
AN1324
APPLICATION NOTE

CALIBRATING THE RC OSCILLATOR OF THE
ST7FLITE0 MCU USING THE MAINS
Rev. 2

INTRODUCTION

The ST7FLITE0 microcontroller contains an internal RC oscillator which can be trimmed to a
specific frequency with an accuracy of 1%. The oscillator frequency has to be calibrated by
software using the RCCR (RC Control Register). The value entered in the RCCR will switch on
a corresponding number of resistors that will modify the oscillator frequency. Whenever the
ST7FLITE0 microcontroller is reset, the RCCR is restored to its default value (FFh), so each
time the device is reset, you have to load the calibration value in the RCCR. There are prede-
fined calibration values stored in memory (refer to section 7.1 in the ST7FLITE0 datasheet)
You can load one of these values in the RCCR if one of the operating conditions matches that
in your application. Otherwise, you can define your own value, store it in EEPROM or any non-
volatile memory and load it in the RCCR register after each reset. However, if any of the ex-
ternal conditions (temperature or voltage, for instance) change too drastically, the stored value
may no longer produce the required 1% accuracy. One solution is to recalculate the RCCR
value after each reset, based on an external reference.

The purpose of this application note is to present a software solution using the frequency of
the European standard mains (220V/50Hz) as a timebase to adjust the internal RC oscillator
of the ST7FLITE0 to 1 MHz (1%). The same approach can also be used for the US mains
standard (110V/60Hz).

The basic software takes less than 160 ms to calibrate the oscillator and uses less than 90
bytes of program memory and five bytes of RAM for its simplest version. These RAM bytes
can be freed for other purposes when the calibration is done. Another example using averages
is given in this application note. This can be useful with noisy mains

This application note also contains the diagram of a low cost circuit which converts the mains
into a 5 volt power supply and protects the microcontroller from overcurrent on the input con-
nected to the mains.
AN1324/0604
 1/15

1

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
1 CALIBRATION SOFTWARE

1.1 SOFTWARE PRINCIPLE

The software algorithm, described in the following flowchart (see Figure 3), uses the mains
frequency as a timebase. This timebase allows the microcontroller to test if the RC oscillator
frequency is above or below 1 MHz and repeatedly transforms it by dichotomous analysis so
that in 7 iterations the RCCR is set to the optimum value.

As the timer speed depends on the RC oscillator frequency, it is easy to determine if the oscil-
lator is too fast or too slow. The counted value can be obtained by the following equation:

Since the frequency of the counter is the frequency of the oscillator divided by 32, if the oscil-
lator is at 1 MHz, the result of the count between two edges (which have a 10 ms interval), is
138h for the European standard (220V/50Hz). For the US standard (110V/60Hz) the right
value is 104h. Since the goal of the software is to set the RC oscillator frequency to 1 MHz it
means obtaining 138h as the result of the count. So if the result of the count is greater than
138h, it means that the frequency is too high so the program increases the value of RCCR in
order to decrease the RC oscillator frequency. And if the result is less than 138h, the RCCR is
decreased in order to increase the RC oscillator frequency.
Figure 1. Dichotomous Analysis of RCCR Value

The RCCR register is set to 80h initially by the program, then the dichotomization starts by
adding or subtracting 40h and after each iteration the result is divided by two, so that after 7 it-
erations the value of RCCR is set with an accuracy of one bit.

countedvalue
fcpu

32 fmains×
---------------------------=

80h
Start Value

FFh0h

increase oscillator
frequency

decrease oscillator
frequency

RCCR Register
2/15

2

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
Figure 2. Using the Timer Input Capture to Measure the Mains Frequency

To measure the frequency, the software uses the Lite Timer input capture (LTIC) so that on
each edge of the mains the value of the free running counter is stored as shown in Figure 2.
Then the microcontroller calculates the elapsed time between the two edges of the mains.
This time is given by the following equation:

where nbover represents the number of counter overflows during the measurement, capture 1
and capture 2 are the values captured on the free running counter when an edge occurs on
the mains and F9h is the overflow value of the free running counter.

