
AN1633
APPLICATION NOTE

DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN
NON-USB APPLICATIONS

by Microcontroller Division Applications
1 INTRODUCTION

This application note describes how to implement the Device Firmware Upgrade (DFU) capa-
bility using a ST7 USB microcontroller like the ST72F62 or ST72F63B in a general purpose or
‘non-USB’ application. The term ’non-USB’ is used here to contrast with ‘USB application’
which has a different DFU implementation (refer to AN1577). In the implementation described
here, the USB interface is not used in the application. The application board is self powered
and the on-chip USB interface is only used occasionally, as a maintenance utility port to up-
grade the MCU firmware. 

The USB cell is only activated when the USB cable is plugged-in. At this time the application
is stopped and the microcontroller is seen as a USB device and enters the DFU process to
erase and program the new firmware in Sector 1 and/or Sector 2. When the user removes the
USB cable, the USB cell is switched-off and the main application is executed !

To illustrate this application note, a firmware example has been developed using a ST72F62
or a ST72F63B USB Low-Speed device. This firmware is based on the ST7 USB Low-Speed
DFU Demo firmware.

It is not necessary to know the USB cell to understand this application note. For more informa-
tion about the USB DFU class, please refer to the Application Note AN1577.
AN1633/0303
 1/9

1



2 DFU MECHANISM

2.1 OVERVIEW

As mentioned in the introduction, the microcontroller’s USB cell is only used during the DFU
upgrade process. This upgrade process takes place only when the USB cable is plugged-in.
When the USB cable is removed the non-USB application is executed and the USB cell is
switched off. The following figure explains this mechanism in detail.

Figure 1. DFU Flowchart in a non-USB application

As you can see, two separate firmware applications reside in different flash sectors and are
selected by plugging a cable in the USB connector.

USB cable ?

DFU Process

Main (Application)Main (DFU)

MCU Reset

Yes

SECTOR 0 SECTORS 1 & 2

USB cable ? No

Yes

No

WDG ResetFlash
erasing &
programming

(jump table)

USB cable ?

WDG Reset

No

Yes
2/9

2



The first firmware application contains the USB Library, the DFU layer and the HDFlash driver.
This firmware application must be placed in Sector 0. It is executed only when the USB cable
is plugged-in. This firmware cannot be modified during the DFU process. When the Flash up-
grade is finished, the firmware in Sector 0 continues execution until the USB cable is removed.

The second firmware application is the main application. It must be placed in Sectors 1 or 2
because it is modified during the DFU process. This firmware is executed only when the USB
cable is not plugged into the board.

The DFU layer also allows you to upgrade only one sector. You can use this feature, for ex-
ample, to store common data or code for any firmware loaded in Sector 2.

2.2 USB CABLE DETECTION

The detection of the USB cable is made through an I/O port configured in Input mode. This 
I/O is connected to the Vbus line on the USB connector. Detection can be done with interrupts
or by polling. In our example, the polling method is used. This detection must be performed by
both applications (main application and DFU).

Figure 2. Connecting an I/O Port to the Vbus line

+5V

USB connector

VbusUSB Vcc

Vdd

Vss

I/O
3/9



2.3 TRANSITION BETWEEN USB AND APPLICATION

The transition between the application firmware and the DFU firmware is made only through
an MCU reset. A software reset is performed using the Watchdog control register when the
USB cable is detected.

The transition between the DFU firmware and the application firmware is made through a
“Jump Table”. In fact, the DFU firmware only needs to know the address of the application
main routine. This address is saved in the last bytes of Sector 1.

2.4 RAM

As the execution of the firmware in Sector 0 and Sectors 1 & 2 always starts after a MCU
Reset, we have no RAM overlapping problem. Furthermore, as it is a non-USB application,
there none of the USB Library functions are called by the main application. So, there is also no
problem of parameter passing. This simplifies the RAM management a lot.
4/9



3 FIRMWARE

A specific firmware example has been developed to illustrate this application note: ST7 USB
LS DFU Demo for non-USB applications.

