
June 2010 Doc ID 17286 Rev 1 1/28

AN3181
Application note

Guidelines for obtaining IEC60335 Class B certification
in an STM8 application

Introduction
Safety plays an increasingly important role in electronics hardware and software
applications. Safety requirements and suggestions are specified at a world wide level, with
international standards defined by IEC (International Electro Technical Commission) and
require certification proving compliance to the standards and showing system robustness.

The main purpose of this STM8 family application note and the associated software is to
ease and to speed up software development and certification processes for applications
subject to these requirements and certifications.

The software packages are separated for STM8S and STM8L families, but as they use the
same principles the description is a common one. The main differences between packages
concerns hardware architectural differences. They are mentioned in the present document
and summarized in Appendix A: Main differences of STM8S and STM8L packages.

These optimized packages are independent from other firmware libraries published by ST.
The only part which is included from firmware libraries are family headers and type files like
stm8xxx.h and stm8xxx_type.h where all names of the registers are defined, bit masks
and basic constants are listed. To optimize code size and speed up code execution, the rest
of the library is not included.

Projects were prepared under STVD visual development tool and compiled by Cosmic
compiler. Both tools are available for free on ST and Cosmic web sites.

Reference documents:

● AN1015 software techniques improving EMC

● AN1709 EMS design guide

● AN2860 EMC guidelines for STM8S

www.st.com

http://www.st.com

Contents AN3181

2/28 Doc ID 17286 Rev 1

Contents

1 Compliance with IEC and VDE standards . 6

1.1 VDE certified tests included in ST firmware library 7

1.2 Application specific tests . 8

1.2.1 ADC/DAC . 8

1.2.2 I/Os . 9

1.2.3 Interrupts and external communication . 9

1.2.4 Timing . 9

1.2.5 External addressing . 9

2 Class B software package . 10

2.1 Basic software principles . 10

2.1.1 Fail Safe mode . 10

2.1.2 Class B variables . 10

2.1.3 Class B flow control . 11

2.2 Package organization . 12

2.2.1 Projects and workspaces included in the package 12

2.2.2 Linker file settings . 12

2.2.3 Application demonstration example . 12

2.3 Package configuring and debugging . 13

2.3.1 Configuration control . 13

2.3.2 Verbose diagnostic mode . 13

2.3.3 Debugging the package . 14

3 Class B solution structure . 15

3.1 Integrating software into user application . 15

3.2 Detailed description of startup self tests . 15

3.2.1 Watchdog startup self test . 16

3.2.2 CPU startup self test . 17

3.2.3 Flash complete checksum self test . 17

3.2.4 Full RAM March C-/X self test . 18

3.2.5 Clock startup self test . 19

3.3 Periodic run mode self tests initialization . 20

3.4 Detailed description of periodic run mode self tests 20

AN3181 Contents

Doc ID 17286 Rev 1 3/28

3.4.1 Run time self tests structure . 20

3.4.2 CPU light run mode self test . 21

3.4.3 Stack boundaries run mode test . 21

3.4.4 Clock run mode self test . 22

3.4.5 Partial FLASH CRC run mode self test . 23

3.4.6 Watchdog service in run mode test . 24

3.4.7 Partial RAM run mode self test . 24

Appendix A Main differences of STM8S and STM8L packages 26

Revision history . 27

List of tables AN3181

4/28 Doc ID 17286 Rev 1

List of tables

Table 1. MCU components to be tested for Class B compliance . 7
Table 2. Overview of methods used in microcontroller specific tests of associated ST firmware library

8
Table 3. March C- phases at RAM partial test . 25
Table 4. Main differences of STM8 Class B optimized software packages 26
Table 5. Revision history . 27

AN3181 List of figures

Doc ID 17286 Rev 1 5/28

List of figures

Figure 1. Example of RAM memory configuration for STM8S20x . 10
Figure 2. Control flow four steps check routine . 11
Figure 3. Diagnostic LED timing signal principle . 14
Figure 4. Integration of startup and periodic run mode self tests into application 15
Figure 5. startup self tests structure. 16
Figure 6. Watchdogs startup self test structure . 17
Figure 7. CPU startup self test structure . 17
Figure 8. FLASH startup self test structure . 18
Figure 9. RAM startup self test structure . 18
Figure 10. Clock startup self test subroutine structure. 19
Figure 11. Periodic run mode self test initialization structure. 20
Figure 12. Periodic run mode self test and time base interrupt service structure 21
Figure 13. CPU light run mode self test structure . 21
Figure 14. Stack overflow run mode test structure . 22
Figure 15. Clock run mode self test structure . 22
Figure 16. Clock run mode self test principle . 23
Figure 17. Partial FLASH CRC run mode self test structure . 23
Figure 18. Partial RAM run mode self test structure) . 24
Figure 19. Fault coupling principle used at partial RAM run mode self test . 25

