

# 上海大缔微电子有限公司

# **DF3566**

通用的低复用速率 LCD 驱动电路

No: TDSPEC3001C

Date:2002.08



## 概述

DF3566 是一种能与任意具有低复用速率的 LCD 接口的外围驱动器。对任意静态或复合态的 LCD,它都能产生高达 4 背极和 24 段的驱动信号,通过级联方式能轻松实现大型 LCD 应用。DF3566 能和大多数微处理器/微控制器兼容,并通过两线双向的二线-串行通信总线通讯。通过带自动地址增量的显示 RAM 使得通讯开销可减到最小,通过硬件子地址和显示存储器切换(静态和复合驱动方式)。

# 特点

单片LCD控制器/驱动器

可选择的背极驱动结构:静态或2、3或4背极复合可选择的显示偏置电压结构:静态、1/2、 1/3

24段驱动: 达到12个8段数字字符;6个15段字母字符;或任意96个点素的图形

24 X 4的显示数据存储RAM

器件子地址显示数据的自动增量

显示存储区可在静态与双极驱动方式之间切换

带电压跟随缓存器的内部LCD偏置发生器

多种闪烁方式

LCD与逻辑供给各自独立

电源范围: 2.5V~6V

低功耗

电池工作及电话应用中的低功耗节电方式

二线-串行通信总线接口

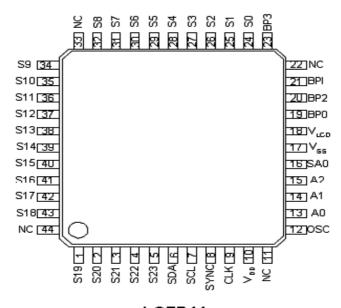
TTL/CMOS 兼容

能和任何4位、8位、16位微处理器/微控制器兼容

对于大型LCD应用,可以级联 (高达1536段)

能和40段LCD驱动器PCF8576C级联

在单个或多个DF3566应用中单面连线有最佳的引脚安排


无需外围元件连接 (甚至多驱动器应用时)

硅栅 CMOS 工艺制造

封装形式: LQFP44



# 引脚特征 (顶视图)



LQFP44

图 1 引脚特征

# 引脚描述

| 符号              | 引脚描述               |  |
|-----------------|--------------------|--|
| SDA             | 二线-串行通信总线数据输入/输出   |  |
| SCL             | 二线-串行通信总线时钟输入/输出   |  |
| /SYNC           | 级联同步输入/输出          |  |
| CLK             | 外部时钟输入/输出          |  |
| $V_{DD}$        | 电源正端               |  |
| OSC             | 振荡器输入              |  |
| A0~A2           | 二线-串行通信总线子地址输入     |  |
| SA0             | 二线-串行通信总线从地址位 0 输入 |  |
| V <sub>SS</sub> | 逻辑地                |  |
| $V_{LCD}$       | LCD 电源电压           |  |
| BP0~BP3         | LCD 背极输出           |  |
| S0 ~ S23        | LCD 段输出            |  |
| NC              | 空脚                 |  |



# 功能框图



图 2 功能框图



# 功能描述

#### 功能电路

DF3566 内部集成了LCD驱动器所必需的所有功能电路。这些电路包括: LCD偏置电压发生器, LCD电压选择器, 内部时钟(OSC脚接地,若接VDD则使用外部时钟),显示RAM,显示锁存器,移位寄存器,段/背极输出电路,输入/输出存储体选择器,闪烁电路,数据指针和子地址计数器。

| 方式        | LCD 段                                                                                                  | LCD 背极  | 显示 RAM 填装顺序                                                                                                     | 发送的显示字节                     |
|-----------|--------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|
| 静态        | Sn+2 a b Sn+1 Sn+3 f b Sn+1 Sn+4 g Sn Sn+5 e C Sn+7 Sn+6 d DP                                          |         | BP n n+1 n+2 n+3 n+4 n+5 n+6 n+7 0 c b a f g e d DP 1 * * * * * * * * * 2 * * * * * * * * * 3 * * * * * * * * * | MSB LSB<br>cbafgedDP        |
| 1:2       | $\begin{array}{c} Sn \\ Sn+1 \\ Sn+2 \\ Sn+3 \\ \end{array} \begin{array}{c} b \\ C \\ DP \end{array}$ | ВРО ВР1 | BP n n+1 n+2 n+3 0 a f e d 1 b g c DP 2 * * * * 3 * * * *                                                       | MSB LSB<br>abfgecdDP        |
|           | Sn+2 T b Sn e c                                                                                        | BP0 BP2 | BP n n+1 n+2 0 b a f 1 DP d e 2 c g * 3 * * *                                                                   | MSB LSB<br>b DP c a d g f e |
| 1:4<br>多极 |                                                                                                        | BPO BP2 | BP n n+1 0 a f 1 c e 2 b g 3 DP d                                                                               | MSB LSB<br>acbDPfegd        |

