
AN1753
APPLICATION NOTE
SOFTWARE UART USING

ST7 12-BIT AUTORELOAD TIMER
by Microcontroller Division Applications
INTRODUCTION

This application note describes a software implementation of a Universal Asynchronous Re-
ceiver/Transmitter (UART). This can be used on devices, like the ST7LITE0, with no on-chip
SCI peripheral.

In this example, a software UART is implemented for the ST7FLITE0, using the 12-bit Autore-
load timer and two I/O ports for asynchronous receive and transmit. The UART software pro-
vides the following features:

• Half-duplex operation

• Asynchronous operation

• Flexible data formats (7 or 8 data bits, 1 or 2 stop bits)

• Baudrate: 2400 to 19200 baud

To test this interrupt-driven software UART, you can use the “Hyperterminal” application run-
ning on a Windows PC.

The program code is quite small (357 bytes) and can easily be adapted to specific application
requirements.
AN1753/1103

Rev. 1.0
1/22

1

2/22

Table of Contents

22

1

 INTRODUCTION . 1

1 UART COMMUNICATION . 3

1.1 MAIN FEATURES . 3

1.2 BAUD RATE . 3

1.3 FRAME . 4

2 RS232 COMMUNICATION WITH A PC . 5

2.1 MAIN FEATURES . 5

2.2 PC CONFIGURATION . 5

3 ST7FLITE0 CONFIGURATION . 6

3.1 CLOCK SOURCE . 6

3.2 INPUT INITIALIZATION . 6

3.3 AUTO-RELOAD TIMER REGISTER CONFIGURATION 6

4 UART IMPLEMENTATION . 8

4.1 BAUD RATE DEFINITION . 8

4.2 MAJORITY VOTING SYSTEM . 9

4.3 STATUS HANDLING . 9

4.4 TRANSMIT & RECEIVE IMPLEMENTATION . 10

5 HARDWARE SETUP . 11

6 FUNCTIONAL SOFTWARE FLOW . 12

6.1 MAIN SOFTWARE ROUTINES . 12

6.2 SOFTWARE FLOW CHARTS . 13

7 TEST PROCEDURE . 20

8 SOFTWARE . 21

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
1 UART COMMUNICATION

The main features of a standard UART are summarized below.

1.1 MAIN FEATURES

The UART offers a flexible means of full-duplex data exchange

with external equipment requiring an industry standard NRZ asynchronous serial data format.

The UART allows a very wide range of baud rates and different baud rates for transmission
and

reception.

In UART communication, a minimum of only two signals are needed, one for transmission and
other for reception. No clock signal is needed as it works in asynchronous mode. Each device
has to have a Transmit Data Output pin (the PA3 pin is used in our example for the
ST7FLITE0) and a Receive Data Input pin (PA7 pin in our example). (Refer to Figure 1.)

Figure 1. ST7 UART Communication Set-Up

You must be very careful to identify the use of each pin. A simple method is to put the device
in transmission and check with an oscilloscope if a transmission frame is present or not.

1.2 BAUD RATE

Transmission and reception can be driven by their own baud rate generator. However be
aware that for correct communication, the receiver must have a reception baud rate strictly
equal to the transmission baud rate of the transmitter. If not, the communication will be cor-
rupted . As long as this condition is met, a wide range of baud rates is possible.

ST7 System

RDI

TDO

Terminal
Device

(TDO) PA3

(RDI) PA7

ST7FLITE0
(Host)
3/22

2

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
1.3 FRAME

Any transmission is Least Significant Bit first. A data word is usually 8 bits long. A data frame
begins with a «start bit», which is a ‘0‘ bit and ends with a «stop bit», which is a ‘1‘ bit. See
Figure 2.

Figure 2. Frames

In some cases, a 9th bit can be used, as a parity bit or as a second stop bit.

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

8-bit Word length

Data Frame
Next Data Frame
4/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
2 RS232 COMMUNICATION WITH A PC

2.1 MAIN FEATURES

Electrical and protocol characteristics of RS232 are different from those used by the UART. In
RS232 communication, high level is typically +7V and low level is typically -7V, while the ST7
I/Os work at CMOS levels (0, +5V).

Furthermore, the polarities are different. A ‘1‘ bit coming from the UART corresponds to a ‘0‘
bit

in RS232, and a ‘0‘ bit to a ‘1‘ bit. It is true for all bits including the START and STOP bits. So
it is necessary to implement a conversion between the PC and the ST7. In the application, a
MAX232 is used for this purpose.

2.2 PC CONFIGURATION

The PC will be used as a terminal interface. “Hyperteminal”, the terminal application software

is used as a interfacing software to test the functionality [.zip file attached]. The test environ-
ment is Windows 2000.

