
February 2006 Rev 1 1/19

AN2282
APPLICATION NOTE

TCP/IP Over Ethernet Connectivity
with the STR710

Introduction
With the ever-increasing success of the Internet, many applications with networking features
are being developed making the TCP/IP protocol a global standard for communication both
for the Internet and local area networks. In a normal scenario, a microcontroller inside a
home appliance or process controller of an industrial distributed control system is not
directly connected to the Internet but instead is a host of a home or industrial local area
network using an Ethernet protocol.

This application note describes a method to provide TCP/IP over Ethernet connectivity to an
STR710-based solution and, as an example, an application layer has been included in the
solution firmware. The application is a server that waits for a Client request. The successful
or unsuccessful processing notification is sent back to the Client. The solution block diagram
is showed in Figure 1. The MAC layer is implemented using the third part CIRRUS LOGIC®
Crystal LANTM CS8900A 10-baseT Ethernet controller because of its ISA bus interface.
The STR7 EMI interface can be interfaced with an ISA bus by simple Glue Logic.

Figure 1. Solution block diagram

STR7 Glue
Logic

C
S

8900A

RJ45

RS232 USB

EMI ISA

www.st.com

http://www.st.com

Contents AN2282

2/19

Contents

1 Hardware . 3

1.1 The STR710 microcontroller . 3

1.2 EMI-ISA Interface . 5

2 Firmware . 9

2.1 Ethernet controller driver . 9

2.1.1 Low Level Interface . 9

2.1.2 Initialization and configuration . 10

2.1.3 Ethernet packet management . 10

2.2 Device driver . 12

2.3 TCP/IP layers . 12

2.4 Application layer . 15

3 Conclusion . 16

4 References . 17

5 Revision history . 18

AN2282 Hardware

 3/19

1 Hardware

The target microcontroller for the solution is the STR710 with TQFP144 package to have the
EMI bus available for Ethernet controller interfacing. The hardware includes also a RS232
interface for SLIP implementation.

1.1 The STR710 microcontroller
The STR710 is a 16-/32-bit microcontroller based on the ARM7TDMI RISC microprocessor.
It combines the high performance of the ARM® CPU with an extensive range of peripheral
functions and enhanced I/O capabilities. The microcontroller has on-chip high-speed single
voltage FLASH memory and high-speed RAM, since both memories are mounted on an
ARM® CPU native bus the STR710 maximizes the CPU calculation speed. The STR710
has an embedded ARM® core and is therefore compatible with all ARM tools and software.
The 144-pin version (used for the solution in the present AN) has a non-multiplexed 16-bit
data/24-bit address bus available that supports four 16-Mbyte banks of external memory
(EMI). Wait states are programmable individually for each bank allowing different memory
types (Flash, EPROM, ROM, SRAM etc.) to be used to store programs or data. Later on, the
way of interfacing the EMI with an ISA Ethernet controller will be shown.

Hardware AN2282

4/19

The STR710 main features are as follows [1]:

● Memories:

– Up to 272 KB (256+16) FLASH program memory

– Up to 64 KB RAM

– EMI for up to 4 banks with 16MB of addressing space each (64MB total)

– Multi-boot capability

● Clock, Reset and Supply Management:

– 3.3V supply and I/O interface

– Embedded 1.8V voltage regulator for core supply

– Up to 50 MHz CPU operating frequency with external clock source and internal
PLL

– Real-time clock for clock-calendar function

– 4 power saving modes: SLOW, WAIT, STOP and STANDBY

● Nested Interrupt Controller:

– Fast interrupt handling with multiple vectors

– 32 vectors with 16 IRQ priority levels

– 2 maskable FIQ sources

● I/O Ports:

– Up to 48 I/O ports

● 5 Timers:

– 16-bit watchdog timer

– Four 16-bit timers each with: 2 input captures, 2 output compares, PWM and
pulses counter mode

● 10 Communication Interfaces:

– 2 I2C interfaces (1 multiplexed with SPI)

– 4 UART

– Smart card ISO7816-3 interface on UART1

– 2 BSPI

– CAN interface (2.0B Active)

– Full speed USB (12Mbits/sec)

– HDLC interface

● 4 Channel 12-bit A/D Converter:

– Sampling frequency up to 1 KHz

– Conversion range: 0 to 2.5V

● Development Tools Support:

– JTAG with debug mode trigger request

AN2282 Hardware

 5/19

1.2 EMI-ISA Interface
The CS8900A Ethernet controller includes a direct interface to the ISA bus. The ISA bus
(Industry Standard Architecture) has been the first standard in the IBM PC architecture;
detailed information and specification can be found in the following documents:

● EISA Specification, Version 3.12. This document includes specifications for ISA as well
as the "Extended Industry Standard Architecture" that defines a 32-bit extension to the
ISA [2].

