r AN2623
’I Application note
Evaluation board

for off-line forward converter based on L5991

Introduction

This application note gives a practical example of a 160 W, isolated, forward converter using
the L5991, high frequency current mode PWM controller. Design procedures for both the
power stage and controller are presented.

Generally for this power level the norm ICE61000-3-2 imposes the use of a PFC pre-
regulator stage, but some countries do not require compliance to this norm. The forward
converter presented here does not have a PFC.

Figure 1. 160 W off-line forward converter, evaluation board
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Basis of forward topology

A forward converter is typically used in off-line applications in the 100 W - 300 W power
range. A simplified schematic of the forward converter can be seen in Figure 2.

Figure 2. Basic forward converter topology
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A natural limitation of the forward converter is the need to completely reset the transformer,
cycle by cycle, before the next MOSFET switches on. Different circuits are used for this
purpose with advantages and drawbacks. The two simplest and most commonly used reset
schemes are: the RCD reset circuit and the reset auxiliary winding both shown in Figure 3
(a-b). In the design presented in this document, the reset winding was used. ltis
advantageous with respect to efficiency because the energy stored in the magnetizing
inductor goes back to the input and is not lost as using an RCD snubber net. The drawback
of the reset circuit is that, generally, a higher voltage Power Mosfet is needed. In the present
design a 900 V MOSFET was used.

[ ] [ [ ]
N> Nr Ny N,
[

Dr

Figure 3. Reset circuits
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The primary controller IC used is the L5991. It is based on a standard current mode PWM
controller and includes features such as programmable soft start, adjustable duty cycle
limitation and a standby function that reduces the switching frequency when the converter is
lightly loaded. The standby function, in this case, is not used to prevent the transformer from
saturation. The output voltage regulation is obtained through a voltage reference and an
error amplifier (TL1431) placed at the secondary side. A charge pump connected to an
auxiliary winding guarantees a stable supply at the controller itself.
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Main characteristics

The design procedure is presented in this section and we will refer to the electrical
schematic in Figure 4. The power supply electrical specifications are shown in Table 1

below.
Table 1. Input and output parameters
Input parameters
Vin Input voltage 88 + 290 Vrums
fiine Line frequency 50/60 Hz
Output parameters
Vout Output voltage 35V
lout Output current 4.5 A max continuous, 0.45 A min
Pout Output power 160 W max
Efficiency at full load 80%
AV, 1% Max tolerance on output voltage 3%
AVout HF Max output voltage ripple at switching frequency 350 mV
TA max Maximum ambient temperature 70°C
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Electrical schematic

Figure 4.
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3.1

3.2

Design circuit

This section describes the design of the major parts of the circuit.

Primary controller: L5991

As previously stated, the L5991 is used as the primary controller and its components must
first be selected. Refer to the L5991 datasheet for the choice of the two resistors (Rp, Rg )
and one capacitor (C1) which allows setting separately the operating frequency of the
oscillator in normal operation (f,s) and in standby mode (fg). In this application, it was
established that the device must work at the unique frequency (in this case Rg —-<) of 60
kHz in normal and in standby operation. This frequency is calculated using R in the
following formula:

Equation 1

]
f =
0s¢ T CT(0.693- R, +Ky)

where Kt=160 Qand C is calculated fixing the discharge oscillator capacitor time
Tg=5%Tgy
Equation 2

Ty =80- 10°+K,- C,=Cz= 47nF, Ry= 56kQ
Establishing a D5 = 50%, L5991 allows obtaining this last value in two different ways. The
method that allows implementing the slope compensation, if needed, was used.

The duty cycle limitation is obtained by applying the following voltage to pin3 :

Equation 3

2-D
Vg = 5-2°7"m) Ly = 247V

fixing (refer to Figure 4) Ry,=4.70 kQ we can then immediately calculate Ro,,=3.60 kQ

Output filter

Admitting a max current ripple on the inductor Al ;¢ equal to 20% of |y yax. it is
necessary to select an inductor value according to Equation 4:

Equation 4

L _ V2min_vdiode_vout I:)max L =
out ~ Al T = LouF
out sSw

342 uH

The RMS (root mean square) current through the inductor is given by Equation 5:

2
/|2 A out
lams —Lout = /1 out+ 2 =lgms_Lout= 4-58 A

Equation 5
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The peak current through the inductor is:

Equation 6

lpeak-Lout = lout ¥ AlLout™ lpeak-Lout= 54 A

According to these results, L, ; was chosen as the Coil Craft's inductor PCV-1-394-05L
whose inductance value is L,;;=390 pH.