This firmware has been created starting from the ST7 USB LS DFU Demo firmware, itself
based on the ST7 USB LS Library and ST7 USB LS EvalKit.

The main changes concern the size optimization of the USB Library and the DFU layer in
order to use a little space as possible in Sector 0. Currently the space required by the USB Li-
brary and the DFU layer is around 2 Kbytes. This optimization leaves 2 Kbytes of code for run-
ning the application during the DFU process or using it for code that does not need to be up-
graded.

This firmware is compatible with Cosmic and Metrowerks compilers.

3.1 MAIN APPLICATION FUNCTION EXAMPLE

void main(void) {

Init_Appli();

while (1) {

// MANDATORY: USED TO GO INTO DFU MODE WHEN THE USB CABLE IS PLUGGED

if (ValBit(PBDR, 5)) { // Check if Vbus is present ?

Stop_Appli();

WDGCR = 0x80; // MCU Reset

}

else {

Application();

}

} // End of while

} // End of main

3.2 DEVICE INFORMATION EXAMPLE

As the application is non-USB, we don’t have the USB descriptors. The descriptors normally
contain strings like: Manufacturer name, Product name, firmware version, ...

Because it is very useful to know which product is connected to the USB, a kind of string de-
scriptor has been created in this project.

The principle is very simple: a fixed table contains the address and the size of these string de-
scriptors (for example the Product name and its version). The host retreives this information
using a DFU_UPLOAD request. It is then possible to display these strings on a Graphical User
Interface.
5/9



In the demo firmware this table has been placed at the end of Sector 1, it contains the fol-
lowing information: Jump to main function, product string address, product string length, ver-
sion string address, version string length, flash size.

This is only an example and you can decide to create more strings or none.

4 GRAPHICAL USER INTERFACE

A specific GUI has been developed for this project. This GUI is only given as example.

Main features:

- Developed with Borland Delphi5

- Uses the ST7DFU.DLL developed by STMicroelectronics to access the DFU low level layer.

- Retreives the string information described above.

- Reads and writes files in S19 format

- Selects Sector 1 and 2 independently.
6/9



5 RELATED DOCUMENTS & FIRMWARE

Table 1.  External Documents

Name

Universal Serial Bus Specification, V1.1

Universal Serial Bus Device Class Specification for Device Firmware 
Upgrade, V1.0

Table 2.  STM Documents

Name

ST7 Family Flash Programming Reference Manual

AN1575 “On-Board Programming Methods for XFlash and HDFlash 
ST7 MCUs”

AN1576 “In-Application Programming Drivers for XFlash and HD-
Flash ST7 MCUs”

AN1577 “Device Firmware Upgrade implementation in ST7 USB de-
vices”

Table 3.  Firmware

Name

ST7 USB LS DFU Demo for non-UB application
7/9



6 TERMS AND ABBREVIATIONS

Table 4.  Terms and Abbreviations

Term Definition

DFU Device Firmware Upgrade.

Firmware Executable software stored in a write-able, nonvolatile memory on a 
USB device.

GUI Graphical User Interface

Upgrade
(1) To overwrite the firmware of a device, (2) the act of overwriting the 
firmware of a device, (3) new firmware intended to replace a device’s 
existing firmware.

Download To transmit information from host to device.

Upload To transmit information from device to host.
8/9



“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH
INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RE-
SULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF
SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF THE INFORMATION CONTAINED
HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2003 STMicroelectronics - All Rights Reserved. 

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an 
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil  - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com
9/9


	1 INTRODUCTION
	2 DFU MECHANISM
	2.1 OVERVIEW
	2.2 USB CABLE DETECTION
	2.3 TRANSITION BETWEEN USB AND application
	2.4 RAM

	3 FIRMWARE
	3.1 Main application function EXAMPLE
	3.2 DEVICE INFORMATION EXAMPLE

	4 Graphical user interface
	5 RELATED DOCUMENTS & FIRMWARE
	6 TERMS AND ABBREVIATIONS

