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Application note

A/D converter on STM8L devices
description and precision improvement techniques

Introduction
This application note describes the 12-bit A/D converter embedded in the STM8L family 
microcontrollers. It offers a selection of hardware and software methods for improving the 
precision of this A/D converter. It is divided into the following sections:

■ The first section explains the internal design principle of the STM8L ADC.

■ The second section describes the ADC operation from the programmer’s point of view.

■ The final section lists the main types of errors that occur in A/D converters and their 
sources. It describes some hardware and software methods for minimizing these errors.

Firmware examples (source codes) are provided with this application note showing how to 
implement STM8L ADC routines for minimizing measurement errors.
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1 STM8L ADC internal hardware 

STM8L family microcontrollers can include an analog to digital converter (ADC). This ADC 
peripheral is used to measure analog signals from external signal sources.

1.1 ADC principle
The analog to digital converter in STM8L family microcontrollers is of the switched-capacitor 
type. This ADC type uses the SAR (successive approximation register) principle, by which 
the conversion is performed in several steps. The number of conversion steps is equal to the 
number of bits in the ADC converter.

The following figures (Figure 1 to Figure 6) explain the principle of ADC operation. They are 
based on a 10-bit ADC example (whereas STM8L devices contain a 12-bit ADC). The 
example given below shows only the first steps of approximation but the process continues 
till the LSB is reached.

Figure 1. Basic schematic of switched-capacitor 10-bit ADC

1. Basic ADC schematic with digital output.
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Figure 2. Sample mode

1. Sample state - capacitors are charging to VIN voltage. Sa switch to VIN, Sb switch closed.

Figure 3. Hold mode

1. Hold mode - input is disconnected - capacitors hold input voltage. Sb switch is open, then S1-S9 switched 
to ground.
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Figure 4. Step 1: if MSB = 0, compare with VREF/2 

1. First approximation step. Sa switched to VREF and S1 switched to VREF.

Figure 5. Step 2: if MSB = 1, then compare with ¾ VREF

1. Compare with ¾VREF; if MSB =1. S1 switched back to ground. S2 switched to VREF.
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Figure 6. Step 2: if MSB = 0, then compare with ¼ VREF

1. Compare with ¼ VREF; if MSB =0. S1 remained switched to ground. S2 switched to VREF.

1.2 ADC resolution
ADC resolution can be set in 4 steps: 6-bit, 8-bit, 10-bit or 12-bit resolution. Decreasing the 
resolution speeds up the conversion time.

1.3 ADC clock, sampling time, speed
The ADC is driven by a clock derived from the MCU system clock through a divider. The 
divider divides the master clock by a factor 1 or 2. The maximum ADC clock is 16 MHz and 
the minimum is 320 kHz. 

Each conversion step (which consists of switching the capacitor network, comparing results, 
and storing them to a register bit, as described in Figure 4 to Figure 6) is performed in one 
ADC clock cycle. Consequently, a 12-bit conversion takes 12 cycles. The sampling period 
(Figure 2) has a programmable range from 4 to 384 clock cycles (charging input sampling 
capacitors). 

The shortest conversion time for a 12-bit resolution is 1 µs (4 sampling clocks + 12 
approximation clocks on a 16 MHz ADC clock). It is possible to further reduce the 
conversion time by decreasing the ADC resolution (to 6 or 8 or 10 bits).

Once enabled, the ADC analog peripheral needs a tWKUP stabilization time before starting 
the conversion. Refer to the datasheet of your device to know the exact tWKUP value (usually 
3 µs). 

The user must implement this stabilization delay in the STM8L firmware.
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1.4 Power supply range
The ADC is powered from VDDA/VSSA pins (usually connected to VDD/VSS - depending on 
packages). The voltage range for a proper ADC operation is from 1.8 V to 3.6 V (the digital 
part operates from 1.65 V). See the electrical characteristics in the STM8L device datasheet 
for further details.

1.5 ADC reference voltage
The ADC reference voltage is either internally connected to the analog power supply pins or 
connected to the VREF+ external pin, where an external reference voltage source can be 
connected. This reference voltage connection option depends on the STM8L package and 
device type:

● In case VDDA supply voltage is greater than 2.4 V, the VREF+ pin can be connected to a 
voltage different from VDDA. VREF+ must then be greater or equal to 2.4 V and less or 
equal to VDDA (VDDA ≥VREF+ ≥ 2.4 V).

● In case VDDA supply voltage is less than 2.4 V, VREF+ must have the same voltage as 
VDDA.

As the ADC reference voltage highly influences ADC precision, these voltage properties are 
an important characteristic to be taken into account in the application design (stability, 
noise,...). 

The ADC can convert the VREFINT internal reference voltage (on ADC channel 25) to 
perform calibration (especially when VDD/VSS are used as reference voltage). See 
Chapter 2.3.2: Correction to VDD/VREF stability for more information.

1.6 Input analog multiplexer
The ADC has an input multiplexer which is used to select one of the STM8L input pins as 
the analog input to the ADC. 25 external channels (on I/O pins) and 2 internal channels 
(internal reference voltage and temperature sensor) are available.

The Schmitt triggers can be disabled on selected ADC input pins (mainly used in digital I/O 
pin configuration). The STM8L power consumption can then decrease but the digital inputs 
on the corresponding I/O pins will not work.

1.6.1 Internal channels

Internal analog channels (internal reference voltage and temperature sensor) can be used 
for calibration purposes (or for temperature measurement). These analog sources must be 
enabled before using them (they are disabled by default so as to save power). 

1.6.2 Fast/slow channels

Analog channels are divided into two groups: a fast channel sequence and a slow channel 
sequence. 

