
AN1325
APPLICATION NOTE

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
by Microcontroller Division Applications
This application note describes how to use the ST7 USB Low-Speed Library V4.2x. Starting
from version 4.20 the Library supports the DFU class layer.

Caution: The DFU class and the HID class layers are not included in the Library. The Library
contains only the standard USB request layers. You will find the DFU and HID layers in the
ST7 USB Low-Speed DFU EvalKit firmware.

Note: In this document the names “Hiware” and “MetroWerks” refer to the same compiler
manufacturer.

1 OVERVIEW

The ST7 USB Low-Speed Firmware Library is written in C language and is compatible with
both Cosmic and Metrowerks compilers.

This Library provides a complete USB protocol layer for the ST7 USB Low-Speed microcon-
trollers (such as the ST7261, ST7262, ST7263 and ST7263B). The source code is available
free to STMicroelectronics customers.

This Library is supplied in a ZIP file. Starting from version 4.10, the Library contains only the
files that are common for all the projects. This new architecture has been choosen in order to
better separate what is really the Library and what is related to a project. This architecture will
also facilitate the upgrade of different projects with new Library versions in the future.
AN1325/0203
 1/15

1

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
2 LIBRARY

2.1 DIRECTORIES ARCHITECTURE

The files which compose the Library are placed into 4 distinct directories : Docs, Macro,
Micro, and Usb :

ST7USBLS-Library-V4.2x/

|--- Docs/

|--- Macro/

|--- Micro/

|--- Usb/

The files inside these directories cannot be used alone. You have to use them within a project.
To do so, you have to include in your project setting files the path of these directories (Mak file
for Cosmic and Default.env for Metrowerks). This way you will be able to use easily the same
Library for different projects.

Example in a MAK file for Cosmic :

MACRO_PATH = D:\ST7USBLS-Library-V4.2x\Macro

MICRO_PATH = D:\ST7USBLS-Library-V4.2x\Micro

USB_PATH = D:\ST7USBLS-Library-V4.2x\Usb

Example in Default.env file for Metrowerks :

GENPATH=\

D:\ST7USBLS-Library-V4.2x\Macro;\

D:\ST7USBLS-Library-V4.2x\Micro;\

D:\ST7USBLS-Library-V4.2x\Usb;

Normally there is no need to change any of the files present in these directories. All the
changes must be done inside your project files.

The following chapters will explain in detail the content of all this directories.
2/15

2

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
2.2 DOCS DIRECTORY

This directory contains all documentations related to the Library: ReleaseNote.txt, FlowChart,
etc...

2.3 MACRO DIRECTORY

This directory contains all the files containing the macro definitions shared between the Li-
brary and the different projects. It contains also the Unicode table used for the definition of the
String descriptors. For example you will find the description of “EnableInterrupts” and “Disa-
bleInterrupts” macro. All these files are common for Cosmic and Metrowerks compilers with
the exception of the “Hidef.h” file wich is used only for Metrowerks.

2.4 MICRO DIRECTORY

This directory contains all the files which are related to the microcontrollers. You will find here
all the MAP files for the ST726X microcontrollers family (ST7261, ST7262, ST7263 and
ST7263B) . All these MAP files are common for Cosmic and Metrowerks compilers.

Important Note : For Metrowerks, all the H/W registers addresses are written inside the PRM
files of each project. For Cosmic, all these informations are written directly inside the MAP
files.

2.5 USB DIRECTORY

This directory contains the USB Library core files for Cosmic and Metrowerks compilers.
These file don’t need to be changed by the customer.

This USB Library can be seen as a ToolBox where the Application picks up the “tools” it needs
(calls the functions it needs). Note that there is no callback functions from the Library (the user
doesn’t need to create specific functions that could be called by the Library).

2.6 USB CORE FILES

All the following files are placed inside Usb directory. These files are really what we call THE
Library.
3/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
The 2 assembly files (USB_JumpTable_xxx.asm) contain a jump table used by the application
to access the Library functions. These files are only used for DFU.

2.7 FILES ORGANIZATION

As you can see on this chart : USB_Lib.h and USB_Def.h are the only files from the Library
that your project needs to refer to.