If the RC oscillator frequency is equal to 1 MHz, the result time will be 138h for European
standard (220V/50Hz) or 104h for US standard mains (110V/60Hz), so these are the refer-
ence values.

This measurement result is compared to the reference value and, depending on the result of
the comparison, the microcontroller adds to or subtracts from the current RCCR value.

Free-running
Counter

Mains

Capture 1 Capture 2

Overflow

0h

F9h

time nbover F9h capture2 capture1–+×=
3/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
1.2 BASIC VERSION

In this version the measurement is done only once for each dichotomization step. This allows
the calibration software to be light and fast. It requires only 90 bytes of program memory and
5 bytes of RAM during calibration. The calibration takes less than 160 ms to be completed

The software works as shown in the following flowchart. The assembly code and a more de-
tailed flowchart can be found in Section 4.
Figure 3. Basic software flowchart

Dichotomization
finished?

Initialization of Lite Timer

Measurement and

Increase RCCRDecrease RCCR

Clock is set to 1 MHz

smaller

greater or equal

Compare
result with
reference

no

yes

calculation
4/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
1.3 AVERAGE VERSION

This version uses the method described in Section 1.1 except it performs four measurements
and uses their average for each dichotomization step. It is useful when the mains is noisy. For
instance, when a motor starts it generates a tension pick and this can be considered as a
mains edge.

This version is safer than the basic one but it requires more resources. It uses 136 bytes of
program memory and 11 bytes of RAM during calibration. The calibration takes less than 560
ms to be completed.

The average version works as shown in the following flowchart. The assembly code can be
found in Section 4.
Figure 4. Average software flowchart

Dichotomization
finished?

Initialization of Lite Timer

Average

Increase RCCRDecrease RCCR

Clock is set to 1 MHz

smaller

greater or equal

Compare
result with
reference

no

yes

calculation
4 measurements and
5/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
2 POWER SUPPLY AND TIMEBASE DELIVERY CIRCUIT

The following figures show circuits which will provide 5V DC to the ST7LITE0 and protect the
input capture from overcurrent. If no power supply is needed, the only component to keep is
the resistor on the LTIC input, which is mainly to protect from overcurrent.

2.1 BASIC CIRCUIT

This circuit contains a capacitive power supply which converts the 220V/50Hz of the mains, as
well as the 110V/60Hz of the US mains, into 5V DC.

Warning: be aware that this kind of power supply can’t be used if there are big current varia-
tions.

It also inputs 220V/50Hz to the Lite Timer Input Capture pin (LTIC/PA0) protected by resistor
R2.

The incoming alternating signal on the LTIC input pin is 220V/50Hz. Because of the clamping
diode on the input of the ST7FLITE0, the input signal can be considered as a 0-5V square
signal.
Figure 5. Power supply and timebase delivery circuit diagram

The maximum current available in the microcontroller depends on the C2 value. Table 1 gives
the maximum average current versus the capacitor value. The average current follows the
equation below:

VDD

GND

LTIC

ST7Lite0

zener

5.6V

C1

220uF/16V

1N4148

C2

220nF/400V

R1 47R/0.5W

R2 470k/0.5W

C2

(220V/50Hz)

Mains

Imax Vmax 2 f C⋅ ⋅ ⋅=
6/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
In the case above, C2 is equal to 220nF so the available current is limited to 4.9 mA in the
case of a European mains. To have the same current levels in the case of the US mains
(110V/60Hz), C2 must be multiplied by two. A 440nF capacitor will limit the current to 4.9 mA.

For the US standard, R2 must be divided by two in order not to limit the current too much on
the LTIC input. A 220k resistor is enough in this case.
Table 1. Maximum MCU Current

2.2 HARDWARE PROTECTION

To prevent bad measurements due to noisy mains, a filter can be added between the mains
and the input capture of the LITE0. The following figure shows one example of a filter. This
filter is a pass band centered on the mains frequency in order to reject all frequency which
could be understood by the microcontroller as a mains edge.