Each channel sequence has an own individual setting for sampling time (two different 
sampling times can be set: one for each channel sequence).This feature is useful when 
some measured voltage sources require a longer sampling time (e.g. source with a high 
internal impedance). Refer to Chapter 2.3.3: Measurement of sources with high internal 
impedance).
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1.7 Conversion triggers
ADC conversion can start when a trigger occurs. Three main sources of trigger can be 
selected:

● software trigger (writing to one register bit)

● timer trigger (if a timer event occurs)

● external trigger (change of the state of a dedicated I/O pin)

1.8 Analog watchdog feature
This function is used to monitor converted values on selected channels. If the converted 
value on a given ADC input channel is outside the reference voltage threshold, the analog 
watchdog flag (AWD) bit is set and can generate an interrupt.

1.9 Interrupt generation
The ADC can generate an interrupt if some events occur. This simplifies the programming 
and speeds up the ADC service routines. 

The interrupt sources are the following ones:

● end of conversion (when an ADC data register is filled with a new value)

● analog watchdog event (if the ADC converted value is outside a given voltage range)

● overrun event (when, after a conversion, a second conversion is complete and the DMA 
has not read the first conversion value yet)

1.10 DMA transfer
The ADC can be programmed to use the built-in DMA to transfer converted ADC data to the 
memory. This speeds up the data collection (instead of ADC data register polling by the 
CPU, the DMA transfer runs in the background) when the CPU is performing another 
operation. Refer to the STM8L reference manual (RM0031) for a description of DMA 
operation. Using the DMA transfer is especially useful in long data array collection (voice, 
signal processing,...).

1.11 Sampling modes
The ADC can operate in three modes which mainly differ in the way converted input 
channels are managed:

● single mode (one conversion and then ADC stops)

● continuous mode (ADC continues conversion to the next channel)

● scan mode (ADC converts a set of selected channels to the memory)

These modes are described in Section 2: STM8L ADC usage/programming.



AN3137 STM8L ADC usage/programming

Doc ID 16983 Rev 2 11/38

2 STM8L ADC usage/programming 

2.1 Sampling mode overview and usage

2.1.1 Single mode

In this mode, only one input channel must be selected in the ADC_SQRx registers (if more 
channels are selected, the highest selected channel is measured). In addition, the DMAOFF 
bit must be set in the ADC_SQR1 register (to disable DMA transfer). The input channel is 
then converted and the ADC conversion stops (one simple conversion). The converted 
value is stored into the ADC_DR data register. An interrupt (EOC) can be generated after 
the end of conversion.

Note: If the DMAOFF bit in the ADC_SQR1 register is reset (and if DMA is properly programmed) 
the conversion is then performed in scan mode. Refer to Section 2.1.3: Scan mode.

2.1.2 Continuous mode

In this mode, the ADC does not stop after conversion but continues to the next channel in 
the selected channel sequence. Conversions continue until the CONT bit and the ADON bits 
are set and the converted values are transferred through the DMA to the RAM or EEPROM 
memory buffer. As the EOC interrupt is generated only after the end of the conversion of the 
selected channel sequence, the result of each channel conversion cannot be read from the 
ADC_DR register.

To save the conversion of each channel in a memory (RAM or EEPROM), the DMA must be 
used in peripheral to memory mode. If the CONT bit is reset during a conversion, the current 
selected channel sequence conversions end with the last selected channel) and then the 
ADC stops.

Note: The CONT bit must not be set again during a conversion.

2.1.3 Scan mode

This mode works automatically in continuous mode. Refer to Section 2.1.2. It can also be 
used in single mode by resetting the DMAOFF bit in the ADC_SQR1 register. Refer to 
Section 2.1.1.

In scan mode, the selected channel sequence is taken into account (like in single mode) and 
the selected channels are converted and transferred through DMA to memory (DMA should 
be properly programmed).

If the single mode is selected, the ADC converts the selected channel sequence and it is 
stopped after the last channel conversion. For the next selected channel sequence, a scan 
conversion is necessary to restart the ADC. 

An interrupt (EOC) can be generated after the end of the channel sequence conversion.
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2.2 Conversion modes
The ADC can operate in different modes depending on application requirements. The 
following sections list the most commonly used operating modes.

2.2.1 Single conversion

This conversion mode is usually used when the application needs to read occasionally 
some analog values (input voltage, temperature, ... ). 

2.2.2 Single conversion with trigger

This mode is used for the same applications as for the single conversion described in 
Section 2.2.1 but the conversion start is triggered by a periodical interval or by an external 
event (collection of equidistant samples, external event measurement, ...).

2.2.3 One-shot channel sequence scan

This mode is a single scan mode (see Section 2.1.3). It is useful for collecting values from a 
sequence of channels in one time, for example, measuring a set of external sensors within 
equidistant intervals and storing them into a log file (measuring a set of sensors in one 
time). This mode can be combined with any trigger depending on application needs: 
software, timer or external trigger.

2.2.4 Continuous channel sequence scan

This mode continuously converts selected channels and stores data into memory. As the 
DMA is used, the CPU does not need to manage measurements, it only processes the data: 
it displays them and sends them to the communication line. This scan mode uses 
continuous scan mode. Refer to Section 2.1.3.

2.3 Specific modes using ADC features

2.3.1 Analog watchdog monitoring

By default, the ADC runs in continuous mode and the analog watchdog (enabled on one 
channel) monitors the converted values that are outside the reference voltage range defined 
in the ADC_HTRx and ADC_LTRx threshold registers). If the value becomes “insecure”, 
then an interrupt occurs and the AWD flag bit is set. 

In this mode, the CPU does not need to perform periodical ADC measurements. It only has 
to react on analog watchdog interrupts (there is no performance loss due to the ADC 
operation).

This mode is selected by setting a channel for the analog watchdog monitoring in the 
ADC_CR3 register (CHSEL bits). The detection of insecure values can be performed by 
monitoring the AWD bit (in the ADC_SR register) or by using the automatic interrupt through 
the analog watchdog (AWDIE bit set in ADC_CR1 register to enable interrupts).
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2.3.2 Correction to VDD/VREF stability

The ADC usually uses VDD/VSS as reference voltage. As this voltage is not accurate, this 
method may result in incorrect measured values. By measuring the internal reference 
voltage, it is possible to perform corrections to measured values and obtain more precise 
measurements (post-processing of collected ADC data).

