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Application note

120 VAC input-Triac dimmable LED driver based on the L6562A

Introduction
The cost of power LEDs is rapidly decreasing, while performance is improving. Their 
efficacy (light out per watt in) is now competitive with compact fluorescent lamps, while their 
life cycle is significantly longer at 100,000 full-power hours (11+ years) at half brightness. 

Dimming LEDs can extend the life cycle further, and also reduce power drain. By far the 
most common dimming method is the Triac phase-control dimmer, which directly replaces 
the AC On-Off switch, but can be used only with incandescent lamps and specially designed 
fluorescent ballasts.

If the dimmer's thyristor current falls below its holding current, it stops conducting until it 
receives another pulse from the dimmer's triggering circuit. The power converter does not 
receive input power except for a very brief pulse each time the thyristor fires, until the 
thyristor turns off because of a lack of holding current. Performance of the converter is very 
erratic, and the LED load flickers badly.

This application note presents a low-cost driver for LEDs that is compatible with Triac phase-
control dimmers. The design gives luminaire manufacturers a low-cost, commonly available 
dimming option for home fixtures. A side benefit is that, when not wired to a dimmer, the 
unit's power factor is over 0.9. The physical design can be made small enough to power a 
PAR38 lamp having 65 W equivalent illumination.

The design is based on the ST L6562A transition-mode PFC controller driving a single stage 
PFC-flyback power converter.

The device features extremely low consumption (60 µA max. before startup and <5 mA 
operating) and includes a disable function suitable for IC remote on/off, which makes it 
easier to comply with energy saving requirements (Blue Angel, ENERGY STAR®, 
Energy2000, etc.).

The L6562A's totem-pole output stage, capable of a 600 mA source and an 800 mA sink 
current, is suitable for driving high current MOSFETs or IGBTs.

www.st.com
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1 Background

1.1 Characteristics of the Triac-based dimmer
Conventional “2-wire” dimmers replace wall switches in M. It is highly desirable to have the 
LED driver accept power from a Triac-dimmed source.

The Triac dimmer reduces load power by delaying the application of load voltage during 
each half cycle. The scheme works very well for resistive loads such as incandescent 
lamps, but less so for other load types.

Figure 1. Thyristor dimmer with incandescent light 

The thyristor turns on abruptly when the pulse generator fires, and it turns off near the 
voltage zero crossing when current falls below its holding current. The inductor and 
capacitor filter the sharp voltage edge to reduce conducted EMI. The lamp provides resistive 
damping to the L-C filter, and its resistance provides holding current to the thyristor. While 
the Triac is turned off, the lamp's low impedance causes nearly the entire line voltage to 
appear across the dimmer circuit, providing a clean reference signal from the voltage zero 
crossing until the Triac fires. 

When the thyristor feeds an electronic load, such as a power converter, the damping and 
holding current effects of the lamp load are not present. Typically, the electronic load has an 
input EMI filter and a small capacitor to provide steady voltage for the power converter. No 
damping is present.
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Figure 2. Non-dimmable power converter LED driver

Many fluorescent, compact fluorescent, and LED drivers have warnings stating “not for use 
with dimmers” because they are unable to cope with the sudden rise of voltage late in the 
half cycle, or the reduced average voltage. Many low-cost drivers directly rectify the 
incoming AC and apply the resulting pulsed DC to capacitive filters. Current is drawn from 
the source during a very short period at the peak of the incoming voltage waveform, and no 
current is drawn during the remainder of each half cycle.

The Triac requires a minimum holding current, typically 30 to 50 mA, during the entire half 
cycle. If the current falls below that level, or if it reverses, the Triac turns off. It may or may 
not fire again during that half cycle, and an unknown voltage is left on the dimmer's timing 
capacitor for the next half cycle. Chaotic operation results if the holding current is not 
maintained.

Switchmode lamp drivers of any kind must include EMI filters at their AC inputs. In addition, 
the Triac dimmer may (and should) contain its own L-C filter, and the AC line is slightly 
inductive. All the filters typically contain only inductive and capacitive components - the 
sharply increasing input voltage, when the Triac fires each half cycle, causes current ringing 
which reverses several times during the half cycle. The Triac may continue to conduct during 
brief reversals (microseconds to tens of microseconds), or it may turn off. The variable 
voltage step and variable timing can cause the gating circuit to apply triggers to the Triac at 
random times, leading to flickering in the lamp.

