
March 2012 Doc ID 018976 Rev 2 1/52

AN3422
Application note

Migration of microcontroller applications
from STM32F1 to STM32L1 series

1 Introduction

For designers of STM32 microcontroller applications, it is important to be able to easily 
replace one microcontroller type by another one in the same product family. Migrating an 
application to a different microcontroller is often needed, when product requirements grow, 
putting extra demands on memory size, or increasing the number of I/Os. On the other 
hand, cost reduction objectives may force you to switch to smaller components and shrink 
the PCB area. 

This application note is written to help you and analyze the steps you need to migrate from 
an existing STM32F1 devices based design to STM32L1 devices. It groups together all the 
most important information and lists the vital aspects that you need to address.

To migrate your application from STM32F1 series to STM32L1 series, you have to analyze 
the hardware migration, the peripheral migration and the firmware migration.

To benefit fully from the information in this application note, the user should be familiar with 
the STM32 microcontroller family. You can refer to the following documents that are available 
from www.st.com.

● The STM32F1 family reference manuals (RM0008 and RM0041), the STM32F1 
datasheets, and the STM32F1 Flash programming manuals (PM0075, PM0063 and 
PM0068). 

● The STM32L1 family reference manual (RM0038), the STM32L1 datasheets, and the 
STM32F1 Flash and EEPROM programming manual (PM0062). 

For an overview of the whole STM32 series and a comparison of the different features of 
each STM32 product series, please refer to AN3364 Migration and compatibility guidelines 
for STM32 microcontroller applications.

www.st.com

http://www.st.com


Contents AN3422

2/52 Doc ID 018976 Rev 2

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 STM32L1 family overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Hardware migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Peripheral migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 STM32 product cross-compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 System architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 RCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 GPIO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 EXTI source selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.9 FLASH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.10 ADC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.11 PWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 RTC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Firmware migration using the library  . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Migration steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 RCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 FLASH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 GPIO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Output mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.2 Input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.3 Analog mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.4 Alternate function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 EXTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 ADC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 PWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



AN3422 Contents

Doc ID 018976 Rev 2 3/52

5.8 Backup data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



List of tables AN3422

4/52 Doc ID 018976 Rev 2

List of tables

Table 1. STM32L1 peripherals compatibility analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. STM32F1 series and STM32L1 series pinout differences . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. STM32 peripheral compatibility analysis F1 versus L1 series  . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. IP bus mapping differences between STM32F1 and STM32L1 series. . . . . . . . . . . . . . . . 15
Table 5. RCC differences between STM32F1 and STM32L1 series  . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Performance versus VCORE ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 7. Example of migrating system clock configuration code from F1 to L1 . . . . . . . . . . . . . . . . 22
Table 8. RCC registers used for peripheral access configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 9. DMA request differences between STM32F1 series and STM32L1 series  . . . . . . . . . . . . 24
Table 10. Interrupt vector differences between STM32F1 series and STM32L1 series . . . . . . . . . . . 26
Table 11. GPIO differences between STM32F1 series and STM32L1 series  . . . . . . . . . . . . . . . . . . 29
Table 12. FLASH differences between STM32F1 series and STM32L1 series . . . . . . . . . . . . . . . . . 31
Table 13. ADC differences between STM32F1 series and STM32L1 series . . . . . . . . . . . . . . . . . . . 32
Table 14. PWR differences between STM32F1 series and STM32L1 series. . . . . . . . . . . . . . . . . . . 34
Table 15. STM32F10x and STM32L1xx FLASH driver API correspondence. . . . . . . . . . . . . . . . . . . 39
Table 16. STM32F10x and STM32L1xx PWR driver API correspondence  . . . . . . . . . . . . . . . . . . . . 48
Table 17. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



AN3422 List of figures

Doc ID 018976 Rev 2 5/52

List of figures

Figure 1. Compatible board design: LQFP144  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. Compatible board design: LQFP100  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Compatible board design: LQFP64  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. Compatible board design: LQFP48  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



STM32L1 family overview AN3422

6/52 Doc ID 018976 Rev 2

2 STM32L1 family overview

The STM32L1 platform forms a strong foundation with a broad and growing portfolio. With 
new products addressing new applications, the complete STM32L product series now 
comprises three series, STM32L1 Medium-density, STM32L1 Medium-density+ and 
STM32L1 High-density, all dedicated to ultra low power and low voltage applications.

● STM32L1: Designed for ultra-low-power applications that are energy-aware and seek 
to achieve the absolute lowest power consumption. The L1 series maintains 
compatibility with the F1 series.

– Medium-density devices are STM32L151xx and STM32L152xx microcontrollers 
where the Flash memory density ranges between 64 and 128 Kbyte

– Medium-density+ devices are STM32L151xx, STM32L152xx and STM32L162xx 
microcontrollers where the Flash memory density is 256 Kbyte

– High-density devices are STM32L151xx, STM32L152xx and STM32L162xx 
microcontrollers where the Flash memory density is 384 Kbyte

The ultralow power STM32L1 Medium-density, STM32L1 Medium-density+ and STM32L1 
High-density are fully pin-to-pin, software and feature compatible.

         

Table 1. STM32L1 peripherals compatibility analysis

Peripheral
Medium-
density

Medium-
density+

High-
density

Compatibility

Comments

SPI Yes Yes Yes
No I2S in L1 Medium-density 
series

WWDG Yes Yes Yes Same features

IWDG Yes Yes Yes Same features

DBGMCU Yes Yes Yes Same features

CRC Yes Yes Yes Same features

EXTI Yes Yes Yes Same features

USB FS Device Yes Yes Yes Same features

DMA Yes Yes Yes Same features

TIM Yes Yes Yes Same features

SDIO No No Yes Same features

FSMC No No Yes Same features

PWR Yes Yes Yes Same features

RCC Yes Yes Yes Same features

USART Yes Yes Yes
Same features (UART4/5 are 
available only on High-density)



AN3422 STM32L1 family overview

Doc ID 018976 Rev 2 7/52

I2C Yes Yes Yes Same features

DAC Yes Yes Yes Same features

ADC Yes Yes Yes Same features

RTC Yes Yes Yes Same features

FLASH Yes Yes Yes Same features

GPIO Yes Yes Yes Same features

LCD glass Yes Yes Yes Same features

COMP Yes Yes Yes Same features

SYSCFG Yes Yes Yes Same features

AES Yes Yes Yes Same features

OPAMP Yes Yes Yes Same features

Table 1. STM32L1 peripherals compatibility analysis (continued)

Peripheral
Medium-
density

Medium-
density+

High-
density

Compatibility

Comments



Hardware migration AN3422

8/52 Doc ID 018976 Rev 2

3 Hardware migration

The ultralow power STM32L and general-purpose STM32F1xxx families are pin-to-pin 
compatible. All peripherals shares the same pins in the two families, but there are some 
minor differences between packages. 

In fact, the STM32L1 series maintains a close compatibility with the whole STM32F1 series. 
All power and functional pins are pin-to-pin compatible. The transition from the STM32F1 
series to the STM32L1 series is simple as only a few pins are impacted (impacted pins are 
in bold in the table below).

         

The figures below show examples of board designs that are compatible with both the F1 and 
the L1 series.

Table 2. STM32F1 series and STM32L1 series pinout differences

STM32F1 series STM32L1 series 

QFP48 QFP64 QFP100 QFP144 Pinout QFP48 QFP64 QFP100 QFP144 Pinout

5 5 12 23 PD0 - OSC_IN 5 5 12 23 PH0 - OSC_IN             

6 6 13 24 PD1 - OSC_OUT 6 6 13 24 PH1 - OSC_OUT            

1 1 6 6 VBAT 1 1 6 6 VLCD

- - 73 106 NC - - 73 106 PH2 



AN3422 Hardware migration

Doc ID 018976 Rev 2 9/52

Figure 1. Compatible board design: LQFP144



Hardware migration AN3422

10/52 Doc ID 018976 Rev 2

Figure 2. Compatible board design: LQFP100



AN3422 Hardware migration

Doc ID 018976 Rev 2 11/52

Figure 3. Compatible board design: LQFP64

Figure 4. Compatible board design: LQFP48



Peripheral migration AN3422

12/52 Doc ID 018976 Rev 2

4 Peripheral migration

As shown in Table 3 on page 13, there are three categories of peripherals. The common 
peripherals are supported with the dedicated firmware library without any modification, 
except if the peripheral instance is no longer present, you can change the instance and of 
course all the related features (clock configuration, pin configuration, interrupt/DMA 
request).

The modified peripherals such as: FLASH, ADC, RCC, PWR, GPIO and RTC are different 
from the F1 series ones and should be updated to take advantage of the enhancements and 
the new features in L1 series.

All these modified peripherals in the L1 series are enhanced to obtain lower power 
consumption, with features designed to meet new market requirements and to fix some 
limitations present in the F1 series.

4.1 STM32 product cross-compatibility
The STM32 series embeds a set of peripherals which can be classed in three categories:

● The first category is for the peripherals which are by definition common to all products. 
Those peripherals are identical, so they have the same structure, registers and control 
bits. There is no need to perform any firmware change to keep the same functionality at 
the application level after migration. All the features and behavior remain the same.

● The second category is for the peripherals which are shared by all products but have 
only minor differences (in general to support new features), so migration from one 
product to another is very easy and does not need any significant new development 
effort.

● The third category is for peripherals which have been considerably changed from one 
product to another (new architecture, new features...). For this category of peripherals, 
migration will require new development at application level.

Table 3 gives a general overview of this classification.



AN3422 Peripheral migration

Doc ID 018976 Rev 2 13/52

         

Table 3. STM32 peripheral compatibility analysis F1 versus L1 series

Peripheral F1 series L1 series
Compatibility

Comments Pinout SW compatibility

SPI Yes Yes
No I2S in L1 Medium-density 
series

L1 vs. F1: limitation fix
Identical Full compatibility

WWDG Yes Yes Same features NA Full compatibility

IWDG Yes Yes Same features NA Full compatibility

DBGMCU Yes Yes Same features NA Full compatibility

CRC Yes Yes Same features NA Full compatibility

EXTI Yes Yes Same features Identical Full compatibility

USB FS 
Device

Yes Yes Same features Identical Full compatibility

DMA Yes Yes Same features NA Full compatibility

TIM Yes Yes Same features Identical Full compatibility

SDIO Yes Yes
Same features (No SDIO in 
L1 Medium-density and 
Medium-density+ series)

Identical Full compatibility

FSMC Yes Yes

Same features but only 
SRAM/NOR memories are 
supported (No FSMC in L1 
Medium-density and Medium-
density+ series)

Identical Full compatibility

PWR Yes Yes+ Enhancement NA
Full compatibility for the 
same feature 

RCC Yes Yes+ Enhancement NA Partial compatibility

USART Yes Yes+
Limitation fix / One Sample 
Bit method / Oversampling by 
8

Identical Full compatibility

I2C Yes Yes+ Limitation fix Identical Full compatibility

DAC Yes Yes+ DMA underrun interrupt Identical Full compatibility

ADC Yes Yes++ New peripheral Identical Partial compatibility

RTC Yes Yes++ New peripheral
Identical for the 
same feature

Not compatible

FLASH Yes Yes++ New peripheral NA Not compatible

GPIO Yes Yes++ New peripheral Identical Not compatible

CAN Yes NA NA NA NA



Peripheral migration AN3422

14/52 Doc ID 018976 Rev 2

4.2 System architecture
The STM32L MCU family, based on the Cortex-M3 core, extends ST’s ultra-low-power 
portfolio in performance, features, memory size and package pin count. It combines very 
high performance and ultra-low power consumption, through the use of an optimized 
architecture and ST’s proprietary ultra-low leakage process, that is also used in the STM8L 
family. The STM32L family offers three different product lines (STM32L Medium-density, 
STM32L Medium-density+ and STM32L High-density).