Correction to collected data can be done by using the following formula:

where:

● VIN = input voltage measured after correction

● DIN = ADC data from input voltage channel

● VREFINT = internal reference voltage (around 1.23 V - see device datasheet -)

● DREFINT = ADC data from internal reference voltage channel

2.3.3 Measurement of sources with high internal impedance

In this case, the ADC must be configured for a long sampling time. The internal sampling 
capacitor is charged to signal source voltage through a high signal source impedance. 
Sampling time must be selected depending on the source impedance and on the required 
signal bandwidth (the RC works as lowpass filter and long sampling time limits the 
bandwidth).

The required sampling time is given by the RC timing constant and the appropriate 
resolution. 

Note: Exact calculations are explained in Section 3.5.1: External resistance design error on 
page 16.
The internal sampling capacitance is defined in the device datasheet.

2.3.4 Low power mode with ADC enabled

To save as much power as possible while ADC is running, the STM8L family microcontroller 
can be used in Wait mode. 

In this case, make sure that the required minimum ADC clock (320 kHz - see device 
datasheet) is provided to ADC for a proper operation.

The ADC interrupt can wake up the CPU from wait modes. 

Note: The ADC does not work in Halt, Active-halt, Low power run and Low power wait modes: it 
must be switched off before entering a low power mode not supported by this peripheral.

The ADC uses the internal reference voltage, so the user must make sure this reference 
voltage is woken up before enabling the ADC after an exit from Halt or Active-halt mode. 
When enabled, the ADC needs a stabilization time (tWKUP) before starting the first 
conversion (refer to the device datasheet).

Example: after an RTC wakeup (alarm) from Halt mode, the ADC is first enabled. Then, the 
firmware waits for a tWKUP time (3 µs) and the conversion can be started by setting the 
START bit in the ADC_CR1 register.

The ADC consumption (when the ADC is active and is converting) is given in the device 
datasheet (around 1400 µA). In order to save power, it is recommended to perform the ADC 
conversion at the highest possible speed, and then switch the ADC off.

VIN

DIN

DREFINT
---------------------- VREFINT×=
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3 ADC errors

3.1 Introduction
This chapter lists the main errors which have an effect on A/D conversion accuracy. These 
types of error occur in all A/D converters and conversion quality depends on eliminating 
them. Values for these errors are specified in the ADC characteristics section of the STM8L 
device datasheet. The datasheets also include sections describing sources of error or 
methods for minimizing them.

3.2 Linearity errors

3.2.1 Differential nonlinearity

Differential nonlinearity (DNL) shows how far a code is from a neighboring code. The 
distance is measured as a change in input voltage magnitude and then converted to LSBs. 
Good ADC performances are specified as “no missing codes”. This means that if the input 
voltage is swept over its range, all output code combinations will appear at the converter 
output. A DNL error of <±1 LSB guarantees no missing codes. With a DNL equal to -1 LSB, 
the ADC does not guarantee to have no missing codes. With a DNL greater than -1, the 
device has missing codes.

Figure 7. DNL: no missing codes
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Figure 8. DNL: missing code

3.2.2 Integral nonlinearity

Integral nonlinearity (INL) is defined as the integral of the DNL errors. So, good INL 
guarantees good DNL. The INL error shows how far from the ideal transfer function value 
the measured converter result is. For example, an INL error of ±2LSB in a 12-bit system 
means the maximum nonlinearity error may be off by 2/4096 or 0.05%. Note that neither INL 
nor DNL errors can be calibrated or corrected easily.

3.3 Offset error
Offset and gain errors can easily be calibrated by the application firmware. 

First, connect ADC input to VREF-/VSS (low potential of reference voltage) and perform a 
conversion. Then the conversion result represents the zero offset error. Then a gain 
adjustment is performed. A subsequent offset error calibration may be required.

3.4 Gain error
Gain error is defined as the full-scale error minus the offset error. Full-scale error is 
measured at the last ADC transition on the transfer-function curve and compared to the 
ideal ADC transfer function. 

Gain error is easily corrected in firmware with this linear function:

y = (k1/k2).x 

where k1 is the slope of the ideal transfer function and k2 is the slope of the measured 
transfer function.

Offset error and gain error can decrease dynamic range. For example this is observed if a 
full-scale input voltage is applied and the code obtained is 4092 instead of the ideal 4095 
(for a 12-bit converter), or if the full-scale code 4095 appears with an input voltage lower 
than the full-scale voltage.
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Figure 9. Offset and gain error

3.5 Hardware design errors

3.5.1 External resistance design error

The input multiplexer has a nonzero impedance (Rmpx). Sampling is done by switch which 
has also a nonzero impedance (Rsw). Both impedances, together with the sampling 
capacitance (Csamp = typ. 16 pF; see datasheet) and external signal source resistance 
(Rext), create a low pass filter. Therefore the external signal source impedance (Rext) must 
be designed so that this low pass filter cut-off frequency will not be too low in relation to the 
ADC sampling time (tS = 4 ... 384 ADC clocks).

Figure 10. Analog input circuit

If the ADC converter has a 12-bit resolution (n=12) then the maximum precision is 1/2 LSB 
level (0.5/4096 from full range). So the acceptable error caused by charging Csamp through 

Rsw Rmpx Rext+ +( ) Csamp⋅ ts«
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all resistors is 0.5/4096 (during tS sampling time = 4 to 384 cycles of fADC clock). Then the 
maximum resistor value Rmax=Rext+Rsw+Rmpx is obtained from the following equation:

For worst case: fADC = 16 MHz, 12-bit resolution (n = 12) required and sampling time = 4 
clocks (tS = 4), the maximum serial resistor is:

and the maximum external resistor is:

The external parasitic PCB and package capacitance must also be taken into account. 
Therefore the maximum resistance of external signal source Rext is lower, and in practice 
Rext < 500 Ω is suggested.