Current drawn by a capacitive EMI filter varies considerably, even without the Triac dimmer. 
At low power levels (around 15 W) the current drawn by the EMI filter is a significant portion 
of the total current. It must be taken into account in the design. The incoming AC voltage 
waveform is distorted by other loads - its slope varies from the smooth sine wave one would 
expect. Typically, there is a notch at the top of the waveform, caused by rectifiers on other 
equipment which draws current, followed by a flat top caused by capacitive loads drawing 
current through rectifiers, followed by a step downward as the rectifiers go through reverse 
recovery (abruptly ceasing to draw reverse current). The rapid downward slope can cause a 
capacitive load such as the EMI filter input to supply reverse current through the Triac to the 
source. Input current (Triac holding current) is sharply reduced or reversed. The current is 
out of phase with the voltage between the voltage peaks and the voltage zero crossings. 
The filter supplies some of the load current during these intervals, stealing holding current 
from the Triac.
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Figure 3. Line voltage (yellow) and line current (green) into the unloaded EMI filter 

With the dimmer phased back, when the Triac fires the current rings repeatedly through 
zero, and the holding current comes and goes. The thyristor may turn off until it is again 
triggered by the pulse generator.

Figure 4. Thyristor current due to L-C ringing

1.2 Damping circuits
If the Triac is to remain in control, current reversals between triggering and the voltage zero 
crossing must be eliminated. STMicroelectronics has developed a way to do this without 
violating existing patents, and a patent for this technique has been applied for. The patent is 
licensed to anyone using ST semiconductors at no charge.

Figure 5 shows a damping network according to our patent application. C5 and R1 provide 
holding current to the Triac until the filter ringing dies down. If properly sized, ringing is 
minimized with little loss. The values shown are appropriate for about 30-60 W output.
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Figure 5. Adding a damper to the EMI filter

At high power levels (50 W +) load current can easily exceed the current supplied by the 
filter and damper capacitors between line peaks and zero crossings. The addition of a diode 
reduces the heat produced by the damping resistor.

Figure 6. Polarized damper
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2 Other input filter effects

2.1 Line impedance affects input filter damping
Dimmer Triacs turn off if the current running through them is not maintained above the 
holding current of about 30 to 50 mA. If the input filter rings, holding current can be 
interrupted. The Triac must then wait for its next trigger pulse. This can result in severe 
flicker.

Most of the lab testing had been carried out with a standard VARIAC and step-up 
transformer, not realizing that the impedance of this source was rather high. The series 
inductance and winding resistance changed the input filter's characteristics, masking a 
badly underdamped input filter design.

User demonstrations invariably occur in various settings, which may have heavy wiring with 
the line possibly loaded with incandescent lamps. These factors reduce the line impedance, 
exposing the input filter's damping weaknesses.

2.1.1 Control and reduce the line impedance range

The problem can be easily solved. The inductance of the transformer/VARIAC combination 
was measured (short the line input, measure the output) and a small inductance was added. 
This process seems to have worked and conducted emissions improved slightly.

2.1.2 Discrete inductor

It was found that 500 µH was enough to stabilize the line impedance. Higher values were 
chosen to guarantee stability and improve conducted EMI.

2.1.3 Common-mode choke differential L

The discrete inductor can be incorporated into a common-mode choke, but the choke's 
rated common-mode inductance is NOT what matters. The leakage inductance, or 
differential mode inductance, is the property to be exploited. This models as an inductance 
in series with one of the windings, just like in a transformer. 

2.1.4 How to measure leakage inductance

Leakage inductance is measured by shorting one of the coils and measuring the inductance 
of the other winding. Alternately, the windings can be wired in series opposing (connect 
either input or output pins together and measure the other pair). 

For 10 mH through 80 mH bobbin-wound chokes, the typical leakage inductance values are 
in the 100 µH to 1000 µH range.

2.1.5 Coil separation

Leakage flux is the flux that is not coupled by both windings. It is generally proportional to 
the spacing between the coils and the square of the turns count. Four-winding common-
mode chokes with the same ratings usually have higher leakage inductance in addition to 
their improved high-frequency filtering (two-section chokes have higher capacitance from 
input side to output side).
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Physically larger chokes have higher leakage inductance, and lower resistance, which 
contributes to better efficiency.

EMI filter design is a skill that must take the available space, cooling, magnetic coupling, and 
many other considerations into account. A thorough treatment is, unfortunately, beyond the 
scope of this paper.

2.2 Powering the control circuits
It has been found that the best way to avoid flicker and flash at turn-off is to have the 
converter running all the time. This requires control power to be present continuously. If the 
converter is running it draws holding current, keeping the dimmer Triac in conduction 
between triggering and zero crossing.

The dimmable LED driver in Section 4: Hardware design of the STEVAL-ILL016V2 
demonstration board, uses a classical PFC-flyback power converter, controlled by ST's 
L6562A. This chip operates safely from an unregulated power supply between 12 V and 22 
V. 

