£— AN2290
YI Application note

Flux control simulink and software library of a PMSM

Introduction

This application note describes a software library for the electric motor control implementing
a (FOC) Flux Oriented Control on an ST10 microcontroller.

March 2007 Rev 1 1/53

www.st.com

http://www.st.com

Contents AN2290

Contents
1 Introduction i 6
2 FOC-flux orientedcontrol iiiiiiiiiinnnaannns 7
2.1 PM S . . e e 8
2.2 Mathematical model of the machine 9
2.3 FOC control structure of PMSM 12
2.4 The space vector modulationtheory 13
2.4.1 The 3-phase inverter 14
2.4.2 The Space vector pulse width modulation 15
2.4.3 Sectorfinder 16
2.4.4 SVM formulation 17
3 Flux control simulink library e, 20
3.1 Description 20
3.2 Using the simulink library 20
3.2.1 How to install simulink library 20
3.2.2 Testenvironment e 21
3.3 Parameters format e 21
3.4 Clarke transformation 22
3.5 Park transformation 24
3.6 Inverse Park transformation L. 26
3.7 SN COS . it 27
3.8 Pl blOCK . . .o e 28
3.9 SVM L 29
4 Flux control softwarelibrary i, 33
4.1 Description e 33
4.2 Using the software library 33
421 How to install Software library 33
4.2.2 Tool chain compatibility 33
4.2.3 Callingafunction 34
424 ST10 MAC configuration i 34
4.2.5 Realtimeaspects i 34

2/53 574

AN2290 Contents
4.2.6 Naming convention i 34

4.2.7 Testenvironment e 34

4.2.8 Flux control library benchmark 34

4.3 Library functions e 36

4.3.1 Forward Clarke i 36

4.3.2 Forward Park 38

4.3.3 Reverse Park e 40

4.3.4 SIN_CO0S . 42

4.3.5 Plcontroller 43

4.3.6 SVM e 45

5 Ccodeautogenerationcoiiiiiiiiririrrnnnnnnnns 47
5.1 OVBIVIBW . o 47

5.2 Stepsto generate optimizedCcode 47

5.3 Real-Time Workshop e 47

5.4 How to generate C code using Real Time Workshop 48

5.5 Automatic configuration of RTW 51

6 Revisionhistoryttt it 52
K7_I 3/53

List of tables AN2290

List of tables

Table 1. Time frames of application of V|, Vi, qand V.o 18
Table 2. Data representation e 21
Table 3. FOC library capabilities. e e 35

Table 4. Document revision history

453 574

AN2290

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

VeCtor diagramo e 7
Cross-section of PMSM e 8
Stator current space vector and its componentsin(a,b,c) 9
Phase motorwith2 pole pair e 11
Block diagram of the flux oriented control library 13
3-phase power inverter scheme 14
Space vector diagram. e 15
SVM iNthe 1518eCtOr\ttt 16
Sector finder schematic e 17
Example of a switching patterninsector1..... i 17
Simulink library structure 20
Stator current space VECIOr. e 22
Forward Clarke block e 23
Stator space vectorintorotorframe 24
Forward Park block. e 25
Reverse Park block. e 26
SIN_COS bIOCK e 27
Plstructure e 28
SVM sSCheme e e e 29
SVM implementation block e 31
Sector 1-4 implementation e 31
Sector 2-5implementation e 31
Sector 6-3implementation e 32
File structure e 33
Flow Chart . . . e 48
Configuration parameter. e 49
Hardware implementation. 49
RTW system targetfile 50
Generate HTMLo e e e e 50
Generate CoUEt e e 51

5/53

Introduction AN2290

6/53

Introduction

This document describes a software library for the electric motor control implementing a
(FOC) Flux Oriented Control on ST10 Microcontroller.

The library consists of:
® Simulink Library;
e Software Library.

The FOC Simulink Library is a set of Simulink blocks for implementing in Matlab-Simulink
environment the functions and the algorithms used in the electric motor control. These
blocks can be used either to conceive and to test new electric motor controls and to produce
automatic generated code in ANSI C, downloadable on microcontroller.

The Software Library is a set of routines for the electric motor control obtained from the code
generated in automatic, starting from FOC Simulink library, and then optimized in
Assembler. The Software Library is equivalent to FOC Simulink Library from point of view of
bit accuracy, same API.

This document begins with an introduction on Flux Oriented Control, the permanent magnet
synchronous machine (PMSM) and a short description of its mathematical model. Then, it
describes the Flux Oriented Control implementation on Simulink and details the space
vector modulation (SVM) technique and the used algorithm.

After the technical introduction, the Simulink Flux Control Library is described, followed by
the Software Flux Control Library.

The last part describes the code generation process from the Simulink blocks of this library.

AN2290

FOC-flux oriented control

2

FOC-flux oriented control

The Flux Oriented Control (FOC) is a vectorial control strategy that consists of controlling
the stator currents represented by a space vector, phase angle and magnitude, by which the
terminology “vector control”.

This vector control form is based on three major points:

® the machine current and voltage vectors;

® the transformation of a three phase speed and time dependent system into two co-
ordinate time invariant system;

o the effective Pulse Width Modulation pattern generation.

These lead the control of AC machine to acquire every advantage of DC machine control,
very similar at the control of separately excited DC machine where the useful torque is
proportional to the product of the field current, i¢ (flux-producing current), and the armature
current, ij(torque-producing current) and torque and flux are controlled independently.

To = Coig-ip = Cq-wy-ig [2.1]

In fact using the vector theory, it is easy to show that an expression of the electric torque
similar to one of DC machine can be expressed for AC motor, all depends on choice of an
appropriate frame where to project the machine model.

The core of FOC control is the projection of a three phases (a,b,c) time and speed
dependent system into two co-ordinate (d,q) time invariant system, how explained in the
following.

Choosing a (d,q) frame where the d axis has the same direction of rotor magnet flux ys, it is
possible to verify that the produced electromagnetic torque is proportional to the magnet flux
and the quadrature-axis stator current component (torque-producing stator current ig).

In the Figure 1, the Vector Diagram is shown:

Figure 1. Vector diagram

From this figure it is possible to understand that the direct-axis stator current component igy
is the only component in able to modify the field flux, weakening it.

Supposing constant field flux (setting to zero iy, if field weakening is no used), a quick
torque response is obtained changing only the quadrature-axis stator current component,
isq» by means of a current-controlled PWM inverter, as shows the following equation (2.2):

7/53

FOC-flux oriented control AN2290

2.1

8/53

3 = 3 = 3 .
Te = 5 p\yflls‘ sin(og—0y) = 5 pwf‘ls’ sin(d) = 5 PWiisq [2.2]

We can conclude saying the Flux Oriented Control, handling instantaneous electrical
quantities, is a very accurate control in every working operation, either in steady state and in
transient, achieving high dynamic performance in terms of response times and power
conversion.

In this application note, the FOC control is explained using a particular AC machine, called
Permanent Magnetic Synchronous Machine (PMSM).

A short description of this machine, its features and mathematical model, follow before to
explain in details the FOC implementation.

PMSM

The necessity of reducing the charge of the combustion engine and of eliminating the weight
due to the mechanical connections in several applications, like in automotive field, induces
to use more and more electric motors, that assure a wide range in speed and torque control
satisfying the load demand.

The DC machine fulfils these requirements but needs periodic maintenance.

The AC machine, like induction motor and brushless permanent magnet motor, hasn’t
brushes, and its rotor is more robust because there aren’t commutator and/or rings. That
means a very low maintenance, other than increases the power-to-weight ratio and
efficiency.

In particular, in the automotive field the Permanent Magnet Synchronous Machine (PMSM)
seems to be the best solution.

The brushless permanent magnet motors (PMSMs) have the same electromagnetic
structure of a synchronous machine, without the brushes. As shown in the cross-section in
the Figure 2, they have a wound stator, similar to an induction machine, and a permanent
magnet rotor that replaces a rotor fed with dc current, like a synchronous machine. Besides,
they need of an internal or external device for sensing of the rotor position, like Hall sensors,
encoder or resolver.