File Description
USB.c Library core functions
USB.h Library core prototypes

USB_Def.h
Description of all aliases and variables shared between
the Library and the Application layer

USB_Rwu.c Remote Wake-Up functions
USB_Rwu.h Prototypes for Remote Wake-Up functions
USB_Lib.c Library functions to be called by Application layer code

USB_Lib.h
Prototypes of all the Library functions to be called by the
Application layer code

USB_Rc.c Hardware abstraction layer
USB_Rc.h Prototypes for Hardware abstraction layer
USB_Var.c Library variables declaration
USB_Var.h Prototypes for Library variables
USB_JumpTable_Cosmic.asm Contains Jump to USB functions (for DFU only)
USB_JumpTable_Hiware.asm Contains Jump to USB functions (for DFU only)

Application Code

(main.c, Hid_layer.c, User_var.c, ...)

USB_Lib.h USB_Def.h

USB_Rc.c USB.c
4/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
3 PROJECT

This chapter describes an example of a project architecture. You are not obliged to follow this
architecture to use the USB Low-Speed Library.

3.1 DIRECTORIES ARCHITECTURE

The project directories architecture has been simplified. You will now have only the following
directories :

ProjectName/

|--- Docs/

|--- Appli/

|--- Config/

|--- Cosmic/

|--- Hiware/

|--- Objects/

|--- Cosmic/

|--- Hiware/

|--- ST7USBLS-Library-V4.2x/

3.2 DOCS DIRECTORY

This directory contains all documentations related to the project. You can use this directory to
put all your project documents.

3.3 APPLI DIRECTORY

All the application-specific files have to be located inside this directory.

Here is a description of the files that are in this directory initially:

File Name Description
Main.c

Main.h
Entry module. Calls the Initialization functions and contains the infinite loop.

Descript.c

Descript.h
USB Descriptor files for the application: you have to modify them according to
your application (the initial values filled in apply to the Library firmware).
5/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
3.4 CONFIG/COSMIC DIRECTORY

In this directory are placed all files that are used for the Cosmic compiler only. You will find all
the MAK and LKF files for all the ST7 USB Low-Speed microcontrollers. You will find also and
the Interrupt Vector files. The content of these files is given as an example and must be up-
dated according to your project.

3.5 CONFIG/HIWARE DIRECTORY

Same as the previous directory excepted that it is for Metrowerks compiler only. You will find
the MAK and PRM files for all the ST7 USB Low-Speed microcontrollers. You will find also the
Default.env file which contains all the paths description, and the Burner.cmd file used to create
a S19 file. Same as above, the content of these files is given as an example and must be up-
dated according to your project.

3.6 OBJECTS/COSMIC AND OBJECTS/HIWARE DIRECTORIES

In this directory you will find all the output files coming from the different tools (compiler, linker,
etc...).

3.7 ST7USBLS-LIBRARY-V4.2X DIRECTORY

This directory contains the Library files described in the beginning of this document.

Int_726x.c
All the interrupt routines for your application have to be in one of these files (de-
pends on the selected microcontroller).

My_Init.c

My_Init.h
Your initialisation routines (optional).

User_Var.c

User_Var.h
Declaration of all variables related to your application (optional).

USB_App.c

USB_App.h

Contains Non Standard USB requests. For example you will find the function
“Handle_App_Requests” which interacts with the Library to handle requests that
are directed at the application.

HIDlayer.c

HIDlayer.h
HID specific functions (like Handle_HID_Requests, Get_Output & Set_Feature).

DFUlayer.c

DFUlayer.h
DFU specific functions (like Handle_DFU_Requests).

USB_Opts.h

It is the means by which optional USB library code and functionality is selected
for compilation and use by the application. It is also the place for application-spe-
cific parameters such as the lengths of Input and Output Reports (but not for de-
scriptors - see Descript.c/.h).

User_Def.h Declaration of your compilation directives.

File Name Description
6/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
4 SHARED VARIABLES AND FUNCTIONS

As shown in Figure 1, the USB protocol firmware, (which you do not have to modify) uses a
certain number of variables and functions which you can also use in your application source
files (Appli directory). These variables and functions are also used in the data transfer func-
tions and interrupt routines.