Compliance with IEC and VDE standards AN3181

6/28 Doc ID 17286 Rev 1

1 Compliance with IEC and VDE standards

IEC is a world wide recognized authority on international standards for a vast range of safety
issues concerning electrical, electronic and related technologies. One such safety standard
is IEC 60335-1 which covers household electronic appliances safety and security following a
hardware and software failure.

The basic principle here is that the appliance must remain safe in case of any component
failure. If safety relies on an electronic component, it must remain safe after two consecutive
failures. The two failures can be either:

● electronic component failure plus mechanical failure

● two electronic failures

A microcontroller is a specific software-driven electronic component. An appliance driven by
a microcontroller must stay in a safe mode after either of the two above conditions. The
microcontroller is either in reset or not operating properly. The software aspect becomes
important only when a second applied fault occurs and only in the case where the safety of
the device depends on the software. Safety standards are divided into three types of safety
classes from this point of view, depending on application purpose:

● Class A: Safety does not rely on software

● Class B: software prevents unsafe operation

● Class C: software is intended to prevent special hazards

This application note and associated ST software packages cover the group B specification
only.

The IEC standard compliance for microcontrollers relates both to hardware and software. A
list of microcontroller components needing evaluation for compliance is found in IEC 60335-
1 Annex T which refers to IEC60730 Annex H. The components for certification can be
divided into two groups: microcontroller specific and application specific (see Table 1: MCU
components to be tested for Class B compliance).

Microcontroller specific parts are related only to the microcontroller architecture and can be
made generic (core self diagnostic, variable and invariable memories integrity checking,
clock system tests). Application specific parts rely on customer application structure and
must be defined and developed by user (communication, I/Os software control, interrupts,
analog inputs and outputs). The ST solution consists only of the microcontroller specific
tests. They rely on the powerful STM8 MCU hardware features such as two independent
watchdogs (WDG) or clock sources.

It is important to note that there are several other peer recognized bodies concerning
electronic safety standards besides IEC, such as VDE in Germany, IET in the United
Kingdom and the IEEE in the United States. In addition, an increasing number of product
safety standards are being harmonized to international safety standards. For example, the
UL 60335-1, the DSA 60335-1 and the EN 60335-1 are all documents which are based on
the IEC 60335-1. VDE also includes a Testing and Certification Institute which is a pioneer
of software safety inspection. This is a registered National Certification Body (NCB) for
Germany. The main purpose of this testing house is to offer standards compliance and
quality testing services for electrical appliance manufacturers. The STM8 FW in this
package has been VDE certified.

AN3181 Compliance with IEC and VDE standards

Doc ID 17286 Rev 1 7/28

1.1 VDE certified tests included in ST firmware library
STM8 firmware library packages include the following microcontroller specific software
modules, which have also been certified by VDE:

● CPU registers test

● clock monitoring

● RAM functional check

● FLASH checksum integrity check

● watchdog self-test

● stack overflow monitoring

An overview of the methods used for these MCU specific tests is given in MCU parts which
must be tested under Class B compliance. They are described in more detail in the next
chapters. The last two are not explicitly required by the standard, but they improve overall
fault coverage and as such are implemented in the ST solution.

Table 1. MCU components to be tested for Class B compliance

Group Components to be tested

Micro specific

CPU registers

CPU program counter

Clock

Fixed and variable memory spaces

Internal addressing

Internal data path

Application specific

Interrupt handling

External communication and addressing (if any)

Timing

I/O periphery

ADC and DAC

Analog multiplexer

Compliance with IEC and VDE standards AN3181

8/28 Doc ID 17286 Rev 1

The user can include a part or all of these VDE certified software modules into his project. If
the modules stay unchanged and are integrated in accordance with the guidelines provided
in this application note, development time and costs to have end-application certification
would be significantly reduced.

1.2 Application specific tests
The user should be aware that the following are also required for Class B certification but
are not included in the ST firmware library:

● Analog: ADC/DAC & multiplexer

● I/Os

● Interrupts and external communication

● Timing

● External addressing

1.2.1 ADC/DAC

Analog components depend on device’s application and peripheral capabilities. Used pins
should be checked at correct intervals. Free analog pins can be used for checking user
analog reference points. Internal references should be checked, too.