Figure 2. Cross-section of PMSM

In fact the PMSMs are not self-commuting motors and to produce useful torque, the currents
and the voltages applied to stator phases must be controlled as a function of rotor position.

574

AN2290

FOC-flux oriented control

2.2

Therefore it is generally required to count the rotor position with a sensor so that the inverter
phases which feed it, acting at any time, are commuted depending on the rotor position.

That explains the necessity of a closed-loop speed/position feedback.

There are two kinds of brushless permanent magnet machines classifiable in account of the
shape of the BEMF (back-electromagnetic force):

® DC brushless machine having trapezoidal flux distribution and a trapezoidal BEMF fed
by quasi-square wave currents;

® AC brushless machine having approximately sinusoidal air-gap flux density and a
quasi-sinusoidal BEMF fed by sinusoidal stator currents.

Generally the DC brushless machines have a simpler control strategy than AC brushless
machines.

For trapezoidal flux distributions, to impose quasi-square wave currents on stator windings,
it is only needed a six position sensor, with a resolution of at least 60° electrical degrees.

On the contrary, for the sinusoidal current type, the angular position needs to be known with
a very accurate precision in order to control each of the three phases currents.

For both kinds, the high reliability of control makes this type of machine a powerful system
for electric vehicle application.

Mathematical model of the machine

In order to model the fields produced by the stator windings in terms of windings current,
“current space vectors” are used. The current space vector for a given winding has the
direction of the field produced by that winding and a magnitude proportional to the current
through the winding. This allows us to represent the total stator field as a current space
vector that is the vector sum of three space vector components, one for each of the stator
windings.

The three-phase voltage, currents and fluxes of AC motors can be analyzed in terms of
complex space vectors.

For instance, with regard to the currents in the stator windings, the current space vector can
be define as follows.

Figure 3. Stator current space vector and its components in (a,b,c)

9/53

FOC-flux oriented control AN2290

Assuming that ig4,isp,ig3 are the instantaneous currents in the stator phases, then the
complex stator current vector ig is defined by:

N N .
is = 3 (ig1 +I32-0L+I33-(12) [2.3]
where « = 273 and & = &/*79) represent spatial operators. The Figure 3 shows the
stator current complex space vector.

That being stated, it is possible to write the mathematical model of an AC brushless
machine in a stator frame in terms of space vectors, as follows:

— - dis d ip®,
Us = RgrigtLg gt gi(vire) [2.4]
where:
7 Modulus of the magnetizing flux-linkage vector
Rs Stator resistance
Lg Total three phase stator inductance
; Rotor angular speed

Number of pole pairs

" Mechanical position

and the space vectors:
u_s = g-[u1(t)+ uy(t)-e 3 Tug(t)-e 3} Space vector of the stator voltage

27 4
_ I i
i = §~[is1(t)+i52(t)-e 8 +i53(t)-e 3} Space vector of the stator current

Note that the mechanical position of the electric motors is related to the rotation of the shaft
while the electrical position is relate to the rotation of the rotor magnetic field.

So being the motor with p pole pairs, its rotor needs only to move 360/p mechanical degrees
to obtain an identical magnetic configuration as when it started.

10/53 Ky_’

AN2290 FOC-flux oriented control

Figure 4. Phase motor with 2 pole pair

Consequently the electric position of the rotor is linked to the mechanical position by the
relation:

To complete the mathematical model of the motor, we include the equation of mechanical
equilibrium:
do,

Jdt

Te—-(T,+T,) [2.5]

and substituting the expression of the electric torque (2.2), it yields:

do, 1 1 (3 —_
5 Te-Tn+T) = 35 Pw|ig|sin((ag—p -0~ (T + T,)) [2.6]
where
Te Electromagnetic torque
Tm Mechanical torque
T, Viscose friction torque
o Phase of the current space vector respect
J Inertia momentum of the machine

Note: in Matlab-Simulink environment, the PMSM discrete model has been implemented
using a model of the machine in a stationary stator reference (D, Q) frame.

Ky_l 11/53

FOC-flux oriented control AN2290

2.3

12/53

FOC control structure of PMSM

In Flux Oriented Control, motor currents and voltages are manipulated in the d-q reference
frame of the rotor. This means that measured motor currents must be mathematically
transformed from the three-phase stationary reference frame (a,b,c) of the stator windings to
the two axis rotating d-q reference frame, prior to processing, for example by Pl controllers
(it is possible to use a different controller). Similarly, the voltages to be applied to the motor
are mathematically transformed from d-q frame of the rotor to the three phases reference
frame of stator before they can be used to produce the voltage control signals for the output
inverter that feeds the motor.

These transformations are the core of Flux Oriented Control.

Simplifying the expression of the electrical model of the machine, the projection from the
three-phase stationary reference frame of the stator windings to the two axis rotating
reference frame can be executed into two subsequent steps:

® (a,b,c) =>(D,Q) (the Clarke transformation) which outputs a two co-ordinate time
variant system;

e (D,Q) => (d,q) (the Park transformation) which outputs a two co-ordinate time
invariant system;

where it is necessary to know in any time the current values in the stator phases and the
rotor position to execute the projections from a frame to other one, how explained in details
in the following.

Figure 5 is showing the block diagram of the FOC control library, where two motor phase
currents,(i.e. igq, igp), are measured with two current sensors (e.g. by phase shunts or
current transducers) calculating the current in the third winding like the negative sum of the
other two windings, (ig3 = -(is1 + ig2)), and then sending them to the Clarke transformation
module, (Forward Clarke).

Outputs of this block are the two current components (igp, isq) in the D,Q stator fixed frame.

These components are used as inputs of the Park transformation module, (Forward Park),
that gives in output the current components (igg, isq) in the d,q rotating reference frame.

The isq and ig, measured current components are compared to the references iggyer (the flux
reference) and is,f (the torque reference) and corrected by mean of two Pl controllers.

As in brushless synchronous permanent magnet motor the magnet flux is fixed (depending
on magnets), in the PMSM control, isqer should be set to zero, being the only current
component in able to weak the flux, while the torque command isg.er could be the output of
the speed regulator, e.g. for a speed-FOC. That forces the current space vector ig to be
exclusively in the quadrature direction, respect on the magnet flux vector. Since only /g,
produces useful torque, this maximizes the torque efficiency of the system.

Then the outputs of two PI, ugy and Usq, are sent to the Inverse Park transformation module,
(Reverse Park), from which we get the new components of the stator voltage vector in the
(usp, Usq) non-rotating stator frame.

AN2290

FOC-flux oriented control

24

Figure 5. Block diagram of the flux oriented control library

Inverse Park ;
i u transformation l Vae
sqref saref
— O gl
-4 3-phase
. PWM
I.S(!'}'e?f “sdref Inverter

S
i d.q /|« D.Q/ |«

jsd 1_50 iy
D.O" ab.c[”

Park Clarke
transformation transformation

PMSM

Motor

These signals are then appropriately processed to produce voltage signals for the output
bridge.

In our case, it is chosen to use the Space Vector Modulation (SVM) technique to impress
the new voltage vector to the motor.

The space vector modulation theory

The SVM technique is a sophisticated continuous modulation method used, independently
from the type of implemented control on the motor, to generate a desired voltage space
vector at the output of the inverter that feeds the AC motor, in our case a PMSM. It uses a
special scheme to switch the power transistors generating pseudo-sinusoidal currents in the
stator windings.

This strategy offers the following advantages to the application:

Higher performance to control mid/high dynamical motors;

higher efficiency (86%);

improved torque management;

better start up performance;

constant torque, less torque ripple;

improved dynamical reaction.

To better understand the space vector modulation algorithm, it is before explained an other
fundamental component of the control system: the 3 phase inverter.

13/53

FOC-flux oriented control AN2290

2.4.1

14/53

The 3-phase inverter

The inverter is a d.c. to a.c. converter. The Figure 6 shows the structure of a typical 3-phase
power inverter connected to the star motor windings, where V. is the DC Link voltage.

The six switches can be power BJT, GTO, IGBT etc. The state-of-the-art solution for the
inverter power stages uses MOSFETSs in low-voltage applications (i.e. automotive field).