图3 不同驱动方式下的显示RAM原理图

#### 显示驱动原理

DF3566 有24个段输出S0--S23和4个背极输出BP0--BP3,它们和LCD直接相连,当少于24个段输出和少于4个背极输出应用时,不用的段或背极可空出。DF3566共有静态、1:2、1:3 、1:4 四种背极输出方式,允许使用1/2 或1/3 两种偏置电压。

当要显示的数据传送给DF3566后, DF3566将接收到的字节数据按照所选择的LCD驱



动方式填充在显示RAM中。图3示出了在不同的驱动方式下7段显示器的显示填充顺序。

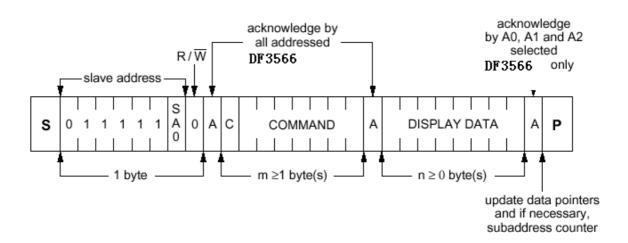
#### 二线-串行通信总线协议

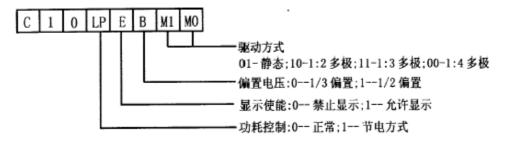
两个受控于DF3566的二线-串行通信总线受控器地址(0111110和0111111)。 受控器最重要的最低位由输入SA0(管脚10)的连线决定,因此,如下的两种在相同二线-串行通信总线上的DF3566能被区别:

- (1) 在大型LCD应用中相同的二线-串行通信总线上达到16片DF3566;
- (2) 两种不同类的LCD复合在相同的二线-串行通信总线上使用。

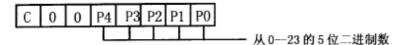
二线-串行通信总线如图4。发送第一个起始条件后,紧接着发送两个DF3566从地址中的一个。所有SA0电平相同的DF3566同时响应从地址,但所有与SA0电平不同的DF3566则与二线-串行通信总线的通讯无关。在寻址之后为一个或多个(m≥1个字节)指令字节(COMMAND),用来定义所寻址的DF3566 状态,指令字节中的最高位"C"用以标明是否是最后一个指令字节,当C="1"时表示后面的字节仍是指令字节;当C="0"时则表明该字节为最后一个指令字节。

最后一个指令字节之后为一系列显示数据字节 (DIS DATA),这些显示数据存放在显示 RAM中,由数据指针和子地址计数器指示的地址上。数据指针和子地址计数器可自动变更,数据直接装载到指定的DF3566上,在每个字节之后的应答位由A2、A1、A0寻址的DF3566提供,在主控器发送完最后一个字节后产生一个终止条件P。

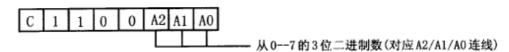




图 4 二线-串行通信总线协议

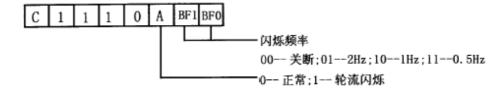



#### 控制命令

DF3566 共有 5 个控制命令字命令和数据都是以字节的形式发送到 DF3566,它们的区别在于传送字节的最高位 C,当 C=1 时表示其后传送的字节仍是命令;C=0 表示其后传送的字节是最后一个命令,接下来传送的是一系列数据,下面列出了常用的 4 个命令的细节:


#### A. 方式设定




B. 数据指针(要显示的起始地址,对应段输出 S0--S23 的某一段)



#### C. 器件选择



#### D. 闪烁控制





#### LCD驱动方式下的波形

静态 LCD 驱动方式时,LCD 使用单个背极,背极与驱动段波形如图 5 所示。当 LCD 使用 1:2 多极驱动方式应用时,DF3566 允许使用 1/2 或 1/3 偏置电压,如图 6 及图 7、图 8、图 9 分别展示了 1:3 多极(三个 LCD 背极),1:4 多极(四个 LCD 背极)驱动方式下背极和段驱动波形。

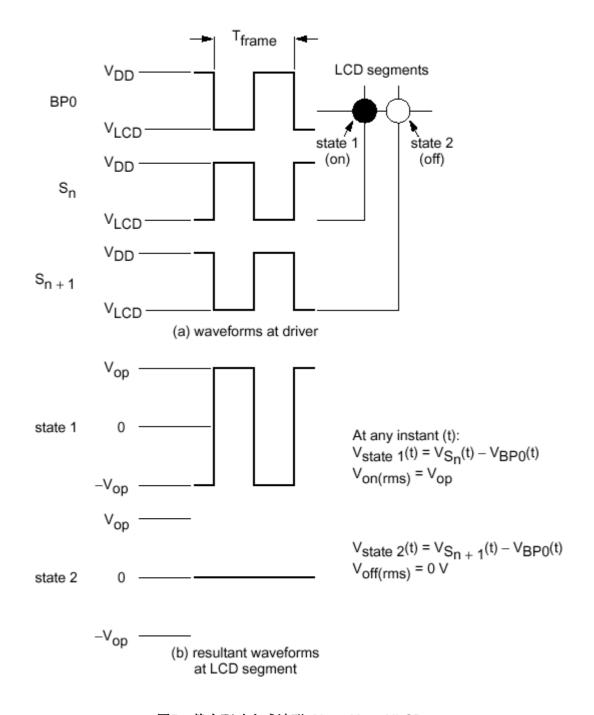



图5 静态驱动方式波形:  $V_{op} = V_{DD} - VLCD$ 。



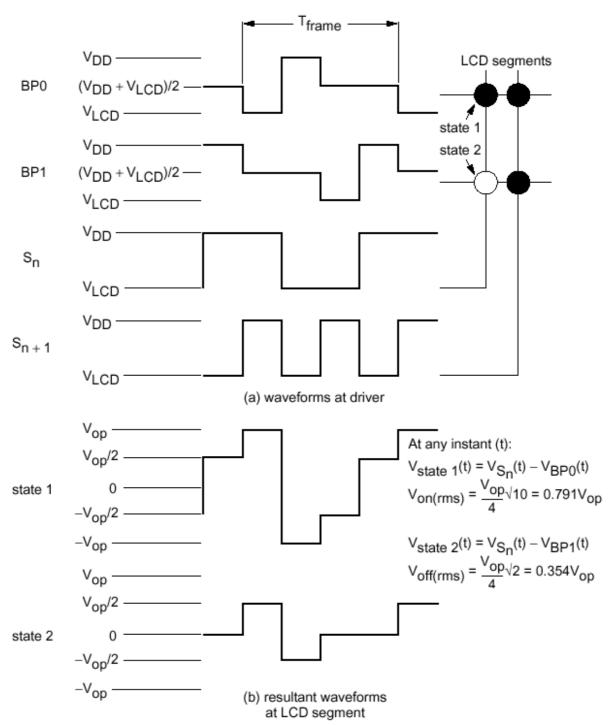



图 6 1:2 多极, 1/2 偏置电压驱动方式波形: Vop = VDD - VLCD。



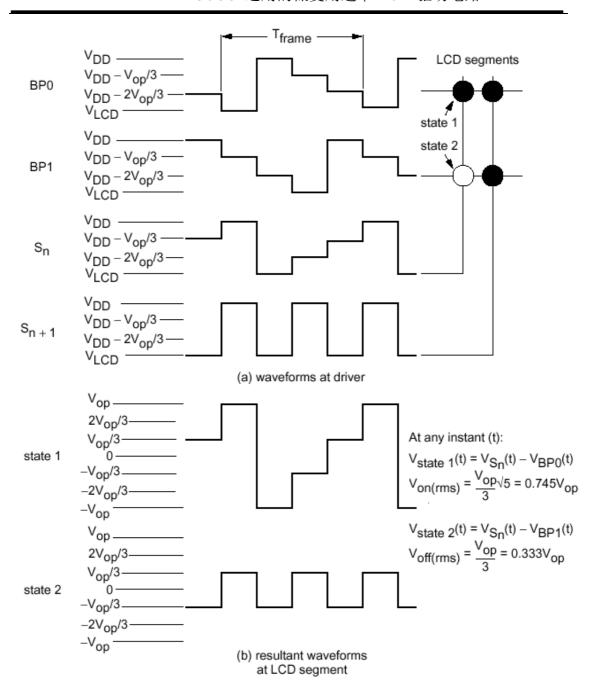



图 7 1 : 2 多极,1/3 偏置电压驱动方式波形:V<sub>op</sub> = V<sub>DD</sub> - V<sub>LCD</sub>。



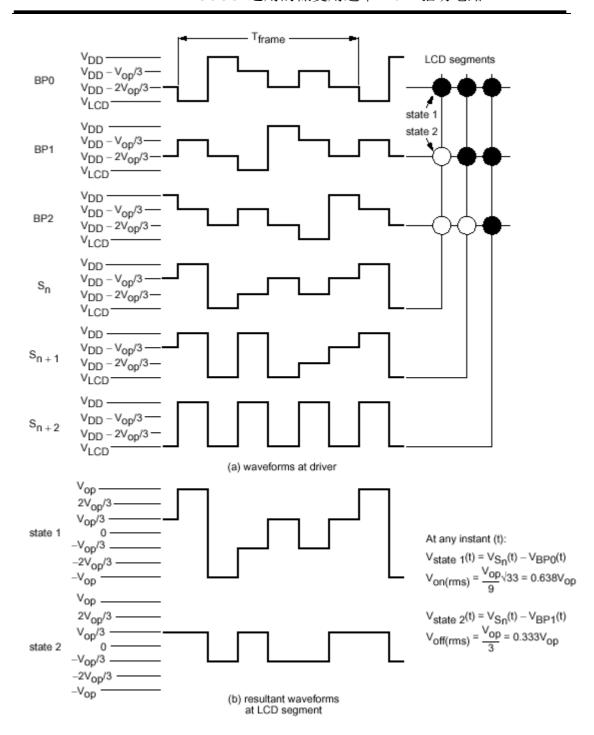



图8 1:3多极,驱动方式波形: Vop = VDD - VLCD。



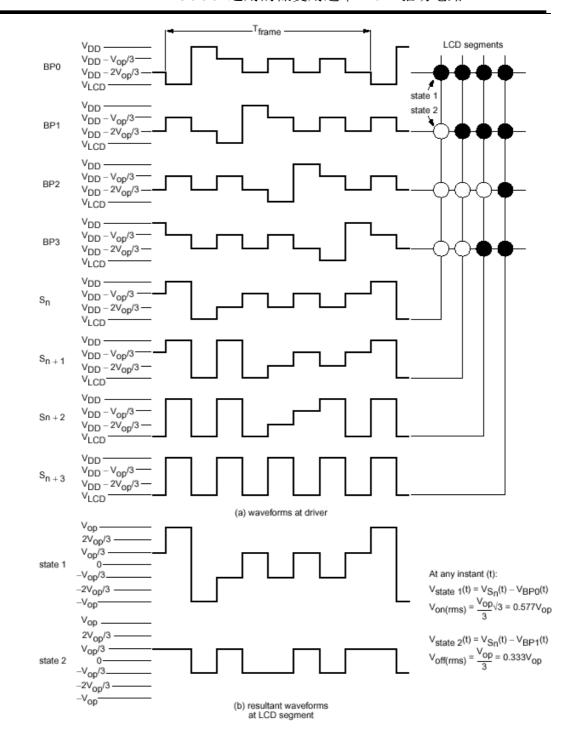



图 9 1:4多极驱动方式波形: V<sub>op</sub> = V<sub>DD</sub> - V<sub>LCD</sub>。



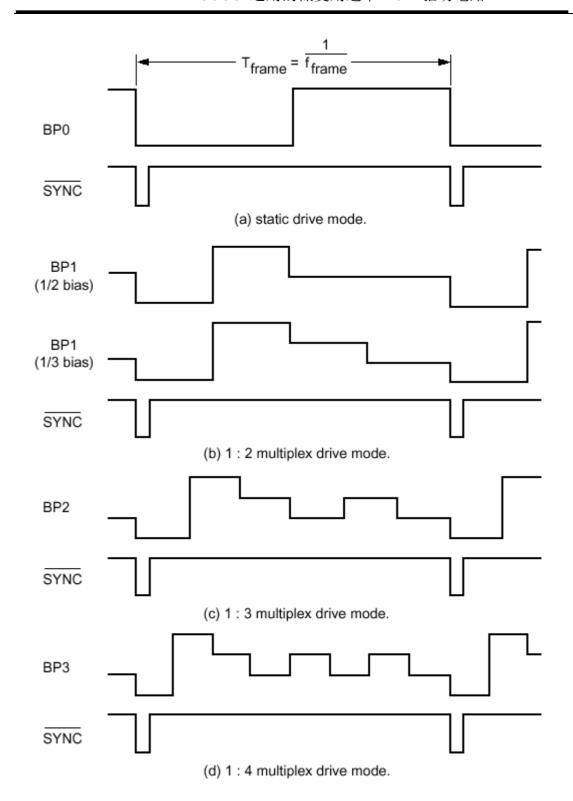



图 10 多个 DF3566 级联驱动方式的同步



# 极限参数

按照定型系统的绝对最大值

| 符号                                                 | 参数                                                      | 最小值                    | 最大值                  | 单位                   |
