
AN1445/1101 1/7

AN1445
APPLICATION NOTE

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE
By Microcontroller Division Applications

INTRODUCTION

This application note describes how to emulate a 16-bit slave SPI using an ST7 microcon-
troller with an on-chip 8-bit SPI.

Figure 1. 16-bit SPI frame

1 PRINCIPLE

The ST7 SPI cell has a double buffer for receiving data using two 8-bit registers: a read reg-
ister and a shift register (see Figure 2.). The application software accesses the read register to
retrieve the received data. The 8-bit shift register is managed by hardware to receive the 8 bits
of each byte. As each bit is received, it is shifted into the shift register. During byte reception,
the read register is not changed. It contains the previously received byte which can still be
read by software. At the end of byte reception, the 8-bit shift register is copied into the read
register.

This double buffering makes it possible to receive 16-bit words. At the end of reception of the
first byte, the shift register is copied into the read register, the SPIF flag is set and an interrupt
can be generated. The next in-coming byte will be received in the shift register while the first
byte is available in the read register. In order not to lose any bits, the software must be fast
enough to read the first byte before the end of the reception of the second one.

Note: The SPISR (SPI Status Register) is also called SPICSR (SPI Control/Status Register)
depending on which ST7 microcontroller device you use. In this application note, we’ll use the
name SPISR for the status register.

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8 bit 9 bit 10 bit 11bit 12bit 13bit 14bit 15

1

2/7

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE

Figure 2. Data Register Block diagram

2 SOFTWARE

Figure 3. C code (COSMIC C Compiler) for the interrupt routine

DATA REGISTER

INTERNAL BUS

MISO

MOSI

READ REGISTER

8-BIT
SHIFT REGISTER

@interrupt @nostack void SPI_Interrupt(void)

{

volatile TwoBytes twobytesDR;

if (ValBit(SPISR,SPIF)) // if a byte is received (SPIF=1) + first step to clear int flags

{

twobytesDR.b_form.low=SPIDR; //1st byte storage

while(ValBit(SPISR,SPIF));

twobytesDR.b_form.high=SPIDR; //2nd byte storage

}

else // then MODF flag caused the interrupt -> add your own code here

{

SPICR=0xC4; // second step to clear MODF flag: write access to SPICR (init value)

}

}

2

3/7

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE

Figure 4. Disassembled interrupt routine code

where:
typedef unsigned char u8; /* unsigned 8 bit type definition */

typedef signed char s8; /* signed 8 bit type definition */

typedef unsigned int u16; / * unsigned 16 bit type definition */

typedef signed int s16; /* signed 16 bit type definition */

typedef unsigned long u32; / * unsigned 32 bit type definition */

typedef signed long s32; / * signed 32 bit type definition */

typedef union { /* unsigned 16 bit type for 8 & 16 */

u16 w_form; /* bit accesses: 16> var.w_form */

struct { /* 8> var.b_form.high/low */

u8 high, low;

} b_form;

} TwoBytes;

Note: On some devices, another flag called OVR (overrun) can also cause an SPI interrupt to
occur. In this case, you will have to add some code to the interrupt routine to handle this.

_SPI_Interrupt:
btjf _SPISR,#7,L501
ld a,_SPIDR
ld _SPI_Interrupt$L-1,a

L311:
btjt _SPISR,#7,L311
ld a,_SPIDR
ld _SPI_Interrupt$L-2,a
iret

L501:
ld a,#196
ld _SPICR,a
iret

4/7

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE

3 MAXIMUM BAUD RATE

The baud rate is limited by the speed of the ST7 SPI hardware, which runs at 2 MHz maximum
(for a master @ fCPU = 8 MHz). We can calculate if this baud rate allows enough time for the
software to read the data register before the end of the reception of the second byte.

The time needed to release the data register is 4 microseconds at 2 MBaud. The time needed
by the software consists of:

■ The interrupt context switching: worst case: 2,75us

Firstly, the current instruction must finish: worst case: multiply instruction: 12 cycles =
1,5us @ 8 MHz internal. Secondly the hardware needs 10 cycles = 1,25µs @ 8 MHz in-
ternal frequency to save the context before jumping to the interrupt routine.

■ A read access to the status register: 0,625µs

btjf _SPISR,#7,L501 takes 5 cycles = 0,625µs

■ A read access to the data register: 0,375µs

ld a,_SPIDR takes 3 cycles = 0,375µs

Figure 5. Data Reception Timing Analysis

The time needed by the software is 30 cycles = 3,75us < 4us.

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8 bit 9bit 10 bit 11bit 12 bit 13bit 14 bit 15

- SPIF set
- Read register = shift register

D
eadline

interrupt

switching
context

read
SR

read
DR

- Interrupt

4 us (8*500ns)

Values at fCPU=8 MHz, Baud rate = 2 MHz

2,75 us 0,625 0,375

5/7

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE

In the case of concurrent interrupts, the SPI interrupt must always be the first served. The only
way to ensure this happens is to have only the SPI interrupt enabled. Otherwise, if another in-
terrupt is served between two received words, an overrun condition will occur.

In the case of nested interrupts, the SPI interrupt only needs to have the highest priority, to be
always immediately served.

CONCLUSION: The maximum baud rate, which can be reached is 2 MBaud.

4 MEASUREMENTS

The goal of the measurement is to verify the above theory and to see whether the software
correctly receives both bytes. What is especially important is the time needed to read the data
register, which releases the shift register for the reception of the 2nd byte. To measure this
time an I/O port pin is used and cleared after reading the data register. The interrupt routine is
therefore slightly modified for the measurement (Figure 6.). The timing conditions are: SPI
baud rate = 2 Mbaud and fCPU = 8 MHz.

Figure 6. Measurement Software

The time to be measured is the time taken by the “LD a,SPIDR” instruction (Ax in Figure 7.).
The point we can measure is the transition when the port pin goes low (Bx in Figure 7.). The
time between both is the time needed by “ld _SPI_Interrupt$L-1,a“and “clr PBDR”, which is
4cy+5cy=1,125us. So to Ax is 1,125us before Bx.

The measurement shows that Ax is always before the deadline. This proves that the 8-bit SPI
can be used to receive 16-bit SPI messages at speeds up to 2MBaud.

_SPI_Interrupt:
btjf _SPISR,#7,L522
ld a,_SPIDR
ld _SPI_Interrupt$L-1,a
clr _PBDR

L332:
btjf _SPISR,#7,L332
ld a,_SPIDR
ld _SPI_Interrupt$L-2,a
ld a,#255
ld _PBDR,a
iret

L522:
ld a,#196
ld_SPICR,a
iret

if (ValBit(SPISR,SPIF))

{

twobytesDR.b_form.low=SPIDR;

PBDR=0x00;

while(!ValBit(SPISR,SPIF));

twobytesDR.b_form.high=SPIDR;

PBDR=0xFF;

}

else

{

SPICR=0xC4;

}

C code Assembly code

6/7

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE

Figure 7. Read time measurement

7/7

USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE

“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2001 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