Figure 1: Interdependancy of USB Variables and Functions

Shared Variables

Shared Functions

USB
Bus

User Software

Init

USB polling
(USB protocol)

USB application
7/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
4.1 SHARED VARIABLES

Here is a description of the variables shared between the USB Library and the Application
code layer :.

Variable
Declaration/

Aliases
Description

USBLibStatus
USB_Var.c

USB_Def.h

Used to exchange USB status information between the Library
and the Application. Possible values are :

PRODUCT1 (0x01) : always defined

PRODUCT2 (0x02) : alternate product

DFU_MODE (0x40) : DFU code loader device

APP_REQUEST (0x08) : set by Library when a non standard re-
quest has been received on EP0

USB_STALL (0x10) : set by Application to stall a non standard
request

USB_SUSPEND (0x20) : set by Library when suspended mode
is requested

USB_REMOTE_WAKEUP_ENABLE (0x40) : set by Library
when host enables the remote wakeup

USB_CONFIGURED (0x80) : set by Library when host config-
ured the peripheral

USBTransferStatus
USB_Var.c

USB_Var.h

Specifies the current Control Transfer transaction stages. Pos-
sible values are :

NO_DATA_STAGE (0x01) : an IN status will follow the setup to-
ken

DATA_STAGE_IN (0x02) : Transfer with IN data phase

DATA_STAGE_OUT (0x04) : Transfer with OUT data phase

ONE_MORE (0x08) : Last data IN transfer before status out

ADDRESS2SET (0x10) : device address

SET_TX0_VALID (0x20) : request to set EP0 Tx buffer to valid

SET_RX0_VALID (0x40) : request to set EP0 Rx buffer to valid

USBbmRequestType
USB_Var.c

USB_Var.h

Contains the characteristic of the request sent by the host. Re-
fer to USB spec ver 1.1, chap 9.3, page 183 for more informa-
tions. Possible values are :

RECIPIENT (0x03)

REDEVICE (0x00)

REINTERFACE (0x01)

REENDPOINT (0x02)
8/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
4.2 SHARED FUNCTIONS

The table below shows all the functions shared between the Library and the Application. Some
functions have been written especially to transfer data over the USB. In order to improve the
flexibility and control over the USB flow some functions have been changed compared to the
Library Version 3. These new functions will allow also to build a report directly into the End-
Point buffer in case the RAM size is critical. The most important functions are described in de-
tail below.

USBbRequest
USB_Var.c

USB_Def.h

Specific request. Refer to USB spec ver 1.1, chap 9.3, page
183. Possible values are :

GET_STATUS, CLEAR_FEATURE_STALL,
SET_FEATURE_STALL, SET_ADDRESS,
GET_DESCRIPTOR, SET_DESCRIPTOR,
GET_CONFIGURATION, SET_CONFIGURATION,
GET_INTERFACE, SET_INTERFACE

USBwValue[2] USB_Var.c
Word-sized field that varies from request. It is used to pass a pa-
rameter to the device, specific to the request. Refer to USB spec
ver 1.1, chap 9.3, page 183.

USBwIndex USB_Var.c
Word-sized field that varies from request. Typically used to pass
an index or offset. Refer to USB spec ver 1.1, chap 9.3, page
183.

USBwLength USB_Var.c
Number of bytes to transfer if there is a data stage. Refer to USB
spec ver 1.1, chap 9.3, page 183

USBDataXferStatus
USB_Var.c

USB_Def.h
Used to send and receive more than 8 bytes for HID requests
(i.e. SetFeature, GetFeature, etc.)

Function File Description

Init_USB_HW USB_Lib.c
Switch ON the USB cell (connect the peripheral to
the bus) and initialize Library variables.

Disable_USB_HW USB_Lib.c
Switch OFF the USB cell (disconnect the peripheral
from the bus) and reset Library variables.

Handle_USB_Events USB_Lib.c

Manage USB flow (interrupts) on EndPoint0 and
process standard requests only. Manage also all re-
quests for HID class descriptors (HID, Report or
Physical). It’s also responsible for STALLing all un-
supported and invalid USB requests.

