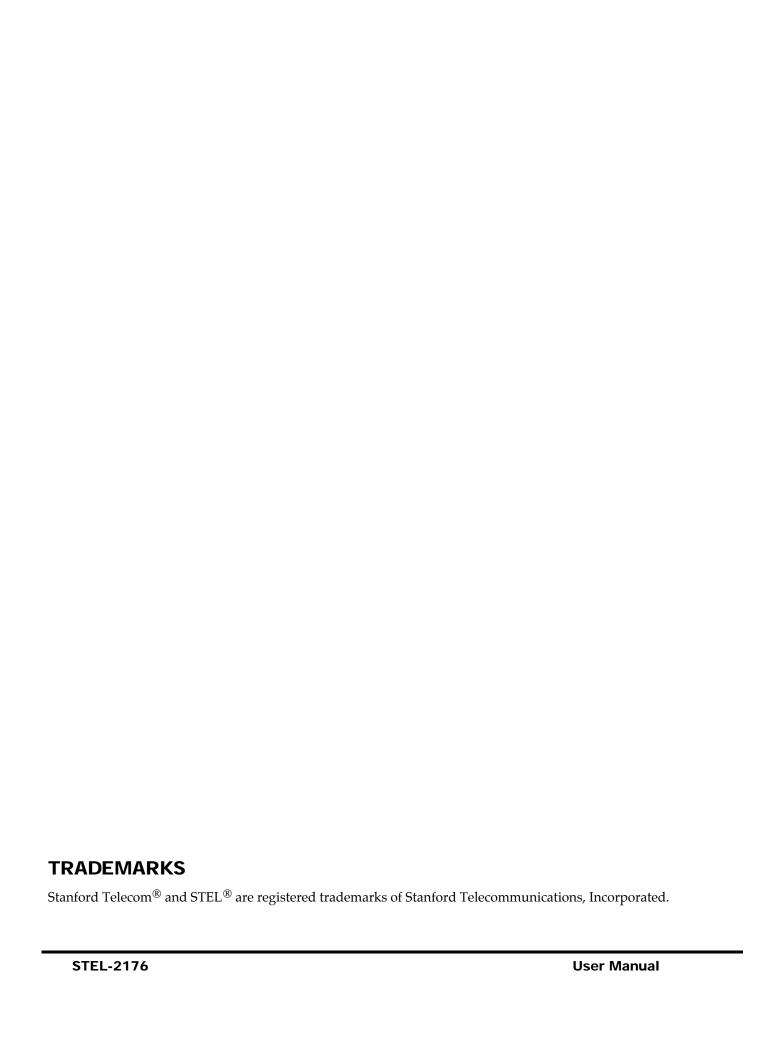
查询STEL-217<mark>6</mark>供应商

STEL-2176


User Manual STel-MAN-97709

STEL-2176

Digital Mod/Demod ASIC 16/64/256 QAM Receiver with FEC

QPSK/16 QAM Transmitter with FEC

FOREWORD

The Telecom Component Products Division of Stanford Telecommunications, Inc., is pleased to provide its customers with this copy of the STEL 2176 User Manual.

This User Manual contains product information for the STEL 2176 and is being provided to assist our customers in understanding the advantages to be gained by integrating both the receiver and transmitter functions as an integral portion of their cable modem chip.

Recipients of this User Manual should note that the content contained here-in is subject to change. The content of this User Manual will be updated to reflect the latest technical data, without notice to the recipients of this document.

User Manual STEL-2176

ERRATA for STEL-2176

Supported Modes of Operation:

Downstream

FEC	16 QAM	64 QAM	256 QAM
Annex A	Χ	X	
Annex B		X	Х
Annex C	Χ	X	

Upstream

STD	BPSK	QPSK	16 QAM
MCNS		X	X
DAVIC	Χ	X	

STEL-2176 User Manual

TABLE OF CONTENTS

<u>PARAGRAPH</u>	<u>PAGE</u>
KEY FEATURES	1
RECEIVER	1
TRANSMITTER	1
INTRODUCTION	2
RECEIVER OVERVIEW	2
TRANSMITTER OVERVIEW	
MECHANICAL SPECIFICATIONS	
208-PIN SQFP PACKAGE	
ELECTRICAL SPECIFICATIONS	
RECEIVER	
OVERVIEW	
FUNCTIONAL BLOCKS	
ADC	
Microcontroller Interface	
QAM Demodulator Blocks	
FEC Decoder Blocks	
RECEIVE AND UNIVERSAL REGISTER DESCRIPTIONS	
PROGRAMMING THE 2176 RECEIVE FUNCTIONS	20
REGISTER DESCRIPTIONS	20
Bank 0 - Universal Registers (Group 1)	
Bank 0 - QAM Demodulator Registers Universal Registers (Group 2)	
Bank 1 - FEC Registers (Group 3)	
TIMING	35
NO GAP, PARALLEL MODE	35
NO GAP, SERIAL MODE	35
GAPS, PARALLEL MODE	35
GAPS, SERIAL MODE	35
TRANSMITTER	39
INTRODUCTION	
FUNCTIONAL BLOCK DIAGRAM DESCRIPTIONS	39
DATA PATH DESCRIPTION	39
Bit SYNC Block	
Bit Encoder Block	
Symbol Mapper Block	
Nyquist FIR Filter	
Interpolating Filter	
Modulator	
10-Bit DAC	52

TABLE OF CONTENTS

PARAGRAPH .	<u>PAGE</u>
CONTROL UNIT DESCRIPTION	
Bus Interface Unit	52
Master Transmit Clock Generator	
Clock Generator	
NCO	53
TRANSMIT REGISTER DESCRIPTIONS	54
Programming the 2176 Transmit and Receive Functions	54
Block 2, Upstream Registers (Group 4)	54
ΓΙΜΙNG DIAGRAMS	57
BURST TIMING EXAMPLES	65
RECOMMENDED INTERFACE CIRCUITS	70