4.3 Memory mapping
The peripheral address mapping has been changed in the L1 series vs. F1 series, the main 
change concerns the GPIOs which have been moved from the APB bus to the AHB bus to 
allow them to operate at maximum speed. 

The tables below provide the peripheral address mapping correspondence between L1 and 
F1 series.

CEC Yes NA NA NA NA

Ethernet Yes NA NA NA NA

LCD glass NA Yes NA NA NA

COMP NA Yes NA NA NA

SYSCFG NA Yes NA NA NA

AES NA Yes NA NA NA

OPAMP NA Yes NA NA NA

         

Table 3. STM32 peripheral compatibility analysis F1 versus L1 series (continued)

Peripheral F1 series L1 series
Compatibility

Comments Pinout SW compatibility

Color key: 

= New feature or new architecture (Yes++)

= Same feature, but specification change or enhancement (Yes+)

= Feature not available (NA)



AN3422 Peripheral migration

Doc ID 018976 Rev 2 15/52

         

Table 4. IP bus mapping differences between STM32F1 and STM32L1 series

Peripheral
STM32L1 series STM32F1 series 

Bus Base address Bus Base address

FSMC

AHB

0xA0000000 AHB 0xA0000000

AES 0x50060000 NA NA

DMA2 0x40026400

AHB

0x40020400

DMA1 0x40026000 0x40020000

Flash Interface 0x40023C00 0x40022000

RCC 0x40023800 0x40021000

CRC 0x40023000 0x40023000

GPIOG 0x40021C00
APB2

0x40012000

GPIOF 0x40021800 0x40011C00

GPIOH 0x40021400 NA NA

GPIOE 0x40021000

APB2

0x40011800

GPIOD 0x40020C00 0x40011400

GPIOC 0x40020800 0x40011000

GPIOB 0x40020400 0x40010C00

GPIOA 0x40020000 0x40010800

USART1

APB2

0x40013800
APB2

0x40013800

SP1 0x40013000 0x40013000

SDIO 0x40012C00 AHB 0x40018000

ADC1 0x40012400

APB2

0x40012400

TIM11 0x40011000 0x40015400

TIM10 0x40010C00 0x40015000

TIM9 0x40010800 0x40014C00

EXTI 0x40010400 0x40010400

SYSCFG 0x40010000 NA NA



Peripheral migration AN3422

16/52 Doc ID 018976 Rev 2

OPAMP

APB1

0x40007C5C NA NA

COMP+RI 0x40007C00 NA NA

DAC 0x40007400

APB1

0x40007400

PWR 0x40007000 0x40007000

USB device FS SRAM 0x40006000 0x40006000

USB device FS 0x40005C00 0x40005C00

I2C2 0x40005800 0x40005800

I2C1 0x40005400 0x40005400

UART5 0x40005000 0x40005000

UART4 0x40004C00 0x40004C00

USART3 0x40004800 0x40004800

USART2 0x40004400 0x40004400

SPI3 0x40003C00 0x40003C00

SPI2 0x40003800 0x40003800

IWDG 0x40003000 0x40003000

WWDG 0x40002C00 0x40002C00

RTC
0x40002800

 (inc. BKP registers)
0x40002800

LCD 0x40002400 NA NA

TIM7 0x40001400

APB1

0x40001400

TIM6 0x40001000 0x40001000

TIM5 0x40000C00 0x40000C00

TIM4 0x40000800 0x40000800

TIM3 0x40000400 0x40000400

TIM2 0x40000000 0x40000000

USB OTG FS NA NA
AHB

0x50000000

ETHERNET MAC NA NA 0x40028000

ADC2 NA NA

APB2

0x40012800

ADC3 NA NA 0x40013C00

TIM8 NA NA 0x40013400

TIM1 NA NA 0x40012C00

Table 4. IP bus mapping differences between STM32F1 and STM32L1 series 

Peripheral
STM32L1 series STM32F1 series 

Bus Base address Bus Base address



AN3422 Peripheral migration

Doc ID 018976 Rev 2 17/52

4.4 RCC
The main differences related to the RCC (Reset and Clock Controller) in the STM32L1 
series vs. STM32F1 series are presented in the table below.

         

CAN2 NA NA

APB1

0x40006800

CAN1 NA NA 0x40006400

TIM14 NA NA 0x40002000

TIM13 NA NA 0x40001C00

TIM12 NA NA 0x40001800

TIM5 NA NA 0x40000C00

BKP registers NA NA 0x40006C00

AFIO NA NA APB2 0x40010000
         

Table 4. IP bus mapping differences between STM32F1 and STM32L1 series 

Peripheral
STM32L1 series STM32F1 series 

Bus Base address Bus Base address

Color key: 

= Same feature, but base address change 

= Feature not available (NA)

Table 5. RCC differences between STM32F1 and STM32L1 series

RCC main 
features

STM32F1 series STM32L1 series Comments

MSI NA

Multi Speed RC factory-
trimmed (64 kHz /128 kHz / 
256 kHz / 512 kHz / 1.02 
MHz / 2.05 MHz / 4.1 MHz)

– Enable/disable 
RCC_CR[MSION]

– Status flag RCC_CR[MSIRDY]

HSI 8 MHz RC factory-trimmed 16 MHz RC factory-trimmed

No change to SW configuration:

– Enable/disable 
RCC_CR[HSION]

– Status flag RCC_CR[HSIRDY]

LSI 40 KHz RC 37 KHz RC 

No change to SW configuration:

– Enable/disable 
RCC_CSR[LSION]

– Status flag 
RCC_CSR[LSIRDY]



Peripheral migration AN3422

18/52 Doc ID 018976 Rev 2

HSE
3 - 25 MHz
Depending on the product line 
used

1 - 24 MHz 

No change to SW configuration:
– Enable/disable 

RCC_CR[HSEON]
– Status flag 

RCC_CR[HSERDY]

LSE 32.768 kHz 32.768 kHz

LSE configuration/status bits are 
now in RCC_CSR register.

– Enable/disable 
RCC_CSR[LSEON]

– Status flag 
RCC_CSR[LSERDY]

In L1 series the LSEON and 
LSERDY bits occupy bits 
RCC_CSR[9:8] respectively 
instead of bit RCC_BDCR[1:0] in 
F1 series.

PLL

– Connectivity line: main PLL + 
2 PLLs for I2S, Ethernet and 
OTG FS clock

– Other product lines: main 
PLL

– Main PLL for system

There is no change to PLL 
enable/disable 
RCC_CR[PLLON] and status 
flag RCC_CR[PLLRDY].

However, PLL configuration 
(clock source selection, 
multiplication/division factors) 
are different. In L1 series 
dedicated bits 
RCC_CFGR[PLLDIV] are used 
to configure the PLL divider 
parameters and the PLL 
multiplication factors are 
different. The PLL sources are 
only HSI and HSE.

System clock 
source

HSI, HSE or PLL MSI, HSI, HSE or PLL

No change to SW configuration:

– Selection bits 
RCC_CFGR[SW]

– Status flag RCC_CFGR[SWS]

However there is one more 
source, MSI, and the selection 
bit meanings are different.

System clock 
frequency

up to 72 MHz depending on the 
product line used

8 MHz after reset using HSI

32 MHz
2 MHz after reset using MSI

For STM32L1 Flash wait states 
should be adapted according to 
the system frequency, the 
product voltage range VCORE 
and the supply voltage range 
VDD.

AHB 
frequency

up to 72 MHz up to 32 MHz
No change to SW configuration:
configuration bits 
RCC_CFGR[HPRE]

Table 5. RCC differences between STM32F1 and STM32L1 series (continued)

RCC main 
features

STM32F1 series STM32L1 series Comments



AN3422 Peripheral migration

Doc ID 018976 Rev 2 19/52

APB1 
frequency

up to 36 MHz up to 32 MHz
No change to SW configuration:
configuration bits 
RCC_CFGR[PPRE1].

APB2 
frequency

up to 72 MHz up to 32 MHz
No change to SW configuration:

configuration bits 
RCC_CFGR[PPRE2].

RTC clock 
source

LSI, LSE or HSE/128
LSI, LSE or HSE clock 
divided by 2, 4, 8 or 16

RTC clock source configuration 
is done through the same bits 
(RTCSE[1:0] and RTCEN) but 
they are located in a different 
register. 
In L1 series the RTCSEL[1:0] 
bits occupy bits 
RCC_CSR[17:16] instead of bits 
RCC_BDCR[9:8] in F1 series.
In L1 series the RTCEN bit 
occupies bit RCC_CSR[22] 
instead of bit RCC_BDCR[15] in 
F1 series.

However, in L1 series when HSE 
is selected as RTC clock source, 
additional bits are used in CR 
register, RCC_CR[RTCPRE], to 
select the division factor to be 
applied to HSE clock.

MCO clock 
source

– MCO pin (PA8)
– Connectivity Line: HSI, HSE, 

PLL/2, SYSCLK, PLL2, PLL3 
or XT1

– Other product lines: HSI, 
HSE, PLL/2 or SYSCLK

– MCO pin (PA8): SYSCLK, 
HSI, HSE, PLLCLK, MSI, 
LSE or LSI

With configurable prescaler, 
1, 2, 4, 8 or 16 for each 
output.

MCO configuration in L1 series 
is different from F1:

– For MCO, the prescaler is 
configured through bits 
RCC_CFGR[MCOPRE] and 
the selection of the clock to 
output through bits 
RCC_CFGR[MCOSEL]

Table 5. RCC differences between STM32F1 and STM32L1 series (continued)

RCC main 
features

STM32F1 series STM32L1 series Comments



Peripheral migration AN3422

20/52 Doc ID 018976 Rev 2

In addition to the differences described in the table above, the following additional 
adaptation steps may be needed for the migration:

1. Performance versus VCORE ranges: The maximum system clock frequency and FLASH 
wait state depends on the selected voltage range VCORE and also on VDD. The 
following table gives the different clock source frequencies depending on the product 
voltage range.