● PS/2 Technical Reference - AT Bus Systems. This document includes signal definitions
and timing diagrams for the ISA bus used in some IBM computers [3].

At the same time, the CS8900A can be used for cost-effective, full-duplex Ethernet solutions
for non-ISA architectures as referenced in the application note AN83 from CIRRUS LOGIC®
Crystal LANTM CS8900A ETHERNET CONTROLLER TECHNICAL REFERENCE
MANUAL [4].

The reference schematic of the hardware interface between EMI and the ISA bus is shown
in Figure 2. The Chip Select 2 of EMI is used to address the Ethernet Controller; moreover
address line A23 of EMI is used together with CS.2 to enable read/write operations on
CS8900A. From a firmware point of view, this means that the Ethernet Controller is mapped
at base address 0x64800000; in this way the CS.2 is not committed only by the CS8900A
but it also can be used to address other devices.

Figure 2. EMI-ISA glue logic reference schematic

The CS8900A can be accessed both in ISA IO mode and ISA memory mode; the glue logic
is designed to allow both access modes. The Address line A12 separates IO address space
and memory address space. When A12 is low the Ethernet Controller is accessed in IO

 +3V3 +3V3
+3V3

nWR

GND

CS.2

QA12
QA11
QA10
QA9
QA8

QA7

+3.3V

GND

QA2
QA1

GND

QA0

QA3

+3.3V

GND

CS.2 IOR
A12
MEMR

MEMR
nAE

IOW
A12

MEMW
nWR

nA
E

nA23

nRD

A0
A1

A4

A6

A8
A9
A10
A11

A3
A2

A5

A7

A12

nA23

WE0
WE1

nRD

MEMW
IOW
MEMR
IOR

QA4
QA5
QA6

CS.2

CS.2

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

U7

M74HC08TTR-TTSOP14

1
2
3
4
5
6
7 8

9
10
11
12
13
14

1
2
3
4
5
6
GND 8

9
10
11
12
13

VDD

IC5

74LVC32ATTR-TSSOP14

1
2
3

4
5
6

7 8
9
10

13
12
11

14
1A
1B
1Y

2A
2B
2Y

GND 3Y
3A
3B

4B
4A
4Y

vcc

IC100

74LVX573T

1

10

20
2
3
4
5
6
7
8
9

11
12
13
14
15
16
17
18
19OE

GND

VCC
D0
D1
D2
D3
D4
D5
D6
D7

LE
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

IC6

74LVC32ATTR-TSSOP14

1
2
3

4
5
6

7 8
9
10

13
12
11

141A
1B
1Y

2A
2B
2Y

GND 3Y
3A
3B

4B
4A
4Y

vcc

U15

NOT

12

IC101

74LVX573T

1

10

20
2
3
4
5
6
7
8
9

11
12
13
14
15
16
17
18
19OE

GND

VCC
D0
D1
D2
D3
D4
D5
D6
D7

LE
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

STR7 EMI Address Bus

STR7 EMI Control Bus
NIC ISA Control Bus

NIC ISA Address Bus

NIC nSBHE

STR7 EMI Data Bus

NIC ISA Data Bus

NIC SA13 to SA19, AEN,
CHIPSEL Grounded

Hardware AN2282

6/19

mode and when A12 is high it is accessed in memory mode, so memory mode base
address register of Ethernet controller must be programmed with a value 0x1000. The IO
mode default value of CS8900A (0x0300) is used as IO mode base address. The
corresponding firmware addresses are 0x64800300 for IO mode operations and
0x64801000 for memory mode operations. For a detailed description of IO and memory
access modes refer to the CS8900A datasheet [5].

