PCL-731 快速安装使用手册

PCL-731 快速安装使用手册	1
第一章 产品介绍	1
1.1 概述	1
1.2 特点	2
1.3 规格	2
1.4 一般特性	2
第二章 安装与测试	2
2.1 初始检查	2
2.2 开关和跳线的设置	3
2.2.1 基址的选择	3
2.2.2 中断设置	3
2.3 引脚图	4
2.4 Windows2K/XP/9X下板卡的安装	5
2.4.1 软件的安装:	5
2.4.2 硬件的安装:	7
2.5 测试	13
2.5.1 数字量输入功能测试	14
2.5.2 数字量输出功能测试	15
第三章 信号的连接	15
3.1 数字信号连接	15
第四章 例程使用详解	16
4.1 板卡支持例程 错误!未定	义书签。
4.2 常用例子使用说明	17
4.2.1 DIGOUT (数字量输出) :	17
4.2.2 Digin (数字量输入例程)	18
第五章 遇到问题,如何解决?	19

第一章 产品介绍

1.1 概述

PCL-731 是一款 48 路数字量输入/输出卡,该卡提供了 48 路并行数字输入/ 输出口。仿真可编程并行 I/O 接口芯片 8255 模式 0,提供更高驱动能力的输入、 输出缓冲。板卡的 48 位 I/O 口被分成 6 个 8 位 I/O 端口:A0、B0、C0、A1、 B1、和 C1,每口可以软件设置为输入或者输出。带有两个 50 管脚接口,管脚定 义与 Opto-22 模块完全兼容。PC0 和 PC1 两个端口的第 0 位都可以产生中断 IRQ2~7。

1.2 特点

- 1. 48 路 TTL 数字量 I/O 接口
- 2. 仿真 8255 PPI 模式 0
- 3. 中断处理
- 4. 50 管脚定义与 Opto-22I/O 模块完全兼容
- 5. 输出状态回读

1.3 规格

- 输入信号规格 输入逻辑电平1:2.0~5.25V 输入逻辑电平0:0.0V~0.80V 高输入电流:20.0uA 低输入电流:-0.2mA
- 输出信号规格
 高输出电流:-15.0mA(源)
 低输出电流:24.0mA(汇)
 输出逻辑电平 1:2.4V(最小)
 输出逻辑电平 0:0.4V(最大)
 驱动能力:15LS TTL
- 3. 传输速率: 300K 字节/秒 (典型值); 500K 字节/秒 (最大值)

1.4 一般特性

- 1. 功耗: +5V @ 0.5A (典型); +5V @ 0.8A(最大)
- 2. 工作温度: 0°~60°C(32°~140°F)
- 3. 存储温度:-20°~70°C(-4°~158°F)
- 4. 工作湿度: 5%~95%RH,无凝结.
- 6. 接口:2个50芯扁平电缆接口
- 7. 尺寸:185mm(L)*100mm(H)

第二章 安装与测试

2.1 初始检查

研华 PCL-731,包含如下三部分:一块48路数字量输入/输出卡,一本使用 手册和一个内含板卡驱动的光盘。打开包装后,请您查看这三件是否齐全,请仔 细检查有没有在运送过程中对板卡造成的损坏,如果有损坏或者规格不符,请立 即告知我们的服务部门或是本地经销代理商,我们将会负责维修或者更换。取出 板卡后,请保留它的防震包装,以便在您不使用时将采集卡保护存放。在您用手 持板卡之前,请先释放手上的静电(例如,通过触摸您电脑机箱的金属底盘释放 静电),不要接触易带静电的材料,比如塑料材料等。手持板卡时只能握它的边 沿,以免您手上的静电损坏面板上的集成电路或组件。