Under Windows, open the Hyperterminal application. To configure it, go to the port settings
and set the parameters to your application requirements. The options in this window must be
the same as the ones defined for your ST7FLITE0, communication device, except the port.

After selecting the right serial communication port, select the same baud rate as the one set
for the ST7. As the PC accepts only one baud rate, transmission and reception baud rates will

have the same value. Data word can be 8/7 bits, but you can choose to use 1 or 2 stop bits.
«Flow control» can be either Xon/Xoff or none. The PC is then correctly configured.
5/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
3 ST7FLITE0 CONFIGURATION

3.1 CLOCK SOURCE

This application is implemented using ST7FLITE0 device with an 8 MHz internal clock. PLL *
8 is used to generate this 8 MHz clock.

3.2 INPUT INITIALIZATION

Two pins of the ST7FLITE0 are used:

- PA3: Pin of PortA

- PA7: Pin of PortA with interrupt

Pin PA3 is normal Input/Output port pin with no alternate function, used for transmission.

During initialization it is configured as an output.

Pin PA7 is normal Input/Output port pin with no alternate function, used for data receive.

During initialization it is configured as an input. While in receive mode, at start, same pin is
used with interrupt enabled (“ei1”) to sense “START” bit. So this pin is configured with “pull up

interrupt input” by setting PADDR to 0 & PAOR to 1. And to set interrupt sensitivity “Falling
edge only” we set IS11=1 & IS10=0 in the EICR register.

Refer to the device datasheet for detailed description of the I/O and interrupt control registers.

3.3 AUTO-RELOAD TIMER REGISTER CONFIGURATION

The AT timer is based on free running 12-bit up counter with 12-bit auto reload register (ATR).
Apart from this it also includes other functionality like, PWM signal generator & Output Com-
pare Function & etc.

We are using “Output Compare” functionality for this application. To use this function, the OE
bit must be 0, otherwise the compare is done with the shadow register instead of the DCRx
register. Software must then write a 12-bit value in the DCR0H and DCR0L registers. When
the 12-bit upcounter (CNTR) reaches the value stored in the DCR0H and DCR0L registers,
the CMPF0 bit in the PWM0CSR register is set and an interrupt request is generated if the
CMPIE bit is set.
6/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
The registers that are used in application note are:

 TIMER CONTROL STATUS REGISTER (ATCSR):

- CK1 & CK0: They select the clock frequency of the counter.

For fcounter = fcpu, set CK1=1 & CK0=0,

- CMPIE: It allows to mask the interrupt generation when CMPF bit is set.

 When it is 0: CMPF interrupt disabled

1: CMPF interrupt enabled

PWM0 CONTROL/STATUS REGISTER (PWM0CSR):

- CMPF0:

It indicates that the upcounter value matches the DCR register value. When it is,

0: Upcounter value does not match DCR value.

1: Upcounter value matches DCR value.

PWM OUTPUT CONTROL REGISTER (PWMCR):

- OE0: When set to 1, PWM0 output enabled

Timer Initialization:

Write to DCRx registers with required value. Then Output Compare functionality must be en-
abled. To do this, reset the OE bit in the PWMCR register. This will disable PWM output.

To configure fcounter = fcpu, set CK1=1 & CK0=0, and to enable the CMPF interrupt, set
CMPIE=1 in the ATCSR register.

CMPIEOVFIEOVFCK0CK1000

CMPF0000000 OP0

000 OE00000
7/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
4 UART IMPLEMENTATION

4.1 BAUD RATE DEFINITION

The Autoreload timer is used to generate the baud rate. Autoreload timer clock (fCOUNTER)
is same as fcpu clock, which is 8 MHz internal clock.

The description here below is the example to show how this baud is generated:

Example:

- baudrate = 2400

- fcpu = 8MHz (so clock period is 125 ns)

- In the application fCOUNTER = fcpu

So to get 2400 baud the “Prescaler” required is,

Prescaler = fcpu / baud

Prescaler = 8 * 106 / 2400

 = 0.0033333333 * 106

= 3333.33 decimal

= D05 Hex (= 1 bit delay count)

So in software DCRx will be

DCR0H = 0D + CNTRH

DCR0L = 05 + CNTRL

to generate one bit delay when 2400 baud is required

For half bit period “Prescaler” is,

Prescaler = one bit / 2

= 1666.66 (decimal)

= 682 Hex (= 1/2 bit delay)

DCR0H = 06 + CNTRH

DCR0L = 82 + CNTRL

The software provided with this application note has been functionally tested in the range
2400 to 19200 baud.
8/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
4.2 MAJORITY VOTING SYSTEM

The receive section is complex compared to the transmit section. So, to avoid possible errors
in detecting exact bit status because of line noise etc, this program uses a majority-voting
system. When the ST7 is in receive mode, it reads (samples) each bit three times at the
middle of the bit time. To determine its exact state, it compares the number of 1’s with the
number of 0’s. If there are more ‘1‘s than ‘0‘s, the bit received is a ‘1‘, else it is a ‘0‘. (see Figure
3.)