LIST OF FIGURES

FIGURE		PAGE
1	Reference A/D Wiring	7
2	Example Output Load Schematic	
3	STEL-2176 Receiver Block Diagram	
4	Master Receive Clock Generator	
5	QAM Demodulator Blocks	
6	ITU-T (J.83) Annex A FEC Subsystem	
7	16 QAM Constellation	
8	64 QAM Constellation	15
9	256 QAM Constellation (DAVIC)	15
10	256 QAM Constellation (DVB/IEEE 802.14)	
11	Demapper	
12	De-Interleaver	
13	ITU-T (J.83) Annex B FEC Subsystem	16
14	Trellis Coded Demodulator	
15	64 QAM Mapping	
16	256 QAM Mapping	
17	Derandomizer	
18	De-Interleaver	
19.	Downstream Output Timing (Parallel Data Output)	36
20.	Downstream Output Timing (Serial Output)	
21.	Downstream Output Timing (Parallel Data Output)	
22.	Downstream Output Timing (Parallel Data Output)	
23.	De-Interleaver External SRAM Timing	
24	STEL-2176 Transmitter Block Diagram	
25	Bit Encoder Functional Diagram	
26	Scrambler Block Diagram	43
27	DAVIC Scrambler	
28	Mapping Block Functional Diagram	45
29	BPSK Constellation	
30	QPSK Constellation	47
31	Natural Mapping Constellation	48
32	Gray Coded Constellation	49
33	Left Coded Constellation	49
34	DAVIC Coded Constellation	49
35	Right Coded Constellation	
36	Nyquist FIR Filter	
37	Interpolation Filter Block Diagram	
38.	Master Clock Generation	

LIST OF TABLES

TABLE		PAGE
1	STEL-2176 Pin Assignments	3
2	Absolute Maximum Ratings	
3	Recommended Operating Conditions	
4	ADC Performance Specifications	9
5	DC Characteristics	9
6	Read/Write Register Set	20
7	Write Only Registers:	20
8	Group 2, Sub-Group 'A' Read/Write Registers	22
9	Sub-Group 'A' Read-Only Registers	
10	SNR to ErrPwr Conversion	
11	Group 2, Sub-Group 'B' Read/Write Registers	24
12	Group 2, Sub-Group 'B' Read-Only Registers	
13	Group 2, Sub-Group 'C' Read/Write Registers	
14	Group 2, Sub-Group 'C' Read-Only Registers	
15	Group 2, Sub-Group 'D' Read/Write Registers	
16	Group 2, Sub-Group 'D' Read-Only Registers	
17	Group 2, Sub-Group 'E' Read/Write Registers	
18	Group 2, Sub-Group 'E' Read-Only Registers	
19	Group 2, Sub-Group 'F' Read/Write Registers	
20	Group 2, Sub-Group 'F' Read-Only Registers	
21	Group 3, Sub-Group 'A' Read/Write Registers	
22	Group 3, Sub-Group 'B' Read-Only Registers	
23	Group 3, Sub-Group 'C' Read/Write Registers	
24	Group 3, Sub-Group 'C' Read-Only Registers	
25	Group 3, Sub-Group 'D' Read/Write Registers	
26	Group 3, Sub-Group 'D' Read-Only Registers	
27	Group 3, Sub-Group 'E' Read/Write Registers	
28	Group 3, Sub-Group 'E' Read-Only Registers	
29	Group 3, Sub-Group 'F' Read/Write Registers	
30	Group 3, Sub-Group 'G' Read/Write Registers	
31	Group 3, Sub-Group 'G' Read-Only Registers	
32	Transmit Features	
33	Data Latching Options	41
34	BIT Encoding Data Path Options	
35	Scrambler Parameters	
36	Sample Scramble Register Values	
37	Reed-Solomon Encoder Parameters.	
38	Bit Mapping Options	45
39	Differential Encoder Control	
40	QPSK Differential Encoding and Phase Shift	
41	Symbol Mapping Selections	
42	Symbol Mapping	
43	FIR Filter Configuration Options	

LIST OF TABLES

TABLE	<u> </u>	<u>PAGE</u>
44	FIR Filter Coefficient Storage	50
45	Interpolation Filter Bypass Control	51
46	Interpolation Filter Signal Level Control	51
47	Signal Inversion Control	52
48	FCW Selection	
49	Addresses of the STEL-2176 Register Groups	54
50	Transmit Block 2 Register Data Fields	55
51	Clock Timing AC Characteristics	57
52	Pulse Width AC Characteristics	58
53	Bit Clock Synchronization AC Characteristics	59
54	Input Data and Clock AC Characteristics	
55	Write Timing AC Characteristics	61
56	Read Timing AC Characteristics	62
57	NCO Loading AC Characteristics	63
58	Digital Output Timing AC Characteristics	64
59	TXDATAENI to TXDATAENO Timing AC Characteristics	65

KEY FEATURES

RECEIVER

- 10-bit A/D on chip
- 16/64/256 QAM demodulation
- Selectable ITU-T (J.83), Annex A/Annex B forward error correction (FEC)
- MCNS, IEEE 802.14 (preliminary), DAVIC/DVB compliant
- Parallel or serial output data with or without gaps
- Viterbi decoder for Annex B
- Selectable Reed-Solomon decoder for Annex A and Annex B
- **■** Programmable De-Interleaver
- Programmable De-Randomizer
- MPEG-2 Framing

- Programmable control registers for maximum flexibility
- FIFO for optional removal of inter-frame gaps
- Automatic frequency control (± 200 kHz)
- Highly integrated receiver functions
- Up to 50 MHz IF input
- Uses inexpensive Crystal in the 25 MHz range
- Adaptive Channel Equalizer (ACE) to compensate for channel distortion
- Selectable Nyquist filter
- Fast acquisition

TRANSMITTER

- Patented (U.S. Patent #5,412,352)
 Complete BPSK/QPSK/16QAM modulator
- Complete upstream modulator solution—serial data in, RF signal out
- Programmable over a wide range of data rates
- Numerically Controlled Oscillator (NCO) modulator provides fine frequency resolution
- Carrier frequencies programmable from 5 to 65 MHz
- Uses inexpensive crystal in 25 MHz range
- Operates in continuous and burst modes

- Differential Encoder, Programmable Scrambler, and Programmable Reed-Solomon FEC Encoder
- Programmable 64-tap FIR filter for signal shaping before modulation
- 10-bit DAC on chip
- Compatible with DAVIC, IEEE 802.14 (preliminary), Intelsat IESS-308, MCNS Standards
- Supports low data rates for voice applications and high data rates for wideband applications

INTRODUCTION

The STEL-2176 is a complete subscriber-side cable modem chip that integrates both receiver and transmitter functions. It is offered in CMOS .35 micron geometry operating at 3.3 Volts with integrated DAC and ADC. Its programmable register set offers a flexible solution to meet current and evolving standards.

RECEIVER OVERVIEW

A 10-bit A/D converts the analog input signal. The analog input signal may be up to 50 MHz. For MCNS and DAVIC standards 44 MHz and 36 MHz are the two typical IF frequencies used. For 44 MHz the corresponding bandwidth is 6 MHz; for 36 MHz the corresponding bandwidth is 8 MHz. Sampling of the input may be set for 25 MHz for the 6 MHz bandwidth or 29 MHz for the 8 MHz bandwidth.