2.2 开关和跳线的设置

PCL-731 卡面板上有一个功能开关 SW1;六个跳线。如何使用它们将在下面详细讨论。

2.2.1 基址的选择

PCL-731 数据采集卡是通过计算机的 I/O 口来控制的,每个 I/O 口各自都有 一个独立的 I/O 存储空间以免相互之间发生地址冲突,下图给出了它的 I/O 地址 选择,PCL-731 需要 8 个连续的 I/O 地址空间。地址的选择可通过面板上的 DIP 开关 SW1 的设置来设定。PCL-731 的有效地址范围是 200 到 3F8 (十六进制), 初始默认地址为 300,您可以根据系统的资源占用情况,给 PCL-731 分配正确的 地址,按照下图来设置它的地址。

```
Card I/O addresses (SW1)
```

Range (hex)	Sw	itch posi	tion				
	1	2	3	4	5	6	7
000 - 007	on	on	on	on	on	on	on
008 - 00F	on	on	on	on	on	on	off
200 - 207	off	on	on	on	on	on	on
208 - 20F	off	on	on	on	on	on	off
*300 - 307	off	off	\mathbf{On}	\mathbf{on}	\mathbf{on}	on	on
3 F 8 - 3 F F	Off	off	off	Off	Off	off	Off
Switch Line	1 A9	2 3 A8 A7	4 A6	5 A5	6 A4	7 A3	

A3~A9 与计算机的地址线相对应。* 表示默认设置。

2.2.2 中断设置

PCL-731 的 PC0(0)和 PC1(0)两个引脚可以向计算机产生硬件中断,可以通过设置跳线 JP5、JP6 来选择 IRQ 级别,如下图所示:

注意:中断级别的设置不能相同。

PC0(0)引脚的中断使能是通过跳线 JP3 来控制的, PC1(0)引脚的中断 使能是通过跳线 JP4 来控制的。如果 JP3 设置为 DIS,则 PC0(0)引脚的中断 被禁止;如果 JP3 设置为 EN,则允许中断。如下图所示:

如果设置为 S/W,则 PC0(0)引脚的中断是通过 PC0(4)引脚来控制的, 当 PC0(4)为低电平时,中断使能;当为高电平时,中断禁止。PC1(0)引脚 由 PC1(4)引脚控制,控制方法与 PC0(0)相同。

跳线 JP1 和 JP2 是用来为两个中断通道设置用上升沿触发中断还是下降沿触发中断,如下图所示:

Rising edge interrupt triggering (Default) Falling edge interrupt triggering

2.3 引脚图

PCL-731 有 2 个 50 针管脚接口 CN1、CN2。引脚图如下所示:

CN1 CN				N2			
PC 07	1	2	GND	PC 17	1	2	GND
PC 06	3	4	GND	PC 16	3	4	GND
PC 05	5	6	GND	PC 15	5	6	GND
PC 04	7	8	GND	PC 14	7	8	GND
PC 03	ó	10	GND	PC 13	9	10	GND
PC 02	ú	12	GND	PC 12	11	12	GND
PC 01	13	14	GND	PC 11	13	14	GND
PC 00	15	16	GND	PC 10	15	16	GND
PB 07	17	18	GND	PB 17	17	18	GND
PB 06	19	20	GND	PB 16	19	20	GND
PB 05	21	22	GND	PB 15	21	22	GND
PB 04	23	24	GND	PB 14	23	24	GND
PB 03	25	26	GND	PB 13	25	26	GND
PB 02	27	28	GND	PB 12	27	28	GND
PB 01	29	30	GND	PB 11	29	30	GND
PB 00	31	32	GND	PB 10	31	32	GND
PA 07	33	34	GND	PA 17	33	34	GND
PA 06	35	36	GND	PA 16	35	36	GND
PA 05	37	38	GND	PA 15	37	38	GND
PA 04	39	40	GND	PA 14	39	40	GND
PA 03	41	42	GND	PA 13	41	42	GND
PA 02	43	44	GND	PA 12	43	44	GND
PA 01	45	46	GND	PA 11	45	46	GND
PA 00	47	48	GND	PA 10	47	48	GND
+5 V	49	50	GND	+5 V	49	50	GND

2.4 Windows2K/XP/9X 下板卡的安装

安装流程图,如下:

2.3.1 软件的安装:

2.3.1.1 安装 Device Manager 和 32bit DLL 驱动

注意:测试板卡和使用研华驱动编程必须首先安装安装 Device Manager 和 32bitDLL 驱动。

第一步:将启动光盘插入光驱;

第二步:安装执行程序将会自动启动安装 ,这时您会看到下面的安装界面:

图 2-1

注意:如果您的计算机没有启用自动安装,可在光盘文件中点击 autorun.exe 文件启动 安装程

第三步:点击 CONTINUE,出现下图界面(见图 2-2) 首先安装 Device Manager。也可以 在光盘中执行\tools\DevMgr.exe 直接安装。

图 2-2

第四步:点击 IndividualDriver, 然后选择您所安装的板卡的类型和型号, 然后按照提示就可一步一步完成驱动程序的安装。

2.3.1.2 32bitDLL 驱动手册 (软件手册) 说明

安装完Device Manager后相应的驱动手册Device Driver's Manual也会自动安装。有关研华 32bitDLL驱动程序的函数说明,例程说明等资料在此获取。快捷方式位置为: 开始 / 程序/ Advantech Automation/ Device Manager/ DeviceDriver's Manual。也可以直接执行 <u>C:\ProgramFiles\ADVANTECH\ADSAPI\Manual\General.chm</u>。

2.3.1.3 32bitDLL 驱动编程示例程序说明

点击自动安装界面的 Example&Utility 出现以下界面(见图四)选择对应的语言安装 示例程序。例程默认安装在 C:\Program Files\ADVANTECH\ADSAPI\Examples 下。可以在这 里找到 32bitDLL 驱动函数使用的示例程序供编程时参考。示例程序的说明在驱动手册 Device Driver's Manual 中有说明,见下图 2-5。

图 2-4

2.3.1.4 labview 驱动程序安装使用说明

研华提供 labview 驱动程序。注意:安装完前面步骤的 Device Manager 和 32bitDLL 驱动后 labview 驱动程序才可以正常工作。光盘自动运行点击 Installation 再点击 Advance Options 出现以下界面(见图 2-6)。点击:

LavView Drivers 来安装 labview 驱动程序和 labview 驱动手册和示例程序。也可以在光盘中直接执行:光盘\labview\ labview.exe 来安装。

图 2-6

安装完后 labview 驱动帮助手册快捷方式为:开始/程序/ Advantech Automation/LabView/XXXX.chm。默认安装下也可以在 C:\Program Files\National Instruments\LabVIEW 7.0\help\Advantech 中直接打开 labview 驱动帮助手册。 labview 驱动示例程序默认安装在 C:\Program Files\National Instruments\LabVIEW 7.0\examples\Advantech DAQ 目录下。

2.3.1.5 Active Daq 控件安装使用说明

研华提供 Active Daq 控件,供可视化编程使用。注意:安装完前面步骤的 Device Manager 和 32bitDLL 驱动后安装 Active Daq 控件,才能正常工作。光盘自动运行点击 Installation 再点击 Advance Options 出现安装界面(见图 2-6)。点击:ActiveDaq Installation 来 安 装 Active Daq 控件和示例程序。也可以在光盘中直接执行:光盘 \ActiveDAQ\ActiveDAQ.exe 来安装。

Active Daq 控件使用手册快捷方式为开始/程序/Advantech Automation/ActiveDaq Pro/ActiveDAQPro.chm。默认安装下也可以在 C:\Program Files\ADVANTECH\ActiveDAQ Pro 中直接打开 Active Daq 驱动手册:ActiveDAQPro.chm。

ActiveDaq 控件示例程序安装在 C:\Program Files\ADVANTECH\ActiveDAQ Pro\Examples 目录下

2.4.2 硬件的安装:

第一步:参照 2.2 节,完成板卡开关和跳线的设置

第二步:关掉计算机,将您的板卡插入到计算机后面空闲的 ISA 插槽中 (注意:在您手持板卡之前触摸一下计算机的金属机箱壳以免手上的静 电损坏板卡。)