ISA Bus timing constraints must be satisfied to guarantee correct access to Ethernet
controller registers; Figures 3 and 4 show the CS8900A bus timing diagrams. Configuring
the MCLK of STR7 with the value 48 MHz, the EMI CS.2 must be configured with at least 7
wait states; Figures 5 and 6 show the STR7 EMI bus timing diagrams. 8 wait states are used
to guarantee a safe access.

Figure 3. CS8900A read timing diagram

Figure 4. CS8900A write timing diagram

DIRECTION:
IN or OUT of chip

IN

OUT

IN

OUT

SA [15:0],
AEN, SBHE

IOCS16

IOR

SD [15:0]

Valid Address

tIOR1
0 nSec

30 nSec

10 nSec

135 nSec

tIOR5

Valid Data

DIRECTION:
IN or OUT of chip

IN

OUT

IN

IN

SA [15:0],
AEN, SBHE

IOCS16

IOW

SD [15:0]

Valid Address

tIOW1 tIOW7

0 nSec

20 nSec

10 nSec

tIOW6

Valid Data In

110 nSec

tIOW4

AN2282 Hardware

 7/19

Figure 5. STR7 EMI read timing diagram

Figure 6. STR7 EMI write timing diagram

CS8900A timing diagrams for memory mode access are the same so they are not included
in this document.

Considering the MCLK value is equal to 48 MHz and 7 wait states, the cycle times are as
follows:

a) tRAS = tWAS = 27 nSec.

b) tRP = tWP = 166 nSec.

c) tRDS = tWDS = 3 nSec. (fixed)

d) tRDH = tWDH = 3 nSec. (fixed)

e) tRAH = tWAH = 3 nSec. (fixed)

f) tRCR = tWCR 20 nSec.

All cycle times are compatible with Ethernet controller timing. Of course it also possible to
use more than 7 wait states.

Considering the data bus connection of Figure 2, the STR7 reads incoming data in Little
Endian byte order. For example assume that the data received from the Ethernet wire is
0x01, 0x02, 0x03, 0x04, etc. where 0x01 is the first byte, 0x02 the second and so on; STR7
reads the following data words: 0x0201, 0x0403, etc.

A[23:0]

RDn

CSn.x

WEn.x

D[15:0]
(input)

tRAH

Address

tRP

tRCR

tRDS tRDH
tRAS

Address

tWAH

tWCR

tWP

tWDHtWDS

tWAS

A[23:0]

RDn

CSn.x

WEn.x

D[15:0]
(output)

Data Output

Hardware AN2282

8/19

The hardware also includes one connection of a STR7 GPIO to the reset pin of the Ethernet
Controller and a second connection from an interrupt pin of Ethernet controller to an
external interrupt pin of the STR7.

AN2282 Firmware

 9/19

2 Firmware

The firmware is developed in several layers following the standard ISO/OSI model for
networking from physical layer up to application layer. A firmware architecture diagram is
shown below in Figure 7.

Figure 7. Firmware architecture

The firmware also includes a module for the configuration of the GPIO used to manage the
reset signal and interrupt signal of the Ethernet Controller.

2.1 Ethernet controller driver
The two lower layers (the Ethernet Device Driver layer and the STR7 Hardware Libraries
and Device Interface layer) manage the CS8900A Ethernet controller and the physical
access to the device.

2.1.1 Low Level Interface

The emi.c is part of the STR710 library and it defines the functions for configuration of the
EMI peripheral. The ethdrv.c module provides the interface function to the upper layer and is
useful for low level access to the Ethernet controller when it is accessed in I/O mode:

● void outw(int address, short data); Writes a 16-bit data word to an I/O
register located at a given address.

● char inb(int address); Reads a byte data from an I/O register located at a given
address.

● short inw(int address); Reads a 16-bit word from an I/O register located at a
given address.

The module also provides the function for hardware reset of the Ethernet controller:

● void reset_NIC(void);

Buffer

Device Driver
Modules: ethdev.c

Ethernet Device Driver

Modules: lan8900.c

STR7 Hardware Libraries and Device Interface

Modules: emi.c, ethdrv.c

Application Layer

TCP/IP Layers

Modules: uip.c, uip_arp.c

Firmware AN2282

10/19

The inb function is used only to perform the switch of Ethernet controller from an 8-bit to a
16-bit data interface because, even if after a reset the CS8900A starts in 8-bit mode, it is
recommended to be used in 16-bit mode. This switching operation is done by driving a
transition on nSBHE pin of CS8900A, so connecting this pin to address line SA0 (see
Figure 2), the transition is simply done by performing some dummy byte read operations.