In normal power supplies, with a fixed voltage load and no phase-control, it is easy to meet 
this range. A primary-side bootstrap winding in phase with the load winding provides the 
housekeeping power, and the load voltage regulates it by the transformer turns ratio.

Figure 7. Schematic of normal bootstrap supply

Driving LEDs from a Triac-controlled source presents a different problem. When the dimmer 
is set low, the power source is not present for most of the cycle, and the average LED 
current is very low. Bootstrap voltage ranges of 3:1 from full-on to full-dim are common. The 
housekeeping supply must be regulated to cover this very wide range of line voltage and 
load current. 
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Figure 8. Schematic of regulated housekeeping supply

The resistor labeled R2 in Figure 8 above can be used to trim the bulk voltage on C3. Small 
values (0-10 Ω) allow the leakage spike from FET turn-off to peak-charge C3, while larger 
values (50-100 Ω) suppress the leakage spike and charge C3 to a voltage regulated by the 
LEDs and the transformer turns ratio.
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3 Filtering the LED current - electrolytic capacitors 
revisited

3.1 Strobe effects
Earlier designs used only a few microFarads (µF) of filter capacitors across the LEDs. When 
the dimmer was turned right down, current flowed for less than 1 millisecond out of each half 
cycle. The result was that rapidly moving objects appeared as multiple stationary images, 
similar to the appearance of a hand moving rapidly in front of an old TV screen. Reflections 
from moving shiny objects such as jewelry appeared as dotted lines in the air. 

Many users had noticed the effect. The collective opinion was that LED peak-to-peak ripple 
current should be less than 20 % to 25 % of the average current. The use of electrolytic filter 
capacitors had to be reconsidered.

3.2 Benefits of electrolytic filters
Once it was understood that very large output capacitors were required, other advantages of 
their use became apparent.

3.2.1 Reduced crest factor in LEDs

The bonding wires in LEDs are very small - sometimes almost invisible. High RMS current 
causes the wire to heat the bonding point on the LED die, leading to failure. The RMS 
current of a power factor controlled converter is higher than necessary for the same light 
output, by about 1.2 times. Resistive heating is about 45 % higher than for pure DC for the 
same average current.

3.2.2 Better regulation of housekeeping voltages

With a narrower range of peak current, the LED load voltage range is considerably narrower. 
Reflected voltage, even with dimming, is much better controlled.

3.3 Electrolytic life calculations
An LED life cycle is advertised as 50,000 to 100,000 hours of operation at 70 % light output. 
The driver electronics should be designed to match or exceed this.

A capacitor life cycle is rated at maximum operating temperature and maximum ripple 
current, which typically adds 10 °C to the core temperature. The life cycle doubles for every 
10 °C reduction in core temperature. So, for a 105 °C capacitor rated for 10,000 hours at 1 A 
of ripple current, operated continuously at 85 °C case temperature and 1 A ripple current, a 
life cycle of 40,000 hours can be expected.

In the real world, continuous 85 °C temperatures are rare. A minimum of double the 
calculated life cycle can be expected. So, with the proper choice of capacitors, the life cycle 
can be in the same range as the LED life cycle, and is, therefore, no longer a serious 
concern.
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3.4 Selecting the filter capacitors
The current waveform at the converter output has two fundamental components, one at the 
switching frequency and one at twice the line frequency. 

Ignoring the switching frequency component, the filter capacitor's 120 Hz reactance is sized 
to limit the ripple current in the LEDs by limiting the applied ripple voltage. This voltage 
appears across the dynamic resistance of the LEDs.

There are two mechanisms in electrolytic capacitors that cause heating, I2R loss due to 
ripple current on ESR in the foil at high frequencies, and dissipative losses due to changes 
in voltage at low frequencies (dissipation factor, similar to hysteresis losses in magnetics). 
These two effects are additive - both should be considered. While ripple current at the 
switching frequency is significant, selecting low ESR capacitors and choosing the capacitor 
value for 120 Hz (see below) generally gives good results. 

3.4.1 LED slope resistance (dynamic impedance)

The dynamic impedance of LEDs, like all forward-biased diodes, is inversely proportional to 
forward current. So, fortunately, as forward current is reduced and the current pulses from 
the converter become narrower, the same parallel capacitance gives roughly the same ratio 
of ripple current to average current.

As a rule of thumb, a typical 1 W LED (3.5 V, at 350 mA) has a slope resistance of about 1 
Ohm. So, LED dynamic resistance is about 1/10 of total LED voltage divided by total LED 
current.

3.4.2 Capacitor values

The capacitor value formula below gives good 120 Hz ripple results:

C = 0.1xIavg/Vavg 

For a series string of 8 1-W LEDs, the required capacitance is then 0.1*0.35 A/(3.5 V*8), or 
about 1250 µF.