第三步:从开始菜单/程序/Advantech Device Driver V2.1/ Advantech Device Manager,打开 Advantech Device Manager,如下图:

Device Manager V2.	
Your ePlatform Partner	
AD\ANTECH Device Mana	iger®
Installed Devices:	
My Computer	Setup
	Test
	Remove
	Close
Supported Devices:	
Advantech DEMO Board	Add
Advantech PCI-1710	
Advantech PCI-1710L	A <u>b</u> out
Advantech FLI-I(IUNG	
Advantech FCI-1710.00L	
Advantech PCT-1711 (PCT-1731)	
Advantech PCI-1712	
Advantech PCI-1713	

在 Supported Devices 列表中选中您所要安装的器件,比如 PCL-731(注意: 当您的计算机上已经安装好某个产品的驱动程序后,它前面将没有红色叉号,说 明驱动程序已经安装成功。比如下图中的 PCL-731 前面就没有红色叉号)

Device Manager V2.	
Your ePlatform Partner	
AD\ANTECH Device Mana	iger®
Installed Devices:	
My Computer	Setup
	Iest
	Remove
	Close
Supported Devices:	
Advantech PCI-1762	6 Add
Advantech PCI-1780	
Advantech PCL-711/711B	About
Advantech PCL-720	
Advantech PCL-722/724/731	
Advantech PCL-725	
Advantech PCL-726/727/728	
Advantech PCL-730	
Advantech PCL-733/734/735	

点击"Add", 弹出下图, 进行基址的设置、板卡的选择、以及数字通道输入 /输出选择的相关设置(注意:1. 所有的设置必须要和您的硬件设置相符合 2. 基 地址和中断选择没被系统占用的资源, 否则会提示冲突)

Advantech PCL-722/724/731 Digital I/O Card Setup 🛛 🛛 🔀							
Interrupt Channel Base Address Board Type 2 2 C PCL-722 2 Hex PCL-724 C PCL-731							
-Digital I/O Port Allo	ocation						
Channel 5	-Channel 4	- Channel 3	- Channel 2	- Channel 1	Channel 0		
PC 4-7 out 💌	PC 4-7 out 💌	PC 4-7 out 💌	PC 4-7 out 💌	PC 4-7 out 💌	PC 4-7 out 💌		
PC 0-3 out 💌	PC 0-3 out 💌	PC 0-3 out 💌	PC 0-3 out 💌	PC 0-3 out 💌	PC 0-3 out 💌		
Prt B out 💌	Prt B 🛛 🗸 🔻	Prt B out 💌					
Prt A out 💌	Prt A out 💌	Prt A out	Prt A out 💌	Prt A out 💌	Prt A out 💌		

完成后点击"OK"就会在 Installed Devices 栏中 My Computer 下显示出所加的器件,如下图所示:

Device Manager V2.	
Your ePlatform Partner	
AD\ANTECH Device Mana	nger ®
Installed Devices:	
⊡ [®] My Computer 001:< PCL-731 I/O=2cOH >	Setup
	<u>T</u> est
	Remove
	Close
Supported Devices:	
Advantech PCI-1762	<u>A</u> dd
Advantech PCI-1780	
Advantech PCL-711/711B	About
Advantech PCL-720	
Advantech PCL-722/724/731	
Advantech PCL-725	
Advantech PCL-726/727/728	
Advantech PCL-730	
J	

到此, PCL-731 数据采集卡的软件和硬件已经安装完毕,可进行板卡测试。

2.5 测试

在上图的界面中点击"Test",弹出下图:

📕 Advantech	Device Tes	t – PCL-1	/31 I/0 =	2c0H		
<u>A</u> nalog input	Analog outp	out Digit	al <u>i</u> nput	Digital	output	Cou <u>n</u> ter
Port No. Bit	7 4	; З	0	Hex		
0	•••		00	FF	😑 High	
1	•••		00	FF	🔵 Low	
2	•••		00	FF		
3			00	FF		
4				FF		
5				FF		
				J		
				<u>C</u> hange	device	E <u>x</u> it

