

54F/74F158A **Quad 2-Input Multiplexer**

General Description

The 'F158A is a high speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four outputs present the selected data in the inverted form. The 'F158A can also generate any four of the 16 different functions of two variables.

Features

■ Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F158APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F158ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F158ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F158ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F158AFM (Note 2)	W16A	16-Lead Cerpack
	54F158ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

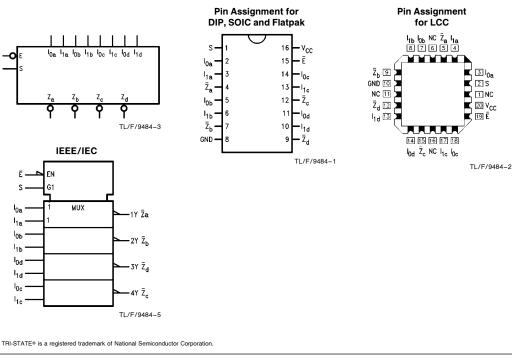
Note 1: Devices also available in 13'' reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

S

l_{0a}


I_{1a} ю

l_{1b} l_{0d}

I_{1d} l_{Oc}

1c

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9484 RRD-B30M75/Printed in U. S. A.

54F/74F158A Quad 2-Input Multiplexer

Unit Loading/Fan Out

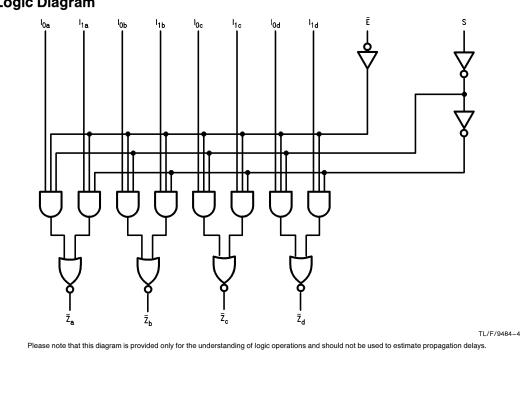
		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
$I_{0a} - I_{0d}$	Source 0 Data Inputs	1.0/1.0	20 µA/−0.6 mA		
I _{1a} -I _{1d}	Source 1 Data Inputs	1.0/1.0	20 µA/−0.6 mA		
Ē	Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA		
S	Select Input	1.0/1.0	20 µA/−0.6 mA		
$\overline{Z}_a - \overline{Z}_d$	Inverted Outputs	50/33.3	-1 mA/20 mA		

Functional Description

The 'F158A quad 2-input multiplexer selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable input (\overline{E}) is active LOW. When \overline{E} is HIGH, all of the outputs (\overline{Z}) are forced HIGH regardless of all other inputs. The 'F158A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.

A common use of the 'F158A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F158A can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