The downstream receiver offers 16/64/256 QAM demodulation for Annex A, associated with DAVIC, or Annex B, associated with MCNS. It also offers a variety of choices for the data and clock outputs: frames with or without gaps and parallel or serial data.

The incoming signal is sampled. The timing recovery circuit determines the epoch of each symbol. Automatic frequency and gain control circuitry correct the frequency and amplitude of the signal, and a Digital Down Converter (DDC) brings the alias band associated with sampling down to zero. A Nyquist filter eliminates inter-symbol interference, and an Adaptive Channel Equalizer (ACE) corrects for channel distortion while fine tuning the signal. A demapper transforms the modulated signal back into symbols and a De-

Interleaver puts the data bits back into the original order, while Trellis and Reed-Solomon decoders handle error correction.

For Annex A, a Reed-Solomon decoder decodes and corrects every 204 bytes in 188 bytes. For Annex B, there is a Viterbi decoder and a 128, 122 (code word length, information) 7-bit Reed-Solomon decoder. A derandomizer is used to unscramble the data stream.

Format of the receiver output is MPEG-2 frames.

TRANSMITTER OVERVIEW

The transmitter is highly integrated and flexible. It receives serial data, randomizes the data, performs Forward Error Correction (FEC) and differential encoding, maps the data to a constellation before modulation, and outputs an analog RF signal.

It includes a 10-bit DAC and is capable of operating at data rates up to 20 Mbps in QPSK mode and 40 Mbps in 16QAM mode.

The transmitter uses a digital FIR filter to optimally shape the spectrum of the modulating data prior to modulation. Signal level scaling is provided after the FIR filter to allow maximum arithmetic dynamic range.

The transmitter side offers QPSK and 16QAM modulation with frequencies from 5 to 65 MHz. It can operate in continuous or burst mode. And it can operate with very short gaps between bursts less than four symbols.

All digital interfaces support 3.3 volt and 5 volt logic.

MECHANICAL SPECIFICATIONS

208-PIN SQFP PACKAGE

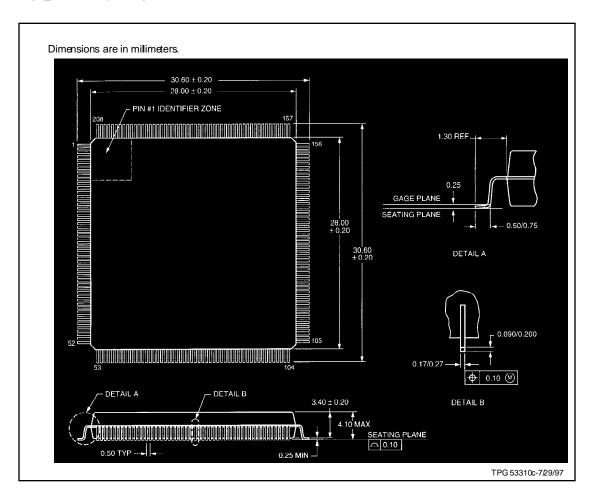


Table 1. STEL-2176 Pin Assignments

Pin No.	Pin Name	Pin Type	Pin Description
1	VSS	Ground	
2	VDD	Power	Dedicated to crystal oscillator at pins 3 & 4
3	RXOSCIN	Input	Receiver oscillator input
4	RXOSCOUT	Output	Receiver oscillator output
5	VSS	Ground	Dedicated to crystal oscillator at pins 3 & 4
6	VDD	Power	Dedicated to digital section of receive clock multiplier
7	VDDA	Power (Analog)	Dedicated to analog section of receive clock multiplier
8	RXMULTEN	Input	Enable receive clock multiplier
9	VSSA	Ground (Analog)	Dedicated to receive clock multiplier
10	VSS	Ground	Dedicated to receive clock multiplier
11	RXMULTCLK	Output	Receive clock multiplier output; enabled by pin 58
12	VDD	Power	
13	ADCDATASEL[2]	Input	ADC/DAC bypass mode select; 111=normal operation
14	ADCDATASEL[1]	Input	ADC/DAC bypass mode select; 110=bypass ADC
15	ADCDATASEL[0]	Input	ADC/DAC bypass mode select; 101=bypass DAC
16	VSS	Ground	
17	ADDATA[9]	Bi-directional	Bypass/test ADC/DAC

Pin No.	Pin Name	Pin Type	Pin Description
18	ADDATA[8]	Bi-directional	Bypass/test ADC/DAC
19	ADDATA[7]	Bi-directional	Bypass/test ADC/DAC
20	ADDATA[6]	Bi-directional	Bypass/test ADC/DAC
21	ADDATA[5]	Bi-directional	Bypass/test ADC/DAC
22	VDD	Power	
23	ADDATA[4]	Bi-directional	Bypass/test ADC/DAC
24	ADDATA[3]	Bi-directional	Bypass/test ADC/DAC
25	ADDATA[2]	Bi-directional	Bypass/test ADC/DAC
26	ADDATA[1]	Bi-directional	Bypass/test ADC/DAC
27	ADDATA[0]	Bi-directional	Bypass/test ADC/DAC
28	VSS	Ground	100
29	RXAGCOUTB	Output	AGC output B
30	RXAGCOUTA	Output	AGC output A
31 32	VDD5 V3OP	Power	3.3V or 5V for AGC pins 29 & 30
	VSS	Input Ground	Must set high if pin 31 is 3.3V or low if pin 31 is 5V
33 34	IC	Ground	Internal connection - leave open
35	SO	Output	SPI data out
36	VDD	Power	or radia out
37	SI	Input	SPI data in
38	SCK	Input	SPI clock
39	VSS	Ground	of Felocit
40	ADDR[7]	Input	Control/Status register parallel address bus
41	ADDR[6]	Input	Control/Status register parallel address bus
42	ADDR[5]	Input	Control/Status register parallel address bus
43	ADDR[4]	Input	Control/Status register parallel address bus
44	VDD	Power	
45	ADDR[3]	Input	Control/Status register parallel address bus
46	ADDR[2]	Input	Control/Status register parallel address bus
47	ADDR[1]	Input	Control/Status register parallel address bus
48	ADDR[0]	Input	Control/Status register parallel address bus
49	VSS	Ground	
50	INTSEL[1]	Input	Serial/parallel inter. sel.: 00=parallel, 01=SPI (serial)
51	INTSEL[0]	Input	Serial/parallel interface select: 10=reserved, 11=res.
52	VDD	Power	
53 54	VSS	Ground	Control/Chatra resistan shin colont (active law)
34	CS	Input	Control/Status register chip select (active low)
55	WRB	Input	Control/Status register read/write (low=write)
56	DSB	Input	Control/Status register data strobe signal (active low)
57	VDD	Power	
58	ENCLKOUT	Input	Enables output pins 11 & 102
59	VSS	Ground	
60	DATA[7]	Bi-directional	Control/Status register parallel data in/out
61	DATA[6]	Bi-directional	Control/Status register parallel data in/out
62	DATA[5]	Bi-directional	Control/Status register parallel data in/out
63	DATA[4]	Bi-directional	Control/Status register parallel data in/out
64	VDD	Power	
65	DATA[3]	Bi-directional	Control/Status register parallel data in/out
66	DATA[2]	Bi-directional	Control/Status register parallel data in/out
67	DATA[1]	Bi-directional	Control/Status register parallel data in/out
68	DATA[0]	Bi-directional	Control/Status register parallel data in/out
69	VSS	Ground	EEC toot alo als output (0 time on DVl1t)
70 71	RXRESCLK VDD	Output	FEC test clock output (8 times RX symbol rate)
72	RXTSTDOUT[9]	Power Output	Test muy output
73	RXTSTDOUT[8]	Output	Test mux output Test mux output
74	RXTSTDOUT[7]	Output	Test mux output Test mux output
75	RXTSTDOUT[6]	Output	Test mux output Test mux output
7.5	10(1010001[0]	σαιραί	του παλ υπιραι