In case of longer sampling times and reduced number of ADC clocks, better results can be 
obtained: for instance, sampling time can be extended to 384 cycles (instead of 4 cycles), 
which offers an allowed resistance higher than 50 kΩ (@ 16 MHz ADC clock). It is possible 
to further increase the allowed external resistance by decreasing the ADC clock frequency 
or selecting a lower resolution. Refer to the datasheet of your device to obtain the exact 
values of the RC parameters.

3.5.2 ADC reference voltage source

One of the biggest potential sources of errors in an ADC is the reference voltage. It is 
important to look at three reference voltage specifications: temperature drift, voltage noise, 
long term stability.

3.5.3 Temperature influence

Temperature has a big effect on ADC precision. Mainly two specifications are important: 
offset drift and gain drift. These errors can be compensated in microcontroller firmware. One 
method is to fully characterize the offset and gain drift and provide a lookup table in memory 
to correct measurement due to temperature change. The ADC in each MCU device must 
then be compensated individually - therefore this calibration takes additional cost and time. 
The second method is to recalibrate the ADC when the temperature change reaches given 
values.

3.5.4 AC performance

Usually ADC performance is good only when the spectrum of the input signal is limited from 
zero to half of the sampling frequency (Nyquist frequency). This is because an ADC design 
contains not only resistors but also capacitors (and parasitic RLC elements). Therefore 
frequency response degrades ADC performance if frequency increases. In case of AC 
measurement, the ADC frequency parameters must be studied; mainly signal-to-noise ratio 
(SNR), total harmonic distortion (THD) and spurious-free dynamic range (SFDR). 

error
Uc Ui–( )
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n

--------ln⋅ ⋅
----------------------------------------------------–=
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4
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------------------------------------------------------------------------------------–= 1.7kΩ≅
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4 Methods for precision improvement

4.1 Introduction
ADC converter precision is fixed by its principle, design and implementation but it can also 
be improved by several hardware and/or software methods. Hardware methods improve 
ADC results by changing the environment around the ADC (PCB design, RC filters, ...) to 
obtain more accurate ADC output. Software methods try to improve the raw ADC results by 
post-processing methods. Some CPU computation power and time are required to perform 
these methods, which can be implemented in the microcontroller firmware. 

4.2 Hardware methods
● Analog zooming (use appropriate VREF voltage):

– select reference voltage between input signal ranges

– gives full ADC range - minimum voltage per bit

● White noise added to measured signal:

– wobbling of input signal over several bits gives the opportunity to use averaging (if 
input signal is very stable)

– white noise gives independence from sampling frequency

● Good hardware design: 

– grounding

– reference voltage filtering

– supply filtering

– preamplifier usage

– frequency independence

– …

4.2.1 Analog zooming

Analog zooming is a method which improves precision by properly selecting the reference 
voltage. The reference voltage is selected in the expected range of the signal to be 
measured. 

If the measured signal has an offset, then the reference voltage should also have a similar 
offset. If the measured signal has defined maximum amplitude, then the reference voltage 
should also have a similar maximum value. By matching this reference voltage to the 
measurement signal range, we obtain the maximum possible resolution using the full A/D 
converter output range.

An analog zooming can be performed between VSS and VREF+ if VDDA > VREF+ ≥ 2.4 V.
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4.2.2 Adding white noise or triangular sweep 

This method combines hardware and software techniques to improve precision. From a 
software point of view, this method uses averaging and from a hardware point of view, it 
uses signal modification/spreading/dithering.

Averaging can be used in cases where the input signal is noisy (some signal change is 
necessary in order to be able to calculate an average) and the requirement is to obtain the 
mean value of a signal. A problem appears when the input signal is a very stable voltage 
without noise. In this case, when the input signal is measured, each data sample is the 
same. This is because the input signal level is somewhere between two ADC word levels 
(e.g. between 0x14A and 0x14B). Therefore it is not possible to determine the input voltage 
level more precisely (e.g. if the level is near to 0x14A or near to 0x14B level). 

The solution is to add noise or some signal change (with uniform signal distribution e.g. 
triangular sweep) to the input signal which pushes its level across 1-bit ADC level (so that 
the signal level changes below 0x14A and above 0x14B level). This causes the ADC results 
to vary. Applying software averaging to the different ADC results, produces the mean value 
of the original input signal.

Example of implementation of this method is done by using a triangular generator with RC 
coupling to the input signal (noise signal generation is more complicated). Care must be 
taken not to modify the mean value of the original input signal (so, capacitive coupling must 
be used).

A very simple implementation is to design the white noise source as a quasi-triangular 
source which is generated directly by the STM8L microcontroller (Figure 11).

Figure 11. Simple quasi-triangular source using a microcontroller output
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4.2.3 Hardware design rules

Good hardware design can minimize many external influences on the measured signal and 
measuring device. Therefore good design is also a method of improving precision, or rather 
a method of minimizing additional errors caused by the external hardware. The following list 
gives the main rules for minimizing external influences.

Grounding: 
Care must be taken in the design of the PCB grounding. Ground paths on a PCB have 
nonzero resistance (and impedance) therefore current flowing through these paths 
generates a voltage drop. This voltage drop changes the voltages at points that are 
important for the ADC. For example it changes the reference voltage on the microcontroller 
pins slightly or influences the input signal on the microcontroller analog input pins. Good 
design minimizes this voltage drop. Methods of doing this are: minimizing the ground path 
impedance and minimizing the current through important ground paths (topology).
To minimize ground impedance: use massive ground paths. To minimize current through 
sensitive connections: use star topology, use independent PCB lines from input signal pins 
to microcontroller analog inputs, use independent PCB lines from the reference voltage 
source to microcontroller reference voltage inputs. Simply: supply current should not flow 
through signal ground - use signal ground and power ground in design.

Voltage filtering:
To minimize any external influences on the precise voltage levels used by the ADC, it is 
good to use filters on these voltage sources. Good filters must be applied on the reference 
voltage and on the supply voltage. Filter design depends on the noise amplitude present on 
the voltage sources, the external noise disturbance and the required precision.