Be aware that this is just a second order filter and that this may not be enough if the mains is
really noisy. Any kind of filter can be added on the LTIC.
Figure 6. Band pass filter

The pass band filter above must be tuned to mains frequency. The value of the resistors for
this filter is given in the table below.
Table 2. resistors values

CAPACITOR C2 MAXIMUM CURRENT
220nF 4.9mA
330nF 7.3mA
470nF 10.4mA
680nF 15mA

1uF 22.1mA

resistors 50Hz/220V 60Hz/110V
R1 6.8K/0.5W 5.6K/0.5W
R2 6.8K/0.5W 5.6K/0.5W
R3 470K/0.5W 220K/0.5W

C1 R1 R2 R3

C2 C2

LTICmains

470nF/400V

470nF/400V 470nF/250V
7/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
3 CONCLUSION

This system allows you to have a power supply for the microcontroller and an auto adjustable
clock set to 1MHz with an accuracy of 1% whatever the external conditions.

This solution also offers the advantage of being less expensive than a solution with a trans-
former and requires less space.

It requires a small amount of space in program memory (less than 90 bytes) in its smallest ver-
sion.
8/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
4 SOFTWARE EXAMPLES

A zip file attached to this application note contains the complete software of this calibration
method.

4.1 SINGLE ALTERNANCE

This version perform only one count between two edges and changes the value of the RCCR
according to this measurement. This can lead to bad tuning if there is noise on the reference
signal.

4.1.1 main program
;All the bytes from locations 80h to 85h are used by this software to store values or as control
registers but they can be reused safely after the clock has been set.

;dichotomy value
.value equ $81 ;this byte contains the value which will be added
or subtracted to/from the RCCR last value at the end of each round
;capture values
.capture1 equ $82
.capture2 equ $83 ;these two bytes contain the two values of the counter
captured on the edge of the mains, they are used to calculate the time elapsed between the two
edges
;number of overflows
.nbover equ $84 ;this byte contains the number of counter overflows
during the measurement
;control register
.cr equ $85 ;this byte is used as a control register for the measure-
ment. Its bits allow or not the interrupts and show which step of the count is the current one.
.strtstp equ 1 ;this is set to start the count and reset to stop it
.overflow equ 2 ;this bit is set when the first capture has occurred. It
allows the overflows to be counted

.main

bset MCCSR, #1 ;output clock enable. You can remove this line if you do
not want to check the clock

ld A, #$80 ;value containing the value which will be
ld value, A ;add or subs to/from RCCR during the dichotomy
ld RCCR, A ;RCCR is set to the middle of its range of value

next clr nbover ;clear the byte containing the number of timer overflow
clr cr ;clear the byte use as control register for the count

 ld A, LTICR ;clear the ICF bit

rim ;interrupts enable
bset LTCSR, #7 ;enable input capture interrupt
bset cr,#strtstp ;set the start-stop bit of cr: count can start

count btjt cr, #strtstp, count; wait for the end of count
clr LTCSR ;lite timer interrupts disable

srl value ;dichotomy value divided by 2

ld A,#$F9 ;these lines calculate this equation:
ld X,nbover ;
mul X,A ;(nbover*$F9)+ capture2 - capture1
add A, capture2 ;
9/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
jrnc nocarry ;this equation is calculated with 16 bits
inc X ;

nocarrysub A, capture1 ;MSB are in register X
jrnc noneg ;
dec X ;and LSB in register A.

noneg cp X, #$01 ;if mains frequency is 50Hz the reference value is $138
jrmi minus ;if it is 60Hz the reference is $104.the program first
jreq compare ;compares MSB with $01 and then compare LSB with
jp plus ;$38 for 50Hz and $04 for 60Hz. if the calculated

comparecp A, #$38 ;value is smaller than the reference the program jump to
jrmi minus ;minus to decrease RCCR else it increase RCCR

plus ld A, RCCR

add A, value ;add value if counted value is greater than ref
jp new

minus ld A, RCCR

sub A, value ;subtract value if Y is smaller

new ld RCCR,A ;enter the new value in RCCR

btjf value, #0, next;stop after 7 rounds

loop jp loop

4.1.2 input capture interrupt
ld A, LTICR ;load captured value in A
btjt LTCSR, #4, finish ;test if it is first or second capture
bset LTCSR, #4 ;allow timebase interrupt in order to count the