Table 2. Overview of methods used in microcontroller specific tests of associated
ST firmware library

Components to be
verified

Method used

CPU registers
A, X, Y registers, flags and stack pointer functional tests are done at
startup. Flags are not tested during run test. Stack is permanently tested
for overflow and underflow. Stuck is performed at fault detection.

Program counters

Two different WDGs running on two independent clock sources can reset
the device when the program counter is lost. Window WDG (running at
core frequency) performs time slot monitoring(1). Independent WDG
(running at low speed frequency, impossible to disable once enabled)
must be serviced at regular intervals. Program control flow is monitored
by specific software routine (see Section 2.1.3).

1. Window WDG feature is not available at STM8L10x devices.

Addressing and data
path

RAM functional and FLASH integrity tests, stack overflow (specific pattern
is written at the end of stack space and checked for corruption in regular
intervals).

Clock
Two independent internal frequencies are used for the dedicated timer
clock and they are verified by reciprocal comparison. One frequency is fed
into the dedicated timer while the other gates it.

Fixed memory
Full memory16-bit CRC checksum test done at startup. Partial memory
test is repeated during run mode (block by block).

Variable memory

March C- (March X optionally) full memory test done at startup. Partial
memory test is repeated during run mode (block by block). Word
protection with double inverse redundancy is used for safety critical (Class
B) variables. Class A variable space, stack and unused space are not
tested during run mode

AN3181 Compliance with IEC and VDE standards

Doc ID 17286 Rev 1 9/28

1.2.2 I/Os

Class B tests must detect any malfunction on digital I/Os. This could be covered by
plausibility checks together with some other application parts (e.g. change in an analog
signal from temperature sensor when heating/cooling digital control is switched on/off).

1.2.3 Interrupts and external communication

Application interrupts occurrence and external communications can be checked by different
methods. One of them could be a control using a set of incremental counters where every
interrupt or communication event increments a specific counter. The values in the counters
are then verified at given time intervals by cross-checking against some other independent
time base.

1.2.4 Timing

Timing could be verified by ensuring that the application routines execution times are correct
and that there are no unexpected delays. A cross-check with a different time base could be
done. Timing control is strictly dependent on the application.

1.2.5 External addressing

External addressing is not used with STM8 microcontrollers.

Class B software package AN3181

10/28 Doc ID 17286 Rev 1

2 Class B software package

This section highlights the basic common principles used in ST software solution. The
workspace organization under STVD tool is described together with its configuration and
debugging capabilities.

2.1 Basic software principles
The basic software methods and common principles used for all the tests included in the ST
firmware library are described in detail at this section.

2.1.1 Fail Safe mode

FailSafe() routine is called (defined in stm8x_stl_startup.c file) at any fail detection. The
program stays in a never ending loop waiting for WDG reset. Except for some debugging
features, the routine is almost empty. When editing this routine, the user must remember to
include procedures necessary to keep the application in a safe state.

If the user wants to recognize the error raised, the debug or verbose mode described in
Section 2.3: Package configuring and debugging can be used. In debug mode the
independent WDG is refreshed inside the never ending loop to prevent resetting the
microcontroller when a failure occurs.

2.1.2 Class B variables

Class B variables are dedicated variables defined by the user as critical to the application.
They are always stored as a pair of complementary values in two separate RAM areas. Both
normal and redundant values are always placed into non-adjacent memory locations. Partial
transparent RAM March C- or March X test is performed permanently on these two regions
through the system interrupt routines in run mode. The integrity of the pair is compared
before the value is used. If any value stored is corrupted, FailSafe() routine is called. An
example of RAM configuration is shown in Figure 1. The user can adapt the RAM space
allocation according to application needs and with respect to device hardware capability.

Figure 1. Example of RAM memory configuration for STM8S20x

AN3181 Class B software package

Doc ID 17286 Rev 1 11/28

2.1.3 Class B flow control

A specific method is used to test and check program execution flow. Unique user defined
numbers are assigned for every software execution block. These unique numbers are stored
in two complementary counters. When a block is executed, a symmetrical four step change
of the counter pair content is done (add or subtract the label values). The first two steps
check if the block is correctly called from main flow level (processed just before calling and
just after return from the called procedure). The next two steps check if the block is correctly
completed (processed just after enter and just before return from the procedure). An
example is given in Figure 2 where a routine performing a component test is called in the
control flow sequence and the four step checking service is shown. This method decreases
CPU load as the check is done by counting one member of the complementary counter pair
only. As there is always the same number of call/return and entry/exit points, the value
stored in the counter pair must be always complementary after any block is processed.
Several flow check points are placed subsequently in the code flow. Counter integrity is
always checked here and any unexpected value results in calling the FailSafe() routine.