Preamplifier usage:
If the measured signal is too small (in comparison to the ADC range) then it is good to use 
external preamplifier. This amplifier can fit the input signal range to the ADC range and can 
also insert offsets between input signal and ADC input. Care must be taken in the 
preamplifier design in order not to generate additional errors (for example additional offset, 
amplifier gain stability, linearity, frequency response, ... ).

Frequency independence:
In cases where an AC signal is measured, frequency is an important characteristic of the 
input signal path. When measuring fast changes in the input signal then the frequency 
response of the signal path must be flat, even at high frequencies. The parasitic resistance 
and parasitic capacitance on PCB signal paths must be minimized. Otherwise, when 
measuring DC signal levels, adding an RC filter to the input signal data path improves 
robustness against external noise.
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4.3 Software methods
● Averaging samples:

– averaging decreases speed but can give improved accuracy 

● Digital filtering (50/60 Hz suppression from DC value)

– set proper sampling frequency (the trigger from timer is useful in this case)

– perform software post-processing on sampled data (e.g.: comb filter - for 50 Hz 
noise and its harmonics suppression)

● Fast Fourier Transform (FFT) for AC measurements:

– to show harmonic parts in measured signal

– slower, due to the use of more computation power

● Calibration of ADC: offset, gain, bit weight calibration

– decreases internal ADC errors

– internal ADC structure must be known

● Minimizing internal noise generated by CPU

– design firmware to use minimum disturbance from microcontroller during ADC 
conversion - digital silence.

4.3.1 Averaging samples

The principle of this method is to increase ADC precision but decrease ADC conversion 
speed. If the measured analog signal produces unstable ADC values, then the mean value 
of the given input signal can be obtained by averaging a set of values. Variation can be 
caused by signal noise or noise generated by the microcontroller itself (high speed digital 
signals capacitively coupled to the analog input signal).

Averaging is performed by choosing an appropriate number of samples to be averaged. This 
number depends on the required precision, minimum conversion speed and the level of 
other ADC errors (if another error has a greater influence on ADC precision, then increasing 
the number of averaging values has no effect on total measurement precision).

The advantage of this method is improving precision without any hardware changes. The 
disadvantage is lower conversion speed and therefore also lower frequency response (it is 
equivalent to decreasing effective sampling frequency).

4.3.2 Digital signal filtering

This is a modern method which uses digital signal processing techniques. In principle, 
averaging is also a simple digital filter with a specific frequency response. But if the noise 
frequency spectrum is known, a digital filter can be designed which minimizes noise 
influence and maximizes ADC frequency response. For example, if the noise in the 
measured signal is coming from the 50 Hz power lines, then an appropriate digital filter 
suppresses the 50 Hz frequency and delivers a precise 10 Hz input signal response.

The disadvantage of this method is that it needs sufficient microcontroller processing power 
and resources: CPU speed, data/program memory usage.
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4.3.3 FFT for AC measurement

In some specific cases the application needs to know the amplitude of an AC signal with a 
given frequency. In this case the effective value of an AC signal can also be obtained by 
using a relatively slow sampling speed (in comparison to the measured signal frequency). 
For example, when measuring an AC mains signal (which is near-to-sinusoidal and has 
relatively low harmonics content), it is sufficient to choose a sampling frequency 32 times 
greater than the mains frequency (50 Hz). In this case you can obtain harmonics of up to the 
15th order. The amplitude of 15th harmonics in the main signal is very small (the next order 
harmonics can be neglected). The calculated effective value of the mains signal is obtained 
with high precision because the effective values of harmonics are added to the total AC 
harmonic value as:

So if the 15th harmonics amplitude is only 1% (0.01) from 1st harmonics (50 Hz) then its 
contribution to the total effective value will be only 0.01% (because of above equation - 
square addition: 0.012 = 0.0001).

The principle of this method is therefore to sample the AC signal with a known frequency 
and then perform FFT post-processing on the data of each measured period. Because the 
number of sampling points per measured signal period is small (32 points for example) then 
the performance needed for FFT processing is not so high (only 32-point FFT for example). 
If there is no requirement for real-time processing, for example, with a stable input signal 
shape, and measuring only one period per second, as in the case of the mains signal, then 
FFT can be calculated even by an 8-bit microcontroller.

Advantages: this method is good for AC measurement of a stable input signal. The 
disadvantage is the requirement for precise signal sampling. The frequency of the measured 
signal must be known and the ADC sampling frequency must be set exactly as a 2n 
multiplier of the measured frequency. The input signal frequency is measured by another 
method. The ADC sampling frequency is tuned by programming the prescaler and MCU 
master clock or interpolation can be used to insert sample points at the required frequency if 
sampling is performed with an inaccurate clock.

4.3.4 ADC calibration

This method requires knowledge of internal ADC structure and how the ADC converter is 
implemented inside the microcontroller. This knowledge is necessary in order to design a 
physical/mathematical model of the ADC implementation. 

A proper physical model (which is usually a schematic diagram) is used as the base for 
describing it mathematically. From the mathematical model each element in the model can 
be obtained by set of equations (for example, resistor/capacitor values which represent bit 
weights). To solve these equations, it is necessary to perform a set of practical 
measurements and obtain a set of solvable equations (for example, measurement: input 
signal versus the proper ADC digital output words). 

From the measured values and mathematical computation of the model, all known values of 
model elements (resistors, voltages, capacitors,...) can be put into the schematic diagram.

So instead of the ADC schematic with the designed values you obtain an ADC schematic 
with the real values for a given microcontroller.

Computed model parameters is stored in the microcontroller memory after calibration and 
used in post-processing to correct ADC values.

Uef U1
2 U2

2 … Un
2

+ + +=



AN3137 Methods for precision improvement

Doc ID 16983 Rev 2 23/38

4.3.5 Minimizing internal CPU noise

When it operates, the CPU generates a lot of internal and external signal changes which are 
transferred into the ADC peripheral through capacitive coupling. This disturbance influences 
ADC precision (unpredictable noise due to various possible microcontroller operations).