Logic Diagram


Truth Table

	Inp	Outputs		
Ē	S	I ₀	I ₁	Z
н	х	х	х	Н
L	L	L	x	н
L	L	н	x	L
L	н	X	L	н
L	Н	X	н	L

H = HIGH Voltage Level

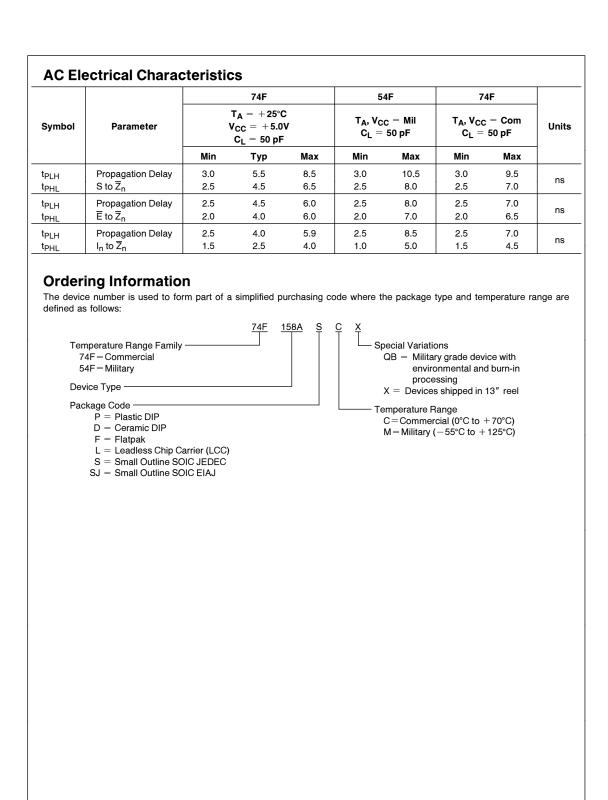
L = LOW Voltage Level X = Immaterial

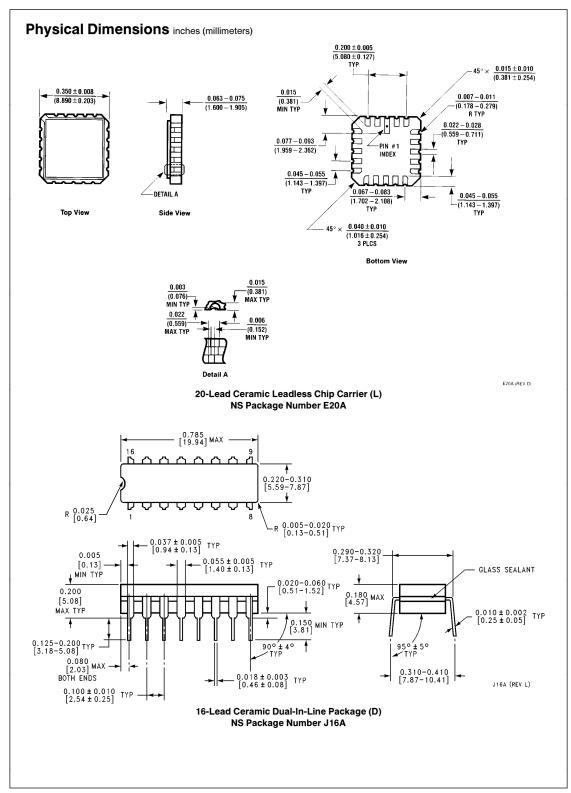
Absolute Maximum Ratings (Note 1)

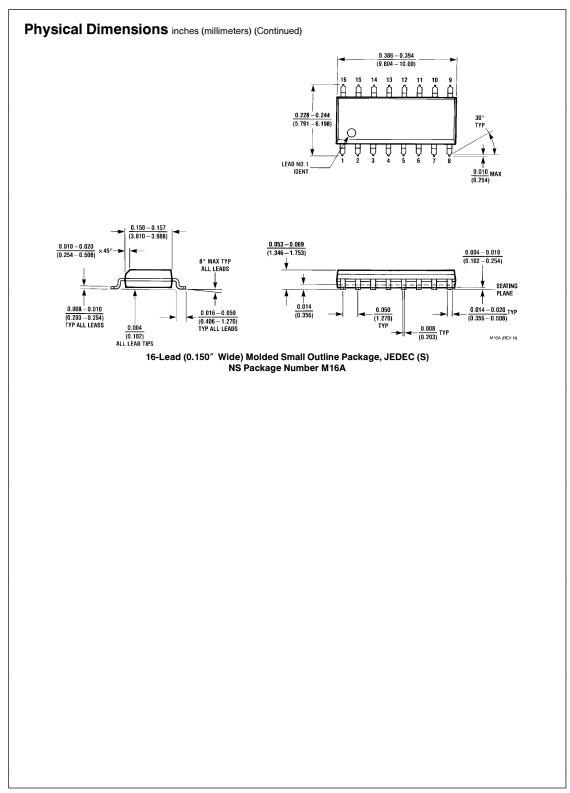
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