According to the max high frequency voltage ripple (Ayoutinr=350 mV) from the electrical
specifications, the necessary minimum capacitor value (C4 in the Figure 4) and its maximum
admitted ESR (Equivalent Series Resistance) are calculated as follows:

Equation 7
\Y 1 1-D
C.. . = __ou | : MaX —C, pin= 4.5 UF
outmin AVoutHF 8. fzsw Lout outmin
Equation 8
_ AVoutnre _
ESRpax = — =ESR,,,,= 388 mQ

max Alout

The RMS current through the output capacitor must not exceed the current rate of the
selected capacitor and is calculated as:

Equation 9

2 2
IrRMs_cout = ,\/l RMS —Lout — I"out = Igms _ cour= 860 MA

According to these requirements a C,;;=C1=270 YF (capacitance value) 63 V (Voltage rate)
ZL series Rubycon electrolytic capacitor was selected with an ESR of 42 mQ and max
current capability of 1495 mA.

Output diodes

The maximum reverse voltages across the rectifier diode and the free wheeling diode (D1-
D2 in the Figure 2) can be calculated as:

Equation 10
Vv

1max

VdiodeR = ~VaropF = Vdioder= 328V

Equation 11

V1max

ViiodeF = ~Varopr =VdiodeR

Varopr @and Vyropr are, respectively, the voltage drop in the freewheeling diode and in the
rectifier diode, when they are forward biased, and n=1.25 is the turn ratio between the
primary and the secondary winding of the transformer. Considering that the voltage drops in
the two diodes are the same, we can conclude from Equation 10 that V goger = VdiodeF -

The maximum RMS and the average currents through the rectifier diode are calculated as:
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3.4

Equation 12

1 (Alout

2
lrmsdiodeR = lout™ +/Pmax- J(1 +15 |7 ) )leMSdiodeRz 32A

out
lavGdiodeR = lout” Dmax= 225 A

and for the free wheeling diode:

Equation 13
D, =D Yaemin_ 11 50, =1 =1 [A-D 1oL (Blou)*)_ 4 23a
min = Pmax’ y = 5% = lgmsdiodeF= lout” /(1 =Dmin) - +ﬁ' I =
dcmax out
Equation 14

lavadiodeF = lout® (1 -Dpin)= 3.825 A

In Equation 12, 13, and 14 the currents are calculated in Full Load condition considering
the worst case for each diode and can be used to calculate the maximum power dissipation
for each diode.

To reduce the number of components, the size of the board, and to minimize power losses,
the ST double fast recovery rectifier BYT16P-400 was selected.

Although the two diodes inside the same package are always working complementarily, in
order to choose the heat sink, the total power losses in the worst case can be calculated as
if, instead of two diodes there is only one that flows through the whole current of the
inductor:

Equation 15

Al 1\2
Piotbiode = Vi~ lout* Ry Pout- (1 +1—1§- (lo(::t) ): 5.53 W
Considering Tampmax = 70 °C, the power losses just calculated, and the maximum junction
temperature T 54 (See diode datasheets) of the selected diode, it is possible to determine
the total thermal resistance of the diode:

Equation 16
T.

-T
_ max AmbMax_ °
thmax = = 15°C/W

R

l:)IossesF{

The Riymax that results is lower than the max junction to ambient thermal resistance Ry, .a
max Of the select diode, so a heat sink with thermal resistance Ri,gn= 13 °C must be added.