The ON-OFF sequence of all these devices must respect the following conditions, so as to
feed in any time all three stator windings:
— three of the switches must always be ON and three always OFF.

— to avoid shortcut, the upper and lower switches of the same leg are driven with two
complementary pulsed signals

Figure 6. 3-phase power inverter scheme

DC Link

MOTOR
— — —
m™ T3 T5

—1= Neutral
]

& & & c

T2 T4 T6

On base of the aforementioned conditions, the inverter has only eight permissible switching
states of which six states apply a no-zero voltage to the motor windings and two states with
(Vg and V) zero volts when the motor is shorted through the upper or lower transistors.

It is useful to express the eight states of the inverter as space vectors: Vg7 expresses the
three voltages Va,, Ven, Ven, that are spatially separated 120° apart, as a space vector for
each of the switching states 0-7.

The six vectors including the zero voltage vectors can be expressed geometrically on the
complex plane as shown in the following Figure 7.

In order to generate a rotating field into the machine to produce a useful torque, the inverter
has to be switched in all the possible eight states. A way to use the inverter is the operating
mode called “six-step mode”, that generates high magnitude low order harmonics which
cannot be filtered by motor inductance.

AN2290

FOC-flux oriented control

2.4.2

Figure 7. Space vector diagram

Sector 2

e Vi
Sactor3 _,-"J \ / V Sactor 1
v VuuM" ‘-* v

Seclor 4 \ ‘,-‘ Sector 6

V']Oi 5 V 101

Sector 5

The Space vector pulse width modulation

The inverter is able to apply only eight space vector positions to the stator winding of an
electric machine, while the control imposes a voltage space vector that vary in all the inner
cycle of the hexagon in order to create a smooth rotating field (see Figure 7).

The SVM block, here implemented in Simulink, allows to generate the appropriate PWM
patter to impulse the inverter so that any voltage vector inside the space vector hexagon can
be produced by “time weighting®.

It is based on the fact that a reference voltage vector Vg, can be realized by a combination of
the two adjacent active vectors and the zero vectors inside of sector where it lies. The output
space vector voltage (choosing an appropriate PWM period, Tpyum, SO as to suppose steady
the vector VS in this period), can be computed by the integral:

Tewm S woa__ B
[Ve-aty = ([Vo[Vet [Viry) [2.7]
0 0 0 0
from which it yields:
Vg = Vo 7 0 Vi ——+ Vg
Trwm Trwm Trwm
where:
Tpwm = a+p+3 [2.8]

Vi and V1 (k=0,..7) are the vectors that bound the sector in which the reference vector is
included, Tpyy\ is the switching period and o, B and 6 are the time frames of V, V,,1 and
V/V7 vectors in that sector.

15/53

FOC-flux oriented control AN2290

2.4.3

16/53

The resulting equation is:

 [Gear Ve

Vg [2.9]

TPWM
For example, assuming that the vector Vs is in the 15t sector, we have the following situation:

Figure 8. SVM in the 15tsector

9 Vg0
TPWM

in which o and B are the times during which the vectors V1, and V¢, are applied.

Sector finder

To impose the V voltage vector at the motor windings, it is fundamental the knowledge of
the sector where the reference vector is included for a correct behavior of SVM.

In the classic approach, in order to find the sector, you need to know the phase of the

complex reference vector that is calculated with the known formula:
Tsm(_/s)j

Re(Vs)

Yy = arctan([2.10]

The main problem of this formula is the calculation of arctan implemented on a 16bit
microcontroller. One solution can be to calculate the arctan making a look-up table of the
arctan function.

Another solution (here chosen) is to recognize the sector of reference vector Vj, starting
from the knowledge of the sign of the imaginary (quadrature component) and real (direct
component) parts of the reference vector (Usprer Usqref) Written in a stator non-rotating
frame and the comparison of the their magnitudes in order to avoid the division in the
equation [2.10].If the vector phase obtained from the formula [2.11] is bigger than =/3 the
vector lies in sector 2 or 5. The control on sign of the components discriminates between the
sector 1-4 and 6-3 if the angle is less than n/3.

Im(Vy)
Re(Vy)

zarctan(g) = |Im(Vy)| zarctan(gj . ’*J?e(\TS)‘ [2.11]

iFigure 9 shows the exploded Sector Finder block:

AN2290

FOC-flux oriented control

2.4.4

Figure 9. Sector finder schematic

Ty Sfix16_En1s R B R
; L 1
u'sh SF_Abs1 — SF_Constd
timqriay |4Fx16_EntE it 16
SF_Const! sy | sfinlo_Ents 2= [uint1§ > uint16
(78 Ents o] o [EfeIEES SF_RelationalOperatort » Sector
u'sl SF Abs SF_Switch2
- SF_Froduct
SF_CompareToZeral SF_Const2 it
ull
buulean
woR |18 L uintte
=
boslean]
[

SF_CempareToZero2 SF_XOR SF_Conets SF_Switch1

SVM formulation

To create reference vector VS inside one of the six sectors, the reference vectors which
bound that sector, have to be “time weighted”, like shown in the equation [2.9]. It is possible
to modulate the reference voltage vector and to apply the better switching pattern in term of
power dissipation on the power switches of the inverter and to make that, it is necessary to
choose the strategy to apply the vector V, and V|, 4 (active vectors) in each sector.
We have some freedom degrees to choose the modulation algorithm as:

— The choice of the zero vector- whether V(000) or V(111) or both;

— Sequencing of the vector;

— Splitting of the duty cycle of the vectors without introducing additional

commutations.

Literature demonstrates that, in order to reduce the number of commutation and switching
losses, it is preferable to utilize a states sequence where the states are adjacent.

This means that passing from a state to the successive one should occur with only one
switch commutation.

According to that, the scheme chosen is a symmetric sequence in which there are seven
conduction states, so called “Seven states Space Vector Modulation”.

Dividing the conduction time of every component of inverter in opportune time frames, as
shown below for a vector into Sector 1

Figure 10. Example of a switching pattern in sector 1

i —
¥ o2 B2 a2 B2 a2 64
. — N

every component switches two times for every PWM period.

17/53

FOC-flux oriented control AN2290

Analyzing the classical approach of SVM, it starts from the following equation:

Vo Tpwm = Virat Vi1 B+Vg-d [2.12]

a+B+3 = Tpywm [2.13]
in which we are supposing steady in every period of PWM the vectors V, Vi1, Vo and V.

Projecting the vector equation [2.12] on the real and imaginary axis (D,Q) in the stator non-
rotating frame, it yields:

- (Vi)p B (Vi 1)p = Usp* Tpwm [2.14]

Q-(VK)Q+B-(Vk+1)Q = USQ'TPWM [2.15]

So solving the above said equations system for every sector, the following table will be

obtained:
Table 1. Time frames of application of V,V,1 and V,
Sector 1 Sector 2 Sector 3
x Usp (/3 Usg @+(£u$_0) @g J3
Tewm T‘(?T) \Y 3 Vv vV 3
B Usq 2 Usp) (/3 Usaq Usp (/3 Us
—_— —_ —_—— —_— O
Tewm Vi =5 (5)
S Tewm—a—B Tewm—o-P Tewm—o-B
Sector 4 Sector 5 Sector 6
-2 Usp\ (3 Usq ,@,(@.“8_0) Usp 2 g
PWM (*V)"'(?v) \' 3 V V 3
B u Usp A/C—’J Usq Usp A/é Usq
Q 2 L I A L No ., _SY
Towm —~7 '3 3 (v) (3 v) (v)+(3 v)
5 Trwm—a—B Trwm—a - Trwm— -

18/53 Ky_’

AN2290

FOC-flux oriented control

where V is %-Vdc .

In this SVM algorithm, there isn’t the need of calculation of trigonometric functions to obtain
the time frames (a.,B,3), as it happens in a classical approach, and for every PWM period
only multiplications and divisions are needed.

The time frames so calculated from this algorithm must be processed with a look up table in
order to establish on which phase must be applied.