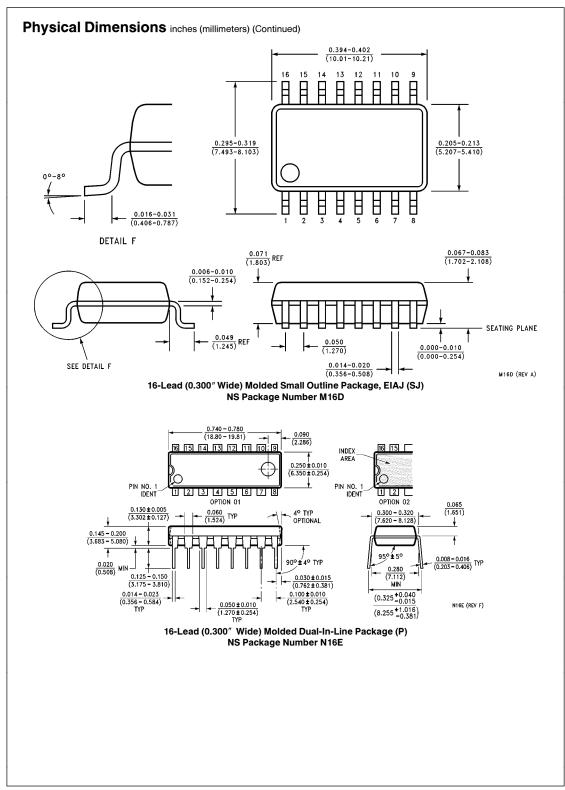
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$	
Ambient Temperature under Bias	-55°C to +125°C	
Junction Temperature under Bias	-55°C to +175°C	
Plastic	-55°C to +150°C	
V _{CC} Pin Potential to		
Ground Pin	-0.5V to +7.0V	
Input Voltage (Note 2)	-0.5V to $+7.0V$	
Input Current (Note 2)	-30 mA to $+5.0$ mA	
Voltage Applied to Output		
in HIGH State (with $V_{CC} = 0V$)		
Standard Output	- 0.5V to V _{CC}	
TRI-STATE [®] Output	-0.5V to $+5.5V$	
Current Applied to Output		
in LOW State (Max)	twice the rated I _{OL} (mA)	
ESD Last Passing Voltage (Min)	4000V	

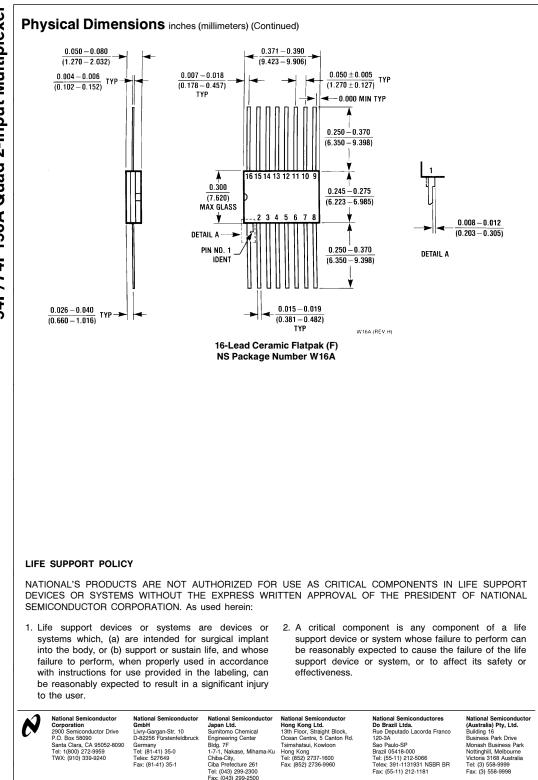
Recommended Operating Conditions


Free Air Ambient Temperature


Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		54F/74F		Units	v _{cc}	Conditions	
Symbol			Min	Тур	Max	Units	VCC	Conditions
VIH	Input HIGH Voltage		2.0			v		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	v	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Мах	$V_{OUT} = 0V$
ICCH	Power Supply Current			10	15	mA	Мах	$V_{O} = HIGH$
I _{CCL}	Power Supply Curren	t		15	25	mA	Max	$V_{O} = LOW$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.