Pin No.	Pin Name	Pin Type	Pin Description
76	VSS	Ground	•
77	RXTSTDOUT[5]	Output	Test mux output
78	RXTSTDOUT[4]	Output	Test mux output
79	RXTSTDOUT[3]	Output	Test mux output
80	RXTSTDOUT[2]	Output	Test mux output
81	VDD	Power	
82	RXTSTDOUT[1]	Output	Test mux output
83	RXTSTDOUT[0]	Output	Test mux output
84	RXTSTCLK	Output	Test mux output clock
85	VSS	Ground	
86	VDD	Power	Dedicated to digital portion of DAC
87	VDDA	Power (analog)	Dedicated to analog portion of DAC
88 89	DACOUTP	Analog output	Output of DAC. Terminate in 37.5 ohms to ground (See Figure 2)
	DACOUTN	Analog output	Comp. output of DAC. Terminate in 37.5 ohms to ground (See
90	VSSA	Power (analog)	Dedicated to analog portion of DAC
91	VSS	Ground	Dedicated to digital portion of DAC
92	VDD	Power	Dedicated to crystal oscillator at pins 93 & 94
93	TXOSCIN	Input	TX oscillator input
94	TXOSCOUT	Output	TX oscillator output
95 96	VSS VDD	Ground Power	Dedicated to crystal oscillator at pins 93 & 94 Dedicated to digital section of transmit clock PLL
96	VDDA	Power (analog)	Dedicated to digital section of transmit clock PLL Dedicated to analog section of transmit clock PLL
98	TXPLLEN	Input	Enable transmit clock PLL
99	VSSA	Ground (analog)	Dedicated to analog section of transmit clock PLL
100	TXBYPCLK	Input	High speed transmit bypass clock
101	VDD	Power	Dedicated to digital section of transmit clock PLL
102	TXPLLCLK	Output	Transmit clock PLL output; enabled by pin 58
103	VSS	Ground	Dedicated to digital section of transmit clock PLL
104	VDD	Power	
105	VSS	Ground	
106	TXRSTB	Input	Transmit reset (active low)
107	VDD	Power	
108	TXTSDATA	Input	Transmit data input
109	TXDATAENI	Input	Transmit data enable input
110	TXTCLK	Input	Transmit tclk
111	VSS	Ground	
112	TXFCWSEL[1]	Input	Transmit frequency control word (FCW) select
113	TXFCWSEL[0]	Input	Transmit frequency control word (FCW) select
114	VDD	Power	
115	TXCLKEN	Input	Transmit clock enable
116	TXDIFFEN	Input	Transmit differential encoder enable
117	TXRDSLEN	Input	Transmit Reed-Solomon enable
118	TXSCRMEN	Input	Transmit scrambler enable
119	VSS	Ground	m
120	TXCKSUM	Output	Transmit Reed-Solomon check sum
121	TXACLK	Output	Transmit auxiliary clock output
122	TXDATAENO	Output	Transmit data enable output
123	VDD TXBITCLK	Power	Transmit hit alack
124 125	TXSYMPLS	Output Output	Transmit bit clock Transmit symbol pulse output
125	TXNCOLD	Input	Transmit NCO load
127	VDD5	Power	Input buffer bias. Set to 3.3V or 5V dep. on max. input V.
	-		voltage.
128	RXRSTB	Input	Receiver reset (active low)
129	VSS	Ground	D . 11.1
130	RXPDATAOUT[7]	Output	Receive parallel output data
131	RXPDATAOUT[6]	Output	Receive parallel output data
132	RXPDATAOUT[5]	Output	Receive parallel output data