Power transformer design and MOSFET choice

Ideally in a forward converter, the energy flows forward from the primary side to the
secondary side without any storage in the transformer. But the real transformer does not
have infinite magnetizing inductance, so during the on-time of the power MOSFET some
energy is stored in the magnetic core. The proper magnetic core and the primary winding
turn number have to be selected in order to avoid core saturation. The proper magnetic core
and primary winding turn number must be selected taking into account that some energy is
also dissipated in the magnetic core.
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An empirical formula that gives an indication regarding the needed area Product for
magnetic core that has to be selected for the application is shown in Equation 17:

Equation 17

1.1 P, 4
AP = (0_—.141 e fsw)= 1.47 cm
where AB is maximum flux density swing in Tesla for normal operation and its typical value is
within 0.2-0.3T in the case of the forward converter. This value has to be chosen in order to
avoid saturation and to limit core losses; we chose 0.2T. The selected core is ETD39
(AP=2.2cm*, Ae=125 mm?) in N27 material. Considering this kind of core and the
transformer's max temperature rise AT ,54,=40 °C, the maximum allowed total power loss is:

Equation 18

AT

PLosTtrasfToTAL = B - 25W
thCORE

and the result of the relative max allowed core loss:

Equation 19

2- PLOSTtranTOTAL
Po = e = 121W

(k4 is the AB swing exponent relative at N27 material) so the real value of the maximum flux
density swing is:

Equation 20
;

P ky
AB = 2. [ LOSTtranTkOTALj - 0146 T
Ve ko f Zsw

e

(kg is the loss coefficient of N27 material, K, is the frequency exponent of N27 material and
V, is the effective volume of ETD39's core). The minimum primary turns is given by:

Equation 21

N. . = Viemin - I:)max_ 42
Tmin = A, T, AB ™

and we chose N{=42.

The turn ratio n between primary and secondary side is defined as:

Equation 22

N, Vgy.min D SV,
n = _1= dcmm= max dcmm= 1.15
N2 V2min Vout+VdropR

where N4 and N, are the number of turns of the primary and secondary side, V,,; is the
output voltage and Vy,pR is the diode rectifier voltage drop. The secondary turns number is
N»,=36. The magnetizing inductance of the primary side is given by:

Equation 23
L, =A_- N%1- 10°=L, =38mH

m

where A__is the inductance for turn square in nH/turns?.

J




AN2623

Design circuit

Considering that the total instantaneous current at the primary side is

Equation 24
1ot = 17 o) +ig (1)

where i'5(t) is the secondary winding current during t,,, reported at primary side and i,(t) is
the magnetizing current.

The magnetizing current expression is:

Equation 25

V.
|m(t) — |Em|n. t

m

And its peak value is:

Equation 26
I _ Vinmin"~ 'sw
m" Dmax

The peak value for the i‘5(t) is:

Equation 27
, Al 1
| 2pk = (Iout"'_zg)' A
And the value for i‘5(t) at switch-on is:
Equation 28
’ Al 1
amin = (lu=) 1
The ripple current at the primary side is:
Equation 29
Aly = |mpk+|’2pk—|’2min

The rms value for the current at the primary side is:

Equation 30

’ 2 ’
ltotRMS = A/DMAX' ((l 2min) +Aly - | 2min+%- A|21)
In this case neglecting the i, (1) , from (Equation 24), it is possible to write following formula:

Equation 31

| .
_ 'RMSdiodeR_
htotRMs = — o= 275 A

Considering (Equation 18) and (Equation 19), the maximum allowed copper power losses in

the windings transformer can be immediately calculated. It is possible to select the diameter
for primary and secondary winding; we have chosen d{=0.25 mm and d,=0.8 mm.
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Considering that for the L5991 the maximum allowed voltage value at the current sense (Ig,
pin n°13) is 1V, it is possible to determine the value of the current sense resistor (Rg in
Figure 4):

Equation 32
R9

= = 0.23Q
|1totpeak

where l1iotpeak IS the peak value of iyiy(t)

The maximum turn ratio k between primary and reset winding, as known in technical
literature, in order to achieve the complete demagnetization of the transformer is the
following:

Equation 33
1-D
Kmax = D mal)(:>km51x_ 1
max
Choosing
Equation 34
Ng
= N_1= 0.96

the necessary number of turns for reset winding is Ng=41.The maximum reverse voltage
and average current of reset diode are given by (Iave-1°magn is the magnetizing average
current of the primary side):