To minimize influences of the CPU (and of other peripherals) on ADC, it is necessary to 
minimize digital signal changes during sampling and conversion time (digital silence). This is 
done using one of the following methods (applied during sampling and conversion time):

● minimizing I/O pin changes

● minimizing internal CPU changes (CPU stop, wait mode)

● stopping clock for unnecessary peripherals (timers, communications, ...)

4.4 High impedance source measurement 
This section describes the ADC measurement behavior of STM8L ADC when a signal 
source with high internal impedance is used. It explains how to design an application to 
reach the requested precision and provides workarounds.

4.4.1 ADC input stage problem
The ADC in STM8L devices is of the switched-capacitor ADC type. Switched capacitors 
work also as sampling capacitors (see Chapter 1 for a detailed explanation).

When a signal comes from a voltage source with high internal impedance (for instance, 
150 kOhm), an added error can be seen in measurement results. Error signals have also 
been observed on the ADC input pin, as shown in Figure 14 (if the voltage source has zero 
voltage: Uin = 0 V, Rin = 150 KOhm, Cext = 0 pF):

Figure 12. Typical voltage source connection to ADC input
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Figure 13. Noise observed on ADC input pin during ADC conversions

4.4.2 Explanation of the behavior

The explanation of this added pin noise and added measurement error (in case a signal 
source with high internal impedance is used) comes from the internal ADC structure: its 
input sampling circuit. 

Figure 14 shows a simplified schematic of the input stage (sample and hold circuit).

Figure 14. ADC simplified schematic of input stage - sample and hold circuit

The spikes (noise) present on ADC input pin during conversions are related to the sampling 
switch (S1). If the switch is closed, some charge (coming from the sample and hold 
capacitor Csh or caused by another effect) is transferred to the input pin. Then this charge 
starts discharging through the source impedance (Rin). The discharge process ends at the 
end of the sampling time (tS) when the switch S1 is opened. The remaining undischarged 
voltage remains on the capacitor Csh and ADC measures this voltage. If the sampling time 
(tS) is too short, the remaining voltage does not drop under 0.5 lsb and ADC measurement 
shows an added error. Figure 15 shows this process.
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Figure 15. ADC input pin noise spikes from internal charge during sampling process

Note that a non-zero external capacitance Cext (parasitic pin capacitance) also exists, so 
during conversion time the pin capacitance is discharged through source impedance Rin. 

4.4.3 Minimizing added errors

Workaround for high impedance sources

To solve the added error problem, you can increase the sampling time (tS) configuring ADC 
settings in MCU firmware, so that you discharge the Csh charge through the source 
impedance Rin. The time constant (Rin * Csh) is the reference for choosing the sampling 
time. To choose the sampling time cycles, use this formula (see also Chapter 1):

The clock for ADC (fADC) is another important factor; slowing down the ADC clock 
increases the sampling time.

 

tS fADC Rin Csh⋅( ) In4096
0.5

-------------⋅ ⋅≥ cycles[ ]
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Figure 16. Effect of sampling time extension

If the maximum register value of the sampling time setting is reached and the problem is still 
present, you need a more complex solution which is applicable also for measurements of 
source with extra high internal impedance (see the section Workaround for extra high 
impedance sources below).

Note that for this application you must take into account not only the internal sampling 
capacitance, but also any external parasitic capacitance (in parallel to Cext), such as: pin 
capacitance, PCB path capacitance, etc.

Do not add any external capacitor (Cext) to the input pin when applying this workaround. Its 
capacity will increase the timing constant (Rin * Csh || Cext) and the problem will remain.

Workaround for extra high impedance sources

This workaround consists of 2 parts: a hardware change and a software change.

Hardware change:

The hardware change consists of adding a large external capacitor (Cext) to the input pin. 
The capacity size connected to the input pin must reach the value that causes the 
discharging of the internal sampling capacity Csh to the external capacitor Cext without 
increasing the voltage on Cext to more than 0.5 lsb. For example:

If the internal capacitor (Csh = 16 pF) is charged to full scale (Umax , which corresponds to 
4096 lsb), then the external capacitor Cext must be charged at maximum 0.5 lsb voltage 
level (Ulsb) after discharging Csh to it. The capacity of Cext will be then:  

         

The closest larger standard value chosen here is: Cext = 150 nF.

If the internal sampling capacitor Csh is not charged to full voltage range (4096 level) before 
sampling, you can calculate the Cext value replacing “4096” in the formula above. 
Calculating with 4096 level gives precise measurement results also in the case of ADC input 

Cext Csh

Umax

Ulsb
--------------⋅≥ 16pF 4096

0.5
------------- 131nF≈⋅=
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channels switching (Csh was charged from different ADC input in the previous 
measurement).

A side effect of this hardware workaround is the cyclical charging of Cext which must be 
taken into account. Each ADC conversion transfers charge from Csh to Cext. One transfer 
charges the Cext below 0.5 lsb, as described above, but more transfers can charge Cext to 
larger values if it is not discharged between two conversions. Figure 17 shows an example 
of this scenario where the ADC measurement is performed faster.

Figure 17. Charging the external capacitor with too short time between conversions

Software change:

The side effect mentioned above can be solved by software. The objective is to create a 
delay in order to let Cext discharge through Rin (not measure so often) giving a “discharge 
time” between ADC conversions. The “discharge time” (tC) is equal to the transferred charge 
from Csh to Cext (charging) and from Cext to Rin (discharging). The assumption is that Cext 
>> Csh.

         

where Umax ..... 4096 lsb voltage level (worst case)

         

, where Ulsb ..... 0.5 lsb voltage level

Qcharging = Qdischarging

         

After simplification we obtain the final formula for the required waiting time between 
conversions:

Qch ingarg Qsh Csh Umax⋅= =

Qdisch ingarg

Ulsb

Rin
----------- e

t
RinCext
-------------------–

td

0

tC

∫⋅=

Csh Umax⋅
Ulsb

Rin
----------- e

t
RinCext
-------------------

td

0

tC

∫⋅=

tC Rin Cext⋅( )– In 1
Csh

Cext
-----------

Umax

Ulsb
--------------–⋅=
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This final formula links the external capacitor Cext and the required waiting time between two 
conversions if the precision Ulsb is needed.