         

2. System clock configuration: when moving from F1 series to L1 series only a few 
settings need to be updated in the system clock configuration code; mainly the Flash 
settings (configure the right wait states for the system frequency, prefetch 

Internal 
oscillator 

measurement 
/ calibration

– LSI connected to TIM5 CH4 
IC: can measure LSI w/ 
respect to HSI/HSE clock

– LSI connected to TIM10 
CH1 IC: can measure LSI 
w/ respect to HSI/HSE 
clock

– LSE connected to TIM10 
CH1 IC: can measure LSE 
w/ respect to HSI/HSE 
clock

– HSE connected to TIM11 
CH1 IC: can measure HSE 
w/ respect to LSE/HSI 
clock

– MSI connected to TIM11 
CH1 IC: can measure MSI 
range w/ respect to 
HSI/HSE clock

There is no configuration to 
perform in RCC registers.

Interrupt

– CSS (linked to NMI IRQ)

– LSIRDY, LSERDY, HSIRDY, 
HSERDY, PLLRDY, 
PLL2RDY and PLL3RDY 
(linked to RCC global IRQ) 

– CSS (linked to IRQ)

– LSIRDY, LSERDY, 
MSIRDY, HSIRDY, 
HSERDY and PLLRDY 
(linked to RCC global IRQ) 

No change to SW configuration: 
interrupt enable, disable and 
pending bits clear are done in 
RCC_CIR register.

Table 5. RCC differences between STM32F1 and STM32L1 series (continued)

RCC main 
features

STM32F1 series STM32L1 series Comments

Table 6. Performance versus VCORE ranges

CPU

performance

Power

performance

VCORE

range

Typical

Value (V)

Max frequency

(MHz) VDD range

1 WS 0 WS

High Low 1 1.8 32 16 2.0 - 3.6

Medium Medium 2 1.5 16 8
1.65 - 3.6

Low High 3 1.2 4 2



AN3422 Peripheral migration

Doc ID 018976 Rev 2 21/52

enable/disable, 64-bit access enable/disable...) or/and the PLL parameters 
configuration:

a) If the HSE or HSI is used directly as system clock source, in this case only the 
Flash parameters should be modified.

b) If PLL (clocked by HSE or HSI) is used as system clock source, in this case the 
Flash parameters and PLL configuration need to be updated. 

Table 7 below provides an example of porting a system clock configuration from F1 to L1 
series:

– STM32F105/7 Connectivity Line running at maximum performance: system clock 
at 72 MHz (PLL, clocked by the HSE, used as system clock source), Flash with 2 
wait states and Flash prefetch queue enabled.

– L1 series running at maximum performance: system clock at 32 MHz (PLL, 
clocked by the HSE, used as system clock source), Flash with 1 wait state, Flash 
prefetch and 64-bit access enabled.

As shown in the table below, only the Flash settings and PLL parameters (code in Bold 
Italic) need to be rewritten to run on L1 series. However, HSE, AHB prescaler and system 
clock source configuration are left unchanged, and APB prescalers are adapted to the 
maximum APB frequency in the L1 series.

Note: 1 The source code presented in the table below is intentionally simplified (time-out in wait loop 
removed) and is based on the assumption that the RCC and Flash registers are at their 
reset values.

2 For STM32L1xx you can use the clock configuration tool, 
STM32L1xx_Clock_Configuration.xls, to generate a customized system_stm32l1xx.c file 
containing a system clock configuration routine, depending on your application 
requirements. For more information, refer to AN3309 “Clock configuration tool for 
STM32L1xx microcontrollers”



Peripheral migration AN3422

22/52 Doc ID 018976 Rev 2

         

Table 7. Example of migrating system clock configuration code from F1 to L1

STM32F105/7 running at 72 MHz (PLL as clock 
source) with 2 wait states

STM32L1xx running at 22 MHz (PLL as clock source) 
with 1 wait state

/* Enable HSE ----------------------------*/    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);

  /* Wait till HSE is ready */
  while((RCC->CR & RCC_CR_HSERDY) == 0)
  {
  }
   
  /* Flash configuration -------------------*/
  /* Prefetch ON, Flash 2 wait states */
  FLASH->ACR |= FLASH_ACR_PRFTBE | 
                FLASH_ACR_LATENCY_2;    

  /* AHB and APB prescaler configuration --*/ 
  /* HCLK = SYSCLK */
  RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
    
  /* PCLK2 = HCLK */
  RCC->CFGR |= RCC_CFGR_PPRE2_DIV1;
    
  /* PCLK1 = HCLK */
  RCC->CFGR |= RCC_CFGR_PPRE1_DIV2;

  /* PLL configuration -------------------*/
  /* PLL2CLK = (HSE / 5) * 8 = 40 MHz 
     PREDIV1CLK = PLL2 / 5 = 8 MHz */
  RCC->CFGR2 |= RCC_CFGR2_PREDIV2_DIV5 | 
                RCC_CFGR2_PLL2MUL8 |
                RCC_CFGR2_PREDIV1SRC_PLL2 |
                RCC_CFGR2_PREDIV1_DIV5;  
/* Enable PLL2 */
  RCC->CR |= RCC_CR_PLL2ON;
  /* Wait till PLL2 is ready */
  while((RCC->CR & RCC_CR_PLL2RDY) == 0)
  {
  }
  /* PLLCLK = PREDIV1 * 9 = 72 MHz */ 
  RCC->CFGR |= RCC_CFGR_PLLXTPRE_PREDIV1 |
               RCC_CFGR_PLLSRC_PREDIV1 |
               RCC_CFGR_PLLMULL9; 

  /* Enable the main PLL */
  RCC->CR |= RCC_CR_PLLON;
  /* Wait till the main PLL is ready */
  while((RCC->CR & RCC_CR_PLLRDY) == 0)
  {
  }
    
  /* Main PLL used as system clock source --*/
  RCC->CFGR |= RCC_CFGR_SW_PLL;
  /* Wait till the main PLL is used as system 
     clock source */
  while ((RCC->CFGR & RCC_CFGR_SWS) != 
          RCC_CFGR_SWS_PLL)
  {

  }

/* Enable HSE ----------------------------*/ 
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
  /* Wait till HSE is ready */
  while((RCC->CR & RCC_CR_HSERDY) == 0)
  {
  }

  /* Flash configuration -------------------*/
  /* Flash prefetch and 64-bit access ON, Flash 1 wait 
state */
FLASH->ACR |= FLASH_ACR_ACC64;

    FLASH->ACR |= FLASH_ACR_PRFTEN;

    FLASH->ACR |= FLASH_ACR_LATENCY;
    
    /* Power enable */
    RCC->APB1ENR |= RCC_APB1ENR_PWREN;
  
    /* Select the Voltage Range 1 (1.8 V) */
    PWR->CR = PWR_CR_VOS_0;
  
    /* Wait Until the Voltage Regulator is ready */
    while((PWR->CSR & PWR_CSR_VOSF) != RESET)
    {
    }

  /* AHB and APB prescaler configuration --*/     
  /* HCLK = SYSCLK */
  RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
      
  /* PCLK2 = HCLK / 1*/
  RCC->CFGR |= RCC_CFGR_PPRE2_DIV1;
    
  /* PCLK1 = HCLK / 1*/
  RCC->CFGR |= RCC_CFGR_PPRE1_DIV1;

  /* PLL configuration ---------------------*/ 
  /*  PLLCLK = (HSE * PLL_MUL) / PLL_DIV
             = (8 MHz * 12) / 3
             = 32MHz */
  RCC->CFGR = RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMUL12 
| RCC_CFGR_PLLDIV3;

/* Enable the main PLL */
  RCC->CR |= RCC_CR_PLLON;
  /* Wait till the main PLL is ready */
  while((RCC->CR & RCC_CR_PLLRDY) == 0)
  {
  }
     
  /* Main PLL used as system clock source --*/
  RCC->CFGR |= RCC_CFGR_SW_PLL;
  /* Wait till the main PLL is used as system
     clock source */
  while ((RCC->CFGR & RCC_CFGR_SWS ) != 
          RCC_CFGR_SWS_PLL);
  {

  }



AN3422 Peripheral migration

Doc ID 018976 Rev 2 23/52

3. Peripheral access configuration: since the address mapping of some peripherals has 
been changed in L1 series vs. F1 series, you need to use different registers to 
[enable/disable] or [enter/exit] the peripheral [clock] or [from reset mode]. 

         

To configure the access to a given peripheral you have first to know to which bus this 
peripheral is connected, refer to Table 4 on page 15, then depending on the action needed 
you have to program the right register as described in Table 8 above. For example, USART1 
is connected to APB2 bus, to enable the USART1 clock you have to configure APB2ENR 
register as follows:

RCC->APB2ENR |= RCC_APB2ENR_USART1EN;

to disable USART1 clock during Sleep mode (to reduce power consumption) you have to 
configure APB2LPENR register as follows:

RCC->APB2LPENR |= RCC_APB2LPENR_USART1LPEN;

4. Peripheral clock configuration: some peripherals have a dedicated clock source 
independent from the system clock, and used to generate the clock required for their 
operation:

a) USB: The USB 48 MHz clock is derived from the PLL VCO clock which should be 
at 96MHz

b) SIDO: The SDIO clock (SDIOCLK) is derived from the PLL VCO clock and is equal 
to PLLVCO / 2

c) LCD: The LCD Glass clock shares the same clock source as the RTC

d) ADC: in STM32L1 series the ADC features two clock schemes: 

– Clock for the analog circuitry: ADCCLK. This clock is always the HSI oscillator 
clock. A divider by 1, 2 or 4 allows to adapt the clock frequency to the device 
operating conditions. This configuration is done using ADC_CCR[ADCPRE] bits. 
The ADC Clock depends also on the voltage range VCORE. When product voltage 

Table 8. RCC registers used for peripheral access configuration

Bus Register Comments

AHB

RCC_AHBRSTR Used to [enter/exit] the AHB peripheral from reset

RCC_AHBENR Used to [enable/disable] the AHB peripheral clock

RCC_AHBLPENR
Used to [enable/disable] the AHB peripheral clock in low 
power Sleep mode 

APB1

RCC_APB1RSTR Used to [enter/exit] the APB1 peripheral from reset

RCC_APB1ENR Used to [enable/disable] the APB1 peripheral clock

RCC_APB1LPENR
Used to [enable/disable] the APB1 peripheral clock in low 
power Sleep mode 

APB2

RCC_APB2RSTR Used to [enter/exit] the APB2 peripheral from reset

RCC_APB2ENR Used to [enable/disable] the APB2 peripheral clock

RCC_APB2LPENR
Used to [enable/disable] the APB2 peripheral clock in low 
power Sleep mode 



Peripheral migration AN3422

24/52 Doc ID 018976 Rev 2

range 3 is selected (VCORE = 1.2 V), the ADC is low speed (ADCCLK = 4 MHz, 
250 Ksps). 