Figure 3. Majority voting system

This section is only used for the receive part. You can change it to suit your requirements.

4.3 STATUS HANDLING

To keep track of status during program execution, software uses variable, “sci_status”.
Bits 0-4 of this variable are used to hold the system status.

Definition of each flag:

SP: Reception mode sampling phase

BR: Byte Received flag

RE: Reception Enable

BS: Byte Sent flag

TE: Transmission Enable

0 1 2 3 4 5 6 7

1st sample

2nd sample

3rd sample

START STOP

SPBRREBSTE
9/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
4.4 TRANSMIT & RECEIVE IMPLEMENTATION

Transmission mode gets executed after power on. To transmit data, the program uses port pin
PA3 in output mode with “Output Compare” interrupt. One bit is transmitted during each inter-
rupt, generated after a bit delay when the 12-bit upcounter (CNTR) reaches the value (=1 bit
delay) stored in the DCR0H and DCR0L registers. The value for duty cycle resister (DCR0L/
DCR0H) depends on the required baud rate & clock frequency.

For receive mode, the program uses port pin PA7 in input mode along with its interrupt &
output compare functionality. To sense START bit, interrupt “ei1” is used, configured as
“Falling edge only”. In this interrupt routine, program sets the ATR - output compare value for
half* bit delay & disable “ei1” interrupt to use PA7 in normal input mode to receive entire frame.
This half bit delay is used to sample bit at middle of bit. After receiving START bit in output
compare interrupt, the same interrupt routine gets executed each time a bit must be received.
To receive each bit correctly majority voting system is implemented in this interrupt routine.

The interrupt strategy used in software for transmit & receive allows to have other applications
to work at the same time.

Note:

– Error handling: This program does not handle communication errors (e.g. Frame Errors).

– No handshaking is implemented.

– For better performance at high baud rates it is recommended to use character transmission
rather than string transmission.

*User can adjust this value depending on baud rate.
10/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
5 HARDWARE SETUP

A general system configuration is shown in Figure 1. The ST7FLITE0 is connected to an RS-
232 line driver chip which is in turn connected to any RS-232-compatible device. The RS-232
line driver is needed to convert the 5-volt logic level of the ST7FLITE0 to the proper RS-232
line voltages, and vice versa.

Figure 4. shows a specific example of a hardware setup required for UART in which the
ST7FLITE0 processor and RS-232 Driver/ Receiver are used. You can use different driver/re-
ceiver in your application. For example you can use a MC14C88/ 89 as a low cost solution.

The Receive Data pin (RD) of the serial port of the PC must correspond to the PA3 pin of the
ST7FLITE0, and the Transmit Data pin (TD) to PA7 pin.

Be sure that the three main devices (PC, ST7, MAX232) have the same electrical reference
(GND). For a detailed description of MAX232, please refer to the datasheet.

Figure 4. Test Setup

PC

TERMINAL

serial port TD
RD

GROUND

MAX232

IN OUT
OUTIN

ST7FLITE0

GND

GND

GND

PA7 pin
 PA3 pin
11/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
6 FUNCTIONAL SOFTWARE FLOW

The character format used is “ASCII”. Before starting communication you should configure the
communication parameters to your requirements. You can select the baudrate, number of bits
and STOP bits in different combinations. However, for correct communication, the receiver
must have a reception baud rate strictly equal to the transmission

baud rate of the transmitter. If not, the communication will be corrupted. So you have to con
figure “Hyperterminal” correctly.

To configure the device, you must set del_1bh, del_1bl, del_sampl, del_samph, STOP_BIT
and TxRx_data_lnth correctly in your software.

After power on, the ST7FLITE0 goes in to transmit mode. It initiates communication by trans-
mitting character “$” in ASCII format & then goes into receive mode. The PC then receives this
character on its serial port, which can be viewed in the Hyperterminal window.

Now you have to press a key (character) to transmit. After pressing a character key, it gets
transmitted and the ST7 receives it. The ST7 then sends same received character to PC. This
sequence can be repeated continuously (Refer to the flow charts below).