Equation 35
VRev-Rr = Vpcmax~ K+ Vbcmax= 806 V

Equation 36

IAVE—1"magn
lave-R = T t= 011 A

The Bipolar ultrafast diode STTH110 was chosen. Concerning the MOSFET the maximum
drain voltage is:

Equation 37

1
Varainmax = (VaeMax — VdropReset) : (R) +Vgemax= 838V
with VgropReset as the voltage drop in the reset diode. The max rms drain current is:

Equation 38
IdrainF(MS = Itot1F§MS
so the Zener-protected SuperMESH Power Mosfet STW12NK90Z was chosen. Calculating

the estimated total MOSFET power losses, it is easy to concludethat a substantial heatsink
(around Ry,<5 °C/W) is necessary.
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Design circuit

3.5

Feedback loop

Since current mode control is employed using the L5991 current mode controller, the power
stage of the forward converter exhibits a single output pole due to the output capacitor and
load combination, along with a zero due to the ESR of the output capacitor. The goal of the
compensator is to achieve a slope of -20 db/decade for the closed loop gain, with a phase
margin greater than 45 degrees at the crossover frequency. To achieve good dc regulation, a
high low-frequency gain is another requirement for the compensator. For continuous
conduction mode operation, the transfer function of the forward converter (power stage) is:

Equation 39

where (referring to Figure 4) n- Ry

® Gy, is the power block gain and results in Gio = 3- Ry VZout
_ ou
® Ry is the effective total load resistance of the controlled output defined as Ro = Po
® Ry is the current sense resistance
® nis the turn ratio between the primary and secondary side
1
0\& =
o ESRcout' Cou't
_ 1
i % RO' Cout
In order to reach the objective previously stated at the beginning of this section, the
feedback compensation network transfer function, using L5991, is obtained as:
Equation 40
1+ (Dzi
_c. c 1
C(s) = Cg s s
e
where (r.efernng to Figure 4) - o M‘
® Cj is the feedback block gain and results in ~0 ~ Rs- Cg- Rg
® CTRiis the current transfer ratio of the optocoupler
® Rjis the upper resistance of the out voltage divider of feedback net
® Rjis the polarization resistance of the optocoupler
® Cgand Ry are the capacitance and the resistance of the TL431's feedback net
® (). is the zero of the feedback net = a, = ﬁ to compensate (),
7 8
: 1
® () is the pole of the feedback net o= to compensate (),
12- 10°- Cyp
® C,5is the capacitor connected at COMP pin of L5991
13/25
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Choosing the crossover frequency f = 0.1- f,, =f.= 5 kHz it is possible to place
f
compensator zero f,;, around §° =1,= 1600 Hz and the compensator pole f,; above
3. fo=f = 15kHz.

Considering R3=5.6 kQ Rs=15 kQ CTR=1 Qwere calculated, choose the following values:
C12=1 nF, Cg=6 nF, R7=20 kQ.

J
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4 Experimental results

The schematic of the tested board is given in Figure 4. The graphs in Figure 5 show the
drain voltage and current at the minimum, nominal and maximum input mains voltage during

nominal operation at full load.

Figure 5. Vys and lyg of STW12NK90Z in full load condition at different input

voltages
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The drain peak voltage (570 V) assures a reliable operation of the STW12NK90Z with a
good margin against the maximum Bypgs.

4.1 High frequency ripple of output voltage and load regulation

Figure 6 shows the high frequency ripple of output voltage at minimum, nominal and
maximum input voltages.

Figure 6. High frequency ripple of output voltage in full load condition at different
input voltages
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Experimental results

Apart the voltage spike, the voltage ripple of the output (at full load) for every input voltage is

given in Table 2.

Table 2. Value of high frequency output ripple at full load condition
Vin(V) VoutHr (MV) VoutHF %
88 176 0.5
220 240 0.69
290 324 0.9

Figure 7 shows the behavior of the output voltage regulation against the load. It is easy to

see from the graph that, changing the load, the output voltage is practically constant.

Figure 7.

Output voltage behavior against the load and the V;,
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4.2
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Dynamic load test

The graphs in Figure 8 show the output voltage regulation against a dynamic load variation
(between max load and 10% max load).

Figure 8.