number of overflows
ld capture1, A ;captured value is stored in capture1
jp endit1

finish ld capture2, A ;if it is the second capture, captured value is
stored in capture2

clr cr ;clear cr to end the count
endit1 iret

4.1.3 timebase interrupt
ld A, LTCSR ;clear TB bit
inc nbover ;increment number of overflows

endit2 iret

4.1.4 writing in eeprom

To store final value of RCCR in EEPROM, add theses lines after disabling the timer interrupts
in the main program.

ld RCCR, A
bset EECSR,#1 ;start to enter value in the EEPROM
ld $1003,A ;load value of the RCCR in EEPROM
bset EECSR,#0 ;start to write in the EEPROM

wait btjt EECSR,#0,wait ;wait for the end of writing in EEPROM
10/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
4.1.5 Detailed basic version software flowchart

CLEAR RAM BYTES

ENABLE INPUT CAPTURE INTERRUPT
(NBOVER, CR)

STORE STARTING VALUE
80H --> VALUE
80H --> RCCR

EDGE

ON LTIC
INPUT

STORE CAPTURED VALUE IN CAPTURE 1
ENABLE TIMEBASE INTERRUPT TO

STORE CAPTURED VALUE IN CAPTURE 2
DISABLE TIMEBASE AND INPUT CAPTURE

INTERRUPTS

START TO COUNT TIMER OVERFLOWS

DIVIDE VALUE BY 2
CALCULATION OF:

NBOVER X F9 + CAPTURE 2 - CAPTURE 1

EDGE

ON LTIC

INPUT

SUBTRACT VALUE TO RCCRADD VALUE TO RCCR

RC OSCILLATOR IS TRIMMED TO 1 MHZ

COMPARE
RESULT WITH

138H

IS THE
DICHOTOMY

FINISHED?

NO

NO

NO

YES

YES

YES

SMALLER

GREATER
11/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
4.2 AVERAGE VERSION

This version perform the count between two edges four times and changes the value of the
RCCR according to the average of these measurements. This method allows to perform a
better tune of the RC oscillator.

4.2.1 main program
;All the bytes from locations 80h to 8Bh are used by this software to store values or as control
registers but they can be reused safely after the clock has been set.

;dichotomy value
.value equ $81 ;this byte contains the value which will be added
or subtracted to/from the RCCR last value at the end of each round
;capture values
.capture1 equ $82
.capture2 equ $86 ;these bytes contain the values of the counter captured
on the edge of the mains, they are used to calculate the time elapsed between the two edges
;number of overflows
.nbover equ $8A ;this byte contains the number of counter overflows
during the measurement
;control register
.cr equ $8B ;this byte is used as a control register for the measure-
ment. Its bits allow or not the interrupts and show which step of the count is the current one.
.strtstp equ 1 ;this is set to start the count and reset to stop it
.overflow equ 2 ;this bit is set when the first capture has occurred. It
allows the overflows to be counted

.main

bset MCCSR, #1 ;output clock enable. You can remove this line if you do
not want to check the clock frequency

ld A, #$80 ;value containing the value which will be
ld value, A ;add or subs to/from RCCR during the dichotomy
ld RCCR, A ;RCCR is set to the middle of its range of value

next clr nbover ;clear the byte containing the number of timer overflow
clr cr ;clear the byte use as control register for the count

 ld A, LTICR ;clear the ICF bit

clr Y
capturerim ;interrupts enable

bset LTCSR, #7 ;enable input capture interrupt
bset cr,#strtstp ;set the start-stop bit of cr: count can start

count btjt cr, #strtstp, count; wait for the end of count
clr LTCSR ;lite timer interrupts disable
inc Y
cp Y,#$4 ;repeat the capture four time to make an average
jrne capture

srl value ;dichotomy value divided by 2

clr Y
ld A,#$F9 ;these lines calculate this equation for the four
ld X,nbover ;measures:
mul X,A ;(nbover*$F9)+ capture2 - capture1

calcul add A, (capture2,Y);
jrnc nocarry ;this equation is calculated with 16 bits
inc X ;
12/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
nocarrysub A, (capture1,Y);MSB are in register X
jrnc noneg ;
dec X ;and LSB in register A.