3.5 Feedback loop characteristics
Abrupt changes of light level appear as flashes to the eye, which has a response time in the 
range of ¼ second. The control loop is intentionally made very slow (1-5 seconds response 
time) to smooth the transitions - the eye adjusts to the slow changes. During the transitions, 
current may be higher than the LED's continuous rating, but no damage can occur - 5 
seconds of 20 % overload is not serious.

3.6 Regulating the LED current
It is desirable for the drive circuit to regulate LED current if a dimmer is not present. In the 
US, the current should be maintained within +/-5 % between 96 V and 132 V input.

A feedback loop is used to control the current in the undimmed state. See the circuit 
description in Section 5 below for details.

When a dimmer is used, the system allows the LED current to fall below the regulation point. 
The feedback loop is saturated, calling for all the current the flyback converter can deliver. 
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Primary-side current limiting is used to reduce the LED current - when the dimmer is phased 
back, average power to the LEDs is reduced. The system is run open-loop when dimmed.

Figure 9. LED current vs average input voltage, showing regulation takeover

3.7 Acoustic noise
The fast rising edges of voltage and current produced by the Triac results in a buzzing noise, 
worst at about 90 degrees conduction. This can be produced by many parts, though 
principally magnetics - varnish helps, but they may need to be dipped in epoxy or the 
assembly potted in silicone.

Also at fault are capacitors, both film caps and ceramics. The film capacitors become 
electrostatic loudspeakers, the ceramics become piezoelectric speakers. Again, potting or 
dipping in conformal silicone helps. About 1/8" of silicone on both sides of the PCB is usually 
enough to silence surface mounted parts.
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4 Hardware design of the STEVAL-ILL016V2 
demonstration board

Design goals

● Input: 96-132 VAC, 60 Hz, Triac dimmable

● Output: approximately 15 W into LED load, scalable to higher power

Features

● Drives strings of 4 to 14 series-connected white LEDs, jumper selectable

● 15 W, up to 1A output (setup for 350 mA as shipped)

● Undimmed power factor greater than 0.97

● LED current ripple less than 20 % P-P

● Isolated output for safe LED heatsinking

The design uses a single-stage PFC flyback converter, which saves space, costs, and 
components. The PFC-flyback converter does away with the large input capacitor (usually 
an electrolytic) and replaces it with a small film capacitor. The input current waveform is then 
shaped to match the input voltage, and the input current level is adjusted to give the required 
output. Power factors above the commercial application required 0.9 are easy to meet. 
Residential required 0.7 power factors are of course met, and the 0.9+ undimmed 
performance of the device is a strong competitive advantage.

STMicroelectronics devices

● PFC controller: L6562A

● Switching FET: STP5NK60ZFP

● Clamp diode: STTH1R06

● Output diode: STPS10150C

● Current regulator: TSM1052

Figure 10. Image of PC board
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Figure 11. Schematic diagram
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5 Circuit description

The unit is basically an AC-DC converter, with the output current regulated rather than the 
voltage. The topology of the power converter is the transition-mode flyback circuit, with ST's 
L6562A controller programming the input current to follow the input voltage. ST's TSM1052 
feedback controller minimizes current sensing losses on the secondary side. 

The required input EMI filtering can present a ringing current to the dimmer's Triac. If the 
current rings below the Triac's holding current, or reverses, the Triac turns off and the 
dimmer attempts to start a new half cycle. As the voltage seen by the Triac no longer 
resembles the expected sine wave at zero crossing, the Triac fires again at an unpredictable 
time. The result can be severe flicker. R7 and C5 provide damping for the input filter, 
preventing the ringing from cutting off the holding current.

Operation of the L6562A PFC controller is described in its data sheet, L6562A; Transition-
mode PFC controller, and various application notes for ST's L6561 and L6562 can be 
consulted for additional information. AN1059; Design Equations of High-Power-Factor 
Flyback Converters Based on the L6561, is particularly helpful in explaining the PFC-flyback 
power converter.

Housekeeping power for the L6562A is supplied by the normal trickle start circuit (R8, R9, 
C12) at startup. After startup, sustaining power from the converter is regulated by Q1. 
Regulation is necessary for dimmed operation due to the wide range of voltage reflected 
from the LEDs.

The unit regulates the LED current through two methods.

Operating at dimmed or at low input voltage, the LED current is limited by the primary peak 
current limit, set by R10:(R15+R16), and the FET source resistors R25-R26. LED current 
tracks the line voltage in this range - the feedback signal from U2 is zero. R5, R6, R11, and 
C6 provide the reference waveform (rectified line voltage) for the current-controlled 
converter. 