2.1.2 Initialization and configuration

The lan8900.c module provides all the functions for CS8900A initialization, configuration
and packet transmission/reception management. The Ethernet controller can be initialized
either by using an external EEPROM (where all configuration words are automatically
downloaded into the CS8900A internal registers at reset time) or by filling them through
software. In this application note the Ethernet controller is initialized and configured by the
function

● unsigned long csInitFromBSPDefs(void);

This function reads the configuration constant from the module bsp.h. The header file for
this is mainly defined as follows:

a) The base address for I/O access mode:
#define BSP_CS8900_IO_BASE 0x300

b) The interrupt request number:
#define BSP_CS8900_IRQ 10

This number defines which interrupt line of the Ethernet Controller must be
connected to the external interrupt line of the STR7 [5].

c) The access type (I/O or memory mode):
#define BSP_CS8900_MEM_MODE YES

d) The base address for memory access mode:
#define BSP_CS8900_MEM_BASE 0x01000

e) The media type:
#define BSP_CS8900_MEDIA_TYPE TEN_BASE_T

f) The individual Ethernet address:
#define BSP_CS8900_IND_ADDR "00:24:20:10:FF:41"

The header file lan8900.h defines all CS8900A internal registers, for more details refer to
the CS8900A datasheet. All Initialization functions (csInitFromBSPDefs included) are called
by the function:

● unsigned long csInitialize(void (*ap_addr)(mblk_t *, IA, IA));

The function verifies the Ethernet controller ID and resets it by calling the following
functions:

● unsigned long csVerifyChip(void);

● unsigned long csResetChip(void);

Moreover, this function sets the individual and broadcast Ethernet addresses, the function
for new packet notification from the passed argument and initializes the interrupt number
calling the function unsigned long csInitInterrupt(void);

2.1.3 Ethernet packet management

The packets to transmit or to receive are exchanged with the upper layer as messages with
the following structure:

AN2282 Firmware

 11/19

typedef struct{
unsigned char buff[1600];
unsigned short dim;
unsigned type;

} mblk_t;

The messages to be transmitted are managed by two linked lists of requests inside a static
array of transmission requests. It is possible to manage up to 16 outstanding requests. The
request structure is as follows:

struct txreq
{
 struct txreq *pNext;
 PIA pDestAddr;
 mblk_t *pMsg;
 unsigned short Length;
 unsigned short Type;
};
typedef struct txreq TXREQ, *PTXREQ;

The first list is composed of the outstanding transmission requests, the second one of the
unused requests. The functions for message management are:

● unsigned long csSend(PIA pDestAddr, mblk_t *pSendParms);
This routine is called when a new message has to be transmitted. The Destination
address and the message are passed by the arguments. The new transmit request is
placed on the transmit request queue. If a transmit request is not currently in progress
then the new transmit request is started, else it waits its turn in queue.

● unsigned short csRequestTransmit(void);
This routine requests that a transmit be started by writing a transmit command and a
frame length to the chip. The content of the BusStatus register is returned which
indicates the success of the request.

● void csCopyTxFrame(void);
This routine builds an Ethernet header in the chip's transmit frame buffer and then
copies the frame data from the list of message blocks to the chip's transmit frame
buffer. When all the data has been copied then the chip automatically starts to transmit
the frame.

● void csProcessISQ(void);
This routine processes the events on the Interrupt Status Queue. The events are read
one at a time from the ISQ and the appropriate event handlers are called. The ISQ is
read until it is empty. If the chip's interrupt request line is active, then reading a zero
from the ISQ will deactivate the interrupt request line.

● void csReceiveEvent(unsigned short RxEvent);
This routine is called whenever a frame has been received at the chip. This routine
copies the received frame into the data buffer of the reception message and passes the
message to the upper layer by calling Announce_Packet() entry point of the upper
layer. Moreover, this routine verifies that the frame type is acceptable.

● void csTransmitEvent(void);
This routine is called whenever the transmission of a frame has completed (either
successfully or unsuccessfully). This routine removes the completed transmit request

Firmware AN2282

12/19

from the transmit request queue. If there are more transmit requests waiting, then start
the transmission of the next transmit request.