6.1 MAIN SOFTWARE ROUTINES

The UART software consists of main 4 routines:

– Tx_data

– Rx_data

– EI1_Interrupt

– OPCOMP_int

– Tx_data: This routine is used to transmit data in bit format stored in variable “TX_byte”. It
also takes care of synchronization & the output compare interrupt. The AT timer is initialized
to the application configuration inside this routine.

– Rx_data: This routine is used to receive data on the input pin in bit format & stores it in
“RX_byte”. To detect a “START” bit it initializes the PA7 pin in interrupt mode.

– EI1_Interrupt: This “ei1” interrupt routine gets executed only once during receive data when
PA7 receives a “START” (High to Low edge) bit. It also initiates the AT timer for half bit du-
ration.

– OPCOMP_int: This routine gets executed in both transmit & receive mode. During
Tx_dataroutine execution this gets executed for each data bit transfer. And it is actually used
to transmit data on the TxD (PA3) pin along with START & STOP bits.

During receive mode it gets executed for each data bit received including the START & STOP
bits.

The majority-voting system is implemented in the same section of code.
12/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
6.2 SOFTWARE FLOW CHARTS

The flowcharts below represent the application program flow.

Figure 5. Main Flowchart

RX_data

TX_data

tx_byte = rx_byte

MAIN

Initialize port & variables

Initiate Transmission
13/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
Figure 6. Output Compare Interrupt
t

Is it 1st. bit?
no

yes

Init DCRx with CNTRx

Transmit/Receive

Go on “Transmit routine” Go on “Receive routine”

OPCOMP_int
14/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
Figure 7. Transmit routine

 Set “TE” flag

ret

“BS” flag set
?

TX_data

Set clock & enable out-

Set synchronization
delay

RIM

SIM

put compare interrupt

no

yes
15/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
Figure 8. Receive data routine

RX_data

 Set “RE” flag

Init required variable

Put “RxD” in input inter-
rupt mode. Set EICR reg.

ret

“BR” flag set
?

no

yes

RIM

SIM
16/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
Figure 9. Output Compare Transmit flow

Transmit routine

Send “START” bit

yes

no

a

bit_count=
“0”

 Set “BS” flag in
“sci_status” var.

Disable interrupt & stop
timer clock

b

Send “STOP”bit

a

All “data”
sent ?

no

yes

yes

no

Transmit “data” bit

Load “CNTR” with 1 bit
delay count

Clear prev. interrupt &
set compare interrupt

iret

b

?

”FRAME”
sent?
17/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
Figure 10. Output Compare Receive Flow

Receive routine

yes

no

b

Full“frame”

a

Set “BR” flag

Disable interrupt & stop
timer clock

Received?

Read “RxD” & apply
majority voting system

“START”

yes

no

no

Needyes

?

Read & Check for

“STOP” ?

Need

Read & Check for

Store received data

c

c

a

“START” bit condition

 “STOP” bit condition
18/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
Figure 11. EI1 Interrupt routine

iret

Read CNTRx

Set DCRx for 0.5 bit

Set “SP” flag & put “RxD”
in normal input mode

Clear pending interrupt

Enable output compare
interrupt & select clock

EI1_int

 delay
19/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
7 TEST PROCEDURE

– Connect both the communication & terminal equipment as shown in fig.4

– Open & configure “Hyperterminal “application [Port, Baud rate & etc.].

– Power on ST7

– On the terminal you should get “$” as a starting character (If not then check link between
terminal and the ST7 and check the communication settings)

– Then press a key to send a character

– The same character should be returned by the ST7 (check “Hyperterminal” window)

– Continue by repeating the previous two steps
20/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
8 SOFTWARE

The complete software can be found on the ST internet website in zipped file format. It is in-
tended for use only as an example. It is up to you to adapt it to your specific application.

The source file is for guidance only. STMicroelectronics shall not be held liable for any direct,
indirect or consequential damages with respect to any claims arising from use of this software.
21/22

SOFTWARE UART USING ST7 12-BIT AUTORELOAD TIMER
“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com
22/22

	INTRODUCTION
	1 UART COMMUNICATION
	1.1 main features
	1.2 baud rate
	1.3 frame

	2 RS232 COMMUNICATION WITH A PC
	2.1 Main features
	2.2 PC configuration

	3 ST7fLITE0 cONFIGURATION
	3.1 Clock Source
	3.2 Input Initialization
	3.3 Auto-reloAd Timer Register Configuration

	4 UART Implementation
	4.1 Baud rate definition
	4.2 Majority Voting System
	4.3 Status HANDLING
	4.4 Transmit & Receive implementation

	5 HARDWARE setup
	6 Functional Software Flow
	6.1 Main Software Routines
	6.2 Software FLOW CHARTS

	7 Test procedure
	8 Software