– Clock for the digital interface (used for register read/write access). This clock is the 
APB2 clock. The digital interface clock can be enabled/disabled through the 
RCC_APB2ENR register (ADC1EN bit) and there is a bit to reset the ADC through 
RCC_APB2RSTR[ADCRST] bit. 

4.5 DMA
STM32F1 and STM32L1 series uses the same DMA controller fully compatible. 

STM32F1 and STM32L1 series embeds two DMA controllers, each controller has up to 7 
channels. Each channel is dedicated to managing memory access requests from one or 
more peripherals. It has an arbiter for handling the priority between DMA requests.

The table below presents the correspondence between the DMA requests of the peripherals 
in STM32F1 series and STM32L1 series.

         

Table 9. DMA request differences between STM32F1 series and STM32L1 series

Peripheral DMA request STM32F1 series STM32L1 series 

ADC1 ADC1 DMA1_Channel1 DMA1_Channel1

ADC2 ADC2 NA NA

ADC3 ADC3 DMA2_Channel5 NA

DAC
DAC_Channel1
DAC_Channel2

DMA2_Channel3 / DMA1_Channel3(1)

DMA2_Channel4 / DMA1_Channel4(1)
DMA1_Channel2

DMA1_Channel3

SPI1
SPI1_Rx
SPI1_Tx

DMA1_Channel2

DMA1_Channel3

DMA1_Channel2

DMA1_Channel3

SPI2
SPI2_Rx
SPI2_Tx

DMA1_Channel4

DMA1_Channel5

DMA1_Channel4

DMA1_Channel5

SPI3
SPI3_Rx
SPI3_Tx

DMA2_Channel1

DMA2_Channel2

DMA2_Channel1

DMA2_Channel2

USART1
USART1_Rx
USART1_Tx

DMA1_Channel5

DMA1_Channel4

DMA1_Channel5

DMA1_Channel4

USART2
USART2_Rx
USART2_Tx

DMA1_Channel6

DMA1_Channel7

DMA1_Channel6

DMA1_Channel7

USART3
USART3_Rx
USART3_Tx

DMA1_Channel3

DMA1_Channel2

DMA1_Channel3

DMA1_Channel2

UART4
UART4_Rx
UART4_Tx

DMA2_Channel3

DMA2_Channel5

DMA2_Channel3

DMA2_Channel5

UART5
UART5_Rx
UART5_Tx

DMA2_Channel4

DMA2_Channel1

DMA2_Channel2

DMA2_Channel1

I2C1
I2C1_Rx
I2C1_Tx

DMA1_Channel7

DMA1_Channel6

DMA1_Channel7

DMA1_Channel6



AN3422 Peripheral migration

Doc ID 018976 Rev 2 25/52

I2C2
I2C2_Rx
I2C2_Tx

DMA1_Channel5

DMA1_Channel4

DMA1_Channel5

DMA1_Channel4

SDIO SDIO DMA2_Channel4 DMA2_Channel4

TIM1

TIM1_UP
TIM1_CH1
TIM1_CH2
TIM1_CH3
TIM1_CH4
TIM1_TRIG
TIM1_COM

DMA1_Channel5
DMA1_Channel2

DMA1_Channel3

DMA1_Channel6
DMA1_Channel4

DMA1_Channel4

DMA1_Channel4

NA

TIM8

TIM8_UP
TIM8_CH1
TIM8_CH2
TIM8_CH3
TIM8_CH4
TIM8_TRIG
TIM8_COM

DMA2_Channel1

DMA2_Channel3

DMA2_Channel5
DMA2_Channel1

DMA2_Channel2

DMA2_Channel2
DMA2_Channel2

NA

TIM2

TIM2_UP
TIM2_CH1
TIM2_CH2
TIM2_CH3
TIM2_CH4

DMA1_Channel2
DMA1_Channel5

DMA1_Channel7

DMA1_Channel1
DMA1_Channel7

DMA1_Channel2
DMA1_Channel5

DMA1_Channel7

DMA1_Channel1
DMA1_Channel7

TIM3

TIM3_UP
TIM3_CH1
TIM3_TRIG
TIM3_CH3
TIM3_CH4

DMA1_Channel3
DMA1_Channel6

DMA1_Channel6

DMA1_Channel2
DMA1_Channel3

DMA1_Channel3
DMA1_Channel6

DMA1_Channel6

DMA1_Channel2
DMA1_Channel3

TIM4

TIM4_UP
TIM4_CH1
TIM4_CH2
TIM4_CH3

DMA1_Channel7
DMA1_Channel1

DMA1_Channel4

DMA1_Channel5

DMA1_Channel7
DMA1_Channel1

DMA1_Channel4

DMA1_Channel5

TIM5

TIM5_UP
TIM5_CH1
TIM5_CH2
TIM5_CH3
TIM5_CH4
TIM5_TRIG
TIM5_COM

DMA2_Channel2

DMA2_Channel5
DMA2_Channel4

DMA2_Channel2

DMA2_Channel1
DMA2_Channel1

NA

DMA2_Channel2

DMA2_Channel5
DMA2_Channel4

DMA2_Channel2

DMA2_Channel1
DMA2_Channel1

DMA2_Channel1

TIM6 TIM6_UP DMA2_Channel3 / DMA1_Channel3(1) DMA1_Channel2

TIM7 TIM7_UP DMA2_Channe4 / DMA1_Channel4 (1) DMA1_Channel3

Table 9. DMA request differences between STM32F1 series and STM32L1 series (continued)

Peripheral DMA request STM32F1 series STM32L1 series 



Peripheral migration AN3422

26/52 Doc ID 018976 Rev 2

4.6 Interrupts
The table below presents the interrupt vectors in STM32L1 series vs. STM32F1 series.

The changes in the interrupt vectors impact only a few peripherals:

1. ADC: in the F1 series there are two interrupt vectors for the ADCs; ADC1_2 and ADC3. 
However in L1 series there is a single interrupt vector for ADC1; ADC1_IRQ. 

2. As in STM32L1 series there are no CAN or TIM1 peripherals, their corresponding IRQs 
are now mapped to new peripherals: COMP, DAC, TIM9, TIM10, TIM11 and LCD.

         

TIM15

TIM15_UP
TIM15_CH1
TIM15_TRIG
TIM15_COM

DMA1_Channel5

DMA1_Channel5

DMA1_Channel5
DMA1_Channel5

NA

TIM16
TIM16_UP
TIM16_CH1

DMA1_Channel6
DMA1_Channel6

NA

TIM17
TIM17_UP
TIM17_CH1

DMA1_Channel7
DMA1_Channel7

NA

AES
AES_OUT
AES_IN

NA
DMA2_Channel3
DMA2_Channel5

1. For High-density value line devices, the DAC DMA requests are mapped respectively on DMA1 Channel 3 and DMA1 
Channel 4

Table 9. DMA request differences between STM32F1 series and STM32L1 series (continued)

Peripheral DMA request STM32F1 series STM32L1 series 

Table 10. Interrupt vector differences between STM32F1 series and STM32L1 series

Position STM32F1 series STM32L1 series

0 WWDG WWDG

1 PVD PVD

2 TAMPER TAMPER_ STAMP

3 RTC RTC_WKUP

4 FLASH FLASH

5 RCC RCC

6 EXTI0 EXTI0

7 EXTI1 EXTI1

8 EXTI2 EXTI2

9 EXTI3 EXTI3

10 EXTI4 EXTI4

11 DMA1_Channel1 DMA1_Channel1

12 DMA1_Channel2 DMA1_Channel2

13 DMA1_Channel3 DMA1_Channel3



AN3422 Peripheral migration

Doc ID 018976 Rev 2 27/52

14 DMA1_Channel4 DMA1_Channel4

15 DMA1_Channel5 DMA1_Channel5

16 DMA1_Channel6 DMA1_Channel6

17 DMA1_Channel7 DMA1_Channel7

18 ADC1_2 ADC1

19 CAN1_TX / USB_HP_CAN_TX ((1) USB_HP 

20 CAN1_RX0 / USB_LP_CAN_RX0 (1) USB_LP

21 CAN1_RX1 DAC

22 CAN1_SCE COMP

23 EXTI9_5 EXTI9_5

24 TIM1_BRK / TIM1_BRK _TIM9 (1) TIM9

25 TIM1_UP / TIM1_UP_TIM10 (1) TIM10

26
TIM1_TRG_COM / 
TIM1_TRG_COM_TIM11 (1) TIM11

27 TIM1_CC LCD

28 TIM2 TIM2

29 TIM3 TIM3

30 TIM4 TIM4

31 I2C1_EV I2C1_EV

32 I2C1_ER I2C1_ER

33 I2C2_EV I2C2_EV

34 I2C2_ER I2C2_ER

35 SPI1 SPI1

36 SPI2 SPI2

37 USART1 USART1

38 USART2 USART2

39 USART3 USART3

40 EXTI15_10 EXTI15_10

41 RTC_Alarm RTC_Alarm

42 OTG_FS_WKUP / USBWakeUp USB_FS_WKUP

43 TIM8_BRK / TIM8_BRK_TIM12 (1) TIM6

44 TIM8_UP / TIM8_UP_TIM13 (1) TIM7

45
TIM8_TRG_COM / 
TIM8_TRG_COM_TIM14 (1) SDIO

46 TIM8_CC TIM5

Table 10. Interrupt vector differences between STM32F1 series and STM32L1 series 
(continued)

Position STM32F1 series STM32L1 series



Peripheral migration AN3422

28/52 Doc ID 018976 Rev 2

47 ADC3 SPI3

48 FSMC UART4

49 SDIO UART5

50 TIM5 DMA2_Channel1

51 SPI3 DMA2_Channel2

52 UART4 DMA2_Channel3

53 UART5 DMA2_Channel4

54 TIM6 / TIM6_DAC (1) DMA2_Channel5

55 TIM7 AES

56 DMA2_Channel1 COMP_ACQ

57 DMA2_Channel2 NA

58 DMA2_Channel3 NA

59 DMA2_Channel4 / DMA2_Channel4_5(1) NA

60 DMA2_Channel5 NA

61 ETH NA

62 ETH_WKUP NA

63 CAN2_TX NA

64 CAN2_RX0 NA

65 CAN2_RX1 NA

66 CAN2_SCE NA

67 OTG_FS NA
         

1. Depending on the product line used.

Table 10. Interrupt vector differences between STM32F1 series and STM32L1 series 
(continued)

Position STM32F1 series STM32L1 series

Color key: 

= Different Interrupt vector

= Interrupt Vector name changed but F1 peripheral still mapped on the same Interrupt Vector 
position in L1 series

= Feature not available (NA)



AN3422 Peripheral migration

Doc ID 018976 Rev 2 29/52

4.7 GPIO
The STM32L1 GPIO peripheral embeds new features compared to F1 series, below the 
main features:

● GPIO mapped on AHB bus for better performance

● I/O pin multiplexer and mapping: pins are connected to on-chip peripherals/modules 
through a multiplexer that allows only one peripheral alternate function (AF) connected 
to an I/O pin at a time. In this way, there can be no conflict between peripherals sharing 
the same I/O pin.