Figure 2. Control flow four steps check routine

1. For this example, the unique number for Component test 1 is “5” and for the procedure itself it is defined as
“7”. The counters are initialized to 0x0000 and 0xFFFF. The table in the upper right corner in Figure 2
shows how the counters are changed in four steps. Also shown is their complementary value after the last
step (return from procedure) is done.

Class B software package AN3181

12/28 Doc ID 17286 Rev 1

2.2 Package organization
This section describes how the ST solution is organized.

2.2.1 Projects and workspaces included in the package

ST provides three separate product dependent workspaces for STM8 family. STVD
workspaces IEC6035 (stored in IEC6035.stw files) include predefined projects for
corresponding STM8 family members.

Workspace for STM8S family includes:

● iec60335_207_208 (stm8s207_208.stp) for STM8S20x devices

● iec60335_105 (stm8s105.stp) for STM8S105 devices

● iec60335_103 (stm8s103.stp) for STM8S103 devices

● iec60335_903 (stm8s903.stp) for STM8S903 devices

Workspace for STM8L15x family includes:

● iec60335_15x (stm8l_15x.stp) for STM8L15x devices

Workspace for STM8L101 family includes:

● iec60335_101 (stm8l_101.stp) for STM8L101 devices

2.2.2 Linker file settings

Each project covers all settings and includes needs for both compilation and linking
processes. Also included is the STVD tool for automatic linker file generation. Some specific
segment settings, sections under checksum computation (-ck parameter) and some special
segments are added:

● checksum -ik (collects descriptors of all segments with CRC computation)

● CLASS_B (defines space for Class B variables under RAM run check)

● STACK_BOTTOM (space for 4 byte pattern used for stack space limit)

The user can modify these settings but this must be done carefully as some addresses are
already defined for testing routines (See Class B configuration section). Changing some
settings can influence test results.

When the version of STVD tool does not support including the vector table content into the
checksum computation and the user wants to protect this part of the code, the proper linker
script file must be modified by placing the vector table as follows:

The line: “+seg .const -b 0x8000 -k”

must be replaced by: “+seg .const -b 0x8000 -k -ck”.

Note: Previously, “__ckdend__” symbol definition needed to be to included into linker script file for
some older versions of Cosmic compiler. There is no longer any need to use it.

2.2.3 Application demonstration example

A short example of user application is attached in each project main.c file with respect to
the package integration criteria (see Chapter 3: Class B solution structure). Except for
STM8L_10x, the examples were written to run on the corresponding STM8 evaluation
boards (STM8S/128-EVAL and STM8L1526-EVAL) as Class B package demonstration

AN3181 Class B software package

Doc ID 17286 Rev 1 13/28

firmware. They use on board LCD and LED diodes to display current versus initial master
clock frequency measurement changes. Display or LED outputs can be disabled in main.h
file. The main loop also performs initialization and calling all run mode tests at ordinary
intervals.

2.3 Package configuring and debugging
A functional part of the package may need to be changed, suspended, excluded or included.
For example the microcontroller type might need to be changed or there could be a non-
volatile memory space limitation. Modifications are also required to debug the user
application. This section describes how the ST solution can be configured, modified and
debugged.

2.3.1 Configuration control

Software configuration is done at two levels. The first one is automatic and consists of
configuring the project for a given microcontroller. This is done by selecting the
corresponding device project. The second one is done through user configuration. All user
defined configuration settings are collected in the Class B configuration file
stm8x_stl_param.h. The user must be very careful when modifying this file. Most of the
package functional blocks are under conditional compilation controlled by a predefined set
of constants in this file.

It is possible to disable some part(s) of the library by putting definitions in comments. This is
useful e.g. disable Flash CRC when break points are inserted to debug the code. The full
Class B package, even optimized and with disabled verbose messages, takes about 3.5KB
of code memory. Disabling some library parts could be required for microcontrollers where
the memory space is too small for application needs or when the tested parts are not
included in the application (e.g. HSE testing).