|----------------------------------------------------|---------------------------------------------------------|------------------------|----------------------|----------------------|
| $V_{DD}$                                           | 电压供给                                                    | -0.5                   | +7                   | ٧                    |
| $V_{LCD}$                                          | LCD 电压供给                                                | V <sub>DD</sub> - 7    | $V_{DD}$             | ٧                    |
| Vı                                                 | 输入电压(SCL,SDA,A0~A2,OSC,CLK,/SYNC                        | V 0.5                  | V <sub>DD</sub> +0.5 | V                    |
| VI                                                 | 和 SA0)                                                  | V <sub>SS</sub> - 0.5  | V <sub>DD</sub> +0.5 | V                    |
| Vo                                                 | 输出电压(S0~S23 和 BP0~BP3)                                  | V <sub>LCD</sub> - 0.5 | V <sub>DD</sub> +0.5 | ٧                    |
| I <sub>I</sub>                                     | 输入直流电流                                                  | -                      | ±20                  | mA                   |
| lo                                                 | 输出直流电流                                                  | -                      | ±25                  | mA                   |
| I <sub>DD</sub> ,I <sub>SS</sub> ,I <sub>LCD</sub> | V <sub>DD</sub> , V <sub>SS</sub> 或 V <sub>LCD</sub> 电流 | -                      | ±50                  | mA                   |
| P <sub>tot</sub>                                   | 各种封装的功耗                                                 | -                      | 400                  | mW                   |
| Po                                                 | 各种输出功耗                                                  | -                      | 100                  | mW                   |
| T <sub>stg</sub>                                   | 储藏温度                                                    | -65                    | +150                 | $^{\circ}\mathbb{C}$ |