2.5.1 数字量输入功能测试

🔏 Advantech Device Test - PCL-731 I/0	=2c0H
Analog input Analog output Digital input	Digital output Counter
Port No. Bit 7 4 3 0	Hex
	FF 😑 High
	FF 🔾 Low
2	FF
3	FF
	FF
5 000000000	FF
	Change device Exit

在测试界面中点击数字输入标签,弹出下图:

用户可以方便地通过数字量输入通道指示灯的颜色,得到相应数字量输

入通道输入的是低电平还是高电平(红色为高,绿色为低)。例如,将通道 0 对应管脚 PA0 与地 GND 短接,则通道 0 对应的状态指示灯(Bit0)变绿,在 PA0 与地之间接入+5V 电压,则指示灯变红。

2.5.2 数字量输出功能测试

在测试界面中点击数字输出标签,弹出下图:

📕 Advantech	Device Test -	- PCL-731	I/0=2	2c0H	
<u>A</u> nalog input	Analog <u>o</u> utput	Digital <u>i</u> n	put)	Digital output	Cou <u>n</u> ter
Port No. Bit 7		3 		Hex FF FF	On(1) Off(0)
3				77 77	
5				- 77	
				<u>C</u> hange device	Exit

用户可以通过按动界面中的方框,方便的将相对应的输出通道设为高输 出或低输出。高电平为 5V,低电平为 0V。用电压表测试相应管脚,可以测 到这个电压。

第三章 信号的连接

为了达到准确测量并防止损坏您的应用系统,正确的信号连接是非常重要的。这一章我们将向您介绍如何来正确连接数字信号的输入、输出。

3.1 数字信号连接

PCL-731 有 48 路数字输入和 48 路数字输出通道,它与 TTL 电平兼容。 PCL-731 从 TTL 设备接受或输出数字信号,连接示意图,如下图所示:

接受一个开关或继电器信号,需要接一个上拉电阻,以确保开关断开时,输入高电平信号,连接如图所示:

第四章 例程使用详解

研华也为客户提供了支持不同语言(VC,VB,C++ Builder,...等)的例子程序, 来示例研华所提供的动态连接库的用法;本章将介绍这些例子程序的使用。

4.1 板卡支持例程

安装完 Device Manager 后相应的驱动手册 Device Driver's Manual 也会自动安装。 Manual 中有板卡支持的例程的列表,见下图。Manual 的安装见前面章节软件的安装一 节。

目录① 雺	3102) 推	索(2)	
Welco Advar Getting Output Devic Output Setting Output Devic Output Setting Output Output Setting	me to Advant tech Device g Started with e Driver Progr ample Suppo t PCI Series MIC3000 So t PCM Series	ech Device Driver Overv Advantech amming Exa rt List eries	Driver view Devic mples
	USB Series ow to Use Exa on Reference eries eries eries series tech Custome	amples amming Gui r er Services	de

	DO_SOFI_PORIS	
PCL-720	DI_SOFT	DO_SOFT
PCL-722	DI_SOFT	DO_SOFT
PCL-724	DI_SOFT	DO_SOFT
PCL-725	DI_SOFT	DO_SOFT
PCL-726	DI_SOFT	DO_SOFT
PCL-727	DI_SOFT	DO_SOFT
PCL-728	DA_SOFT	DA_CURRENT
PCL-731	DI_SOFT	DO_SOFT
PCL-733	DI_SOFT	DI_INT
PCL-734	DO_SOFT	PORT_RW
PCL-735	DO_SOFT	PORT_RW
PCL-812PG	AD_DMA	AD_INT
	MAD_DMA	MAD_SOFT
PCL-813B	AD_SOFT	MAD_SOFT
PCL-816	AD_DMA	AD_INT

4.2 常用例子使用说明

4.2.1 DIGOUT (数字量输出):

数字量输出例程:该例程主要使用 PT_DioWriteBit/PT_DioWritePortByte 配置数字量输出通道等信息,使用数字量输出函数(DRV_DioWriteBit():按位输出;DRV_DioWritePortByte():按字节输出);通过 PT_DioGetCurrentDOByte 配置回读通道等信息,使用 DRV_DioGetCurrentDOByte 读回当前的数字量输出状态。