In the following table there are the time calculations to be done:

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
ta 3 B3 TPWM7§ TPWM7§ o, d 3
4 2% 2 4 2 4 217 4
2 o, 3) 8 B3 Tewm 5 | Tewm 3
2 4 4 4 2 4 2 4 2 4
3 Tewm 5 | Tewm 3 o, 8 8 5 B3
2 4 2 4 2 4 4 4 2 4

19/53

Flux control simulink library

AN2290

3

3.1

3.2

3.2.1

20/53

Flux control simulink library

Description

The implementation of the FOC control needs of some peculiar functions. The Simulink
library implements all needed functions to built a FOC based electric motor control

application using the following blocks, here listed:
Forward Clarke;

Forward Park;

Reverse Park;

Sin_cos;

Pl;

SVM.

Using the simulink library

The 2 main directories of the library package are:

@ 1 directory for all test cases: 1 subdirectory per library function;

e 1 directory for all .mdl files.

The file structure is the following:

Figure 11. Simulink library structure

Read rae
docurentation

o fr———{ ettt]

tw_park_data. mat

Library v m_cata_mat

L—— model

[prw—— l—{ tor_park.mel |
vew_clarks. ‘
[teu_clarks_ATW l—{ vev_clarks. | |
sinces. mdl ‘
[sinces_ATW l—{ sinzes ol |
pi.ml
| E pLATW I—‘ pirl |
[evm ‘
Lo —T{omm]

How to install simulink library

The Simulink Library is delivered as an archive file with .zip extension. To install one you
need to unzip the file in the (C:) directory for a correct use.

AN2290 Flux control simulink library
Note: you must have a 7.0.0 Matlab version or upward installed on your system to use this
library, plus a licence for Fixed-Point-Precision Toolbox to use the “convert block“in each
scheme block and a licence of RTW Embedded Coder Toolbox.

Please, read the README.txt file in the archive file for using the library.

3.2.2 Test environment
.mat: the inputs and outputs data obtained by Simulink in the double format are stored.
When the mdl file is opened data is loaded in Workspace of Matlab.

The name of each test-file begins with the (yyy) function name that it refers, followed by
underscore and the suffix “data”.

3.3 Parameters format

The FOC control system in Simulink has the same behavior of one implemented on micro
where it was necessary to use a different fixed point precision number representation in
every block. In the Table 2 the variables and their representations are listed:

Table 2. Data representation
variable representation description

is1 sfix(16,8) phase current

iso sfix(16,8) phase current

is3 sfix(16,8) phase current

isD sfix(16,8) direct-axis current component in stator fixed frame

isq sfix(16,8) quadrature-axis current component in stator fixed frame
theta_el ufix(16,16) electrical angle

cos_t sfix(16,14) cos(0g)

sin_t sfix(16,14) sin(0¢)

isq sfix(16,8) direct-axis current component in rotor no-fixed frame

isq sfix(16,8) quadrature-axis current component in rotor no-fixed frame
Ugqg sfix(16,6) direct-axis voltage component in rotor no-fixed frame

Usq sfix(16,6) quadrature-axis voltage component in rotor no-fixed frame
Usq sfix(16,6) quadrature-axis voltage component in stator fixed frame

t int16 time frames

to int16 time frames

t3 int16 time frames

In the following, the Simulink implemented blocks are described in details.

21/53

Flux control simulink library AN2290

3.4

22/53

Clarke transformation

Description

The Clarke Transformation projects the motor currents (ig4,ig0,is3) from the 120° degrees
physical frame to a two co-ordinate stator non-rotating frame (ip,ig).

Arguments

i1 phase current;

igo phase current;

is3 phase current;

isD direct-axis current component in stator fixed frame;

isQ quadrature-axis current component in stator fixed frame.
Algorithm

The following equations are implemented:

. IS1
[.'501 -1y 3.1]
lsq ﬁ ' (|32_'s3)

where assuming that the axis a (axis of the first phase) and the axis sD (stands for stator
direct axis) are in the same direction, we have the following vector diagram:

Figure 12. Stator current space vector

We have so obtained a two co-ordinate system that still depends on time and speed.
Simulink block

As shown here below in the Figure 13, the Forward Clark block, implemented in Simulink,
receives in input the three current signals, here represented in sfix(16,8) fixed-point format,

returning in output the two current components, (isp,isq), in the stator fixed frame, in the
same fixed-point format.

AN2290 Flux control simulink library

Figure 13. Forward Clarke block

(e e
Saturation_up

e R p—— o)
.usz sfix16_En?
« |sfixts_EnT oL stixte_En? o
L L
Froduct_fiu_clatke I—>4 stix16_En?

(oS e B
Switch_up Saturation_down Switeh_dewn

stixit_Eng

stixit_En7

Data Type Conversion s

i
Add_fny_clarke

ufix16_En16

Canstant_fw_clake

Test case
In fw_clarke_data.mat file the inputs and outputs data to test this function are stored.

23/53

Flux control simulink library AN2290

3.5

24/53

Park transformation

Description

The currents (igp,isq) in the stator fixed frame are projected in the (d,q) rotor rotating frame
where the flux vector direction is chosen as the direct-axis d.

Arguments

isD direct-axis current component in stator fixed frame;

isQ quadrature-axis current component in stator fixed frame;

sin(0e);

cos(0e);

isg direct-axis current component in rotor no-fixed frame;

isq quadrature-axis current component in rotor no-fixed frame.
Algorithm

The following equations are implemented:

isq _ cos(pB,) sin(po,) . isp 3.2]
ig —sin(pB,) cos(pby)| |isq
where (p6,=6,) represents the electric position of the rotor flux. Substituting in the equation
[3.2] the expressions of (isp,isq), it yields:

isq| _ | COS(POg) sin(pO,) | 's1 3.3]
A/ﬁ (i52_i33)

iSq —sin(pO,) cos(pb,)

here represented in the Figure 14:

Figure 14. Stator space vector into rotor frame

rq R ASQ

AN2290

Flux control simulink library

Simulink block

As shown in the following, the Forward Park block, implemented in Simulink, receives in
input the two current components (isp,isq), here represented in sfix(16,8) fixed-point format,
returning in output the two current components (isqyisg) in the rotor rotating frame, in the

same format.

Figure 15. Forward Park block

e - _ _
g o e o] x '—ps""'u” + S _1z7ggaug:¢74 =fixt6_En? "
sin_t Product_sin_d b Switoh_up_d Saturation_down_d Switch_dovn_d
—_— Saturation_up_q
> Dats Type Conversion s iz
x [sfixt6_En? I—b_' ;maﬁ? L, ks i i
Praduct_sin_q L Switch_up_q Jaturation_down_q Switeh_down_q
In fw_park_data.mat file the inputs and outputs data to test this function are stored.

Flux control simulink library AN2290

3.6 Inverse Park transformation

Description

With this transformation, the voltage vectors outputs of PI controllers are projected from
rotor rotating frame in the stator fixed frame.

Arguments

Ugq direct-axis voltage component in rotor no-fixed frame;

Usq quadrature-axis voltage component in rotor no-fixed frame.

sin(0e);

cos(0e);

Ugp direct-axis voltage component in stator fixed frame;

Usq quadrature-axis voltage component in stator fixed frame;
Algorithm

The following equations are implemented:

Usp| _ cos(p9,) —sin(per)'
Ugq sin(p0,) cos(pb,)

[“Sj [3.4]
uS

As shown here below in the Figure 16, the Reverse Park block, implemented in Simulink,
receives in input the two voltage components (usg Usg), here represented in sfix(16,6) fixed-
point format, returning in output the two current components (ugp,usq) in the rotor rotating
frame, in the same format.

Simulink block

Figure 16. Reverse Park block

— Saturation_up_d

(Tt Bt N

! sfixts_Entd B [ttt Ens R s11osas7a | |EIIEERS

o .
cos_t Product_cos_d sfixtt_End 1 W sticts_ens

(i e - s » >

> B
= Comms L " Ly S11amasra |SXIEES

sin_t _

B ch_

Product_sin_d
sub_d
— Saturation_up_q

Pl st s 511084374 (SIS EE

Product_cos_q six16_Eng

Product_sin_q

e

up_d Saturstion_down_d Suitch_down

stix16_Eng

511gpazrg SIS EN

Switch_up_q S3turation_down_q Switch_down_q

I

=

Add_q

Test case

In rev_clarke_data.mat file the inputs and outputs data to test this function are stored.