● More possibilities and features for I/O configuration

The L1 GPIO peripheral is a new design and thus the architecture, features and registers 
are different from the GPIO peripheral in the F1 series, so any code written for the F1 series 
using the GPIO needs to be rewritten to run on L1 series.

For more information about STM32L1’s GPIO programming and usage, please refer to the 
"I/O pin multiplexer and mapping" section in the GPIO chapter of the STM32L1xx Reference 
Manual (RM0038).

The table below presents the differences between GPIOs in the STM32F1 series and 
STM32L1 series. 

         

Table 11. GPIO differences between STM32F1 series and STM32L1 series

GPIO STM32F1 series STM32L1 series 

Input mode
Floating

PU
PD

Floating

PU
PD

General purpose

output

PP

OD

PP
PP + PU

PP + PD

OD
OD + PU

OD + PD

Alternate Function

output

PP
OD

PP

PP + PU 

PP + PD
OD

OD + PU

OD + PD

Input / Output Analog Analog

Output speed
2 MHz

10 MHz

50 MHz

400KHz

2 MHz
10 MHz

40 MHz 



Peripheral migration AN3422

30/52 Doc ID 018976 Rev 2

Alternate function 
selection

To optimize the number of peripheral I/O 
functions for different device packages, it 
is possible to remap some alternate 
functions to some other pins (software 
remap). 

Highly flexible pin multiplexing allows no 
conflict between peripherals sharing the 
same I/O pin.

Max IO toggle frequency 18 MHz 16 MHz

Table 11. GPIO differences between STM32F1 series and STM32L1 series (continued)

GPIO STM32F1 series STM32L1 series 



AN3422 Peripheral migration

Doc ID 018976 Rev 2 31/52

Alternate function mode

In STM32F1 series

1. The configuration to use an I/O as alternate function depends on the peripheral mode 
used, for example the USART Tx pin should be configured as alternate function push-
pull while USART Rx pin should be configured as input floating or input pull-up.

2. To optimize the number of peripheral I/O functions for different device packages 
(especially with those with low pin count), it is possible to remap some alternate 
functions to other pins by software, for example the USART2_RX pin can be mapped 
on PA3 (default remap) or PD6 (by software remap).

In STM32L1 series

1. Whatever the peripheral mode used, the I/O must be configured as alternate function, 
then the system can use the I/O in the proper way (input or output).

2. The I/O pins are connected to on-chip peripherals/modules through a multiplexer that 
allows only one peripheral’s alternate function to be connected to an I/O pin at a time. 
In this way, there can be no conflict between peripherals sharing the same I/O pin. 
Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that 
can be configured through the GPIOx_AFRL and GPIOx_AFRH registers:

– After reset all I/Os are connected to the system’s alternate function 0 (AF0)

– The peripheral alternate functions are mapped by configuring AF1 to AF13

– Cortex-M3 EVENTOUT is mapped by configuring AF15

3. In addition to this flexible I/O multiplexing architecture, each peripheral has alternate 
functions mapped on different I/O pins to optimize the number of peripheral I/O 
functions for different device packages, for example the USART2_RX pin can be 
mapped on PA3 or PD6 pin

Note: Please refer to the “Alternate function mapping” table in the STM32L15x datasheet for the 
detailed mapping of the system and the peripheral alternate function I/O pins. 

4. Configuration procedure

– Configure the desired I/O as an alternate function in the GPIOx_MODER register

– Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, 
GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively

– Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register

4.8 EXTI source selection
In STM32F1 the selection of EXTI line source is performed through EXTIx bits in 
AFIO_EXTICRx registers, while in L1 series this selection is done through EXTIx bits in 
SYSCFG_EXTICRx registers. 

Only the mapping of the EXTICRx registers has been changed, without any changes to the 
meaning of the EXTIx bits. However, the maximum range of EXTIx bits values is 0b0101 as 
only 6 GPIO ports are supported in L1 (in F1 series the maximum value is 0b0110).



Peripheral migration AN3422

32/52 Doc ID 018976 Rev 2

4.9 FLASH
The table below presents the difference between the FLASH interface of STM32F1 series 
and STM32L1 series, which can be grouped as follows:

● New interface, new technology

● New architecture

● New read protection mechanism, 3 read protection levels with JTAG fuse

Consequently the L1 Flash programming procedures and registers are different from the F1 
series, and any code written for the Flash interface in the F1 series needs to be rewritten to 
run on L1 series.

For more information on programming, erasing and protection of the L1 Flash memory, 
please refer to the STM32L1xx Flash programming manual (PM0062).

         

Table 12. FLASH differences between STM32F1 series and STM32L1 series

Feature STM32F1 series STM32L1 series 

Wait State up to 2
up to 1 (depending on the 
supply voltage)

Main/Program

memory

Start Address 0x0800 0000 0x0800 0000

End Address up to 0x080F FFFF up to 0x0805 FFFF

 Granularity
Page size = 2 Kbytes 

except for Low and Medium 
density page size = 1 Kbytes

Sector size = 4 Kbytes: 

16 Pages of 256 bytes

EEPROM memory
Start Address Available through SW emulation 

(1)

0x0808 0000

End Address 0x0808 2FFF

System memory
Start Address 0x1FFF F000 0x1FF0 0000

End Address 0x1FFF F7FF 0x1FF0 1FFF

Option Bytes
Start Address 0x1FFF F800 0x1FF8 0000/0x1FF8 0080

End Address 0x1FFF F80F 0x1FF8001F/0x1FF8 009F

OTP
Start Address

NA NA
End Address

Flash interface

Start address 0x4002 2000 0x4002 3C00

Programming

procedure
Same for all product lines Different from F1 series

Erase granularity Page (1 or 2 Kbytes)

Program memory: Page (256 
bytes)

DATA EEPROM memory: byte/ 
halfword/ word / double word



AN3422 Peripheral migration

Doc ID 018976 Rev 2 33/52

4.10 ADC
The table below presents the differences between the ADC interface of STM32F1 series 
and STM32L1 series, these differences are the following:

● New digital interface

● New architecture and new features

         

Program mode Half word

Program memory: word/ half 
page

DATA EEPROM memory: byte / 
half word / word / Double word

Read Protection

Unprotection 
Read protection disable
RDP = 0xA55A

Level 0 no protection
RDP = 0xAA

Protection
Read protection enable
RDP != 0xA55A

Level 1 memory protection
RDP != (Level 2 & Level 0)

JTAG fuse NA Level 2 RDP = 0xCC (2)

Write protection granularity Protection by 4 Kbyte block Protection by sector

User Option bytes

STOP STOP

STANDBY STANDBY

WDG WDG

NA BOR level

NA BFB2
         

1. For more details refer to “EEPROM emulation in STM32F10x microcontrollers (AN2594)

2. Memory read protection Level 2 is an irreversible operation. When Level 2 is activated, the level of protection cannot be 
decreased to Level 0 or Level 1.

Table 12. FLASH differences between STM32F1 series and STM32L1 series (continued)

Feature STM32F1 series STM32L1 series 

Color key: 

= New feature or new architecture

= Same feature, but specification change or enhancement

= Feature not available (NA)

Table 13. ADC differences between STM32F1 series and STM32L1 series

ADC STM32F1 series STM32L1 series 

ADC Type SAR structure SAR structure

Instances ADC1 / ADC2 / ADC3 ADC1

Max Sampling freq 1 MSPS 1 MSPS



Peripheral migration AN3422

34/52 Doc ID 018976 Rev 2

Number of 
channels

up to 21 channels up to 42 Channels

Resolution 12-bit 12-bit

Conversion Modes
Single / continuous / Scan / Discontinuous / 
Dual Mode 

Single / continuous / Scan / Discontinuous

DMA Yes Yes

External Trigger

Yes Yes

External event for 
regular group
For ADC1 and ADC2:

  TIM1 CC1

  TIM1 CC2

  TIM1 CC3
  TIM2 CC2

  TIM3 TRGO

  TIM4 CC4
  EXTI line 11 / 

     TIM8_TRGO 

For ADC3:
  TIM3 CC1

  TIM2 CC3

  TIM1 CC3
  TIM8 CC1

  TIM8 TRGO

  TIM5 CC1
  TIM5 CC3

External event for 
injected group
For ADC1 and ADC2:

  TIM1 TRGO

  TIM1 CC4 

  TIM2 TRGO
  TIM2 CC1 

  TIM3 CC4 

  TIM4 TRGO
  EXTI line15 / 

    TIM8_CC4 

For ADC3:
  TIM1 TRGO

  TIM1 CC4 

  TIM4 CC3 
  TIM8 CC2 

  TIM8 CC4 

  TIM5 TRGO
  TIM5 CC4

External event for 
regular group
TIM9_CC2

TIM9_TRGO

TIM2_CC3
TIM2_CC2

TIM3_TRGO

TIM4_CC4
TIM2_TRGO

TIM3_CC1

TIM3_CC3
TIM4_TRGO

TIM6_TRGO

EXTI line11

External event for 
injected group
TIM9_CC1

TIM9_TRGO

TIM2_TRGO
TIM2_CC1

TIM3_CC4

TIM4_TRGO
TIM4_CC1

TIM4_CC2

TIM4_CC3
TIM10_CC1

TIM7_TRGO

EXTI line15

Supply requirement 2.4 V to 3.6 V 1.8 V to 3.6 V

Input range VREF- <= VIN <= VREF+ VREF- <= VIN <= VREF+

         

Table 13. ADC differences between STM32F1 series and STM32L1 series (continued)

ADC STM32F1 series STM32L1 series 

Color key: 

= Same feature, but specification change or enhancement



AN3422 Peripheral migration

Doc ID 018976 Rev 2 35/52

4.11 PWR 
In STM32L1 series the PWR controller presents some differences vs. F1 series, these 
differences are summarized in the table below. However, the programming interface is 
unchanged.

         

Table 14. PWR differences between STM32F1 series and STM32L1 series

PWR STM32F1 series STM32L1 series 

Power supplies

1. VDD = 2.0 to 3.6 V: external power 
supply for I/Os and the internal 
regulator. Provided externally through 
VDD pins.

2. VSSA, VDDA = 2.0 to 3.6 V: external 
analog power supplies for ADC, DAC, 
Reset blocks, RCs and PLL (minimum 
voltage to be applied to VDDA is 2.4 V 
when the ADC or DAC is used). VDDA 
and VSSA must be connected to VDD 
and VSS, respectively.