● unsigned short csReadPacketPage(unsigned short Offset);
This reads the PacketPage register at the specified offset.

● void csWritePacketPage(unsigned short Offset, unsigned short
Value);
This writes to the PacketPage register at the specified offset.

● unsigned long csEnqueueTxReq(PIA pDestAddr, mblk_t *pSendParms);
This routine places a transmit request at the end of the Transmit Request queue.

● void csDequeueTxReq(void);
This routine removes a transmit request from the head of the Transmit Request queue.

Summarizing, the lan8900.c module moves the received packet from the Ethernet controller
memory to the reception message and the packet to transmit from the transmission
message to the Ethernet controller memory.

2.2 Device driver
The module ethdev.c is the interface between the CS8900A driver and the TCP/IP stack.
The module also provides the interface to the main routine for Ethernet controller
initialization. The TCP/IP stack is interfaced to the lower layer by a single buffer both for
reception and transmission, so this module has to manage data movement between lower
layer messages and this single buffer. The functions of the module are the following:

● int ethdev_init(void);
The interface for device initialization.

● unsigned int ethdev_read(void);
The interface for processing the events on the Interrupt Status Queue.

● void ethdev_send(void);
The interface to send packets. It copies the TCP/IP stack buffer data into the
transmission message data.

● void ProcessMsg(mblk_t *pMsg);
This routine process the incoming message. It copies the received message data into
TCP/IP stack buffer and returns the length of the received packet avoiding collision
between incoming and outgoing data. Its Entry Point is passed to the lower layer to
indicate which function must process the incoming messages (used to initialize
cs_pAnnounce_Packet variable).

2.3 TCP/IP layers
The TCP/IP stack (uip.c and uip_arp.c modules) used in the solution is the uIP open source
stack from www.sics.se. It provides the necessary protocols for Internet communication,
with a very small code footprint and RAM requirements. The uIP implementation is designed
to have only the absolute minimal set of features needed for a full TCP/IP stack. It can only
handle a single network interface and contains only a rudimentary UDP implementation, but
focuses on the IP, ICMP and TCP protocols. The full TCP/IP suite consists of numerous
protocols, ranging from low level protocol such as ARP which translates IP addresses to
MAC addresses, to application level protocols. The uIP is mostly concerned with the TCP
and IP protocols and upper layer protocols will be referred to as "the application" [6].

AN2282 Firmware

 13/19

The uIP main features are as follows:

● Very small code size

● Very low RAM usage, configurable at compile time

● ARP, SLIP, IP, UDP, ICMP (ping) and TCP protocols

● Includes a set of example applications: web server, web client, e-mail sender (SMTP
client), Telnet server, DNS hostname resolver

● Any number of concurrently active TCP connections, maximum amount configurable at
compile time

● Any number of passively listening (server) TCP connections, maximum amount
configurable at compile time

● Free for both commercial and non-commercial use

● RFC compliant TCP and IP protocol implementations, including flow control, fragment
reassembly and retransmission time-out estimation

The total memory requirement (ROM+RAM) is less then 21.3 KB. The uIP stack does not
use explicit dynamic memory allocation. Instead, it uses a single global buffer (uip_buf) for
holding packets and has a fixed table for holding connection states. The global packet buffer
is large enough to contain one packet of maximum size. When a packet is received, the
device driver places it in the global buffer, updates the global variable uip_len with the value
of the received packet dimension and calls the TCP/IP stack. If the packet contains data, the
TCP/IP stack will notify the corresponding application. In uIP, the same global packet buffer
is also used for the TCP/IP headers of outgoing data. If the application sends dynamic data,
it may use the parts of the global packet buffer that are not used for headers as a temporary
storage buffer.

To send the data, the application passes a pointer to the data as well as the length of the
data to the stack. The data is not queued for retransmissions; instead, the application has to
reproduce the data if a retransmission is necessary. uIP uses an event driven interface
where the application is invoked in response to certain events. The application must be
implemented as a C function, UIP_APPCALL(), that uIP calls whenever an event occurs.
uIP calls the application when data is received, when data has been successfully delivered
to the other end of the connection, when a new connection has been set up, or when data
has to be retransmitted. The application is also periodically polled for new data. The
application provides only one callback function; it is up to the application to deal with
mapping different network services to different ports and connections. Figure 8 shows the
uIP main control loop flow diagram.