Enable_STATUS_Stage USB_Lib.c

Allow ST7 to ACK or STALL incoming status stage
after completion of a non standard request. This
function is called by Application once the
APP_REQUESTS processing is done in the
Handle_APP_Requests function.

Variable
Declaration/

Aliases
Description
9/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
Test_EP_Ready USB_Lib.c

Check if the EndPoint buffer (passed as argument) is
ready to be written or read. Return TRUE if the End-
Point is ready. For IN direction (ST7 to Host) “ready”
means the buffer has been sent and is available for
sending new data. For OUT direction (Host to ST7)
“ready” means the buffer contains new data to be
read.

Set_EP_Ready USB_Lib.c

This function informs the Library that there is data in
the EPxInBuffer ready to be sent (IN direction) or that
the Application has read/consumed the data in the
EPxOutBuffer (OUT direction).

For IN direction (ST7 to Host) update the Transmit
byte counter and set EPTx to VALID. For OUT direc-
tion (Host to ST7) set the EPRx to VALID and ignore
the data length passed as argument.

Write_EP_Buffer USB_Lib.c
Write the data (pointer passed as argument) into the
USB DMA RAM transmit buffer of the selected End-
Point.

Read_EP_Buffer USB_Lib.c
Read data from the USB DMA RAM receive buffer
into the data (pointer passed as argument).

Do_USB_RemoteWU USB_Rwu.c

Send a complete Remote WakeUp signaling se-
quence to the Host (reset USB_SUSPEND flag).
While sending the resume signaling, all interrupts are
disable for 10ms (due to K state that must be main-
tain). If you don’t want all interrupts to be masked for
10ms, when exiting suspend, use the
“Start_USB_RemoteWU” and
“Stop_USB_RemoteWU” functions instead (see be-
low).

Start_USB_RemoteWU USB_Rwu.c

Start a Remote WakeUp signaling to the Host. Take
care that Application code must call the
“Stop_USB_RemoteWU” function after a 10ms de-
lay.

Stop_USB_RemoteWU USB_Rwu.c
End the Remote WakeUp signaling initiated by the
“Start_USB_RemoteWU” function. Reset also the
USB_SUSPEND flag.

Function File Description
10/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
4.2.1 Handle_USB_Events function

Most of the work of the USB Library is performed by this function and the private USB Library
functions that it calls. The events to be handled are the assorted USB interrupts that may
occur as a result of USB transaction or changes in the state of the bus. The interrupt service
routine (INT_Usb) copies the event information to a variable (USBCtrFlag) where the
“Handle_USB_Events” function can access it. The event processing occurs when this function
is called from the main loop of the application.

This function is responsible for handling all standard (“Chapter 9”) requests as well as all re-
quests for HID class descriptors (HID, Report or Physical). It is also responsible for STALLing
all unsupported (as indicated via the switches in USB_Opts.h) and invalid USB requests.

Note: Some USB requests will require attention from the application side of the code (non-
descriptor HID requests and all Vendor-specific requests). These requests are addressed in
the Application function “Do_App_Requests”.

Figure 2: Handle_USB_Events architecture

?

Return

YES

NO

void Handle_USB_Events (void)

Correct IT transfer
by H/W detected

on EP0

[SETUP or IN or OUT]

Process the Correct IT Transfer

Re-enable transmission/Reception
on EndPoint0

 on EndPoint0
11/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
4.2.2 Test_EP_Ready function

Figure 3: Test_EP_Ready architecture

Bool Test_EP_Ready (EndPoint, Direction)

EP0 ? IN ? Data sent?

Data
received?

YES YES YES

YESNO

Return True

Return FalseNO

Return True

Return FalseNO

EP1 ? IN ? Data sent?

Data
received?

YES YES YES

YESNO

Return True

Return FalseNO

Return True

Return FalseNO

EP2 ? IN ? Data sent?

Data
received?