In undimmed operation, the slow current control loop (U3, TSM1052) takes over to insure 
the LED current is safely regulated. The feedback signal from opto-isolator U2 adjusts the 
average regulated current supplied to the LEDs by reducing the COMP input to the 
L6562A's multiplier. The current control loop is intentionally very slow - rapid action appears 
to the eye as flashing or flicker when the dimmer is adjusted beyond the regulation point.

U3's voltage loop provides open-load protection. If the load is always present, C17, R30, 
R32, and R28 can be eliminated.

R27, D12, and C13 provide secondary-side housekeeping power.

C21-C24 filter the output of the converter at high frequencies. At the switching frequency, 
they shunt the high peak flyback current from the converter away from the LEDs. These may 
be sufficient if dimmed operation is not required, and they can be eliminated if C14 and C15 
are used.

At 120 Hz, electrolytics C14 and C15 reduce the LED ripple current to eliminate strobe 
effects at low dimmer settings. (Peak-to-peak ripple current of 20-25 % of the DC average is 
the usual specification).

R31 and R35-R38 set the LED current regulation point. Regulated current is 0.1716 V 
divided by the parallel resistance. (The unusual sense connection is needed because a 
high-impedance input is required for the current feedback signal. The reference voltage is 
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lower than the usual 0.2 volts as a result of moving the reference return from the current 
sense point to ground) The demonstration board is supplied with a 0.47 Ω resistor at R31, 
giving current regulation at about 370 mA. 

If there is a danger of short-circuit at the LED output, at least one of the resistors in the 
current sense locations should be wirewound. The electrolytic filter caps store enough 
energy to burn out surface mounted thick or thin film resistors.

The power transformer has two secondary windings and a tap to accommodate series 
strings of 4 to 14 LEDs. Table 1 shows proper connections, and recommends filter 
capacitors for the various tap configurations. Total power output should be kept below about 
15 W to avoid overheating the input filter and other components.

Table 1. Jumper and capacitor selection table

# LEDs in series 
strings

Current, 
Amps, max

Jumpers C14, C15 filter capacitors
Filter cap 

size

4-5 1 A W1-W2, W3-W4, W5-W7
2 x 3900 uF 25 V

Panasonic EEU-FC1E392L
16 mm dia x
36 mm high

6-7 1 A W1-W2, W3-W4, W6-W8
2 x 2700 uF 35 V

Panasonic EEU-FC1V272L

16 mm dia x

32 mm high

8-10 0.5 A W2-W3, W5-W7
2 x 1000 uF 50 V

Panasonic EEU-FC1H102

16 mm dia x

25 mm high

10-13 0.5 A W2-W3, W6-W8
2 x 820 uF 50 V

Chemi-Con 
ELXY500ELL821ML25S

16 mm dia x
25 mm high

Table 2. Current set resistor selection

Total LED current R31, or parallel combination of R31 and R35-R38

350 mA 0.5 Ω

700 mA 0.25 Ω

Other R = 0.1716/Iout
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6 Performance

6.1 Undimmed performance

6.1.1 Setup for minimum dimmable output

9 W out, 8 series LEDs, jumpers at W2-W3, W5-W7. 9 Watts output is about the minimum 
that most triac-based dimmers will tolerate without flicker. Holding current is an issue below 
that loading.

Trace colors:

● Yellow = line voltage, 100 V/div 

● Magenta = line current, 200 mA/div

● Green = LED current, 100 mA/div

● Load: 2 strings of 8 (1 W) LEDs

Figure 12. 96 V input voltage 9 W, 8 series 
LEDs

Figure 13. 132 V input voltage 9 W, 8 series 
LEDs

                  

Table 3. Performance at 9 W into 8 series LEDs

Parameter Very low line Low line Nominal line High line

Line voltage 96 108 120 132

Line current, mA 116.8 104.5 94.9 87.4

Input power, Watts 10.96 10.89 10.87 10.89

Power factor 0.9766 0.9665 0.9528 0.9735

Output voltage 23.96 23.96 23.97 23.98

Output current, mA 371 371 371 371

Current ripple, mA P-P 120 128 120 116

Output power 8.89 8.89 8.89 8.89

Efficiency, % 81.1 81.6 81.8 81.6
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6.1.2 Setup for greatest voltage stresses

12 W out, 11 series LEDs, jumpers at W2-W3, W5-W7.

Component stresses

The tap configuration with jumpers at W2-W3 and W5-W7 with 11 series LEDs maximizes 
the volts per turn on the transformer. Stress on the bootstrap diode, D9, is too great. A 200 V 
diode should be used at that location if the maximum number of LEDs in a string is used for 
each jumper configuration.