# 直流电气特性

除非有其它特别说明: Vss=0V; Vdd=2.5~6V; VLcd=Vdd-2.5~Vdd-6V; -40~+85°C

| 符号               | 参数           | 条件                       | 最小值                  | 典型值 | 最大值                  | 单位 |  |  |
|------------------|--------------|--------------------------|----------------------|-----|----------------------|----|--|--|
| 供电               | 共电           |                          |                      |     |                      |    |  |  |
| $V_{DD}$         | 工作电压         |                          | 2.5                  | -   | 6                    | V  |  |  |
| V <sub>LCD</sub> | LCD 电压       |                          | V <sub>DD</sub> - 6  | -   | V <sub>DD</sub> -2.5 | V  |  |  |
| ,                | 工作电流         | f <sub>CLK</sub> = 190kH | -                    | 30  | 90                   | uA |  |  |
| I <sub>DD</sub>  | 正常方式         | 注释 1                     |                      |     |                      |    |  |  |
|                  |              | $V_{DD} = 3.5V$          | -                    | 15  | 40                   | uA |  |  |
|                  |              | V <sub>LCD</sub> = 0V    |                      |     |                      |    |  |  |
| $I_{LP}$         | 节电方式供电电流     | $f_{CLK} = 35kHz$        |                      |     |                      |    |  |  |
|                  |              | A0~A2 连到 V <sub>SS</sub> |                      |     |                      |    |  |  |
|                  |              | 注释 1                     |                      |     |                      |    |  |  |
| 逻辑               |              |                          |                      |     |                      |    |  |  |
| $V_{IL}$         | 低门限输入电压      |                          | V <sub>SS</sub>      |     | $0.3~V_{DD}$         | V  |  |  |
| $V_{IH}$         | 高门限输入电压      |                          | $0.7~V_{DD}$         |     | $V_{DD}$             | V  |  |  |
| $V_{OL}$         | 低门限输出电压      | $I_O = 0 \text{ mA}$     | -                    | -   | 0.05                 | V  |  |  |
| $V_{OH}$         | 高门限输出电压      | $I_O = 0 \text{ mA}$     | V <sub>DD</sub> -0.1 | -   | -                    | V  |  |  |
| 1                | 低门限输出电流      | V <sub>OL</sub> = 1V     | 1                    | -   | -                    | mA |  |  |
| I <sub>OL1</sub> | (CLK 和/SYNC) | $V_{DD} = 5V$            |                      |     |                      |    |  |  |
| Lass             | 高门限输出电流      | V <sub>OH</sub> = 4V     | -                    | -   | -1                   | mA |  |  |
| I <sub>OH</sub>  | (CLK)        | $V_{DD} = 5V$            |                      |     |                      |    |  |  |
| 1                | 低门限输出电流      | V <sub>OL</sub> = 0.4V   | 3                    | -   | -                    | mA |  |  |
| I <sub>OL2</sub> | (SDA 和 SCL)  | $V_{DD} = 5V$            |                      |     |                      |    |  |  |



| 符号                  | 参数                | 条件                                                 | 最小值 | 典型值 | 最大值 | 单位                  |
|---------------------|-------------------|----------------------------------------------------|-----|-----|-----|---------------------|
|                     | 漏极电流(SAO,         | V <sub>I</sub> = V <sub>SS</sub> 或 V <sub>DD</sub> | -   | -   | ±1  | uA                  |
| $I_{L1}$            | CLK, OSC, A0, A1, |                                                    |     |     |     |                     |
|                     | A2,SC 及 SDA)      |                                                    |     |     |     |                     |
| ı                   | 下拉电流 (A0, A1, A2, | V <sub>I</sub> = 1V                                | 15  | 50  | 150 | uA                  |
| $I_{pd}$            | 和 0SC)            | V <sub>DD</sub> = 5V                               |     |     |     |                     |
| R <sub>puSYNC</sub> | 上拉电阻 (/SYNC)      |                                                    | 15  | 30  | 60  | $\mathbf{k} \Omega$ |
| $V_{ref}$           | 上拉复位电平            | 注释 2                                               | -   | 1.3 | 2   | V                   |
|                     | 总线上可容忍的尖峰脉        |                                                    | -   | -   | 100 | ns                  |
| t <sub>SW</sub>     | 冲宽度               |                                                    |     |     |     |                     |
| Cı                  | 输入电容              | 注释 3                                               | -   | -   | 7   | pF                  |
| LCD 输出              |                   |                                                    |     |     |     |                     |
| V                   | 直流电压成分            | $C_{BP} = 35nF$                                    | -   | ±20 | -   | mV                  |
| $V_{BP}$            | (BP0~BP3)         |                                                    |     |     |     |                     |
| \/                  | 直流电压成分            | C <sub>S</sub> = 5nF                               | -   | ±20 | -   | mV                  |
| Vs                  | (S0~S23)          |                                                    |     |     |     |                     |
| 7                   | 输出阻抗              | V <sub>LCD</sub> = V <sub>DD</sub> - 5V            | -   | 1   | 5   | kΩ                  |
| $Z_{BP}$            | (BP0~BP3)         | 注释 4                                               |     |     |     |                     |
| 7                   | 输出阻抗              | V <sub>LCD</sub> = V <sub>DD</sub> - 5V            | -   | 3   | 7   | kΩ                  |
| Z <sub>S</sub>      | (S0~S23)          | 注释 4                                               |     |     |     |                     |