YES YES YES

YESNO

Return True

Return FalseNO

Return True

Return FalseNO

Return False

NO

NO

NO

IN = ST7 to Host

OUT = Host to ST7

Data sent or received ? = status NAK ?
12/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
4.2.3 . Set_EP_Ready

Figure 4: Set_EP_Ready architecture

4.3 FUNCTIONS ALREADY AVAILABLE FOR HID CLASS

You will find the following functions in the file “HIDlayer.c” (in “Appli” directory) :

Note: They are given as example only and are not part of the USB core Library.

Function Description
Handle_HID_Requests Decode Human Interface Device requests.

Get_Output Build output report (Mandatory if Output usage is defined).

Get_Input Build input report (Mandatory if Input usage is defined).

Get_Feature Build feature report (Mandatory if Feature usage is defined).

Set_Feature Process feature report.

Set_Output Process output report.

Void Set_EP_Ready (EndPoint, Direction, Length)

EP0 ? IN ?
YES YES

NO

Enable EP0 for next IN token :
set number of data to send
set EP0 VALID for transmission

Enable EP0 for next OUT token :
set EP0 VALID for reception

EP2 ? IN ?
YES YES

NO

EP1 ? IN ?
YES YES

NO

Return

NO

NO

NO

Enable EP1 for next IN token :
set number of data to send
set EP1 VALID for transmission

Enable EP1 for next OUT token :
set EP1 VALID for reception

Enable EP2 for next IN token :
set number of data to send
set EP2 VALID for transmission

Enable EP2 for next OUT token :
set EP2 VALID for reception
13/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
5 HOW TO START A NEW APPLICATION

1. Make a copy of the complete “EvaluationKit” project. Give an appropriate name to this new
directory.

2. Remove all the parts that concern the EvalKit application (modification in Applet.c, Main.c,
HIDLayer.c, Int_xxx, ...).

3. Create a new workspace and select the MAK file corresponding to the device you are using.

4. Modify the toolchain configuration files (MAK, PRM, LKF etc...).

5. Modify the file “USB_Opts.h” (in “Appli/Includes” directory) according to your application
needs.

6. Modify the files “Descript.c” and “Descript.h” (in “Appli” directory) with your own descriptors.
Don’t forget to put your own Vendor ID (assigned by the USB-IF).

7. Add your application in the file “main.c” (in “Appli” directory) inside the “EndPoint 1 & 2 man-
agement section”. Build your report_IN and send data or receive data and process the
report_OUT). You can also create new files.

8. Process the non-standard requests (Vendor and Class) in the file “USB_App.c” (in “Appli”
directory).

9. For HID CLASS requests, use the “HIDlayer.c” and “HIDlayer.h” files (in “Appli” directory).

10. You might want to use as well the predefined modules “User_Var.h” and “User_Def.h” (in
“Applis” directory).

6 OTHER DOCUMENTS

For further information on the DFU please refer to the following documents :

- AN1577 “Device Firmware Upgrade (DFU) for ST7 USB devices”
14/15

USING THE ST7 USB LOW-SPEED LIBRARY V4.2x
“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2003 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com
15/15

	1 OVERVIEW
	2 LIBRARY
	2.1 DIRECTORIES ARCHITECTURE
	2.2 DOCS DIRECTORY
	2.3 MACRO DIRECTORY
	2.4 MICRO DIRECTORY
	2.5 USB DIRECTORY
	2.6 USB CORE Files
	2.7 FILES ORGANIZATION

	3 PROJECT
	3.1 DIRECTORIES ARCHITECTURE
	3.2 DOCS directory
	3.3 APPLI DIRECTORY
	3.4 CONFIG/COSMIC DIRECTORY
	3.5 CONFIG/HIWARE DIRECTORY
	3.6 OBJECTS/COSMIC and OBJECTS/HIWARE DIRECTORIES
	3.7 ST7USBLS-LIBRARY-V4.2x DIRECTORY

	4 SHARED Variables AND FUNCTIONs
	4.1 SHARED VARIABLES
	4.2 SHARED functions
	4.2.1 Handle_USB_Events function
	4.2.2 Test_EP_Ready function
	4.2.3 . Set_EP_Ready

	4.3 Functions already available for HID class

	5 HOW TO START a new application
	6 OTHER DOCUMENTS