Figure 14. 96 V input voltage Figure 15. 132 V input voltage
                  

Table 4. 12 W into 11 series LEDs

Parameter Very low line Low line Nominal line High line

Line voltage 96 108 120 132

Line current, mA 164.3 143.6 128.9 116.9

Input power, Watts 15.45 15.17 15.05 15.00

Power factor 0.9853 0.9816 0.9745 0.9638

Output voltage 33.39 33.25 33.23 33.20

Output current, mA 371 371 371 371

Current ripple, mA P-P 92 100 96 96

Output power 12.39 12.34 12.33 12.32

Efficiency, % 80.1 81.3 81.9 82.1
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Figure 16. Stress on FET and diode

● Yellow = Q2 drain voltage, 100 V/div

● Blue = Q2 current (actually the voltage across R25 and 26)

● Magenta = voltage on D9 (bootstrap), rated for 100 V, 20 V/div

Figure 16 above was taken with 132 VAC input, near the peak of the input sine wave. The 
transition-mode operation is clearly visible - the drain voltage (yellow trace) begins to fall as 
the output diode stops conducting, at 6.2 divisions. Gate drive (not shown) comes on at 6.7 
divisions, and the drain voltage falls to zero. Drain current (blue trace) then begins to rise, 
with only a minimal current spike as stray capacitance is discharged. The gate is turned off 
at 8.6 divisions, and the drain voltage rises abruptly due to flux stored in the transformer air 
gap. The drain voltage overshoot is due to leakage inductance in the transformer - the drain 
current is caught by D8, and the leakage energy is dumped into C4.

6.1.3  Setup for maximum power

16 W out, 10 series LEDs, jumpers at W2-W3, W6-W8, 0.5A:

Trace colors:

● Yellow = line voltage, 100 V/div

● Magenta = line current, 200 mA/div

● Green = LED current, 100 mA/div
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This configuration uses the transformer at maximum current in the full series connection. A 
1 Ω resistor has been placed at R36 to increase the regulated current to slightly over the    
1/2 A limit. The efficiency hit at low input voltage is mostly due to I2R loss in the input filter.

6.1.4 Setup for maximum output current

16 W out, 5 series LEDs, jumpers at W1-W2, W3-W4, W6-W8.

Figure 17. 96 V line 16 W, 10 series LEDs Figure 18. 132 V line 16 W, 10 series LEDs
                  

Table 5. Performance at 16 W into 10 series LEDs

Parameter Very low line Low line Nominal line High line

Line voltage 96 108 120 132

Line current, mA 227 195.2 171.0 154.4

Input power, Watts 21.42 20.67 20.08 19.77

Power factor 0.9855 0.9813 0.9756 0.9686

Output voltage 30.84 30.79 30.77 30.75

Output current, mA 0.528 0.528 0.528 0.528

Current ripple, mA P-P 152 144 148 144

Output power 16.28 16.26 16.25 16.24

Efficiency, % 76.0 78.6 80.9 82.1
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The configuration above uses the full secondary in high-current low-voltage mode. The 
effects of the secondary diode drop (D14) are evident in the efficiency. A lower voltage 
Schottky diode or a synchronous rectifier would help.

Figure 19.  96 V input 16 W, 5 series LEDs Figure 20. 132 V input 16 W, 5 series LEDs
                  

Table 6. Performance at 16 W into 5 series LEDs

Parameter Very low line Low line Nominal line High line

Line voltage 96 108 120 132

Line current, mA 232 199.2 175.6 157.2

Input power, Watts 21.85 21.12 20.60 20.25

Power factor 0.9838 0.9803 0.9748 0.9685

Output voltage 15.69 15.65 15.62 15.61

Output current, mA 1019 1018 1017 1017

Current ripple, mA P-P 700 680 672 656

Output power 15.99 15.93 15.88 15.88

Efficiency, % 73.1 75.4 77.1 78.4

Table 7. Undimmed temperatures, configured as above (worst case), 120 V input

Component Measured Component Measured

L6 38.7 Q2 51.9

L3 57.5 D14 41.0

L2 75.8 L7 39.9

D2 53.5 T1 59.5

R7 51.2 Ambient 26.7
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6.2 Dimmed performance
Conditions: 120 V input, into 2 parallel strings of 8 LEDs

● Yellow = dimmed line voltage, 50 V/div

● Magenta = dimmed line current, 0.2 A/div unless noted

● Green = LED current, 0.2 A/div

The current spike in the magenta trace is about 1 A peak. Note the very small amount of 
ringing following the leading edge of the current waveform. The current must not be allowed 
to reverse, or the dimmer Triac turns off, leading to erratic operation and severe flicker.