Pin No.	Pin Name	Pin Type	Pin Description
133	RXPDATAOUT[4]	Output	Receive parallel output data
134	VDD	Power	
135	RXPDATAOUT[3]	Output	Receive parallel output data
136	RXPDATAOUT[2]	Output	Receive parallel output data
137	RXPDATAOUT[1]	Output	Receive parallel output data
138	RXPDATAOUT[0]	Output	Rec. par. output data or serial data if in serial mode
139	VSS	Ground	
140	RXOUTCLK	Output	Receive output data clock
141	VDD	Power	
142	RXACQFLAG	Output	Receive demod. acquisition flag
143	RXACQFAIL	Output	Receive demod. acquisition failure flag
144	RXDECDFLG	Output	Receive FEC decodable flag
145	FRAMESYNC	Output	Receive output frame sync flag
146	VSS	Ground	
147	SRAMADDR[15]	Output	De-Interleaver optional external SRAM address
148	SRAMADDR[14]	Output	De-Interleaver optional external SRAM address
149	SRAMADDR[13]	Output	De-Interleaver optional external SRAM address
150	SRAMADDR[12]	Output	De-Interleaver optional external SRAM address
151	VDD	Power	
152	SRAMADDR[11]	Output	De-Interleaver optional external SRAM address
153	SRAMADDR[10]	Output	De-Interleaver optional external SRAM address
154	SRAMADDR[9]	Output	De-Interleaver optional external SRAM address
155	SRAMADDR[8]	Output	De-Interleaver optional external SRAM address
156	VSS	Ground	
157	VDD	Power	
158	VSS CDAMADDD[7]	Ground	Do Intoniogram on tional outcomed CDAM address
159 160	SRAMADDR[7] SRAMADDR[6]	Output Output	De-Interleaver optional external SRAM address De-Interleaver optional external SRAM address
161	SRAMADDR[5]	Output	De-Interleaver optional external SRAM address De-Interleaver optional external SRAM address
162	SRAMADDR[3]	Output	De-Interleaver optional external SRAM address
163	VDD	Power	De interieuver optional external six un actiess
164	SRAMADDR[3]	Output	De-Interleaver optional external SRAM address
165	SRAMADDR[2]	Output	De-Interleaver optional external SRAM address
166	SRAMADDR[1]	Output	De-Interleaver optional external SRAM address
167	SRAMADDR[0]	Output	De-Interleaver optional external SRAM address
168	VSS	Ground	
169	SRAMDATA[7]	Bi-Directional	De-Interleaver optional external SRAM data bus
170	SRAMDATA[6]	Bi-Directional	De-Interleaver optional external SRAM data bus
171	SRAMDATA[5]	Bi-Directional	De-Interleaver optional external SRAM data bus
172	SRAMDATA[4]	Bi-Directional	De-Interleaver optional external SRAM data bus
173	VDD	Power	
174	SRAMDATA[3]	Bi-Directional	De-Interleaver optional external SRAM data bus
175	SRAMDATA[2]	Bi-Directional	De-Interleaver optional external SRAM data bus
176	SRAMDATA[1]	Bi-Directional	De-Interleaver optional external SRAM data bus
177	SRAMDATA[0]	Bi-Directional	De-Interleaver optional external SRAM data bus
178	VSS	Ground	Do Intoniogram CDAM somito on 111- (ti1)
179	SRAMWEB SRAMCSB	Output	De-Interleaver SRAM write enable (active low)
180 181	SRAMOEB	Output Output	De-Interleaver SRAM chip select (active low) De-Interleaver SRAM output enable (active low)
182	VDD	Power	De-interieaver Sixary output enable (active low)
183	RXIENBLE	Input	FEC test input I clock
184	RXQENBLE	Input	FEC test input Q clock
185	VSS	Ground	
186	RXBYPCLK	Bi-directional	Receiver bypass clock input; output reserved
187	VDD	Power	
188	VSSA	Ground (analog)	Dedicated to analog section of ADC (See Figure 1)
189	VDDA	Power (analog)	Dedicated to analog section of ADC (See Figure 1)
190	VCMA	Analog output	From ADC (See Figure 1)
191	VDD	Power	Dedicated to digital section of ADC ^(See Figure 1)

Pin No.	Pin Name	Pin Type	Pin Description
192	VREFN	Analog output	From ADC ^(See Figure 1)
193	VSSA	Ground (analog)	Dedicated to analog section of ADC (See Figure 1)
194	VSS	Ground	Dedicated to digital section of ADC (See Figure 1)
195	VDDA	Power (analog)	Dedicated to analog section of ADC (See Figure 1)
196	VDDA	Power (analog)	Dedicated to analog section of ADC (See Figure 1)
197	ADCINP	Analog input	ADC input ^(See Figure 1)
198	ADCINN	Analog input	Complementary ADC input ^(See Figure 1)
199	VSSA	Ground (analog)	Dedicated to analog section of ADC (See Figure 1)
200	VSSA	Ground (analog)	Dedicated to analog section of ADC (See Figure 1)
201	VDD	Power	Dedicated to digital section of ADC ^(See Figure 1)
202	VDDA	Power (analog)	Dedicated to analog section of ADC (See Figure 1)
203	VREFP	Analog output	From ADC ^(See Figure 1)
204	VSS	Ground	Dedicated to digital section of ADC ^(See Figure 1)
205	VCMB	Analog output	From ADC ^(See Figure 1)
206	VSSA	Ground (analog)	Dedicated to analog section of ADC (See Figure 1)
207	VDDA	Power (analog)	Dedicated to analog section of ADC (See Figure 1)
208	VDD	Power	

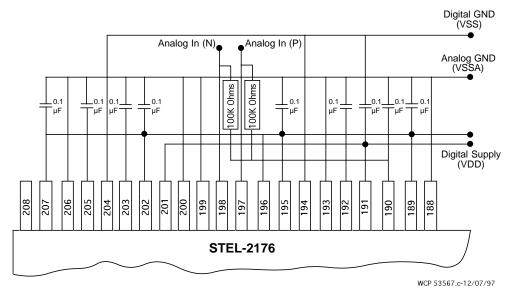


Figure 1. Reference A/D Wiring

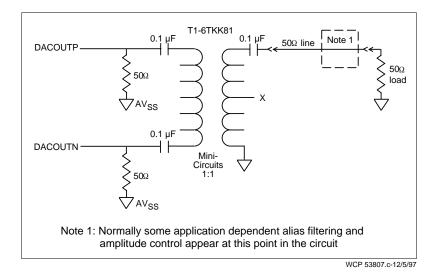


Figure 2. Example Output Load Schematic

ELECTRICAL SPECIFICATIONS

The STEL-2176 electrical characteristics are provided by Table 2 through Table 4.

WARNING

Stresses greater than those shown in Table 2 may cause permanent damage to the STEL-2176. Exposure to these conditions for extended periods may also affect the STEL-2176 reliability.

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Range	Units Note 1
T_{stg}	Storage Temperature	-40 to +125	°C
V _{DDmax}	Supply voltage on VDD	-0.3 to +4.6	volts
A_{VDDmax}	Supply voltage on AVDD	-0.3 to +4.6	volts
$5V_{DDmax}$	Supply voltage on 5VDD	-0.3 to +7.0	volts Note 2
AV_{SS}	Analog supply return for AVDD	± 10% of VDD	volts
$V_{I(max)}$	Input voltage	-0.3 to 5VDD+0.3	volts
\mathbf{I}_{i}	DC input current	± 30	mA
$P_{\text{Diss (max)}}$	Power dissipation	1500	mW

Note:

All voltages are referenced to $\ensuremath{V_{\text{SS}}}\xspace.$

 $5V_{\text{\tiny DD}}$ must be greater than or equal to $V_{\text{\tiny SS}}.$ This rule can be violated for a maximum of 100 msec during power up.