注释: 1、输出开路;输入连到V<sub>SS</sub>或V<sub>DD</sub>;外部时钟有50%的占空比;二线-串行通信总线不激活。

- 2、当VDD <Vref 时,所有逻辑电平复位。
- 3、周期性采样未 100% 测试。
- 4、在某时输出测量。

# 交流电气特性

除非有其它特别说明:  $V_{SS}$  = 0V ;  $V_{DD}$  = 2.5 ~ 6 V ;  $V_{LCD}$  =  $V_{DD}$  - 2.5 ~  $V_{DD}$  - 6 V ;  $V_{amb}$  =- 40 ~ + 85  $^{0}C$  。

| 符号                 | 参数        | 条件                      | 最小值 | 典型值 | 最大值 | 单位  |
|--------------------|-----------|-------------------------|-----|-----|-----|-----|
| 供电                 |           |                         |     |     |     |     |
| 4                  | 振荡器频率     | $V_{DD} = 5V$           | 125 | 190 | 315 | kHz |
| f <sub>CLK</sub>   | (正常方式)    | 注释 2                    |     |     |     |     |
| 4                  | 振荡器频率     | $V_{DD} = 3.5V$         | 21  | 35  | 48  | kHz |
| f <sub>CLKLP</sub> | (节电方式)    |                         |     |     |     |     |
| t <sub>CLKH</sub>  | 时钟高电平时间   |                         | 1   | -   | -   | us  |
| t <sub>CLKL</sub>  | 时钟低电平时间   |                         | 1   | -   | -   | us  |
| t <sub>PSYNC</sub> | 同步传播时延    |                         | -   | -   | 400 | ns  |
| t <sub>SYNCL</sub> | 同步信号低电平时间 |                         | 1   | -   | -   | us  |
| t <sub>PLCD</sub>  | 测试加载驱动器时延 | $V_{LCD} = V_{DD} - 5V$ | -   | -   | 30  | us  |
| 二线-串行通信总线          |           |                         |     |     |     |     |
| t <sub>BUF</sub>   | 总线空闲时间    |                         | 4.7 | -   | -   | us  |



| DF3566 通用的假 | 1.复用速率 1.C | ) 纵动电路 |
|-------------|------------|--------|
|-------------|------------|--------|

| 符号                    | 参数          | 条件 | 最小值 | 典型值 | 最大值 | 单位 |
|-----------------------|-------------|----|-----|-----|-----|----|
| 二线-串行通信总线             |             |    |     |     |     |    |
| t <sub>HD</sub> ; STA | 开始条件保持时间    |    | 4   | -   | -   | us |
| t <sub>Low</sub>      | SCL 低电平时间   |    | 4.7 | -   | -   | us |
| t <sub>HIGH</sub>     | SCL 高电平时间   |    | 4   | -   | -   | us |
| 1                     | 开始条件建立时间    |    | 4.7 | -   | -   | us |
| t <sub>SU</sub> ; sta | (仅用于重新开始程序) |    |     |     |     |    |
| t <sub>HD; DAT</sub>  | 数据保持时间      |    | 0   | -   | -   | us |
| t <sub>SU; DAT</sub>  | 数据建立时间      |    | 250 | -   | -   | ns |
| t <sub>r</sub>        | 上升时间        |    | -   | -   | 1   | us |
| t <sub>f</sub>        | 下降时间        |    | -   | -   | 300 | ns |
| t <sub>SU;STO</sub>   | 停止条件建立时间    |    | 4.7 | -   | -   | us |

#### 注释

- 1. 所有的时序指的是 $V_{IH}$  和 $V_{IL}$ 电平在 $V_{SS}$  至 $V_{DD}$  之间变换。
- 2. 当f<sub>CLK</sub> <125kHz时,二线-串行通信总线传输速率下降。