This is the worst condition for ringing after the current transient. Damping is very good. 
Dimmer just above extinction, LED current = 23 mA.

Figure 21. Dimmer at maximum output Figure 22. Detail of line current (magenta = 0.5 
A/div)

                  

Figure 23. Dimmer at 90 degrees Figure 24. Detail of line current (magenta = 0.5 
A/div)
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Note that R7, the damper resistor, is stressed only when the line is Triac dimmed. It 
dissipates very little power when the input is a sine wave. However, it should be moved away 
from the capacitors.

L2 and L3 could use some work. Temperatures are too high, and the conducted EMI plots

(in Figure 28) show little margin.

6.3 Startup time
Startup scope image - cold start, everything discharged, 12 series LEDs, 0.5 A

● Yellow = AC line, 120 V, 200 V/div

● Magenta = Vcc for L6562A, 5 V/div

● Blue = LED voltage, 10 V/div

● Green = LED current, 200 mA/div

Figure 25. Dimmer at 90 degrees Figure 26. Detail of line current (magenta = 0.5 
A/div)

                  

Table 8. Temperatures, unit dimmed to maximum input power, 120 V in(~22.4 W, 
worst case)

Component Measured Component Measured

L6 49.1 Q2 58.1

L3 89.6 D14 66.9

L2 104.3 L7 40.6

D2 65.3 T1 64.7

R7 80.3 Ambient 24.4
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Figure 27. Time from power in to light out

There are some requirements for 1 second startup, some for ½ second, and there is a 
desire on the part of users to have instantaneous startup - light as soon as the AC is 
applied. 

This unit was optimized for 1 second startup. The LEDs begin to light at 0.7 seconds. Full 
regulated output is achieved within 1.5 seconds. If faster starts are required, R8 and R9 can 
be reduced to 22 kΩ each, at the cost of about ¼ W of additional housekeeping power.

6.3.1 Dimmed start issue

Users have asked for turn-on when dimmed to correspond to the dimmer setting, giving the 
same light level on turn-on as the dimmer setting gave the last time it was in the same 
position. 

Note that the dimmer must be turned up beyond the 90 degree point for restart after 
dimming to extinction or turn-off. During the falling edge of each half cycle the reactive 
current from the input filter capacitors opposes the startup current drawn by the converter. 
The capacitors supply all the power required by the converter startup. As a result, at low 
conduction angles, before the converter starts, the dimmer Triac does not see enough 
holding current to remain on after it is triggered. 

6.4 Conducted EMI
Traces shown below are the maximum of 3 successive sweeps (max hold), peak values. 
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Figure 28. Conducted EMI

The plots show peak noise just above the average limit at 160 kHz and 2 MHz. There is a 
good chance that the unit passes conducted EMI tests when repackaged.
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7 BOM list

Table 9. BOM list

Designator Part type Mfr #

C1,2 0.1 µF “X2” Vishay 2222 338 20104

C10 47 µF 50 V Panasonic EEU-FC1H470

C12,13 22 µF 50 V Panasonic EEU-FC1H220

C14,15 1000 µF 50 V Panasonic EEU-FC1H102

C16 4700 pF Y Panasonic ECK-ANA472ME

C17 0.01 µF X7R 20 % 0805

C18-20 0.1 µF X7R 20 % 0805

C21-24 1 µF 50 V Murata GRM21BR71H105KA12L

C3 DNI Vishay 2222 338 20104

C4 0.01 µF 630 V X7R Panasonic ECJ-3FB2J103K

C5 0.33 µF Panasonic ECQ-E4334KF

C6 0.0022 µF X7R 20 % 0805

C7 0.47 µF 16 V 0805 10 % X7R

C8,11 100 pF 1 kV AVX 1206AC101KAT1

C9 0.1 µF 400 V Panasonic ECW-F4104JB

D13 MMSZ5246B Diodes Inc. MMSZ5246B-7

D14 STPS10150CT ST STPS10150CT

D1-4 S1M Diodes Inc. S1M-13-F

D5,6 DNI ST SMAJ188A

D7 MMSZ5258B ON Semi MMSZ5258BT1G

D8 STTH1R06A ST STTH1R06A

D9-12 MMSD4148 Fairchild MMSD4148

F1 0.5 A Littelfuse 0251.500MXL

L1 DNI *

L2,3 Panasonic ELF-11M020E Panasonic ELF-11M020E

L4,5,8,9 DNI TDK TSL1112RA-472JR21-PF

L6 4700 µH 210 mA TDK TSL1112RA-472JR21-PF

L7 33 µH 1.6 A J.W.Miller RL622-330K-RC

Q1 MMBT4401 Diodes Inc. MMBT4401-7 or Fairchild MMBT4401

Q2 STP5NK60ZFP ST STP5NK60ZFP

R1 27 1 W WW Huntington ALSR-1-27

R10,34 100 kΩ 5 % 0805
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R11,21 10 kΩ 5 % 0805