2.3.2 Verbose diagnostic mode

STM8S UART1 (UART2 for STM8105, UART for STM8L15x) interface is used to output text
messages in verbose mode. This mode is useful in debug phase as the interface can be
connected to an external terminal (the line setting is 115200 Bd, no parity, 8 bit data, 1 stop
bit). However the text messages consume too much code space in this mode. Different
levels of verbose mode can be enabled or disabled by the user through definition of
constants in the Class B configuration file stm8x_stl_param.h. For example, verbose mode
could be limited to startup, run mode or fail case only.

LEDs toggling is another way to verify a Class B event. First LED toggles at each begin and
end of run mode checks and with every successful finish of program memory test. Next LED
toggles with each begin and end of RAM partial check called on at each tick interrupt and
with every successful finish of the RAM memory test. LEDs slow toggling signals the main
processes and quick pulses modulated on the slow signal correspond to the length of partial
services, in other words, the loading time (see Figure 3). LED control can be disabled by
user in Class B configuration file stm8x_stl_param.h.

Note: Verbose mode via UART line is not used at STM8L10x package. Error codes are passed to
FailSafe() routine instead.

Class B software package AN3181

14/28 Doc ID 17286 Rev 1

Figure 3. Diagnostic LED timing signal principle

2.3.3 Debugging the package

While debugging the package, it is useful to disable:

● reset in FailSafe() routine by servicing independent WDG,

● all program memory CRC checksum tests when using breaks in the code to prevent
program memory checksum error occurrence

● window WDG to prevent improper service out of the time slot window dedicated to
refresh(a).

● control flow monitoring (mostly done automatically by changing values of constants
when some tests are omitted)

At the debugging phase it may be useful to enable:

● verbose diagnostic mode to watch messages at UART terminal

● LEDs toggling to see basic process flow

a.Window WDG feature is not available at STM8L10x devices

AN3181 Class B solution structure

Doc ID 17286 Rev 1 15/28

3 Class B solution structure

3.1 Integrating software into user application
Class B routines are divided into two main processes: periodic run mode self tests and start-
up tests. The periodic run mode test must be initialized by the set-up block before it is
applied. All the blocks are checked by sufficient flow control checked at a number of flow
check points (see Section 2.1.3: Class B flow control). All class B variables are kept
redundantly in a pair of control registers stored in the Class B variable space defined by user
(see Section 2.1.2: Class B variables). This variable space is split into two separate RAM
regions which are permanently undergoing the transparent test as a part of run mode tests.

Figure 4: Integration of startup and periodic run mode self tests into application shows the
basic principle of how to integrate the Class B software package into user software. The
reset vector should be forced by the user to STL_StartUp() routine which collects all system
startup self tests. If they pass successfully, then the standard _stext() start-up routine is
performed. While the application is running, periodic tests must be executed at regular
intervals. To ensure this, the user must initialize these tests by calling the initialization
routine STL_InitRunTimeChecks() before entering main loop and then inserting a
periodical call of STL_DoRunTimeChecks() at main level. For best results, this should be
inside the main loop. TIM4 (or TIM6 for some devices), which is configured during
initialization routine to generate periodic system interrupts, provides the time base for all the
tests. Short partial transparent RAM March C- or March X check is performed at each
interrupt tick. If any self test fails, FailSafe() routine is called.

Figure 4. Integration of startup and periodic run mode self tests into application

3.2 Detailed description of startup self tests
The startup self test is forced during initialization phase as the earliest checking process
after resetting the microcontroller (see Figure 4) and before standard application startup

Class B solution structure AN3181

16/28 Doc ID 17286 Rev 1

routine. The user must force the reset vector to the first address in STL_StartUp() routine.
The startup tests block structure is shown in Figure 5 and includes the following self tests:

● Watch dogs startup test

● CPU startup test

● Flash complete checksum test

● Full RAM March C-/X test

● Clock startup test

● Control flow checks

These blocks are described in more details in the next chapters. User can control including
them as usual in the configuration file stm8_stl_param.h.

Figure 5. startup self tests structure

3.2.1 Watchdog startup self test

The first startup self test is to enter WDG self test routine. The program passes through this
routine three times. First the routine checks the reset source in reset status register. If
Independent watchdog (IWDG) is not flagged in reset status register, then reset sources is
cleared and IWDG test begins. The IWDG is set to the shortest period and the
microcontroller is reset by hardware and IWDG flag is set (see Figure 6). The routine comes
back to the beginning and check WDG flags. When IWDG is recognized, it looks for WWDG
flag. If WWDG is not flagged, the test continues a second time with window watchdog
(WWDG) test. Again the microcontroller is reset by hardware and WWDG flag is set. When
both WDG flags are set in the reset status register, the test is assumed as finished and both
flags are cleared. WWDG is not present at STM8L10x devices, so WWDG test is not
present.