Table 3. Recommended Operating Conditions

Symbol	Parameter	Range	Units Note 1
AV _{DD}	Supply Voltage	+3.3 ± 10%	Volts
5V _{DD}	Supply Voltage	+5.0 ± 10%	Volts Note 2
V_{DD}	Supply Voltage	+3.3 ± 10%	Volts
C_{LOAD}	DAC Load Capacitance	≤ 20	pF
R_{LOAD}	DAC Load Resistance	≤ 30K	ohms
	Recommended DAC Load	37.5	ohms
V_{LOAD}	DAC Output Voltage	≤ 1.25	Volts
T _a	Operating Temperature (Ambient)	-40 to +85	°C Note 3

Note:

- 1. All voltages with respect to VSS and assume $AV_{ss} = V_{ss}$
- 2. If interface logic is to be driven by V_{DD} then connect the $5V_{\text{DD}}$ pin to the V_{DD} supply and set pin 32 to correct value.
- 3. Duty Cycle Derating is required from $+70^{\circ}$ to $+85^{\circ}$ C.

Table 4. ADC Performance Specifications

Parameter	Min	Nom	Max	Units
Sampling Frequency			50	MHz
Resolution		10		bits
Input Differential Signal Range	-0.75		+0.75	Volts
Analog Input Bandwidth	60			MHz
Signal to Distortion Ratio 10 MHz	54			dB
signal over 25 MHz BW				
Input Common Mode	1.4	1.5	1.6	Volts

Table 5. DC Characteristics

(V $_{DD}$ = 3.3 V ±10%, V $_{SS}$ = 0 V, T $_{a}$ = -40° to 85° C)

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
I_{VDDQ}	Supply Current, Quiescent			1.0	mA	Static, no clock
I_{VDD}	Supply Current, Operational, $V_{\scriptscriptstyle DD}$		1.9		mA/MHz	
$I_{5V_{DD}}$	Supply Current, Operational, $5V_{\tiny DD}$		0.2		mA	
$I_{AV_{DD}}$	Supply Current, Operational, $\mathrm{AV}_{\mathrm{DD}}$		12.0		mA	
$V_{\mathrm{IH}_{\mathrm{CLK}}}$	Clock High Level Input Voltage	2.0			volts	CLK, Logic '1'
$V_{\mathrm{IL}_{\mathrm{CLK}}}$	Clock Low Level Input Voltage			0.8	volts	CLK, Logic '0'
v_{IH}	High Level Input Voltage	2.0			volts	Other inputs, Logic '1'
v_{IL}	Low Level Input Voltage			0.8	volts	Other inputs, Logic '0'
I_{IH}	High Level Input Current			10	μΑ	$V_{IN} = 5V_{DD}$
I_{\prod}	Low Level Input Current			-10	μΑ	$V_{IN} = V_{SS}$
V _{OH(min)}	High Level Output Voltage	2.4	3.0	VDD	volts	$I_{O} = -2.0 \text{ mA}$
V _{OL(max)}	Low Level Output Voltage		0.2	0.4	volts	$I_O = +2.0 \text{ mA}$
IOS	Output Short Circuit Current		40		mA	$V_{OUT} = V_{DD}$,
C _{IN}	Input Capacitance		2		pF	V _{DD} = max All inputs
C _{OUT}	Output Capacitance		4	10	pF	All outputs
I_{OFS}	Output Full Scale DAC Current	16	19	22	mA	Single output
V _o	DAC Compliance Voltage (Differential)		±0.96		Volts	Based on 50 ohms load resistance to ground.
R_{O}	DAC Output Resistance ¹		N/A			
Co	DAC Output Capacitance		4	8	pF	

NOTES:

1. Current source to ground output.

RECEIVER

OVERVIEW

The STEL-2176 is a complete subscriber-side cable modem ASIC which integrates both the downstream receiver and upstream transmitter functions. The receiver includes a high performance 10-bit Analog-to-Digital Converter (ADC) with a direct Intermediate Frequency (IF) interface. The receiver also includes a QAM demodulator and both ITU-T (J.83) Annex A and Annex B Forward Error Correction (FEC). The upstream transmitter includes a BPSK/QPSK/16QAM modulator with highly flexible FEC and scrambling, and a 10-bit low spurious digital to analog converter (DAC) for direct synthesis of an upstream 5 to 65 MHz signal. Both the receiver and transmitter are highly flexible and programmable; the STEL-2176 Digital Mod/Demod ASIC offers a solution to meet current and evolving standards.

The input to the STEL-2176 receiver is an analog IF signal of up to 50 MHz. Typically, the IF signal has 44 MHz center frequency with a 6 MHz bandwidth for NTSC based systems, or a 36 MHz center frequency with an 8 MHz bandwidth for PAL based systems. In typical applications, the input signal is sampled by the ADC at approximately 25 MHz for the 44 MHz IF, or at approximately 29 MHz for the 36 MHz IF

This type of sub-sampling technique works by intentionally undersampling the carrier frequency so that aliased signal appears at a lower frequency. The sampling rate is still high enough to capture all of the modulation bandwidth without distortion. In the case of a 44 MHz IF and a 25 MHz clock, the resulting digital signal is centered at 6 MHz. In the case of a 36 MHz IF and 29 MHz clock, the resulting digital signal is centered at 7 MHz. For more information on subsampling techniques, please see Stanford Telecom Application Note A-117.

The digital samples from the ADC are downconverted to baseband I and Q signals in the Digital Down Converter (DDC) block. Since the RF tuner sections of a cable modem may have large frequency errors, an Automatic Frequency Control (AFC) block is used in the STEL-2176 for coarse tuning of the DDC. This allows rapid acquisition of the input signal even with frequency errors of ±200 kHz. Fine tuning of the DDC is done using a carrier Phase-Lock Loop (PLL).

An Automatic Gain Control (AGC) function provides two output signals to adjust the RF and IF analog gain stages of circuitry external to the STEL-2176, so that the ADC input is in the optimal range. The two outputs can be programmed to create a sequential AGC system which maximizes RF gain for improved receiver noise figure. The two AGC outputs and the external gain adjust blocks work together to maximize ADC performance, but when large adjacent channels are present, the power of the desired signal may change. A second digital AGC tracks and adjusts the level of the desired signal after the adjacent channel energy is removed by filtering.

Following the DDC, a square root raised cosine Nyquist filter eliminates adjacent channel signals, and performs matched filtering to eliminate intersymbol interference. The filter excess bandwidth or alpha is programmable from 0.12 to 0.20. The Timing Recovery block finds the exact location in the center of each symbol using a special low-jitter discriminator. These values are fed to the Adaptive Channel Equalizer.

An Adaptive Channel Equalizer (ACE) compensates for any multipath distortion on the input signal introduced in the channel. The equalizer uses one sample per symbol (T spaced taps). The output of the equalizer is baseband I and Q signals with carrier frequency and phase errors, symbol timing errors, gain errors, and multipath effects removed.

The Demapper takes the baseband I and Q signals representing the QAM symbols, and translates each symbol back into a series of binary values based on one of the selectable constellation maps.