26/53 Kﬁ

AN2290 Flux control simulink library

3.7 Sin_cos

Description

Known the electrical position of the rotor, the functions sin(6,) and cos(6;) are calculated to
project the space vectors from a frame to other one.

Arguments

Oe electrical position;
sin(0e);
cos(0g).

Algorithm

Simulink block

Figure 17. Sin_cos block

@Ufl:ﬂﬁ_ﬁﬂﬁ SinCTpiU) =fin1fi_Enld) n

theta_el sin_t

¥

Sine

cos(T iR =fin16i_Enid) a

coz_t

Y

Cosine

Test case

In sincos_data.mat file the inputs and outputs data to test this function are stored.

[S74 2753

Flux control simulink library AN2290

3.8 Pl block

Description

An electrical driver based on the FOC control needs of some controllers. In our case two Pl
controllers: one for the torque component reference igqrer, ONe for the flux component
reference iggyer

Arguments
isdret (O isqref) reference signal
isq (0 isq) measured signal
Usg (0 Ugq) command signal
Algorithm
k-1
Uk=Kp-ek+Ki~ek+ Zen [3.6]
n=0
Simulink block

The structure of the Pl controller, in the discrete format, used in the Simulink model is shown
in Figure 18:

Figure 18. PI structure

Saturation_up_ret

Refarence 127 ogBogaza [SIXIGET
stntt_Ers
rer g e
2ttt End IRVEIN: |\ stnte g7
CTyEtn e _ [—bl 1
ststo_g7
= Sub_srrer = 12789608374 L,

Swiiteh_up_ref Saturation_down_ref Switeh_down_ref
Sits B0 . \
A + | sticts_Ens |\ stixs_Ens | | stixts_Ens e sfixiE_En®
ata Typa Canversion autpu =
= sat_kp_l -
Switch_up_output Saturation_down_output siitch_down_o utput
Saturation_up.state
[e T
stxsa Bt 1 stz enze |\ stz o1 e st Bz
] | o
Data Type Conversion state
Sfix32_En?1 w
[, stk l,
Switch_up_state SatnaEn_doRn e Surton_somn_state
Sate_d
-

x
haTEE | o

Test case
In pi_d_q_data.mat file the inputs and outputs data to test this function are stored.

The configuration parameters of Pl are in pi_d_q_conf.mat file.

28/53 Ky_’

AN2290

Flux control simulink library

3.9

SVM

Description

The goal of Space Vector Modulation is to generate three appropriate PWM signals to pulse
the inverter, that feeds the motor, so that three voltage vectors shifted (by 120° between
each other) can be produced on the phases of the motor.

Given a voltage space vector of module Vg and angle y, the implemented algorithm
modulates this vector in output applying on the inverter a switching pattern in order to
reduce the power dissipation on the electronic switches.

Figure 19. SVM scheme

(e L
Sector
(attn s N s
Ush |20 -
Bluse \
=12 o sy
) t
{u'sD
} o o Lsfintn_Ents o
P R plusa >
us2
525
plusn)
o zte_Ents N
pluso

Multiport Switch

It was possible to develop a Simulink block based on an optimized SVM algorithm, that
receives the outputs of the two Pl controllers and the voltage of the DC link of the Inverter, to
produce the control signals.

How it is possible to view in the Figure 19, to implement the time frames of Table 1,we use
only three blocks for six sectors so to generate the appropriate switching pattern, choosing
on base of the actual sector where the vector V; lies in. This simplification, from six to three
blocks, it is possible observing that the six sectors are symmetric.

In this way we can calculate the time frames (t4 1 t3) for each pair of sectors (1-4, 2-5 and
3-6) and with a Selector, from Sector Finder block, choose the right time frames.

Moreover the algorithm implements the dc-ripple-compensation by recalculating the voltage
components (ugp ,Usq) into relative voltages compared to measured dc-bus voltage:

, U
U, = —°
Upc
where
Ug is absolute voltage
Us is relative voltage
Upc is dc-link voltage

29/53

Flux control simulink library AN2290

Arguments
Usp direct-axis voltage component in stator fixed frame;
Usq quadrature-axis voltage component in stator fixed frame;
Vpe battery (or DC link) Voltage;
Rpwm PWM resolution;
ty totg time frames.
Algorithm

We can calculate the time frames for each pair of sectors (1-4, 2-5 and 3-6) and with a
Selector, from Sector Finder block, choose the right time frames.

For instance, substituting the values of the time frames, a, B, 3, supposing a reference vector
in the Sector 1:

(oo Lou) B0

TUNEKE

d

o= Tpywm-

WIN wIN

B=Tewm:
§=Teym—o-P

substituting in the expressions of t4,15,t3, it yields:

=3 = T (1veo- (B i)

+§ - TPWM.Gﬁu'sD_ﬁ-u'SQ) 3.7]

NI R

T 5 1 3
t3 PéNM*Z=TPWM~(Z+UsD+§'UsQ)

In the Sector 4 the result is the same, changing only the sign of the reference voltage vector
(U'sp,U’sq)-

Simulink block

In the following figure, the schema of the SVM is described:

30/53 Ky_’

AN2290

Flux control simulink library

Figure 20. SVM implementation block

stixif_En o N
@ | sfixle_Enis pliso
D
b SUM_Froduct usD Sector [UT10 g
fiif_End
2 ='—‘>< sfin16_En18 pliso
usia
SYM_Product usd
Sectar Finder) int18
(e], pluen o |stixtE_Ents . ——»(|:1
WBatt_meas utixi6_Enls e 5
uint 16 =
-”4 ufix 165_En? 15 3
PUM_period o
SYM_Const sum Dl P|u's0 SVM_Product_Puihd_period =
_Divide

Here below it are exploded the blocks calculating in Simulink the time frames for a reference
vector inside the sector 1-4, 2-5 and 3-6.

Figure 21. Sector

1-4 implementation

(e Bt .
uwsD sfixlf_En1s o
G . ete Bt » stinlf_Enls
uficls_Ents | % f(sfxlf] " +
s sqra) !
S19_Addz
514_Productt =
§19_Constt X et
ufix16_En1d o JE g EiLLEC
Alsqr(3) & e Enls
S14_Constz 514_Productz n
-
T ufixte_EnZ > sfixlf_En1s
SWM_Constt S14_Addz
525_Const
uint 1§
2
. stixi_Ens
(Dmm’ms - s = - =fix16_En1s
st 525_Product! bl
525_add1
sfixlf_En1s
[- 1ix16_En1S
utix 16i_En 15 L - X .
sl = > sfintd_Ents W sfints_Ents 5
525_Constz 525_Product2 » 4‘..'
- 525_Add2
- N
E ufixlf_En2 - sfinld_En1s
SUM_Const! 525_Add3

31/53

Flux control simulink library AN2290

Figure 23. Sector 6-3 implementation

+ sfinlf_En15

S36_aAdd3

ush
(S Bt o
Stix16_Ents .
stixt_Enis > sticte_En1s [stics_Enis
(e » i i 3
‘ D ¥ [sfieEs | N {1
us@ 536_Addd '

$30_Const1 S36_Frodust!

S36_Add1

w | st Eng | |

ufix18_Ents »
- sixro s |

£36_Const2 S36_Product? e N sfix1B_En1s

S36_Addz 936_aAdds

IE ufixlf_En2

SYM_Const!

The results of the SVM block are in int16 format.

Test Case

In svm_data.mat file the inputs and outputs data to test this function are stored.

32/53 Ky_’

AN2290

Flux control software library

4

4.1

4.2

4.2.1

4.2.2

Flux control software library

Description

The Flux Control Software library provides the functions for mixed “C” and Assembly
programmers on ST10 microcontrollers necessary to implement an (FOC) electric motor
control.