3. VBAT = 1.8 to 3.6 V: power supply for 
RTC, external clock 32 kHz oscillator 
and backup registers (through power 
switch) when VDD is not present.

1. VDD = 1.8 V (at power on) or 1.65 V (at power down) 
to 3.6 V when the BOR is available. VDD = 1.65 V to 
3.6 V, when BOR is not available. 

VDD is the external power supply for I/Os and internal 
regulator. It is provided externally through VDD pins.

2. VCORE = 1.2 to 1.8 V
VCORE is the power supply for digital peripherals, SRAM 
and Flash memory. It is generated by a internal voltage 
regulator. Three VCORE ranges can be selected by 
software depending on VDD.

3. VSSA, VDDA = 1.8 V (at power on) or 1.65 V (at power 
down) to 3.6 V, when BOR is available and VSSA, VDDA = 
1.65 to 3.6 V, when BOR is not available.
VDDA is the external analog power supply for ADC, DAC, 
reset blocks, RC oscillators and PLL. The minimum 
voltage to be applied to VDDA is 1.8 V when the ADC is 
used.

4. VLCD = 2.5 to 3.6 V
The LCD controller can be powered either externally 
through the VLCD pin, or internally from an internal 
voltage generated by the embedded step-up converter.

Battery backup 
domain

– Backup registers

– RTC

– LSE
– PC13 to PC15 I/Os

Note: in F1 series the Backup registers 
are integrated in the BKP peripheral.

NA

RTC domain NA

– RTC w/ backup registers
– LSE

– PC13 to PC15 I/Os

Note: in L1 series the backup registers are integrated in 
the RTC peripheral

Power supply 
supervisor

Integrated POR / PDR circuitry 

Programmable Voltage Detector (PVD)

Integrated POR / PDR circuitry 

Programmable voltage detector (PVD)

NA Brownout reset (BOR)



Peripheral migration AN3422

36/52 Doc ID 018976 Rev 2

Low-power 
modes

Sleep mode 

Stop mode 

Standby mode (1.8V domain powered-
off)

RUN Low Power

Sleep mode + peripherals automatic clock gating

Sleep Low Power mode + peripherals automatic clock 
gating

Stop mode
Standby mode (VCORE domain powered off)

Note: To further reduce power consumption in Sleep 
mode the peripheral clocks can be disabled prior to 
executing the WFI or WFE instructions.

Wake-up 
sources

Sleep mode

– Any peripheral interrupt/wakeup event

Stop mode
– Any EXTI line event/interrupt

Standby mode

– WKUP pin rising edge

– RTC alarm
– External reset in NRST pin

– IWDG reset

Sleep mode
– Any peripheral interrupt/wakeup event

Stop mode

– Any EXTI line event/interrupt

Standby mode
– WKUP pin rising edge

– RTC alarm A, RTC alarm B, RTC Wakeup, Tamper  
event, TimeStamp event

– External reset in NRST pin

– IWDG reset

Configuration NA

In L1 some additional bits were added:

– PWR_CR[ULP] used to switch off the VREFINT in 
STOP and STANDBY modes.

– PWR_CR[FWU] used to ignore the VREFINT startup 
time when exiting from low power modes.

– PWR_CR[VOS] used to select the product voltage 
range.

– PWR_CR[LPRUN] used to select the RUN low power 
mode.

– PWR_CSR[VREFINTRDY]: VREFTINT ready status 
– PWR_CSR[VOSF]: Internal Regulator change status

– PWR_CSR[REGLP]: MCU is in Low power run mode

– PWR_CSR[EWUP2] and PWR_CSR[EWUP3]:
Wakeup Pin 2 and Wakeup Pin 3 Enable/Disable bits.

         

Table 14. PWR differences between STM32F1 series and STM32L1 series (continued)

PWR STM32F1 series STM32L1 series 

Color key: 

= New feature or new architecture

= Same feature, but specification change or enhancement



AN3422 Peripheral migration

Doc ID 018976 Rev 2 37/52

4.12 RTC
The STM32L1 series embeds a new RTC peripheral vs. F1 series; the architecture, features 
and programming interface are different.

As consequence the L1 RTC programming procedures and registers are different from the 
the F1 series, so any code written for the F1 series using the RTC needs to be rewritten to 
run on L1 series.

The L1 RTC provides best-in-class features:

● BCD timer/counter

● Time-of-day clock/calendar with programmable daylight saving compensation

● Two programmable alarm interrupts

● Digital calibration circuit

● Time-stamp function for event saving

● Periodic programmable wakeup flag with interrupt capability

● Automatic wakeup unit to manage low power modes

● 32 backup registers (128 bytes) which are reset when a tamper detection event occurs

For more information about STM32L1’s RTC features, please refer to RTC chapter of 
STM32L1xx Reference Manual (RM0038).

For advanced information about the RTC programming, please refer to Application Note 
AN3371 Using the STM32 HW real-time clock (RTC).



Firmware migration using the library AN3422

38/52 Doc ID 018976 Rev 2

5 Firmware migration using the library

This section describes how to migrate an application based on STM32F1xx Standard 
Peripherals Library in order to use the STM32L1xx Standard Peripherals Library. 

The STM32F1xx and STM32L1xx libraries have the same architecture and are CMSIS 
compliant, they use the same driver naming and the same APIs for all compatible 
peripheral.

Only a few peripheral drivers need to be updated to migrate the application from an F1 
series to an L1 series product.

Note: In the rest of this chapter (unless otherwise specified), the term “STM32L1xx Library” is 
used to refer to the STM32L1xx Standard Peripherals Library and the term of “STM32F10x 
Library” is used to refer to the STM32F10x Standard Peripherals Library.

5.1 Migration steps
To update your application code to run on STM32L1xx Library, you have to follow the steps 
listed below:

5. Update the toolchain startup files

a) Project files: device connections and Flash memory loader. These files are 
provided with the latest version of your toolchain that supports STM32L1xxx 
devices. For more information please refer to your toolchain documentation.

b) Linker configuration and vector table location files: these files are developed 
following the CMSIS standard and are included in the STM32L1xx Library install 
package under the following directory: Libraries\CMSIS\Device\ST\STM32L1xx.

6. Add STM32L1xx Library source files to the application sources

a) Replace the stm32f10x_conf.h file of your application with stm32l1xx_conf.h 
provided in STM32L1xx Library.

b) Replace the existing stm32f10x_it.c/stm32f10x_it.h files in your application with 
stm32l1xx_it.c/stm32l1xx_it.h provided in STM32L1xx Library. 

7. Update the part of your application code that uses the RCC, PWR, GPIO, FLASH, ADC 
and RTC drivers. Further details are provided in the next section.

Note: The STM32L1xx Library comes with a rich set of examples (87 in total) demonstrating how 
to use the different peripherals (under Project\STM32L1xx_StdPeriph_Examples\). 

5.2 RCC
1. System clock configuration: as presented in section 4.4: RCC the STM32L1 and F1 

series have the same clock sources and configuration procedures. However, there are 
some differences related to the product voltage range, PLL configuration, maximum 
frequency and Flash wait state configuration. Thanks to the CMSIS layer, these 
differences are hidden from the application code; you only have to replace the 
system_stm32f10x.c file by system_stm32l1xx.c file. This file provides an 



AN3422 Firmware migration using the library

Doc ID 018976 Rev 2 39/52

implementation of SystemInit() function used to configure the microcontroller system at 
start-up and before branching to the main() program.

Note: For STM32L1xx you can use the clock configuration tool, 
STM32L1xx_Clock_Configuration.xls, to generate a customized SystemInit() function 
depending on your application requirements. For more information, refer to AN3309 “Clock 
configuration tool for STM32L1xx microcontrollers”

2. Peripheral access configuration: as presented in section 4.4: RCC you need to call 
different functions to [enable/disable] or [enter/exit] the peripheral [clock] or [from reset 
mode]. For example, GPIOA is mapped on AHB bus on L1 series (APB2 bus on F1 
series), to enable its clock you have to use the 
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
function instead of: 
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
in the F1 series. Refer to Table 4 on page 15 for the peripheral bus mapping changes 
between L1 and F1 series.

3. Peripheral clock configuration

a) USB FS Device: in STM32L1 series the USB FS Device require a frequency of 48 
MHz to work correctly. The following is an example of the main PLL configuration 
to obtain 32 MHz as system clock frequency and 48 MHz for the USB FS Device.

/* PLL_VCO = HSE_VALUE * PLL_MUL = 96 MHz */
/* USBCLK = PLL_VCO / 2= 48 MHz */
/* SYSCLK = PLL_VCO * PLL_DIV = 32 MHz */
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMUL12 | RCC_CFGR_PLLDIV3);
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;

/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
        
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{
}
  ... 
/* Enable USB FS Device's APB1 interface clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USB, ENABLE);

b) ADC: in STM32L1 series the ADC features two clock schemes: 

– Clock for the analog circuitry: ADCCLK. This clock is generated always from the 
HSI clock divided by a programmable prescaler that allows the ADC to work at 
fHSI/1, /2 or /4. This configuration is done using the ADC registers.

– Clock for the digital interface (used for register read/write access). This clock is 
equal to the APB2 clock. The digital interface clock can be enabled/disabled 
through the RCC APB2 peripheral clock enable register (RCC_APB2ENR). 



Firmware migration using the library AN3422

40/52 Doc ID 018976 Rev 2

/* Enable the HSI oscillator */
RCC_HSICmd(ENABLE);

/* Check that HSI oscillator is ready */
  while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET)
{
}
/* Enable ADC1 clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

5.3 FLASH
The table below presents the FLASH driver API correspondence between STM32F10x and 
STM32L1xx Libraries. You can easily update your application code by replacing 
STM32F10x functions by the corresponding function in STM32L1xx Library.