Behavior of system under dynamic load at different input voltages
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4.3

Start-up behavior

Figure 9 shows rising slopes at full load of the output voltage at nominal, minimum and
maximum input main voltages. As shown in the graphs, the rising times are fairly constant.

Figure 9. Behavior of system under dynamic load at different input voltages
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4.4 Wake-up time

Figure 10 shows the waveforms with wake-up time measures at nominal, minimum and
maximum input voltages. Obviously due to the circuit characteristics, the wake-up time is not
constant but it is dependent on the input voltage. The measured time at 88 V,, 220 V,; and
290 V. are (respectively) 2.48 sec, 780 ms and 580 ms which are rather common values for
this kind of power supply.

Figure 10. Wake-up time of the system at different input voltages
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4.5 Short circuit test

All tests have been done at nominal, maximum and minimum input voltages. For all
conditions the drain voltages are always below Bypgg. As clearly indicated in the
waveforms, the circuit starts to work in hiccup mode. Because the working time and the idle
time are imposed by the charging and discharging time of the auxiliary capacitor C11 (refer
to Figure 4), they are proportional to the input mains voltage.

Figure 11. Behavior of the system in short circuit condition at different input

voltages
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As expected the circuit protects itself as well.
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4.6
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Thermal measurement and global efficiency

One of the most critical parts of the power supply is the MOSFET. As previously seen at the
end of Section 3.4: Power transformer design and MOSFET choice a heatsink is necessary.
To verify the correct thermal behavior of the MOSFET, it was checked at maximum load and
maximum input voltage. The device reaches the thermal steady state of 94 °C.

Figure 12 shows the global efficiency in function of the input voltage for two values of load.
From the graph, we can conclude that the board has good efficiency. In absolute terms the
minimum value is around 80% for V;,=290 V and the maximum is around 86% for V;,=88 V.
The technical requirements for this converter have been respected.

Figure 12. Efficiency of the system
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Table 3. Bill of material
Iltem Quantity Reference Properties
1 1 1 TL 431 STMicroelectronics part
2 2 CBH1 47 nF X2 Cap
CA1 47 nF X2 Cap
3 1 CT1 4.7 nF
4 1 C1 270 pF, ESR=42 mQ 50 V, electrolytic capacitor
5 2 Cc2 100 pF, 450 V, electrolytic capacitor
C3 100 pF, 450 V, electrolytic capacitor
6 1 C4 330 pF, 450V, electrolytic capacitor
7 1 C5 2.2 nF, Y1 Cap
8 1 (3] 33 nF
9 1 C7 10 pF, 20 V electrolytic capacitor
10 1 Cc8 6 nF
11 2 C9 100 pF ceramic capacitor
C10 100 pF ceramic capacitor
12 1 C11 22 uF, 25V, electrolytic capacitor
13 1 C12 1 nF ceramic capacitor
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Table 3. Bill of material (continued)
Item Quantity Reference Properties
14 1 C13 33 nF ceramic capacitor
15 1 Diode bridge1 600V -6A
16 1 DN1 BYT16P-400 STMicroelectronics part + heatsink
17 1 D1 STTH110 STMicroelectronics part
18 1 D2 Diode 1N4148
19 1 D3 Diode Zener Vz=15V
20 1 FUSE1 4A
21 1 1SO1 OPTO 1-PC817
22 2 J1i CON2
J2 CON2
23 1 LFILTERIN1 Common Choke, 15 mA
24 1 L1 Inductor, 390 pH-5A
25 1 NTCH 25Q
26 1 Q1 STW12NK90Z - STMicroelectronics part + heatsink
27 2 RUP1 4.7 kQ
RA1 4.7 kQ
28 1 RDOWNT1 3.6 kQ
29 1 R1 220 k) 1/4 W
30 1 R2 220 kQ1/4 W
31 1 R3 5.6 kQ
32 1 R4 50 Q-12W
33 1 R5 15 kQ
34 1 R6 1.2 kQ
35 1 R7 20 kQ
36 1 R8 2.2kQ
37 1 R9 0.21Q
38 1 R10 1.153 kQ
39 1 T1 Transformer
40 1 U1 L5991 STMicroelectronics part
41 1 Rg 10 Q
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