Using the software library

The 2 main directories of the library package are:
e 1 directory for all test cases: 1 subdirectory per library function.
e 1 directory for all .c sources file: all functions

The file structure is the following:

Figure 24. File structure

Fluz Control Software
Library
Read me file Testcase Source
documentation Directory Directory
ENC.C
eme h
fwr_clatke ¢
fr_patk e
rev_patkc
sincos.c
pic
SVINLC
Forward Forward Reverse SinCos Pl SVM
Clarke Patk Patk
main main main main aity hain
! fr_park rev patk sinzos i svm
for_clatke _data for_park _data rev pak _data singos _data pi_data svm_data
for clake h fir parkh rev_patkh sincosh ik svmh

How to install Software library

The Software Library is delivered as an archive file with .zip extension. To install the
Software Library you need to unzip the file in the directory where you want the library to be
copied into.

Note: Please, read the README.txt file in the archive file for specific details on the release.

Tool chain compatibility
FOC library is compatible with Tasking tool chain (V7.5r2 and upward).

33/53

Flux control software library AN2290

4.2.3

424

4.2.5

4.2.6

4.2.7

4.2.8

34/53

Calling a function

The functions have been written to be called by a C language program.

To include a function in a C language program, it is needed to:
® include the “emc.h”
® You find this .h file in the Source directory of the library package.

ST10 MAC configuration

This library has been done for implementing electric motor control functions (FOC control),
using 16-bit data in fixed point precision with different representations (i.e. sfix(16,8),
sfix(16,6), etc.). The implemented functions have been optimized with MAC commands
using the default configuration (the user have not to change the configuration registers of
MAC).

Real time aspects

Any DSP code developed for ST10 can be interrupted at any time and execution resumed
after the interrupt routine. There is no added latency when the DSP library is used.

Interrupt routine requirements: the only requirements are only when the DSP unit is used
by other tasks that have different priorities: the interrupting task that may interrupt another
task using the DSP should save and restore the MAC registers at the entry point and exit
point of the routine. (use #pragma savemac in Tasking tool chain).

Naming convention

The name of each functions coincides with the name of the Simulink equivalent block, that
implements it on micro.

Example: fw_park

The fw label represents the direction of the projection, from a (D,Q) frame to a (d,q) frame.
rev_park

The rev label represents the direction of the projection, from a (d,q) frame to a (D,Q) frame.

Test environment

yyy_data.c : you find the input data vectors and the output data vectors, obtained by
Simulink for the same function block, in int16 format.

The name of each test-file begins with the (yyy) function name that it refers, followed by
underscore and the suffix “data”.

Flux control library benchmark

The following table gives the characteristics of the main functions of the library:

AN2290 Flux control software library

Table 3. FOC library capabilities

Function Code size (bytes) Nb cycles
Forward Clark 70 21
PID 226 57
Reverse park 538 48
SVM 822 74
SINCOS 532 56

[S74 35/53

Flux control software library AN2290

4.3

4.3.1

36/53

Library functions

Forward Clarke

FCLARKE_c_step

FCLARKE_c_step(Externallnputs_fw_clarke *fw_clarke_U, ExternalOutputs_fw_clarke
*fw_clarke_Y);

Data types and structures:
Externallnputs_fw_clarke

This structure contains the motor phases currents.
typedef struct _Externallnputs_fw_clarke_tag {

int16_T is1; phase current;
int16_T is2 phase current;
int16_T is3; phase current;

} Externallnputs_fw_clarke;
ExternalOutputs_fw_clarke

This structure contains the current components in a fixed (D,Q) stator frame.
typedef struct _ExternalOutputs_fw_clarke_tag {
int16_T isD; current component in a fixed (D,Q) stator frame;
int16_T isQ; current component in a fixed (D,Q) stator frame;
} ExternalOutputs_fw_clarke;

Description:

It projects the motor currents (is4,is0,is3) from the 120° degrees physical frame to a two
co-ordinate stator non-rotanting frame (ip,ig), using 16-bit operands.

Arguments:
fw_clarke_U pointer to the inputs structure
fw_clarke_Y pointer to the outputs structure
Algorithm:

isD = % (is2—is3)

isQ= (% . (isZ—isS))

Notes:

AN2290 Flux control software library

Test:

To test this function, include the fw_clarke_data.c file in the current directory.
In the .c file you find the inputs and outputs vectors defined as const.

[S74 37153

Flux control software library AN2290

4.3.2

38/53

Forward Park

fw_park

FPARK_c_step(Externallnputs_fw_park *fw_park_U, ExternalOutputs_fw_park
*fw_park_Y);

Description:

It projects the current components (igp,isq) from the fixed stator frame in the (d,q) rotor
rotanting frame, using 16-bit operands.

Data types and structures:
Externallnputs_fw_park

This structure contains the current components and the sin() and cos() functions of the
eletrical angle.

typedef struct _Externallnputs_fw_park_tag {

int16_T isD; direct-axis current component in (D, Q) stator frame;
int16_T isQ; quadrature-axis current component in (D, Q) stator frame;
int16_T cos_t; cos(6e)

int16_T sin_t; sin(6g)

} Externallnputs_fw_park;
ExternalOutputs_fw_park

This structure contains the current components in a no-fixed rotor frame.
typedef struct _ExternalOutputs_fw_park_tag {
int16_T isd; current component in a no-fixed rotor frame
int16_T isq; current component in a no-fixed rotor frame
} ExternalOutputs_fw_park;

Arguments:
fw_park_U pointer to the inputs structure
fw_park_Y pointer to the outputs structure
Algorithm:

igg= igp X COS(0) + igq x SiN(0,)

isq= —Isp X 8iN(0g) +igq x cos(6,)

Notes:

AN2290 Flux control software library

Test:

To test this function, include the fw_park_data.c file in the current directory.
In the .c file you find the inputs and outputs vectors defined as const.

Ky_l 39/53

Flux control software library AN2290

4.3.3 Reverse Park

rev_park

RPARK_c_step(Externallnputs_rev_park *rev_park_U, ExternalOutputs_rev_park
*rev_park_Y);

Description:

It projects the outputs of Pl controllers (usg,Usq), from rotor rotating frame in the stator fixed
frame (ugp,Ugq), Using 16-bit operands.

Data types and structures:
Externallnputs_rev_park

This structure contains the direct-axis and quadrature-axis voltage components in a no-fixed
(d,q) rotor frame and the sin() and cos() functions of the electrical angle.

typedef struct _Externallnputs_rev_park_tag {

int16_T usd; direct-axis voltage component in a no-fixed (d,q) rotor frame
int16_T usq; quadrature-axis voltage component in a no-fixed (d,q) rotor frame
int16_T cos_t; cos(6e)

int16_T sin_t; sin(0¢)

} Externallnputs_rev_park;
ExternalOutputs_rev_park

This structure contains the current components in a (D, Q) stator frame.
typedef struct _ExternalOutputs_rev_park_tag {
int16_T usD; direct-axis voltage component in (D, Q) stator frame
int16_T usQ; quadrature-axis voltage component in (D, Q) stator frame
} ExternalOutputs_rev_park;

Arguments:
rev_park_U pointer to the inputs structure
rev_park_Y pointer to the outputs structure
Algorithm:

Ugp= Ugq X COS(B,) — Ugq x SiN(6,)

Ugqa™ Usq x SIN(O) + Ugq x cOS(6,)

Notes:

40/53 Ky_’

AN2290 Flux control software library

Test:

To test this function, include the rev_park_data.c file in the current directory.
In the .c file you find the inputs and outputs vectors defined as const.

Ky_l 41/53

Flux control software library AN2290

4.3.4 Sin_Cos

sincos

SINCOS_c_step(Externallnputs_sin_cos *sin_cos_U, ExternalOutputs_sin_cos
*sin_cos_Y);

Description:

Data types and structures:
Externallnputs_sin_cos

This structure contains the current electrical angle.
typedef struct _Externallnputs_sin_cos_tag {
uint16_T theta_el; 0 electrical position
} Externallnputs_sin_cos;

ExternalOutputs_sin_cos

This structure contains the sin() and cos() functions of the electrical angle.
typedef struct _ExternalOutputs_sin_cos_tag {

int16_T sin_t;; sin(6g)
int16_T cos_t; cos(0e)
} ExternalOutputs_sin_cos;
Arguments:
sin_cos_U pointer to the inputs structure
sin_cos_Y pointer to the outputs structure
Algorithm:
Notes:
Test:

To test this function, include the sincos_data.c file in the current directory.