1) 启动程序之后的界面如下图所示:

Adva	ntech Driver Demo	: Digital Output		
Setting	Run			

2) 单击 Setting 菜单后弹出 Parameter Setting 对话框:

Parameter Settings		×
Device Selection		
Device: PCL-1800 I/O=	300H 🔽 -	
Module:	Ţ	
Channel	Mask	_
0	He He	9X
ОК	Cancel	

参数含义:Device 选择计算机中安装的板卡;

用);

Module 选择计算机中安装的模块(因为本机未装模块,故不能

Channel 输出通道的选择;这里要注意的是:因为后面的输出对 话框中实际上只有 8 个 bit 的数据,所以板卡上面每个十六位的通道在这里实际 上是对应两个通道的。

Mask:: 1 输出形式数据类型为 16 进制数据

3) 设置结束之后点击 Run 菜单,即可弹出输出对话框,要使用这个对话框

必须了解这个对话框中各个参数的含义

Output Setti	ngs			×
_ Digital Out	tput Value -			Write Byte
☑ D0	☑ D1	▽ D2	☑ D3	
🗖 D4	□ D5	□ D6	☑ D7	Write Bit
Output Bit		Output	Status	Readback
7	•	cf	Hex	Exit

Write Byte:按字节输出;

Write Bit:按位输出;

ReadBack:回读输出值并显示在 Output Status 编辑框中;

D0~D7:选中与否标着这个位是否输出;

Output Bit: 用来选择输出的 bit 位是哪一位 (0~7 对应 D0~D7),

在使用 Write Bit 的时候,只有 Output Bit (0~7)对应的(D0~D7)

那一位改变的时候 ReadBack 的返回值(Output Status)才会改变。 Exit:退出当前窗口。

4.1.2 Digin (数字量输入例程)

数字量输入例程(软件触发模式):该例程主要使用 PT_DioReadPortByte 配置数字量输入通道等信息,使用数字量输入函数(DRV_DioReadPortByte, 读字节函数),通过软件触发方式(使用 Windows Timer)实现数据采集。

1) 单击 Setting 菜单弹出下面的对话框:

Parameter Settings	×
Device Selection	
Device: PCL-1800 I/O=300H	•
Module:	_
Channel	OK
	Cancel

Device:显示出所安装的设备,如果你安装了多块板卡可以在这里进行选择; Channel:选择数字量输入通道; 2)单击 Scan.弹出下面的对话框:

,	/			
Scan Time				X
Scan Time:	1000	ms	OK Cancel	

可以设置计数的时间间隔,默认值为1000毫秒

3) 单击 Run 菜单项中的 Start 菜单就可以开始察看数字量输入值,单击 Stop 项停止输入。

注:这里在屏幕中央看到的是读字节函数返回的结果。 FREQ/Daout/(计频例程/模拟量/电流输出例程界面类似)

第五章 遇到问题,如何解决?

当您在使用时遇到问题,可以通过下述途径来解决:

- 1. 请详细阅读随板卡送的硬件 Manual(PDF 格式的文档)安装在光盘\Documents\Hardware Manuals 目录下。
- 2、详细阅读安装驱动后的软件手册。快捷方式位置为:开始/程序/Advantech Automation/ Device Manager/ DeviceDriver's Manual 。 也 可 以 直 接 执 行 C:\ProgramFiles\ADVANTECH\ADSAPI\Manual\Examplemanual.chm。
- 3. 登陆下述网页, <u>http://www.advantech.com.cn/support/</u>, 搜索相应的产品型号。得到一些常见问题解答以及相应的驱动程序和工具、中文手册、快速指南。
- 3.登陆中国区主页<u>http://www.advantech.com.cn/support/</u>点击左上角<u>中国区FTP下载资源</u>, 会得到中国区支持的一些最新资源。也可以直接访问 <u>ftp://ftp.advantech.com.cn/</u>来进入FTP网站。