         

Table 15. STM32F10x and STM32L1xx FLASH driver API correspondence

STM32F10x Flash driver API STM32L1xx Flash driver API

In
te

rf
ac

e 
co

n
fi

g
u

ra
ti

o
n

void FLASH_SetLatency(uint32_t 
FLASH_Latency);

void FLASH_SetLatency(uint32_t FLASH_Latency);

void 
FLASH_PrefetchBufferCmd(uint32_t 
FLASH_PrefetchBuffer);

void FLASH_PrefetchBufferCmd(FunctionalState 
NewState);

void 
FLASH_HalfCycleAccessCmd(uint32_t 
FLASH_HalfCycleAccess);

NA

NA
void FLASH_ReadAccess64Cmd(FunctionalState 
NewState);

NA
void FLASH_RUNPowerDownCmd(FunctionalState 
NewState);

NA
void FLASH_SLEEPPowerDownCmd(FunctionalState 
NewState);

void FLASH_ITConfig(uint32_t 
FLASH_IT, FunctionalState NewState);

void FLASH_ITConfig(uint32_t FLASH_IT, FunctionalState 
NewState);



AN3422 Firmware migration using the library

Doc ID 018976 Rev 2 41/52

M
em

o
ry

 P
ro

g
ra

m
m

in
g

void FLASH_Unlock(void); void FLASH_Unlock(void);

void FLASH_Lock(void); void FLASH_Lock(void);

FLASH_Status 
FLASH_ErasePage(uint32_t 
Page_Address);

FLASH_Status FLASH_ErasePage(uint32_t 
Page_Address);

FLASH_Status 
FLASH_EraseAllPages(void);

NA

FLASH_Status 
FLASH_EraseOptionBytes(void);

NA

FLASH_Status 
FLASH_ProgramWord(uint32_t Address, 
uint32_t Data);

FLASH_Status FLASH_FastProgramWord(uint32_t 
Address, uint32_t Data);

FLASH_Status 
FLASH_ProgramHalfWord(uint32_t 
Address, uint16_t Data);

NA

NA
FLASH_Status FLASH_ProgramHalfPage(uint32_t Address, 
uint32_t* pBuffer);

NA
FLASH_Status FLASH_ProgramParallelHalfPage(uint32_t 
Address1, uint32_t* pBuffer1, uint32_t Address2, uint32_t* 
pBuffer2);

NA
FLASH_Status FLASH_EraseParallelPage(uint32_t 
Page_Address1, uint32_t Page_Address2);

Table 15. STM32F10x and STM32L1xx FLASH driver API correspondence (continued)

STM32F10x Flash driver API STM32L1xx Flash driver API



Firmware migration using the library AN3422

42/52 Doc ID 018976 Rev 2

O
p

ti
o

n
 B

yt
e 

P
ro

g
ra

m
m

in
g

NA void FLASH_OB_Unlock(void);

NA void FLASH_OB_Lock(void);

FLASH_Status 
FLASH_ProgramOptionByteData(uint32
_t Address, uint8_t Data);

NA

FLASH_Status 
FLASH_EnableWriteProtection(uint32_t 
FLASH_Pages);

FLASH_Status FLASH_OB_WRPConfig(uint32_t OB_WRP, 
FunctionalState NewState);

FLASH_Status 
FLASH_ReadOutProtection(FunctionalS
tate NewState);

FLASH_Status FLASH_OB_RDPConfig(uint8_t OB_RDP);

FLASH_Status 
FLASH_UserOptionByteConfig(uint16_t 
OB_IWDG, uint16_t OB_STOP, uint16_t 
OB_STDBY);

FLASH_Status FLASH_OB_UserConfig(uint8_t OB_IWDG, 
uint8_t OB_STOP, uint8_t OB_STDBY);

NA FLASH_Status FLASH_OB_BORConfig(uint8_t OB_BOR);

NA FLASH_Status FLASH_OB_BootConfig(uint8_t OB_BOOT);

NA FLASH_Status FLASH_OB_Launch(void);

uint32_t 
FLASH_GetUserOptionByte(void);

uint8_t FLASH_OB_GetUser(void);

uint32_t 
FLASH_GetWriteProtectionOptionByte(v
oid);

uint16_t FLASH_OB_GetWRP(void);

FlagStatus 
FLASH_GetReadOutProtectionStatus(v
oid);

FlagStatus FLASH_OB_GetRDP(void);

NA
FLASH_Status FLASH_OB_WRP1Config(uint32_t 
OB_WRP1, FunctionalState NewState);

NA
FLASH_Status FLASH_OB_WRP2Config(uint32_t 
OB_WRP2, FunctionalState NewState);

NA uint16_t FLASH_OB_GetWRP1(void);

NA uint16_t FLASH_OB_GetWRP2(void);

NA uint8_t FLASH_OB_GetBOR(void);

Table 15. STM32F10x and STM32L1xx FLASH driver API correspondence (continued)

STM32F10x Flash driver API STM32L1xx Flash driver API



AN3422 Firmware migration using the library

Doc ID 018976 Rev 2 43/52

F
L

A
G

 m
an

ag
em

en
t

FlagStatus 
FLASH_GetFlagStatus(uint32_t 
FLASH_FLAG);

FlagStatus FLASH_GetFlagStatus(uint32_t FLASH_FLAG);

void FLASH_ClearFlag(uint32_t 
FLASH_FLAG);

void FLASH_ClearFlag(uint32_t FLASH_FLAG);

FLASH_Status FLASH_GetStatus(void); FLASH_Status FLASH_GetStatus(void);

FLASH_Status 
FLASH_WaitForLastOperation(uint32_t 
Timeout);

FLASH_Status FLASH_WaitForLastOperation(void);

FlagStatus 
FLASH_GetPrefetchBufferStatus(void);

NA

D
A

TA
 E

E
P

R
O

M
 m

an
ag

em
en

t

NA void  DATA_EEPROM_Unlock(void);

NA void  DATA_EEPROM_Lock(void);

NA
FLASH_Status  DATA_EEPROM_EraseWord(uint32_t 
Address);

NA
FLASH_Status 
DATA_EEPROM_EraseDoubleWord(uint32_t Address);

NA
FLASH_Status  DATA_EEPROM_FastProgramByte(uint32_t 
Address, uint8_t Data);

NA
FLASH_Status 
DATA_EEPROM_FastProgramHalfWord(uint32_t Address, 
uint16_t Data);

NA
FLASH_Status  
DATA_EEPROM_FastProgramWord(uint32_t Address, 
uint32_t Data);

NA
FLASH_Status  DATA_EEPROM_ProgramByte(uint32_t 
Address, uint8_t Data);

NA
FLASH_Status  
DATA_EEPROM_ProgramHalfWord(uint32_t Address, 
uint16_t Data);

NA
FLASH_Status DATA_EEPROM_ProgramWord(uint32_t 
Address, uint32_t Data);

NA
FLASH_Status 
DATA_EEPROM_ProgramDoubleWord(uint32_t Address, 
uint64_t Data);

         

Table 15. STM32F10x and STM32L1xx FLASH driver API correspondence (continued)

STM32F10x Flash driver API STM32L1xx Flash driver API

Color key: 

= New function

= Same function, but API was changed

= Function not available (NA)



Firmware migration using the library AN3422

44/52 Doc ID 018976 Rev 2

5.4 GPIO
This section explains how to update the configuration of the various GPIO modes when 
porting the application code from STM32F1 series to STM32L1 series.

5.4.1 Output mode

The example below shows how to configure an I/O in output mode (for example to drive a 
led) in STM32F1 series:
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_xxMHz; /* 2, 10 or 50 MHz */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 
GPIO_Init(GPIOy, &GPIO_InitStructure);

In L1 series you have to update this code as follows:
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; /* Push-pull or open drain */
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; /* None, Pull-up or pull-down */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_xxMHz; /* 400 KHz, 2, 10 or 40MHz */
GPIO_Init(GPIOy, &GPIO_InitStructure);

5.4.2 Input mode

The example below shows how to configure an I/O in input mode (for example to be used as 
an EXTI line) in STM32F1 series:
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOy, &GPIO_InitStructure);

In L1 series you have to update this code as follows:
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; /* None, Pull-up or pull-down */
GPIO_Init(GPIOy, &GPIO_InitStructure);

5.4.3 Analog mode

The example below shows how to configure an I/O in analog mode (for example an ADC or 
DAC channel) in STM32F1 series:
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOy, &GPIO_InitStructure);

In L1 series you have to update this code as follows:
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_x ;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOy, &GPIO_InitStructure);



AN3422 Firmware migration using the library

Doc ID 018976 Rev 2 45/52

5.4.4 Alternate function mode

In STM32F1 series

1. The configuration to use an I/O as alternate function depends on the peripheral mode 
used, for example the USART Tx pin should be configured as alternate function push-
pull while the USART Rx pin should be configured as input floating or input pull-up.

2. To optimize the number of peripheral I/O functions for different device packages, it is 
possible by software to remap some alternate functions to other pins, for example the 
USART2_RX pin can be mapped on PA3 (default remap) or PD6 (by software remap).

In STM32L1 series

1. Whatever the peripheral mode used, the I/O must be configured as alternate function, 
then the system can use the I/O in the proper way (input or output).

2. The I/O pins are connected to onboard peripherals/modules through a multiplexer that 
allows only one peripheral’s alternate function to be connected to an I/O pin at a time. 
In this way, there can be no conflict between peripherals sharing the same I/O pin. 
Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that 
can be configured through the GPIO_PinAFConfig () function:

– After reset all I/Os are connected to the system’s alternate function 0 (AF0)

– The peripherals’ alternate functions are mapped by configuring AF1 to AF13

– Cortex-M3 EVENTOUT is mapped by configuring AF15

3. In addition to this flexible I/O multiplexing architecture, each peripheral has alternate 
functions mapped onto different I/O pins to optimize the number of peripheral I/O 
functions for different device packages, for example the USART2_RX pin can be 
mapped on PA3 or PD6 pin

4. Configuration procedure

– Connect the pin to the desired peripherals' Alternate Function (AF) using 
GPIO_PinAFConfig() function

– Use GPIO_Init() function to configure the I/O pin:

- Configure the desired pin in alternate function mode using 
GPIO_InitStructure->GPIO_Mode = GPIO_Mode_AF;

- Select the type, pull-up/pull-down and output speed via 
GPIO_PuPd, GPIO_OType and GPIO_Speed members

The example below shows how to remap USART2 Tx/Rx I/Os on PD5/PD6 pins in 
STM32F1 series:
  /* Enable APB2 interface clock for GPIOD and AFIO (AFIO peripheral is used 
     to configure the I/Os software remapping) */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_AFIO, ENABLE);

  /* Enable USART2 I/Os software remapping [(USART2_Tx,USART2_Rx):(PD5,PD6)] */
  GPIO_PinRemapConfig(GPIO_Remap_USART2, ENABLE);    

  /* Configure USART2_Tx as alternate function push-pull */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOD, &GPIO_InitStructure);

  /* Configure USART2_Rx as input floating */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
  GPIO_Init(GPIOD, &GPIO_InitStructure);



Firmware migration using the library AN3422

46/52 Doc ID 018976 Rev 2

In L1 series you have to update this code as follows:
  /* Enable GPIOD's AHB interface clock */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE);

  /* Select USART2 I/Os mapping on PD5/6 pins [(USART2_TX,USART2_RX):(PD5,PD6)] */
  /* Connect PD5 to USART2_Tx */
  GPIO_PinAFConfig(GPIOD, GPIO_PinSource5, GPIO_AF_USART2);
  /* Connect PD6 to USART2_Rx*/
  GPIO_PinAFConfig(GPIOD, GPIO_PinSource6, GPIO_AF_USART2);

  /* Configure USART2_Tx and USART2_Rx as alternate function */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_40MHz;
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
  GPIO_Init(GPIOD, &GPIO_InitStructure);