In the .c file you find the inputs and outputs vectors defined as const.

42/53 Ky_’

AN2290

Flux control software library

4.3.5

Pl controller

pi
pi_d_c_step(D_Work_pi_d *pi_d_DWork, Externallnputs_pi_d *pi_d_U,
ExternalOutputs_pi_d *pi_d_Y);
pi_q_c_step(D_Work_pi_q *pi_gq_DWork, Externallnputs_pi_q *pi_q_U,
ExternalOutputs_pi_q *pi_q_Y);

Description:

It implements classical Pl scheme for each control component (isd,isq).The error and the
proportional and integral terms are forced to be in a range of values so as to calculate the
reference voltage signals, (usd,usq), using 16-bit operands.

Data types and structures:
Externallnputs_sin_cos

This structure contains the controlled signal (isd) of pi_d.
typedef struct _Externallnputs_pi_d_tag {
int16_T isd;

} Externallnputs_pi_d;

This structure contains the state of pi_d.
typedef struct D_Work_pi_d_tag {
int32_T state_d_DSTATE;

} D_Work_pi_d;

This structure contains the output signal (usd) of pi_d.
typedef struct _ExternalOutputs_pi_d_tag {
int16_T usd;

} ExternalOutputs_pi_d;

This structure contains the controlled signal (isq) of pi_q.
typedef struct _Externallnputs_pi_q_tag {
int16_T isq;
} Externallnputs_pi_q;
This structure contains the state of pi_g.
typedef struct D_Work_pi_q_tag {
int32_T state_q_DSTATE;
} D_Work_pi_q;

This structure contains the output signal (usq) of pi_q.
typedef struct _ExternalOutputs_pi_qg_tag {
int16_T usq;

} ExternalOutputs_pi_g;

43/53

Flux control software library AN2290

Arguments:
pi_d_DWork pointer to the state structure
pi_d_U pointer to the inputs structure
pi_d_U pointer to the outputs structure

Algorithm:

Notes:

Test:

To test this function, include the pi_data.c file in the current directory.
In the .c file you find the inputs and outputs vectors defined as const.

44/53 Ky_’

AN2290

Flux control software library

4.3.6

SVM

svim

SVM_c_step(Externallnputs_svm *svm_U, ExternalOutputs_svm *svm_Y);

Description:

It calculates three signals (t4,5,t3) to impose the correct switching pattern on the Inverter,
using 16-bit operands.

Data types and structures:
Externallnputs_svm

This structure contains (ugp , Ugq) the voltage components in (D, Q) stator frame, V4. DC link
voltage, Tpyw\ period of timer of PWM unit.

typedef struct _Externallnputs_svm_tag {

int16_T usD; direct-axis voltage component in (D, Q) stator frame
int16_T usQ; quadrature-axis voltage component in (D,Q) stator frame
uint16_T VBatt_meas; measured DC link voltage

uint16_T PWM_period; period of timer of PWM unit

} Externallnputs_svm;
ExternalOutputs_svm

This structure contains the duty- cycles.
typedef struct _ExternalOutputs_svm_tag {

int16_T t1; duty cycle applied on first phase
int16_T t2; duty cycle applied on second phase
int16_T t3 duty cycle applied on third phase
} ExternalOutputs_svm;
Arguments:
svm_U pointer to the inputs structure
svm_Y pointer to the outputs structure
Algorithm:

The algorithm implements a different set of equations according to the actual position
of voltage vector, represented by its components (ugp,usq).

For example if the reference vector is in the Sector1:
1 J3
t = TPWM‘(Z‘“SD‘(?”S‘?’D
t, = Towm- Gl +usp-3- U’sQ)

45/53

Flux control software library AN2290

t3 = Tpwm- G +Usp+ @ ‘ U'sQ)
Notes:
Test:

To test this function, include the svm_data.c file in the current directory.
In the .c file you find the inputs and outputs vectors defined as const.

46/53 Ky_’

AN2290

C code auto generation

5

5.1

5.3

C code auto generation

Overview

When the Simulink schematics are done, converted to fixed point precision and tested, the
last step is to generate C code downloadable on the microcontroller. This step is done using
two toolboxes of Matlab:

® The Real Time Workshop

® The Real Time Workshop Embedded Coder

The Real Time Workshop is an essential tool used in rapid prototyping with Simulink.
Automatic program building allows you to make design changes directly to the block

diagram, putting algorithm development (including coding, compiling, linking, and
downloading to target hardware) under control of a single process.

In this part, a set of signal processing functions for C programmers on ST10 are presented.

Steps to generate optimized C code

® Design a model in Simulink

The rapid prototyping process begins with the development of a model in Simulink. Using
principles of control engineering, it's possible to model plant dynamics and other dynamic
components that constitute a controller and/or an observer.

® Simulate the Model in Simulink

Using MATLAB-Simulink, and toolboxes it's possible to develop algorithms and analyze the
results.If the results are not satisfactory, it's possible to iterate the modelling and analysis
process until results are acceptable.

® Generate Source Code with Real-Time Workshop

Once simulation results are acceptable, it's possible to generate downloadable C code that
implements the appropriate portions of the model. Simulink could be used in external mode
to monitor signals, tune parameters, and further validate and refine the model, quickly
iterating through solutions.

® Implement a Production Prototype

At this stage, the rapid prototyping process is complete.

Real-Time Workshop

The Real-Time Workshop Embedded Coder is a separate, add-on product for use with
Real-Time Workshop.

It is intended for use in embedded systems development to generate code that is easy to
read, trace, and customize for all production environment. The Real-Time Workshop
Embedded Coder provides a framework for the development of production code that is
optimized for speed, memory usage, and simplicity. It generates optimized ANSI-C or ISO-C
code for fixed point and floating point microprocessors. It extends the capabilities provided
by the Real-Time Workshop to support specification, integration, deployment, and testing of
production applications on embedded targets. The Real Time Workshop Embedded Coder

47/53

C code auto generation AN2290

54

48/53

addresses targeting considerations such as RAM, ROM, and CPU constraints, code
configuration, and code verification.

The Embedded Real-Time (ERT) target, provided by the Real Time Workshop Embedded
Coder, is designed for customization.

Figure 25. Flow chart

Algorithm Design and Prototyping

Identify system _ | Build/edit modelin
and/ or algorithm > gimulink

requirements

Run simulations and analyze results
using Simulink and MATLAB

Invoke the Real-Time Workshop build procedure,

download and run on your target hardware
l

Analyze results and tune the model
using external mode

Y

Implement production system

In our applications we use the ERT target with optimization for fixed point systems. Correct
specification of target-specific characteristics of generated code (such as word sizes for
char, int, and long data types, or desiderated rounding behaviors in integer operations) can
be critical in embedded systems development. The Hardware Implementation category of
options in the settings menu provides a simple and flexible way to control such
characteristics in both simulation and code generation.

How to generate C code using Real Time Workshop

Starting from a model in fixed point precision it is described step by step how to generate C
code.

For the example, the inner loop of FOC control will be considered and starting from the
Simulink schematic the C code will be automatically generate.

AN2290

C code auto generation

Step 1 - Simulink schematic constructor

The first step is the construction of the Simulink schematic implementing the considered
function.

Note: for improving the readability of the auto generated C-code it’s useful to include the
schematic of each single function in a single subsystem.

In Figure 26, it's possible to see also the signal format. The model is now ready to be
compiled in order to generate C code.