Firmware AN2282

14/19

Figure 8. uIP main control loop

For more details on TCP/IP stack application program interfaces refer to the uIP Reference
Manual and to the available documentation and information from www.sics.se [6].

The stack is processed in the main loop in the main.c module; the execution is temporized
by using the alarm of the RTC. The stack execution time is one second by hooking the
TCP/IP processing function void TCP_IP_Stack(void) to the RTC alarm interrupt
handler. After initialization the software waits five seconds before starting the cyclic
processing. Using this approach, the TCP/IP stack is processed independently of the rest of
the whole firmware, so the stack firmware can be considered as a module of a bigger
application.

Check for packet

Check for timeout

Process packet

Application events

Output packets

Process timeout

Application events

Output packets

AN2282 Firmware

 15/19

2.4 Application layer
The uIP uses an event-driven interface where the application is invoked in response to
certain events. An application running on top of the uIP stack is implemented as a C function
that is called in response of the following connection events:

a) Aborted

b) Timeout

c) Closed

d) Connected

e) New data reception

f) Transmitted data acked

g) Polling

h) Re-transmission need

The re-transmission event is necessary because the TCP/IP layers require help from the
application layer in a different way of other TCP/IP stacks. With this approach, the data has
to be buffered by the application.

The application is implemented by two modules <user_app>.c and <user_app>.h . In the
header file the user has to define the UIP_APPCALL() macro, an optional application state
and the FS_STATISTICS macro to enable or disable the statistic related to the packet's
elaboration. In the C file the user has to put the application function definition. The
application options (IP and MAC addresses, etc.) are set by modifying the uipopt.h file.
Examples on how to write an application layer can be found in the uIP Reference Manual.

A simple example application has been implemented as a demonstration of stack
functionalities. The application modules are httpd.c, httpd.h. The application is a simple Web
Server that manages a typical Web site: a home page and several linked pages. The html
files are stored as char vectors and managed by the modules fs.c and fs.h. These modules
access the files using a simple file system.

Conclusion AN2282

16/19

3 Conclusion

The solution provides a way to add Ethernet connectivity features to STR710 with minimum
resources load. It uses a minimal part of one chip-select addressing space of the EMI and
since it is hooked to the RTC alarm, it is possible to calibrate the CPU load for its
processing. The stack also supports SLIP protocol; in this case it also commits the UART0
resource. The user can easily customize the application by modifying just three files. In the
end, the firmware uses little of STR710's memory resources: 65.04 KB of Flash and 7.16 KB
of RAM, correspondingly the 25.4% of the Flash and the 11.18% of the SRAM; of course
these values depend on the files size of the web server that are variable.
Table 1. Definitions

Acronym Definition

TCP Transmission Control Protocol

IP Internet Protocol

UDP User Data Protocol

ICMP Internet Control Message Protocol

ARP Address Resolution Protocol

EMI External Memory Interface

ISA Industry Standard Architecture

SLIP Serial Line Internet Protocol

MAC Media Access Control

LAN Local Area Network

ISO International Standards Organization

OSI Open Systems Interconnection

SMTP Simple Mail Transfer Protocol

DNS Domain Name System

RTC Real Time Clock

AN2282 References

 17/19

4 References

[1] STR71x datasheet.

[2] EISA Specification, Version 3.12.

[3] PS/2 Technical Reference - AT Bus Systems.

[4] CIRRUS LOGIC® Crystal LANTM CS8900A ETHERNET CONTROLLER TECHNICAL
REFERENCE MANUAL.

[5] CIRRUS LOGIC® Crystal LANTM CS8900A ETHERNET CONTROLLER CS8900A
product datasheet.

[6] uIP 0.9 Reference Manual.

Full product information is available at http://www.st.com/mcu

Revision history AN2282

18/19

5 Revision history

Date Revision Changes

23-Feb-2006 1.0 Initial release

AN2282 Revision history

 19/19

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Hardware
	1.1 The STR710 microcontroller
	1.2 EMI-ISA Interface

	2 Firmware
	2.1 Ethernet controller driver
	2.1.1 Low Level Interface
	2.1.2 Initialization and configuration
	2.1.3 Ethernet packet management

	2.2 Device driver
	2.3 TCP/IP layers
	2.4 Application layer

	3 Conclusion
	4 References
	5 Revision history