Following the Demapper is the Forward Error Correction (FEC) system. This programmable system supports both the ITU-T (J.83) Annex A (see page 14) and Annex B (see page 16) standards. In general, both FEC systems employ Reed Solomon Decoders, Frame Sync circuits that determine the FEC code block boundaries, and a De-Interleaver. Interleaving is used in the FEC standards to improve performance when the channel contains bursty noise. Since the transmitter Interleaver spreads the data over a large time, when the receiver performs the matched operation to the Interleaver in order to bring the data back into the correct time sequence, any burst errors appear to be spread out in time. This helps makes these errors

correctable by the FEC. The STEL-2176 internal memory can support all MCNS Interleaver configurations. For deeper interleaving, a direct interface to external memory is provided.

The output of the receiver is typically arranged as MPEG-2 frames, although the MPEG-2 framing can be

by-passed for ATM applications. The output can be 8-bit parallel with a byte clock or serial with a bit clock. The data can be output in a smooth fashion without inter-frame gaps or with the pauses in output data caused by the FEC system passed through to the output (see Receiver Timing discussion).

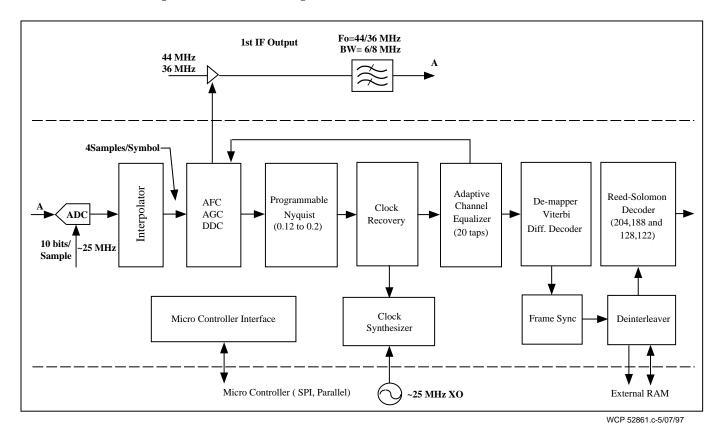


Figure 3. STEL-2176 Receiver Block Diagram

FUNCTIONAL BLOCKS

ADC

The ADC uses differential analog signal inputs ADCINP and ADCINN. Differential coupling to the ADC is important to prevent common mode noise from the digital sections of the ASIC from coupling into the input. The recommended input signal level is ± 0.75V. The input is sampled by the ADC, and the samples are converted into 10-bit digital values. The sampling rate is typically 25 MHz for an input of 44 MHz ± 3 MHz with a symbol rate of about 5 MHz (i.e., the MCNS standard) or 29 MHz for an input of 36 MHz ± 4 MHz with a symbol rate of about 7 MHz (i.e., the DAVIC and DVB standards). The sampling rate is controlled the choice of crystal connected between RXOSCIN and RXOSCOUT or by the clock frequency applied to

RXOSCIN. The sample rate must be slightly more than 4 samples per symbol. The sample clock generated by the crystal/receive clock oscillator or applied to RXOSCIN must be a low phase noise signal. For this reason, dedicated power and ground connections for the receive oscillator and input buffer are adjacent to the RXOSCIN and RXOSCOUT pins.

Microcontroller Interface

The microcontroller interface provides access to the internal programmable Universal, Downstream (Receive), and Upstream (Transmit) registers (see page 20) via a parallel or a SPI interface. The interface used is selected by the interface select lines (INTSEL[1-0]).

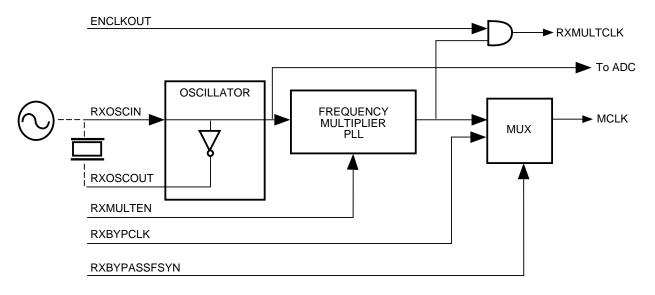
The parallel interface consists of an 8-bit address bus (ADDR[7-0]), an 8-bit bi-directional data bus (DATA[7-0]), and the control signals chip select (CS), read/write (WRB), and data strobe (DSB).

The SPI interface consists of a serial input (SI), serial output (SO), and a serial clock (SCK).

Master Receive Clock Generator

The STEL-2176 uses a master clock (MCLK) to control the receive timing functions. MCLK can be generated in either of three ways as shown in Figure 4.

A receive bypass clock can be applied to the RXBYPCLK input and selected to drive CLK. The RXMULTEN should be held high to select the RXBYPCLK input.


An external clock can be applied to the RXOSCIN input or a crystal can be connected across the RXOSCIN and RXOSCOUT inputs. The oscillator circuit outputs a 20-50 MHz signal to a frequency multiplier PLL, which upconverts the signal to a 100-150 MHz clock. When the bypass clock is not used, RXMULTEN is driven high to

select the output of the frequency multiplier to drive the MCLK signal. The frequency multiplier output frequency is controlled by the formula:

MCLK=OscillatorOutput *
$$\frac{N}{M}$$

where:

- The Oscillator signal (RXOSCIN and RXOSCOUT) is four times the signal symbol rate.
- The value of M and N should be selected so MCLK is four times the value of the Oscillator signal.
- N is the value stored in RxFsynN (bits 6-0 of Bank 0 Register F7_H), and M is the value stored in RxFsynM (bits 6-0 of Bank 0 Register F6_H).
- The recommended values for DAVIC, DVB, and IEEE 802.14 are Oscillator Frequency = 29 MHz, M = 2, and N = 8. The recommended values for MCNS are Oscillator Frequency = 25 MHz, M = 2, and N = 8.

WCP 53852.c-12/7/97

Figure 4. Master Receive Clock Generator

QAM Demodulator Blocks

The following diagram shows the major QAM circuit blocks.