User must carefully set both IWDG and WWDG periods. Time periods and window refresh
parameters must be set according to the time base interval because refresh is done at the
successful end of the periodical run mode test in main loop.

AN3181 Class B solution structure

Doc ID 17286 Rev 1 17/28

Figure 6. Watchdogs startup self test structure

3.2.2 CPU startup self test

Core flags, registers and stack pointer are tested for functionality. In case of any error,
FailSafe() routine is called.

Figure 7. CPU startup self test structure

3.2.3 Flash complete checksum self test

The CRC checksum computation is performed over the entire Flash memory space
announced by linker checksum structure. The resulting computation is compared with the
linker result. FailSafe() routine is called if there is an error.

Class B solution structure AN3181

18/28 Doc ID 17286 Rev 1

The user actually has a choice of three different methods for calculating the CRC (see
Figure 8) over the code memory content in the project.

● An 8-bit check sum calculation over the 16-bit address space can be used for checking
up to 64kB of memory code, the simplest method.

● A 16-bit check sum calculation over the 16-bit address space can be used for checking
up to 64kB of the memory code; this method is more precise and is the default method.

● a 16-bit check sum calculation over all the possible address space can be used when
the code memory exceed 64kB, 24-bit addressing must be used; this way uses the
most code space and is the most time consuming.

The STM8 FW includes six separate sources files defined for each of these methods. There
is one pair for each method: one used for startup and one for run time. The user should
include the correct source file pair into the project.

Figure 8. FLASH startup self test structure

3.2.4 Full RAM March C-/X self test

The whole RAM space is alternately filled and checked simultaneously by zero and 0xFF
pattern in six loops, either by March C- or March X algorithms. March X algorithm is faster
as the two middle steps are skipped over. The first three loops are performed in incremental
order of addresses the last three in decremented order. In case of error, FailSafe() routine is
called.

Figure 9. RAM startup self test structure

AN3181 Class B solution structure

Doc ID 17286 Rev 1 19/28

3.2.5 Clock startup self test

When the test begins, first the low speed internal clock (LSI) source is started, then the high
speed external source (HSE). The CPU is running on the high speed internal source (HSI).
HSI is switched onto a dedicated timer input, mainly TIM3, but TIM1 or TIM2 can also be
used on some devices. The timer is gated by the LSI source. The number of gated ticks is
compared and if it falls outside of the predefined interval (more than +/- 25% from nominal
value) an HSI fail is signaled and FailSafe() routine is called. CPU clock continues with HSI,
default source. If there is no error, the test continues with the next step and HSE is checked.
HSE is switched on as the new CPU clock source and input into the dedicated timer. The
same measurement and check of gated ticks are repeated but with HSE feeding the timer. If
the measure falls out of the interval, CPU clock is immediately turned back to HSI and HSE
fail is signaled with a FailSafe() routine being called. Otherwise, the test returns OK. CPU
clock is switched back to default HSI source after the test is finished. All the parts of this test
are under conditional compilation control, so the user can skip over some test e.g. HSE test
when no external oscillator is used.

Figure 10. Clock startup self test subroutine structure

1. Low speed external (LSE) clock source can be started/checked at the beginning of the test and measured
feeding the dedicated timer on STM8L15x devices. They can be inserted into the beginning of this routine.

2. High speed external (HSE) tests are skipped on STM8L10x devices.

3. LSI frequency is different for STM8S and STM8L devices. That is why the four consequent LSI periods are
gated at STM8S devices (LSI=128 kHz) and only one period is used for measure on STM8L devices
(LSI=38 kHz).

Class B solution structure AN3181

20/28 Doc ID 17286 Rev 1

3.3 Periodic run mode self tests initialization
Run time self tests must be initialized just before the program enters the main loop
performing the run mode self tests (refer to Figure 4). This must come just after start-up self
tests have been executed and standard initialization done. The timing should be set to
ensure that run mode tests are called properly and at regular intervals.

All class B variables must first be initialized. Zero and its complement value are stored in
every class B variable complementary pair. The magic pattern is than stored at the top of
stack space. Timer peripherals are configured for the tick interval measurement and master
clock frequency measurement. Master frequency is gated by the LSI clock. The same
method as for startup test is used. The resulting number of pulses is stored into the class B
variable pair as an initial reference sample of master frequency measure.

