December 1994

54F/74F02 Quad 2-Input NOR Gate

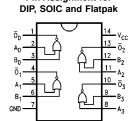
54F/74F02 **Quad 2-Input NOR Gate**

General Description

This device contains four independent gates, each of which performs the logic NOR function.

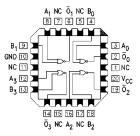
Ordering Code: See Section 0

Commercial	Military	Package	Package Description
		Number	
74F02PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line
	54F02DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line
74F02SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F02SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F02FM (Note 2)	W14B	14-Lead Cerpack
	54F02LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol


IEEE/IEC В2 - Ō₃

Connection Diagrams

Pin Assignment for

Pin Assignment for LCC

DS009455-1

DS009455-2

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Unit Loading/Fan Out See Section 0 for U.L. definitions

		54F/74F				
Pin Names	Description	U.L.	Input I _{IH} /I _{IL}			
		HIGH/LOW	Output I _{OH} /I _{OL}			
A _n , B _n	Inputs	1.0/1.0	20 μA/-0.6 mA			
\overline{O}_n	Outputs	50/33.3	–1 mA/20 mA			

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Junction Temperature under Bias} & -55\mbox{°C to } +175\mbox{°C} \\ \mbox{Plastic} & -55\mbox{°C to } +150\mbox{°C} \\ \end{array}$

 V_{CC} Pin Potential to
 -0.5V to +7.0V

 Ground Pin
 -0.5V to +7.0V

 Input Voltage (Note 4)
 -0.5V to +7.0V

 Input Current (Note 4)
 -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} TRI-STATE® Output -0.5V to +5.5V Current Applied to Output

in LOW State (Max) $\qquad \qquad \text{twice the rated I}_{\text{OL}} \ (\text{mA})$

Recommended Operating Conditions

Free Air Ambient Temperature

Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

Note 3: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

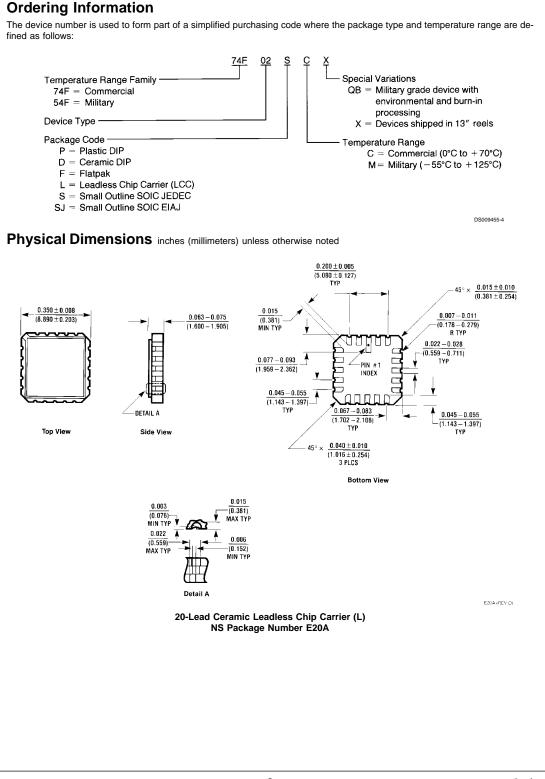
Note 4: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