R12 680 kΩ 5 % 0805

R13 0 (jump) 0805 Zero-Ohm Jumper

R14,15 27 kΩ 5 % 0805

R16 1 kΩ 5 % 0805

R17 330 Ω RES 0.5W 5 %

R18-20 82 kΩ 5 % 1206

R2 DNI Huntington ALSR1J-27

R22 47 Ω 5 % 0805

R23,28 47 kΩ 5 % 0805

R24 200 Ω 5 % 1206

R25,26 1.1 Ω 5 % 1206

R27 10 Ω 5 % 0805

R29 2.2 kΩ 5 % 1206

R3,4 2 kΩ 5 % 1206

R30,35-38; C25 DNI 5 % 0805

R31 0.47 1 W Panasonic ERX-1SJR47

R32 332 kΩ 1 % 1 % 0805

R33 10 kΩ 1 % 1 % 0805

R39 20 kΩ 5 % 1206

R40,41 DNI 5 % 1206

R5,6 680 kΩ 5 % 1206

R7 220 2 W Panasonic ERG-2SJ221

R8,9 100 kΩ 5 % 1206

T1 CRAMER CVP 37-003 CRAMER CVP 37-003

TB1,2 TERMSTRIP2 Phoenix 1729018

U1 L6562AD ST L6562AD

U2 SFH615A-2 Vishay SFH615A-2

U3 TSM1052 ST TSM1052

Table 9. BOM list (continued)

Designator Part type Mfr #
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Figure 29. Transformer detail
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8 PC layout

Further work

The design has been extended to a 30 W output, on the same printed circuit layout, with 
very good success. 30 W transformers have been designed to fit the dual footprint for T1. 

Similar designs have been produced with a 60 W output.

The input filter has always given problems. It is important to minimize the capacitive current 
to maintain power factor and dimmability, which means that higher value inductors are 
required, which increases their DC resistance, which impacts efficiency. It is expected that 
the user designs their own input filter in most cases. Sufficient space and component pads 
are available for experimentation.

Figure 30. Top Figure 31. Bottom
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● L6562; Transition-mode PFC controller 

● L6561; Transition-mode PFC controller 
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● ANSI C78.377-2008, specifications for the chromaticity of solid-state lighting products

● C82.77-2002 harmonic emission limits - related power quality requirements for lighting

● Specifies the maximum allowable harmonic emission of SSL power supplies. 

IES illumination engineering society

● IES LM-79-2008; Approved method for the electrical and photometric testing of solid-
state lighting devices

● IES LM-80-2008; Approved method for measuring lumen depreciation of LED Light 
Sources

● IES RP-16; Addendum a, nomenclature and definitions for illuminating engineering

Underwriters laboratories

● UL 1310 class 2 power units

● Specifies the minimum safety requirements for class 2 power supplies (as defined in 
NFPA 70-2005).

● UL 1012 power units other than class 2

● Specifies the minimum safety requirements for power supplies other than class 2 (as 
defined in NFPA 70-2005).

● UL 2108 low voltage lighting systems

● Species the minimum safety requirements for low-voltage lighting systems.

● UL 1574 track lighting systems

● Specifies the minimum safety requirements for track lighting systems.

● UL 1598 luminaires

● Specifies the minimum safety requirements for luminaires. The requirements in this 
document may be referenced in other documents such as UL 8750 or separately used 
as part of the requirements for SSL products.
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National fire protection association

● 70-2005 National Electrical Safety Code® 

● Most SSL products must be installed in accordance with the National Electrical Safety 
Code®.

Federal communications commission

● 47 CFR Part 15 radio frequency devices

● Specifies FCC requirements for maximum allowable unintended radio-frequency 
emissions from electronic components, including SSL power supplies and electronic 
drivers.

Standards in development

● ANSI C82.04, driver performance standard 

● ANSI C82.SSL1 power supply

● Specifies operational characteristics and electrical safety of SSL power supplies and 
drivers.

● IES TM-21, method for estimation of LED life 

● IES LM-XX1, methods for the measurements of high power LEDs 

● UL 8750 outline of investigation for light-emitting-diode (LED) light sources for use in 
lighting products

● Specifies the minimum safety requirements for SSL components, including LEDs and 
LED arrays, power supplies, and control circuitry.
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Table 10. Document revision history

Date Revision Changes

20-Mar-2008 1 Initial release

24-Apr-2009 2 Modified: Figure 27 and Table 3

28-Sep-2010 3 Rewritten to reflect new demonstration board, with new information
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