Figure 11. Periodic run mode self test initialization structure

3.4 Detailed description of periodic run mode self tests

3.4.1 Run time self tests structure

Run time self tests are performed periodically, their period is based on time base interrupt
settings. Before the first run, all tests must be initialized by run mode initialization routine
(refer to Figure 4). All tests are performed in the main loop level except partial transparent
RAM test, which is executed during the time base interrupt service. Some tests (analog,
communication peripherals and application interrupts) are not automatically included.
Depending on device capability and application needs, the user could implement them. The
following is the list of the run mode self tests:

● CPU core partial run mode test

● Stack boundaries overflow test

● Clock run mode test

● AD MUX self test (not implemented)

● Interrupt rate test (not implemented)

● communication peripherals test (not implemented)

● Flash partial CRC test including evaluation of the complete test

● IWDG and WWDG refresh

● Partial transparent RAM March C-/X test (under system interrupt scope)

AN3181 Class B solution structure

Doc ID 17286 Rev 1 21/28

Figure 12. Periodic run mode self test and time base interrupt service structure

3.4.2 CPU light run mode self test

CPU core run mode self test is a simplified startup test where the flags and stack pointer are
not tested. In case of error, FailSafe() routine is called.

Figure 13. CPU light run mode self test structure

3.4.3 Stack boundaries run mode test

The magic pattern stored at the top of the stack is checked here. In case the original pattern
is corrupted, FailSafe() routine is called. The pattern is placed at the lowest address
dedicated for stack area.Overflow and underflow are detected as the stack pointer rolls over

Class B solution structure AN3181

22/28 Doc ID 17286 Rev 1

inside this range in both cases. This area differs among the devices. The user must respect
the dedicated stack area when the pattern location is changed.

Figure 14. Stack overflow run mode test structure

3.4.4 Clock run mode self test

The current master clock frequency selected by user application is gated by LSI internal
clock source. The resulting number of pulses is compared with the initial master frequency
reference sample measure which was stored during initial run mode self tests. When there
is more than +/-25% difference found, FailSafe() routine is called. Occasional over captured
measure is ignored. It can appear when a longer user interrupt service corrupts current
measurement.

Figure 15. Clock run mode self test structure

AN3181 Class B solution structure

Doc ID 17286 Rev 1 23/28

Figure 16. Clock run mode self test principle

3.4.5 Partial FLASH CRC run mode self test

Partial 16-bit CRC checksum over the Flash memory block is performed in every step. The
boundaries are given in the segment table created by the linker. When the last block is
reached the CRC checksum is compared with the value stored by linker at the last record in
the segment table. In case of a difference, FailSafe() routine is called, otherwise a new
computation cycle is initialized.

Figure 17. Partial FLASH CRC run mode self test structure

1. For more details about CRC calculation, please refer to Section 3.2.3: Flash complete checksum self test.

Class B solution structure AN3181

24/28 Doc ID 17286 Rev 1

3.4.6 Watchdog service in run mode test

If the run mode service block is correctly completed, then both window and independent
WDGs are refreshed at the last step just before returning to the main loop. To correctly
refresh WDGs, the user must ensure calling STL_DoRunTimeChecks() routine (see
Figure 12) at corresponding intervals in order to be able to properly react to the time base
flag change.

Only one WDG refresh inside the main loop is necessary and contributes to overall
efficiency. There should be no other WDG refresh except the one in
STL_DoRunTimeChecks() routine. Sometimes it is necessary to refresh WDGs at
initialization phase, too. In this instance, the refresh should be outside of any software
infinite loop.

3.4.7 Partial RAM run mode self test

Partial transparent RAM test is performed inside the time base interrupt service. The test
covers the part of the RAM containing the class B variables. One block of six bytes is tested
at every test step. To guarantee coupling fault coverage, consecutive test steps are
performed on memory blocks with an overlapping of two adjacent bytes. During the first
phase, the block content is stored in the storage buffer. The next phase is to perform the
marching destructive tests on all the bytes in the tested RAM block. Then, the final step is to
restore the original content. March X algorithm is faster as two middle marching steps are
skipped over (see Table 3). The last test sequence step is to perform a marching test on the
storage buffer itself, again with the next two additional bytes to cover coupling faults. Then
the whole test is re-initialized and it begins again. In case any fault is detected, FailSafe()
routine is called.