From the same formula you can see that the argument in logarithm must be positive and 
therefore there is a condition for the minimal value of Cext:

         

         

         

         

         

Choosing a larger Cext decreases more the time between conversions (tC). 

An extra large Cext (Cext>> ) enables sampling more often. 

However, increasing Cext limits the frequency bandwidth of measurement signal (increasing 
the “external” timing constant Rin . Cext). 

The formulas below show how to choose the optimal Cext value: signal bandwidth in 
correlation with sample time. Signal bandwidth is characterized by an “external” timing 
constant, so: 

         

         

         

         

After simplification we obtain the final formula for optimal Cext:

         

and the corresponding waiting time between conversions:

         

Practically the firmware must not program the ADC in continuous mode but only in single 
mode and must ensure that there will be a time gap between conversions with duration 
equal to tC. This waiting time is the software change which must be applied together with the 
hardware change (adding an external capacitor Cext). 

Without implementation of tC waiting time in software (for instance, running a conversion just 
after the first one) the external capacitor Cext will cyclically charge from the Csh capacitor. 
After a lot of cycles the voltage on Cext will reach a quite high error value (as previously 
shown in Figure 17).
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A practical example of implementation for STM8L ADC is shown below:

         

         

         

4.4.4 Source of described problem - ADC design

The following sections list some possible causes for the charging of the internal sampling 
capacitor Csh. This is not an exhaustive list; only the main possible sources of the ADC 
design are listed.

Parasitic switch capacitance effect

The sampling switch inside ADC sampling circuit (see Figure 14) is not ideal. In reality the 
sample and hold switch (S1) is designed as 2 transistors (PMOS and NMOS):

Figure 18. Implementation of sampling switch

The switch is controlled by the gate voltages of transistors (inverted signal on PMOS 
transistor). This design is a standard bidirectional switch (for rail to rail range of input Uin 
voltages).

Both transistors have parasitic capacitances between gate and source. If those 
capacitances are charged (close to the switch), then their charge can be transferred to the 
sampling capacitor.

Csh = 16 pF ..... ADC property

Rin = 150 k ..... signal source property

Umax = 4096 lsb ..... ADC property

Ulsb = 0.5 lsb ..... required precision

Ω

Cext 1 58, Csh

Umax

Ulsb
--------------⋅ 1 58, 16pF 4096

0.5
-------------⋅ ⋅ 207nF 220nF⇒≈= =

tC Rin Csh⋅( )– In 1
Csh

Cext
-----------

Umax

Ulsb
--------------–⋅ 150kΩ 220nF⋅( )– In 1 16pF

220nF
-----------------4096

0.5
-------------–⋅ 29891μs 30ms⇒≈= =



Methods for precision improvement AN3137

30/38 Doc ID 16983 Rev 2

Figure 19. Parasitic capacitances of sampling switch

This charging and discharging currents (PMOS and NMOS asymmetric capacitances) can 
cause charge transfer to sampling capacitor Csh.

Internal charging of sampling capacitor

It is possible that after the conversion process (successive approximation process in SAR 
type of ADC) the sample and hold capacitor Csh is charged to some voltage. The reason 
can be:

● some leakage current to Csh (parasitic current inside ADC structure, see Figure 20) 

● residual charge transfer from the switches when ADC structure is switched back to 
default state before next conversion

● other reasons (related to internal ADC parasitic structures)

Figure 20. Parasitic current example inside ADC structure
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4.5 Design rules for minimizing errors
ADC precision can only be significantly improved if external influences on the measurement 
are minimized. Therefore any precision improvement method also includes rules for correct 
design.

Main design rules for minimizing design errors:

● Grounding of analog/digital power:

– star topology

● VDDA, VSSA filtering:

– RC, LC filtering 

– avoid noise from noisy digital power

● VREF selection - offset, value, precision:

– reference voltage source precision and stability matched to application precision 
requirements and ADC capability

– reference voltage source value and precision in line with the expected measured 
range

● Source impedance vs. input impedance knowledge:

– use input buffers for measured signal

– impedance in relation with required conversion speed (proper sampling time)

● External preamplifier usage:

– for low (and also high) level signals

– amplifier speed and precision properties

– amplifier dependency on frequency

● Select appropriate ADC mode, speed, trigger

● Software methods: averaging, FFT, … (see Chapter 4.3: Software methods)
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5 Conclusion

The analog to digital converter (ADC) in the STM8L microcontroller family is a standard 
ADC converter with various operation modes and settings which are described in this 
document.

This ADC can have common errors. To minimize these errors and improve precision, the 
main methods and application design rules have been described. You can apply these 
methods to your application. 

The choice of method depends on the application requirements and is always a compromise 
between speed/precision, enough computation power and design topology. The published 
methods lead to a precision improvement and are optimized for the design of an ADC 
converter using the SAR (successive approximation register) principle. 
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Appendix A Source code examples

A.1 Project code example
A firmware package is linked with this document. It contains source codes in C-language 
which gives examples of some of the precision improvement methods described in this 
application note. This complete project is designed for the ST Visual Develop (STVD) 
development environment and Cosmic/Raisonance compiler and using the STM8L-1526 
evaluation board. With these examples you can see how the methods are implemented in 
practice and you can test them by comparing ADC precision with improvement methods and 
without them.