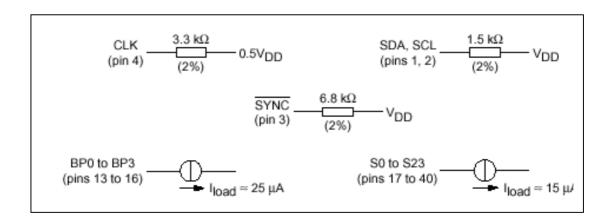



图11 测试加载



# 时序波形

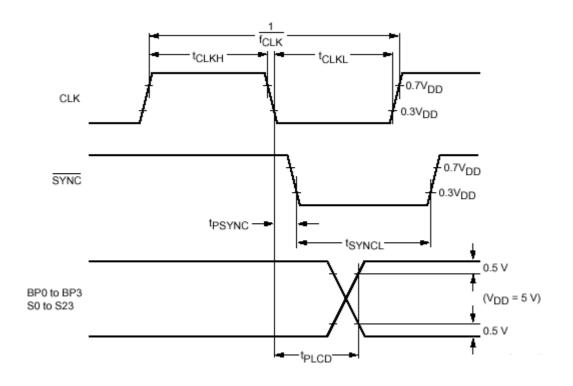



图12 驱动时序波型

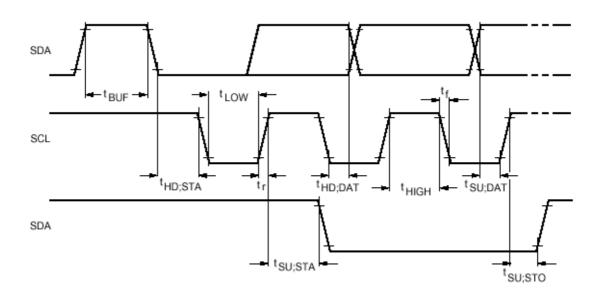
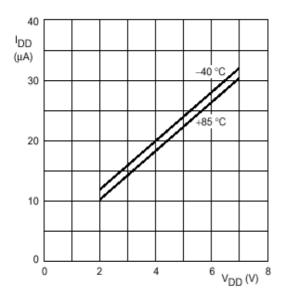
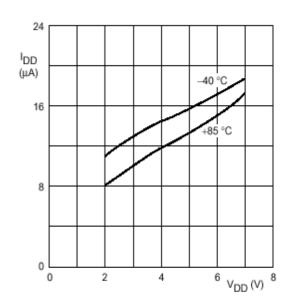
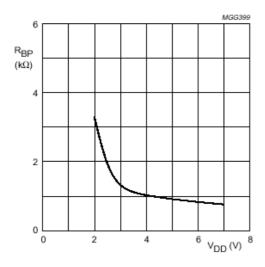
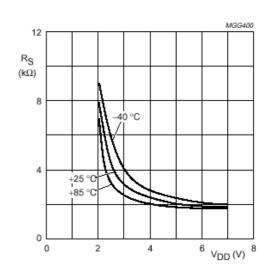





图13 二线-串行通信总线时序波形






 Normal mode; V<sub>LCD</sub> = 0 V; external clock = 190 kHz.  b. Low power mode; V<sub>LCD</sub> = 0 V; external clock = 35 kHz.

图14 典型供电电流特性





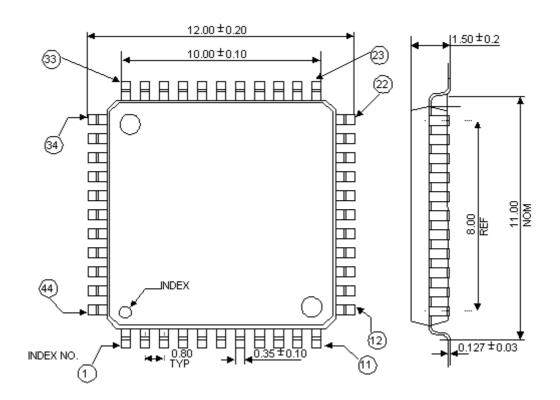

- a. Backplane output impedance BP0 to BP3 (R<sub>BP</sub>);  $V_{DD}$  = 5 V;  $T_{amb}$  = -40 to +85 °C.
- b. Segment output impedance S0 to S23 ( $R_S$ );  $V_{DD}$  = 5 V.

图15 典型的LCD输出特性



# 封装尺寸

LQFP44:塑料薄型扁平封装(44 脚,10x10mm²)



| Lead Pitch | Nominal Dimensions | Lead Shape | Sealing Method |
|------------|--------------------|------------|----------------|
| 0.80mm     | 10×10mm            | Gullwing   | Plastic Mold   |

注:本资料仅供参考,如有更新,恕不另行通知。

#### 附:

修改记录:

| 日    | 期    | 版本号 | 描述 | 页码 |
|------|------|-----|----|----|
| 2004 | 1-21 | 2.0 |    |    |