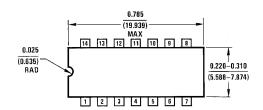
Symbol	Parameter		54F/74F			Units	V _{cc}	Conditions	
			Min	Тур	Max				
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal		
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode	Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	54F 10% V _{CC}	2.5					I _{OH} = -1 mA	
	Voltage	74F 10% $V_{\rm CC}$	2.5			V	Min	I _{OH} = -1 mA	
		74F 5% $V_{\rm CC}$	2.7					I _{OH} = -1 mA	
V _{OL}	Output LOW	54F 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage	74F 10% $V_{\rm CC}$			0.5			I _{OL} = 20 mA	
I _{IH}	Input HIGH	54F			20.0	μA	Max	V _{IN} = 2.7V	
	Current	74F			5.0				
I _{BVI}	Input HIGH	54F			100	μA	Max	V _{IN} = 7.0V	
	Current					μπ	IVIGA	VIN 7.5V	
	Breakdown Test	74F			7.0				
I _{CEX}	Output HIGH	54F			250	μA	Max	V _{OUT} = V _{CC}	
	Leakage Current	74F			50				
V_{ID}	Input Leakage	74F	4.75			V	0.0	I _{ID} = 1.9 μA	
	Test							All other pins grounded	
I _{OD}	Output Leakage	74F			3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current							All other pins grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current			3.7	5.6	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			8.7	13.0	mA	Max	V _O = LOW	

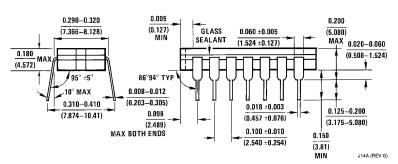
AC Electrical Characteristics

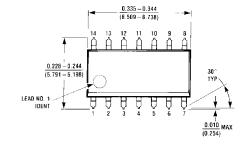
See Section 0 for Waveforms and Load Configurations

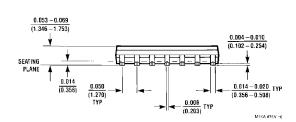

Symbol	Parameter	$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		t _{PLH}	Propagation Delay	2.5	4.4	5.5	2.5	7.5	2.5	6.5
t_{PHL}	A_n , B_n to \overline{O}_n	1.5	3.2	4.3	1.5	6.5	1.5	5.3		

DSXXX

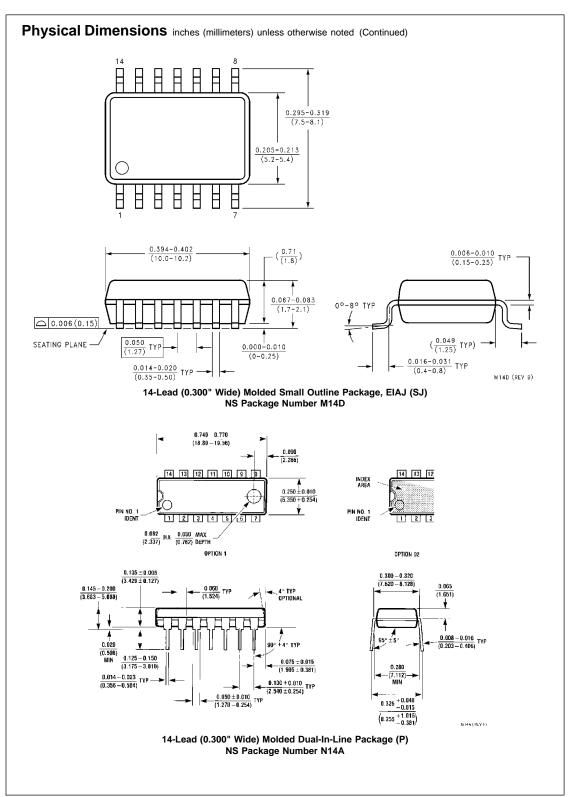

DSXXX

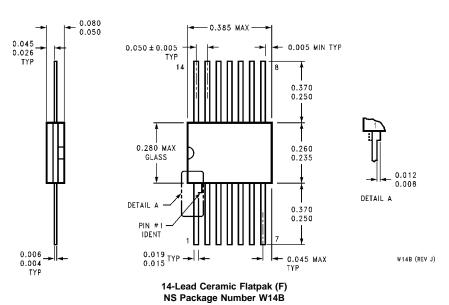

Book Extract End





14-Lead Ceramic Dual In-Line Package (D)
NS Package Number J14A





14-Lead (0.150" Wide) Molded Small Outline Package, JEDEC (S) NS Package Number M14A

www.national.com

. 1 cmserv **Proof**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Hong Kong Ltd.

13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175

Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.