Firefox or Internet Explorer) and type the
board’s IP address in a web browser. By default, the following static IP address is used:
192.168.0.10.

6.2.2 HTTP server socket demo

The HTTP server socket demo shows an implementation of a web server application based
on the socket API. To test this demo, refer to Section 6.2.1: HTTP server netconn demo.

6.2.3 UDP TCP echo server netconn demo

This demo provides the echo service application on both TCP and UDP protocols:

● To test the UDP TCP echo server netconn demo in TCP server mode, refer to
Section 6.1.3: TCP echo server demo.

● To test the UDP TCP echo server netconn demo in UDP server mode, refer to
Section 6.1.5: UDP echo server demo.

AN3966 Footprint information

Doc ID 022105 Rev 1 43/47

7 Footprint information

7.1 HTTP server demo
Table 14 provides the HTTP server demonstration footprint, calculated with the following
configuration:

● 12 buffers of 512 bytes constitute the LwIP pool of buffers. These parameters are
defined in the LwIPopts.h file by PBUF_POOL_SIZE and PBUF_POOL_BUFSIZE.

● 10 Kbytes dedicated to the LwIP's heap and defined in the LwIPopts.h file by
MEM_SIZE.

● 6 buffers of 1520 bytes dedicated to the Ethernet driver and defined in the
STM32F4x7_eth_conf.h file.

Note: These values are provided for demonstration purposes only. When porting the current
package for use with your application, these parameters should be adjusted to your needs.

Note: The software is compiled using IAR EWARM v6.21.3, with a high optimization for code size.

7.2 HTTP server netconn demo
Table 15 provides the HTTP server demonstration footprint, calculated with the following
configuration:

● 12 buffers of 512 bytes constitute the LwIP pool of buffers. These parameters are
defined in the LwIPopts.h file by PBUF_POOL_SIZE and PBUF_POOL_BUFSIZE.

● 5 Kbytes dedicated to the LwIP's heap and defined in the LwIPopts.h file by MEM_SIZE.

● 8 buffers of 1520 bytes dedicated to the Ethernet driver and defined in the
STM32F4x7_eth_conf.h file.

Note: These values are provided for demonstration purposes only. When porting the current
package for use with your application, these parameters should be adjusted to your needs.

Table 14. HTTP server demo footprint

Modules
Flash memory (bytes) SRAM (bytes)

Ro code Ro data Rw data

Ethernet driver and interface 2272 0 9360

LwIP memory management and IP modules 20916 44 21372

Application modules: Main and system initialization 6376 52476 1413

STM32F4xx Standard Peripheral Library Drivers 2272 16 16

STM324xG-EVAL board 2186 4592 32

Others (stack, heap, etc.) 13176 118 2285

Total 47198 57246 34478

Footprint information AN3966

44/47 Doc ID 022105 Rev 1

Note: The software is compiled using IAR EWARM v6.21.3, with a high optimization for code size.

Table 15. Httpserver netconn demo footprint

Modules
Flash memory (bytes) SRAM (bytes)

Ro code Ro data Rw data

Ethernet driver and interface 2608 0 12484

LwIP memory management and IP modules 23778 18 16638

FreeRTOS 4156 91 15736

Application modules: Main and system initialization 5060 43364 305

STM32F4xx Standard Peripheral Library Drivers 1964 4 16

STM324xG-EVAL board 2166 4569 32

Others (stack, heap, etc.) 15488 134 2809

Total 55220 48180 48020

AN3966 Conclusion

Doc ID 022105 Rev 1 45/47

8 Conclusion

The aim of this application note is to show the use of the LwIP TCP/IP stack with the
STM32F407/STM32F417 family. This open source stack offers the services of a full-scale
TCP/IP stack while keeping relatively low RAM/ROM usage.

The application note also shows two approaches for developing TCP/IP applications, either
in a Standalone mode, or using a real-time operating system (RTOS) for multi-threaded
operations.

Revision history AN3966

46/47 Doc ID 022105 Rev 1

9 Revision history

Table 16. Document revision history

Date Revision Changes

02-Nov-2011 1 Initial release.

AN3966

Doc ID 022105 Rev 1 47/47

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Introduction
	2 LwIP stack overview
	2.1 Stack features
	2.2 Folder organization of the LwIP stack
	2.3 LwIP API overview
	2.3.1 Raw API
	2.3.2 Netconn API
	2.3.3 Socket API

	2.4 LwIP buffer management
	2.4.1 Packet buffer structure
	2.4.2 API for managing pbufs

	2.5 Interfacing LwIP to STM32F4x7 Ethernet network interface

	3 STM32F4x7 low level driver overview
	3.1 Global Ethernet MAC/DMA functions
	3.1.1 Ethernet MAC/DMA configuration parameters

	3.2 DMA descriptor handling
	3.2.1 DMA descriptors
	3.2.2 DMA descriptor handling functions

	3.3 PHY control functions
	3.4 Hardware checksum

	4 Developing applications with LwIP stack
	4.1 Developing in standalone mode using the Raw API
	4.1.1 Model of operation
	4.1.2 Example of the TCP echo server demo

	4.2 Developing with an RTOS using Netconn or Socket API
	4.2.1 Model of operation
	4.2.2 Example of a TCP echoserver demo using the Netconn API

	4.3 LwIP memory configuration options

	5 Description of the demonstration package
	5.1 Package directories
	5.2 Demonstration settings
	5.2.1 PHY interface configuration
	5.2.2 MAC and IP address settings
	5.2.3 STM324xG-EVAL settings

	6 Using the demos
	6.1 Standalone demos
	6.1.1 Httpserver demo
	6.1.2 TCP echo client demo
	6.1.3 TCP echo server demo
	6.1.4 UDP echo client demo
	6.1.5 UDP echo server demo
	6.1.6 TFTP server demo

	6.2 FreeRTOS demos
	6.2.1 HTTP server netconn demo
	6.2.2 HTTP server socket demo
	6.2.3 UDP TCP echo server netconn demo

	7 Footprint information
	7.1 HTTP server demo
	7.2 HTTP server netconn demo

	8 Conclusion
	9 Revision history