Figure 18. Partial RAM run mode self test structure)

AN3181 Class B solution structure

Doc ID 17286 Rev 1 25/28

Figure 19. Fault coupling principle used at partial RAM run mode self test

Table 3. March C- phases at RAM partial test

March phase Partial bytes test over the block Address order

Initial Write 0x00 pattern Increasing

1 Test 0x00 pattern, write 0xFF pattern Increasing

2(1)

1. Steps 2 and 3 are skipped over when March X algorithm is used.

Test 0xFF pattern, write 0x00 pattern Increasing

3(1) Test 0x00 pattern, write 0xFF pattern Decreasing

4 Test 0xFF pattern, write 0x00 pattern Decreasing

5 Test 0x00 pattern Decreasing

Main differences of STM8S and STM8L packages AN3181

26/28 Doc ID 17286 Rev 1

Appendix A Main differences of STM8S and STM8L
packages

Table 4. Main differences of STM8 Class B optimized software packages

STM8Sxxx STM8L15x STM8L10x

optional UART verbose
mode

YES YES NO(1)

1. Errors are manifested through to FailSafe() routine, see Section 2.3.2: Verbose diagnostic mode.

Demo mode with
optional LCD screen

YES YES NO

WWDOG test YES YES NO

High speed external
HSE clock test

YES YES NO

Low speed external
LSE clock test

NO YES NO

LSI frequency / number
of LSI periods used at

clock tests (LSI
measurement)

128 kHz / 4 38 kHz / 1 38 kHz / 1

Stack space at the top
of RAM [bytes]

1024 / 512(2)

2. For STM8S Access Line devices (STM8S10x, STM8S903).

513 513

AN3181 Revision history

Doc ID 17286 Rev 1 27/28

Revision history

Table 5. Revision history

Date Revision Description of changes

01-Jun-2010 1 Initial release

AN3181

28/28 Doc ID 17286 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Compliance with IEC and VDE standards
	Table 1. MCU components to be tested for Class B compliance
	1.1 VDE certified tests included in ST firmware library
	Table 2. Overview of methods used in microcontroller specific tests of associated ST firmware library

	1.2 Application specific tests
	1.2.1 ADC/DAC
	1.2.2 I/Os
	1.2.3 Interrupts and external communication
	1.2.4 Timing
	1.2.5 External addressing

	2 Class B software package
	2.1 Basic software principles
	2.1.1 Fail Safe mode
	2.1.2 Class B variables
	Figure 1. Example of RAM memory configuration for STM8S20x

	2.1.3 Class B flow control
	Figure 2. Control flow four steps check routine

	2.2 Package organization
	2.2.1 Projects and workspaces included in the package
	2.2.2 Linker file settings
	2.2.3 Application demonstration example

	2.3 Package configuring and debugging
	2.3.1 Configuration control
	2.3.2 Verbose diagnostic mode
	Figure 3. Diagnostic LED timing signal principle

	2.3.3 Debugging the package

	3 Class B solution structure
	3.1 Integrating software into user application
	Figure 4. Integration of startup and periodic run mode self tests into application

	3.2 Detailed description of startup self tests
	Figure 5. startup self tests structure
	3.2.1 Watchdog startup self test
	Figure 6. Watchdogs startup self test structure

	3.2.2 CPU startup self test
	Figure 7. CPU startup self test structure

	3.2.3 Flash complete checksum self test
	Figure 8. FLASH startup self test structure

	3.2.4 Full RAM March C-/X self test
	Figure 9. RAM startup self test structure

	3.2.5 Clock startup self test
	Figure 10. Clock startup self test subroutine structure

	3.3 Periodic run mode self tests initialization
	Figure 11. Periodic run mode self test initialization structure

	3.4 Detailed description of periodic run mode self tests
	3.4.1 Run time self tests structure
	Figure 12. Periodic run mode self test and time base interrupt service structure

	3.4.2 CPU light run mode self test
	Figure 13. CPU light run mode self test structure

	3.4.3 Stack boundaries run mode test
	Figure 14. Stack overflow run mode test structure

	3.4.4 Clock run mode self test
	Figure 15. Clock run mode self test structure
	Figure 16. Clock run mode self test principle

	3.4.5 Partial FLASH CRC run mode self test
	Figure 17. Partial FLASH CRC run mode self test structure

	3.4.6 Watchdog service in run mode test
	3.4.7 Partial RAM run mode self test
	Figure 18. Partial RAM run mode self test structure)
	Figure 19. Fault coupling principle used at partial RAM run mode self test
	Table 3. March C- phases at RAM partial test

	Appendix A Main differences of STM8S and STM8L packages
	Table 4. Main differences of STM8 Class B optimized software packages

	Revision history
	Table 5. Revision history