Package name: STM8L_ADC_improvement.zip
Project name: STM8L_ADCPrecisionImprovement.stw

A.2 Source code description
The example consists of a complete STVD project. This project contains source codes in 
files:

         

main.c main program file (MCU initialization, main program loop)

ADCAveraging.c

ADCCalibration.c

ADCWhiteNoise.c

Filter50Hz.c

FFT.c

testing - each file for given ADC precision improvement method 
(uses STM8L library)

mono_lcd.c basic driver for writing to LCD display (on STM8L evaluation 
board)

mallocR.c malloc implementation for Raisonance compiler

ADCdriverFFT.c

ADCfncFFT.c

auxiliary functions for FFT implementation (hardware access and 
general functions)

stm8_interrupt_vector.c contains interrupt table address definition for Cosmic compiler

“*.h” files corresponding header files for used C - files and definitions

/Library subdirectory which contains complete STM8L15x library 
(stm8l15x_adc.c, stm8l15x_beep.c, stm8l15x_clk.c, 
stm8l15x_comp.c, stm8l15x_dac.c, stm8l15x_dma.c, 
stm8l15x_exti.c, stm8l15x_flash.c, stm8l15x_gpio.c, 
stm8l15x_i2c.c, stm8l15x_irtim.c, stm8l15x_itc.c, 
stm8l15x_iwdg.c, stm8l15x_lcd.c, stm8l15x_pwr.c, 
stm8l15x_rst.c, stm8l15x_rtc.c, stm8l15x_spi.c, 
stm8l15x_syscfg.c, stm8l15x_tim1.c, stm8l15x_tim2.c, 
stm8l15x_tim3.c, stm8l15x_tim4.c, stm8l15x_usart.c, 
stm8l15x_wfe.c, stm8l15x_wwdg.c)
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A.2.1 Program flow

The main.c file contains the main program loop - in function main(). At the beginning, the 
basic MCU initialization is performed: clock, interrupts, display, ... . Then the main testing 
loop begins - it consists of series of steps.

Each test step contains a write to the LCD display to display information about the running 
test and then contains the call to test routine itself. The test routines are provided in the 
corresponding file. To continue from one test to the next, the user must press a “Key” button 
on evaluation board. After all tests are done, then the test loop runs again.

Tests are:

● TestADCAveraging(); 

– ADC in single mode - channel 24

– averaging method applied

● TestADCWhiteNoise(); 

– ADC in single mode - channel 24

– averaging method applied

● TestADCDigitalFilter50Hz(); 

– ADC in single mode - channel 24

– external timer trigger

– simple digital comb 50 Hz filter applied

● TestADCCalibration(); 

– ADC in single mode

– simple linear model applied (offset and gain calibrated)

● TestADCFFT(); 

– ADC in single mode

– external timer trigger

– 16-point FFT applied

A.2.2 User interface description

A user interface is available to test the described example. It consists of an LCD display and 
buttons on the evaluation board. These are the steps to follow:

1. Load the example firmware onto the evaluation board

2. Run the program (resetting the evaluation board); the invitation screen appears.

3. Connect the signal to the BNC connector

4. Press the joystick

The main program loop begins, with the following methods shown: 

Averaging method:

● the first line on LCD shows the difference (maximum-minimum) from raw samples 
(buffer is 200 samples)

● the second line on LCD shows the difference (maximum-minimum) from averaged 
samples (floating average of 10 samples)

● to stop the method press the “Key” button



AN3137 Source code examples

Doc ID 16983 Rev 2 35/38

White noise modulation method:

● external signal should be modulated by white noise or small triangle signal (for 
instance, from function waveform generator)

● the second line on LCD shows sub LSB resolution from measured signal - averaged 
200 samples

● to stop the method press the “Key” button

Digital filter method:

● a 50 Hz rejection filter (comb filter) is implemented 

● the first line on LCD shows the difference (maximum-minimum) from raw samples 
(buffer is 500 samples)

● the second line on LCD shows the difference (maximum-minimum) from 50 Hz filtered 
samples

● 50 Hz suppression is seen when a DC signal with 50 Hz added noise is applied

● to stop the method press the “Key” button

ACD calibration method (linear model):

● a linear ADC curve approximation is implemented: Y = k.X + Q

● samples for calibration are sampled first: more samples means better approximation

● the first line on LCD is editable - a real precise value must be entered (measured by 
calibration device)

● the second line on LCD shows sample number, navigation cursor and value measured 
by ADC

● use the joystick for entering real value:

– left/right = cursor left/right movement

– up/down = increase/decrease of real value

– center = enter values pair as valid (sample number increases)

● change the input signal to different level

● enter real value by joystick

● continue with another signal level ( > 5 samples, for example)

● to stop entering sampling pairs, press the “Key” button

● an information screen appears:

– the first line on LCD shows standard deviation before calibration

– the second line on LCD shows standard deviation after linear calibration model 
calculation

● next screen appears after 3 seconds:

– measured value with applied linear model (calibrated ADC)

– you can compare the real calibration value with the value on LCD; it should be 
very close

– to stop the method press the “Key” button and before releasing it press the joystick
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FFT analysis:

● 16 point FFT calculation of 50 Hz signal is implemented 

● FFT is applied on 6 ADC channels: AIN0 - AIN5

● FFT method shows 3-phase AC signal power measurement:

– even channels (0, 2, 4) represent voltages

– odd channels (1, 3, 5) represent currents

– power is calculated as sum of the power of each harmonic frequencies (16 point 
FFT = 7 harmonic)

        Pa=U1*I1*cosF1 + ... + Un*In*cosFn     (n=7)   ... for phase “a”

        Pb=U1*I1*cosF1 + ... + Un*In*cosFn     (n=7)   ... for phase “b”

        Pc=U1*I1*cosF1 + ... + Un*In*cosFn     (n=7)   ... for phase “c”

● connect 6 signals to AIN0 - AIN5 pins; signals should have frequency CCA 50 Hz

● the calculation takes CCA up to 3 seconds

● the second line on LCD shows calculation results: phase number, effective values of U 
and I, harmonic power, phase shift, distortion of U and I (all for each of the 3 phases)

● to stop the method press the “Key” button (wait for the end of the result list, “done” will 
appear on the screen)

Now the program starts again from the averaging method.

A.2.3 Hardware and software requirements

To run the project example you must have installed STVD (version 4.1.3 or newer) and 
Cosmic/Raisonance compiler for STM8L family. Both tools are free for download from 
STMicroelectronics and Cosmic/Raisonance websites.

The hardware requirement is to have STM8L-1526 evaluation board with STM8L152C6 chip 
installed.
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