Step 2 - Real Time Workshop options configuration

Selecting from the Simulation menu the “Configuration Parameter” pane all the options are
shown:

Figure 26. Configuration parameter

mElectricMntorCuntrol s
File Edit Wview | Simdlation Format Tools Help

- —
O \D (=] Start Chrl+T l—_[Nmma\ = |
Stop _
Configuration Parameters... Ctri+E
+ Normal
Accelerator
ForwardClark: .
— =15 End
.—D-—D" st ok g 15 Ers shu16ErE
ME = [l S st e Ere \TI o
]
R T I oy EUSLE N WY st 16 Ere L o] 2165 state e s
] I
Msm N - —
N JIY TS — ssmn [T s
T Lona | SIS Btz ingf HA1EERE o e+ “
anzisEre
(eed™ leEs
ot "
w@_.pd.w..., P AT N L . S EE
= pirs
P— " e ®
Fn_ow Farwrd Parke it dublo ofiz 18 Eré
& ED)
Futvaros Pork
RPom]
e e ts gt iy

The first thing to do is selecting the Hardware Implementation, in our case ST10. In this way
the format of data are chosen.

Figure 27. Hardware implementation

|
oK Corcel | Hep ovly

After the Real time Workshop options must be chosen. The first one is the RTW system
target. As before said we choose the ERT optimum for fixed point precision (Figure 28).

49/53

C code auto generation

AN2290

Figure 28. RTW system targ

et file

a)

b)

[w

Target selection

Model Referencing
ardware Implemertation

Build process

TLC optians:

=

odel Referencing

E+-ReakTime Workshop Make command:

Data Placement ™ Generate cade only

S
polver RTW system taiget il [ert. Ic
Data Import/Export
Optimization Description:
& Diagnostics Documentation
Sample Time:
Data Integry I Gensrate HTML izpott
Conversion I Incluce hyperiks to mod!
Connectivity I~ Launch report after code generation completes:
Compatbilty

Lonmenis Tenplate makefie: [er_defeul_tmt
Symbols Skl
Custom Code

Custom storage class
Debug
Tl I™ Ignore custom storage classes
Templates

RTW Embedded Coder (auto configures for optimized fised-point code)

IZ]System target file browser: ElectricMotorControl_FOC

Systen target file:

Browse...

Descriprion:

e,cc

make_itw optimized_fixed_poirt=1

Full na

Template make fle: eit_dsfault_tmi
Make command: make_ttw optimized_fied_peint=1

ASMN-LELDZ Data D
RTU Eubedded Code.
BTV Eubedded Coder
BTV Eubedded C.
w: cicH+ D

(auto confi
aute configures for o
Hakefile o

Real-T

rget
@l C/C++ Project Makefile only for

Real-T

rget with dynemic
@l C/C++ Proj

4 sinulacion

CAMATLABTOT i cherthert tie

Hakefile omly for

me;

Cancel

If only the code is needed (as in our case), the Generate code only box must be checked,
(Figure 29), furthermore you could auto generate the Generate HTML report checking the

apposite box.

Figure 29. Generate HTML

Diota Import/E xport
Optimization
25-Diagnastics
S ample Time
Data Integiity
Conversion
Connectivity
Compaliilly
Model Referencing
ardware Implementalion
odel Feferencing
cal Time Workshop
Comments
Spmbols
Custom Code:
Debug
Interface
Templales
Diata Placement

4

[| Taiget selection

AT spstem target il
Desciiptior:

I Generate HTML repait
PrETEIESTE model

I~ Launch report after code generafion completes

Buid process

Browse.

le: Jerttie
AT Embedded Code (auto configues for optinized fisedpoint codle)

TLE options:

Make command: |

make_rtw optimized_fixed_point=1

Templats makefie: |

Custom storage class

I™ Ignore custom s

[™ Generats cods orly

ert_defaul_tmf

orage classes

Build |f

K T wep | e |

In the Comments pane it's possible to define the verbosity level of the compiler and the
comments that are automatically included in the generated C code.

Now everything is ready for generating code. Pushing the “Generate code* button the code
generation starts with some verbose comments in the Matlab command windows,

(Figure 30).

50/53

AN2290

C code auto generation

5.5

Figure 30. Generate code
a) b)

5 Real-Time Workshop Report

ssssss Code Generation Report for
ElectricMotorControl FOC

¢ | Summary

R Ebe oot cones ot ot o)

Real-Time Workshop code generated for Simulink model *ElectricMotorControl FOC.mdl".

Model Version 11
Real-Time Workshop version 6.0 (R14) 05-May-2004
C source code generated on : Mon Sep 26 11:17:33 2005

Configuration Settings at the Tire of Code Generation click to open

When the process is completed the HTML report windows will appear generating the files:
® ElectricMotorControl_FOC.c

® ElectricMotorControl_FOC.h

® riwtypes.h

Not all of them are useful for the next step code download.

Automatic configuration of RTW

Running RTWconfiguration.m file in the Command Window of Matlab available in the folder
C:\FOC_Library2.0\options, a set of parameters is loaded to configure the RTW and
associated with a given filename.mdl. For Automatic configuration the following steps has to
be followed:

® Open filename.mdl file;
® Copy RTWconfiguration.m and config_ RTW.mat in the actual working directory;
® Run “RTWconfiguration” from Command Window of Matlab.

In this way you’ll get active the “RTW_configuration” set to run and auto generate the C
code.

51/53

Revision history

AN2290

6

52/53

Revision history

Table 4. Document revision history
Date Revision Changes
9-Mar-2007 1 Initial release.

AN2290

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

[S74 53153

	1 Introduction
	2 FOC-flux oriented control
	Figure 1. Vector diagram
	2.1 PMSM
	Figure 2. Cross-section of PMSM

	2.2 Mathematical model of the machine
	Figure 3. Stator current space vector and its components in (a,b,c)
	Figure 4. Phase motor with 2 pole pair

	2.3 FOC control structure of PMSM
	Figure 5. Block diagram of the flux oriented control library

	2.4 The space vector modulation theory
	2.4.1 The 3-phase inverter
	Figure 6. 3-phase power inverter scheme
	Figure 7. Space vector diagram

	2.4.2 The Space vector pulse width modulation
	Figure 8. SVM in the 1st sector

	2.4.3 Sector finder
	Figure 9. Sector finder schematic

	2.4.4 SVM formulation
	Figure 10. Example of a switching pattern in sector 1
	Table 1. Time frames of application of Vk,Vk+1 and V0

	3 Flux control simulink library
	3.1 Description
	3.2 Using the simulink library
	Figure 11. Simulink library structure
	3.2.1 How to install simulink library
	3.2.2 Test environment

	3.3 Parameters format
	Table 2. Data representation

	3.4 Clarke transformation
	Figure 12. Stator current space vector
	Figure 13. Forward Clarke block

	3.5 Park transformation
	Figure 14. Stator space vector into rotor frame
	Figure 15. Forward Park block

	3.6 Inverse Park transformation
	Figure 16. Reverse Park block

	3.7 Sin_cos
	Figure 17. Sin_cos block

	3.8 PI block
	Figure 18. PI structure

	3.9 SVM
	Figure 19. SVM scheme
	Figure 20. SVM implementation block
	Figure 21. Sector 1-4 implementation
	Figure 22. Sector 2-5 implementation
	Figure 23. Sector 6-3 implementation

	4 Flux control software library
	4.1 Description
	4.2 Using the software library
	Figure 24. File structure
	4.2.1 How to install Software library
	4.2.2 Tool chain compatibility
	4.2.3 Calling a function
	4.2.4 ST10 MAC configuration
	4.2.5 Real time aspects
	4.2.6 Naming convention
	4.2.7 Test environment
	4.2.8 Flux control library benchmark
	Table 3. FOC library capabilities

	4.3 Library functions
	4.3.1 Forward Clarke
	4.3.2 Forward Park
	4.3.3 Reverse Park
	4.3.4 Sin_Cos
	4.3.5 PI controller
	4.3.6 SVM

	5 C code auto generation
	5.1 Overview
	5.2 Steps to generate optimized C code
	5.3 Real-Time Workshop
	Figure 25. Flow chart

	5.4 How to generate C code using Real Time Workshop
	Figure 26. Configuration parameter
	Figure 27. Hardware implementation
	Figure 28. RTW system target file
	Figure 29. Generate HTML
	Figure 30. Generate code

	5.5 Automatic configuration of RTW

	6 Revision history
	Table 4. Document revision history

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