5.5 EXTI
The example below shows how to configure the PA0 pin to be used as EXTI Line0 in 
STM32F1 series:
  /* Enable APB interface clock for GPIOA and AFIO */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);

  /* Configure PA0 pin in input mode */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
  GPIO_Init(GPIOA, &GPIO_InitStructure);

  /* Connect EXTI Line0 to PA0 pin */
  GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0);

  /* Configure EXTI line0 */
  EXTI_InitStructure.EXTI_Line = EXTI_Line0;
  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;  
  EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  EXTI_Init(&EXTI_InitStructure);

In L1 series the configuration of the EXTI line source pin is performed in the SYSCFG 
peripheral (instead of AFIO in F1 series). As result, the source code should be updated as 
follows:
  /* Enable GPIOA's AHB interface clock */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
  /* Enable SYSCFG's APB interface clock */    
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

  /* Configure PA0 pin in input mode */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
  GPIO_Init(GPIOA, &GPIO_InitStructure);

  /* Connect EXTI Line0 to PA0 pin */
  SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0);

  /* Configure EXTI line0 */



AN3422 Firmware migration using the library

Doc ID 018976 Rev 2 47/52

  EXTI_InitStructure.EXTI_Line = EXTI_Line0;
  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;  
  EXTI_InitStructure.EXTI_LineCmd = ENABLE;
  EXTI_Init(&EXTI_InitStructure);

5.6 ADC
This section gives an example of how to port existing code from STM32F1 series to 
STM32L1 series.

The example below shows how to configure the ADC1 to convert continuously channel14 in 
STM32F1 series:
  ...
  /* ADCCLK = PCLK2/4 */
  RCC_ADCCLKConfig(RCC_PCLK2_Div4); 
  
  /* Enable ADC's APB interface clock */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
  
  /* Configure ADC1 to convert continously channel14 */
  ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfChannel = 1;
  ADC_Init(ADC1, &ADC_InitStructure);
  /* ADC1 regular channel14 configuration */ 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_55Cycles5);

  /* Enable ADC1's DMA interface */
  ADC_DMACmd(ADC1, ENABLE);
  
  /* Enable ADC1 */
  ADC_Cmd(ADC1, ENABLE);

  /* Enable ADC1 reset calibration register */   
  ADC_ResetCalibration(ADC1);
  /* Check the end of ADC1 reset calibration register */
  while(ADC_GetResetCalibrationStatus(ADC1));

  /* Start ADC1 calibration */
  ADC_StartCalibration(ADC1);
  /* Check the end of ADC1 calibration */
  while(ADC_GetCalibrationStatus(ADC1));
     
  /* Start ADC1 Software Conversion */ 
  ADC_SoftwareStartConvCmd(ADC1, ENABLE);
  ...

In L1 series you have to update this code as follows:
  ...
/* Enable the HSI oscillator */
  RCC_HSICmd(ENABLE);
  
  /* Check that HSI oscillator is ready */
  while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET)
  {
  }



Firmware migration using the library AN3422

48/52 Doc ID 018976 Rev 2

  /* Enable ADC1 clock */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

  /* Common configuration *****************************************************/
  /* ADCCLK = HSI/1 */
  ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div1;
  ADC_CommonInit(&ADC_CommonInitStructure);
  
  /* ADC1 configuration */
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConvEdge_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfConversion = 1;
  ADC_Init(ADC1, &ADC_InitStructure);
  
  /* ADC1 regular channel14 configuration */ 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_4Cycles);

  /* Enable the request after last transfer for DMA Circular mode */
  ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
  
  /* Enable ADC1 DMA */
  ADC_DMACmd(ADC1, ENABLE);
    
  /* Enable ADC1 */
  ADC_Cmd(ADC1, ENABLE);

  /* Wait until the ADC1 is ready */
  while(ADC_GetFlagStatus(ADC1, ADC_FLAG_ADONS) == RESET)
  {
  }

  /* Start ADC1 Software Conversion */ 
  ADC_SoftwareStartConv(ADC1); 
  ...

The main changes in the source code/procedure in L1 series vs. F1 are described below:

1. ADC configuration is made through two functions ADC_CommonInit() and ADC_Init(): 
ADC_CommonInit() function is used to configure the ADC analog clock prescaler.

2. To enable the generation of DMA requests continuously at the end of the last DMA 
transfer, the ADC_DMARequestAfterLastTransferCmd() function should be used.

3. No calibration is needed

5.7 PWR
The table below presents the PWR driver API correspondence between STM32F10x and 
STM32L1xx Libraries. You can easily update your application code by replacing 
STM32F10x functions by the corresponding function in STM32L1xx Library.



AN3422 Firmware migration using the library

Doc ID 018976 Rev 2 49/52

         

Table 16. STM32F10x and STM32L1xx PWR driver API correspondence

STM32F10x PWR driver API STM32L1xx PWR driver API

In
te

rf
ac

e 
co

n
fi

g
u

ra
ti

o
n void PWR_DeInit(void); void PWR_DeInit(void);

void 
PWR_BackupAccessCmd(FunctionalSta
te NewState);

void PWR_RTCAccessCmd(FunctionalState NewState);

P
V

D

void PWR_PVDLevelConfig(uint32_t 
PWR_PVDLevel);

void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel);

void PWR_PVDCmd(FunctionalState 
NewState);

void PWR_PVDCmd(FunctionalState NewState);

W
ak

eu
p

void 
PWR_WakeUpPinCmd(FunctionalState 
NewState);

void PWR_WakeUpPinCmd(uint32_t PWR_WakeUpPin, 
FunctionalState NewState);

NA void PWR_FastWakeUpCmd(FunctionalState NewState);

NA void PWR_UltraLowPowerCmd(FunctionalState NewState);

P
ow

er
 M

an
ag

em
en

t

NA
void PWR_VoltageScalingConfig(uint32_t 
PWR_VoltageScaling);

NA
void PWR_EnterLowPowerRunMode(FunctionalState 
NewState);

NA
void PWR_EnterSleepMode(uint32_t PWR_Regulator, 
uint8_t PWR_SLEEPEntry);

void PWR_EnterSTOPMode(uint32_t 
PWR_Regulator, uint8_t 
PWR_STOPEntry);

void PWR_EnterSTOPMode(uint32_t PWR_Regulator, 
uint8_t PWR_STOPEntry);

void PWR_EnterSTANDBYMode(void); void PWR_EnterSTANDBYMode(void);

F
L

A
G

 m
an

ag
em

en
t FlagStatus 

PWR_GetFlagStatus(uint32_t 
PWR_FLAG);

FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG);

void PWR_ClearFlag(uint32_t 
PWR_FLAG);

void PWR_ClearFlag(uint32_t PWR_FLAG);

         

Color key: 

= New function

= Same function, but API was changed

= Function not available (NA)



Firmware migration using the library AN3422

50/52 Doc ID 018976 Rev 2

5.8 Backup data registers
In STM32F1 series the Backup data registers are managed through the BKP peripheral, 
while in L1 series they are a part of the RTC peripheral (there is no BKP peripheral).

The example below shows how to write to/read from Backup data registers in STM32F1 
series:

uint16_t BKPdata = 0;

  ...
  /* Enable APB2 interface clock for PWR and BKP */
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);

  /* Enable write access to Backup domain */
  PWR_BackupAccessCmd(ENABLE);

  /* Write data to Backup data register 1 */
  BKP_WriteBackupRegister(BKP_DR1, 0x3210);

  /* Read data from Backup data register 1 */  
  BKPdata = BKP_ReadBackupRegister(BKP_DR1);

In L1 series you have to update this code as follows:

uint16_t BKPdata = 0;

  ...
  /* PWR Clock Enable */
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
  
  /* Enable write access to RTC domain */
  PWR_RTCAccessCmd(ENABLE);

  /* Write data to Backup data register 1 */
  RTC_WriteBackupRegister(RTC_BKP_DR1, 0x3220);  

  /* Read data from Backup data register 1 */  
  BKPdata = RTC_ReadBackupRegister(RTC_BKP_DR1);

The main changes in the source code in L1 series vs. F1 are described below:

1. There is no BKP peripheral

2. Write to/read from Backup data registers are done through RTC driver

3. Backup data registers naming changed from BKP_DRx to RTC_BKP_DRx, and 
numbering starts from 0 instead of 1



AN3422 Revision history

Doc ID 018976 Rev 2 51/52

6 Revision history

Table 17. Document revision history

Date Revision Changes

20-Jul-2011 1 Initial release

01-Mar-2012 2 Added support for medium+ and high-density STM32L1xxx



AN3422

52/52 Doc ID 018976 Rev 2

         

 

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


	1 Introduction
	2 STM32L1 family overview
	Table 1. STM32L1 peripherals compatibility analysis (continued)

	3 Hardware migration
	Table 2. STM32F1 series and STM32L1 series pinout differences
	Figure 1. Compatible board design: LQFP144
	Figure 2. Compatible board design: LQFP100
	Figure 3. Compatible board design: LQFP64
	Figure 4. Compatible board design: LQFP48

	4 Peripheral migration
	4.1 STM32 product cross-compatibility
	Table 3. STM32 peripheral compatibility analysis F1 versus L1 series

	4.2 System architecture
	4.3 Memory mapping
	Table 4. IP bus mapping differences between STM32F1 and STM32L1 series

	4.4 RCC
	Table 5. RCC differences between STM32F1 and STM32L1 series
	Table 6. Performance versus VCORE ranges
	Table 7. Example of migrating system clock configuration code from F1 to L1
	Table 8. RCC registers used for peripheral access configuration

	4.5 DMA
	Table 9. DMA request differences between STM32F1 series and STM32L1 series (continued)

	4.6 Interrupts
	Table 10. Interrupt vector differences between STM32F1 series and STM32L1 series (continued)

	4.7 GPIO
	Table 11. GPIO differences between STM32F1 series and STM32L1 series

	4.8 EXTI source selection
	4.9 FLASH
	Table 12. FLASH differences between STM32F1 series and STM32L1 series (continued)

	4.10 ADC
	Table 13. ADC differences between STM32F1 series and STM32L1 series (continued)

	4.11 PWR
	Table 14. PWR differences between STM32F1 series and STM32L1 series (continued)

	4.12 RTC

	5 Firmware migration using the library
	5.1 Migration steps
	5.2 RCC
	5.3 FLASH
	Table 15. STM32F10x and STM32L1xx FLASH driver API correspondence (continued)

	5.4 GPIO
	5.4.1 Output mode
	5.4.2 Input mode
	5.4.3 Analog mode
	5.4.4 Alternate function mode

	5.5 EXTI
	5.6 ADC
	5.7 PWR
	Table 16. STM32F10x and STM32L1xx PWR driver API correspondence

	5.8 Backup data registers

	6 Revision history
	Table 17. Document revision history