noneg inc Y
cp Y,#$4
jrne calcul

srl A ;these lines calculate the average of the last four
srl X ;measures by dividing their total by 4. It is done by
jrnc carry1 ;two consecutive right shift on the 16 bit result.
add A,#$80

carry1 srl A
srl X
jrnc carry2
add A,#$80

carry2 cp X, #$01 ;if mains frequency is 50Hz the reference value is $138
jrmi minus ;if it is 60Hz the reference is $104.the program first
jreq compare ;compares MSB with $01 and then compare LSB with
jp plus ;$38 for 50Hz and $04 for 60Hz. if the calculated

comparecp A, #$38 ;value is smaller than the reference the program jump to
jrmi minus ;minus to decrease RCCR else it increase RCCR

plus ld A, RCCR

add A, value ;add value if counted value is greater than ref
jp new

minus ld A, RCCR

sub A, value ;subtract value if Y is smaller

new ld RCCR,A ;enter the new value in RCCR

btjf value, #0, next;stop after 7 rounds

loop jp loop

4.2.2 input capture interrupt
ld A, LTICR ;load captured value in A
btjt LTCSR, #4, finish ;test if it is first or second capture
bset LTCSR, #4 ;allow timebase interrupt in order to count the

number of overflows
ld capture1, A ;captured value is stored in capture1
jp endit1

finish ld capture2, A ;if it is the second capture, captured value is
stored in capture2

clr cr ;clear cr to end the count
endit1 iret

4.2.3 timebase interrupt
ld A, LTCSR ;clear TB bit
inc nbover ;increment number of overflows

endit2 iret
13/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
4.2.4 Detailed average version software flowchart

CLEAR RAM BYTES

ENABLE INPUT CAPTURE INTERRUPT
(NBOVER, CR)

STORE STARTING VALUE
80H --> VALUE
80H --> RCCR

EDGE

ON LTIC

INPUT

STORE CAPTURED VALUE IN CAPTURE 1.X
ENABLE TIMEBASE INTERRUPT TO

STORE CAPTURED VALUE IN CAPTURE 2.X
DISABLE TIMEBASE AND INPUT CAPTURE

INTERRUPTS

START TO COUNT TIMER OVERFLOWS

EDGE

ON LTIC

INPUT

SUBTRACT VALUE TO RCCRADD VALUE TO RCCR

RC OSCILLATOR IS TRIMMED TO 1 MHZ

COMPARE
RESULT WITH

138H

IS THE
DICHOTOMY

FINISHED?

NO

NO

NO

YES

YES

YES

SMALLER

EQUAL OR GREATER

CALCULATION OF:
NBOVER X F9 + 4(CAPTURE2.X - CAPTURE1.X)

RESULT DIVIDED BY 4 TO AVERAGE IT
DIVIDE VALUE BY 2

FOUR

MEASUREMENTS

DONE?

NO

YES
14/15

CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com
15/15

	INTRODUCTION
	1 CALIBRATION SOFTWARE
	1.1 Software Principle
	1.2 basic Version
	1.3 Average Version

	2 POWER SUPPLY AND TIMEBASE DELIVERY CIRCUIT
	2.1 Basic Circuit
	2.2 Hardware Protection

	3 CONCLUSION
	4 SOFTWARE EXAMPLEs
	4.1 Single Alternance
	4.1.1 main program
	4.1.2 input capture interrupt
	4.1.3 timebase interrupt
	4.1.4 writing in eeprom
	4.1.5 Detailed basic version software flowchart

	4.2 Average Version
	4.2.1 main program
	4.2.2 input capture interrupt
	4.2.3 timebase interrupt
	4.2.4 Detailed average version software flowchart