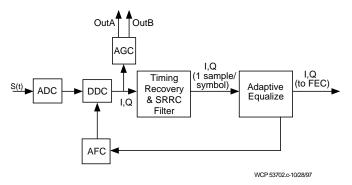


Figure 5. QAM Demodulator Blocks

Digital Down Converter (DDC)

The digital samples from the ADC are mixed down to baseband I and Q signals in the Digital Down Converter (DDC) block. The input analog signal is subsampled at the rate set by the receive crystal oscillator or a clock applied directly to the RXOSCIN input. The resultant sub-sampled input signal's spectrum is aliased to a lower frequency. In typical cases, with a 44 MHz 3 MHz input and a 25 MHz sample rate, the digital signal appears to the input of the DDC as a 6 MHz 3 MHz signal. For a 36 MHz 4 MHz input and a 29 MHz sample rate, the digital signal appears to the input of the DDC as a 7 MHz 4 MHz signal. Other input frequencies and sample rates are also possible. The digital signal is down converted to baseband I and Q by mixing with $\cos 2\pi f_c t$ and $\sin 2\pi f_c t$ where f_c is the center frequency of the digital signal.

The Digital Down Converter contains a numerically controlled oscillator (NCO) with cosine and sine outputs, a pair of mixers, and an image filter. The frequency f_c is a combination of a starting value that is set using DeltaTheta_in [13:0] (bits 7-2 of Bank 0 Register 10_H and Bank 0 Register 11_H) and any frequency error terms computed by the Automatic Frequency Control block. The value for DeltaTheta_in [13:0] is given by:

DeltaTheta_in [13:0] = f_c /ADC sample rate 214

For $f_c = 6$ MHz and ADC sample rate = 25 MHz, DeltaTheta_in [13:0] = 0F5C_H

For $f_c = 7$ MHz and ADC sample rate = 29 MHz, DeltaTheta_in [13:0] = 0F73_H

The complex NCO drives a pair of multipliers which serve as mixers. The products of the ADC samples and the sine and cosine outputs of the NCO produce the desired baseband I and Q signals plus undesired higher frequency image terms. These higher frequency terms are removed by an image filter.

Automatic Frequency control (AFC)

The STEL-2176 can accommodate up to $\pm 200~\mathrm{kHz}$ uncertainty in the carrier frequency. The carrier frequency recovery is divided into two steps. The first step is a coarse frequency estimation during initial signal acquisition. This estimation is performed by the AFC section. The estimated carrier frequency offset is calculated by the AFC and fed to the DDC NCO.

AGC

The AGC takes the output from the Image Filter in the DDC and estimates the power of the signal. The AGC discriminator compares the estimate to one or two different thresholds that can be set via the registers values AGC_ThresholdA (Bank 0 Register 14_H) and AGC_ThresholdB (Bank 0 Register 15_H). Thresholds should be set to optimize ADC performance. The range of the AGC's power thresholds is 0 to 128 (2⁸⁻¹). For 256-QAM, the value ranges from about 75 to 100 (default is 96), depending on the desired A/D clipping level. The trade off for selecting the value weighs occasional ADC clipping with a large input versus loss of signal fidelity with a small input. The power of the input signal depends upon adjacent channel interference, AM hum, burst noise, etc.

The AGC generates two 1-bit outputs OUTA and OUTB that indicate whether that the input analog signal is too high or too low. The OUTA and OUTB signals should be smoothed using low pass filters. These filters can each be a series resistor of ____ ohms and a shunt capacitor of ____ F. OUTA and OUTB can be set to have a logic high voltage of either 3.3V or 5V. For 3.3V operation, connect the power source's +3.3V output to pins 31 and 32 and its return to V_{SS} . For 5V operation, connect the power source's +5V output to pin 31 and its return to pin 32 and V_{SS} .

The polarity of OUTA and OUTB may be controlled with AGC_InvertOutputA (bit 0 of Bank 0 Register 12_H) and AGC_InvertOutputB (bit 1 of Bank 0 Register 12H). For variable gain stages where a higher control voltage at the input to the filter produces higher gain, set the AGC_InvertOutput bit to 0. For variable gain stages

where a higher control voltage at the input to the filter produces lower gain, set the AGC_InvertOutput bit to 1.

The two outputs can be programmed to create a sequential AGC system which maximizes RF gain for improved receiver noise figure. This is accomplished by setting AGC_ThresholdA (Bank 0 Register 14_H) and AGC_ThresholdB (Bank 0 Register 15_H) to slightly different values. The threshold which is set to a lower value will cause its associated output to command increase gain first. This output is typically connected to the RF variable gain stages so that the best receiver noise figure is achieved.

Timing Recovery and Nyquist Filter

The sampled signal (> 4 times the symbol rate in I and Q format) is fed to this block to:

- Eliminate inter-symbol interference (ISI) by filtering it with a square route raised cosine filter (SRRC) of a selectable excess bandwidth (a) for 12%<= a<=20%.
- Recover the exact symbol rate, within 100 ppm of the nominal value.
- Resample and transmit one composite sample (I and Q for each symbol) to the equalizer. These samples are taken at the epoch of each symbol.

Adaptive Channel Equalizer

The output of the Timing Recovery block is fed to the Adaptive Equalizer at a rate of one complex sample/symbol. The Adaptive Equalizer will:

- 1. Compensate for channel distortion including:
 - a. Multipath
 - b. AM hum
 - c. FM hum
 - d. Phase noise
- 2. Fine tune to the carrier frequency and phase offset.
- 3. Set the acquisition flag "true", after the equalizer successfully locks on to the signal.
- 4. Write to ErrPwr (Block 0 Register 44_H) the estimated output SNR.

The adaptive equalizer control registers are Block 1 Registers $21_{\rm H}$ to $24_{\rm H}$.

FEC Decoder Blocks

The purpose of the FEC subsystem is to improve the bit error rate performance of the data link. The arrangement of the FEC blocks in the receiver is in reverse order from the transmitter. The STEL-2176 FEC subsystem can decode signals which are generated in conformance with either the ITU-T (J.83) Annex A or Annex B FEC standards.

There are two different though similar set of blocks used for ITU-T (J.83) Annex A (Figure 6) and Annex B (Figure 13).

The STEL-2176 supports the MPEG-2 standard. MPEG-2 uses 188 byte packets with a sync byte and three header bytes containing service identification, scrambling, and control information. The 184 bytes of data follows the sync and header bytes. Normally this header information flows through to the receiver output, but with ITU-T (J.83) Annex B there is an option of bypassing the MPEG-2 outer layer of processing.

Annex A FEC

The ITU-T (J.83) Annex A FEC subsystem consists of the following blocks:

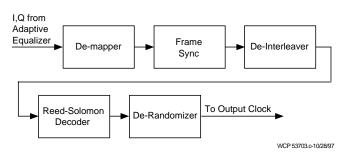


Figure 6. ITU-T (J.83) Annex A FEC Subsystem

<u>Demapper</u>

This block maps the Adaptive Channel Equalizer I and Q outputs for each symbol into 4, 6, or 8 bits for 16, 64, or 256 QAM respectively. The mapping tables are as follows:

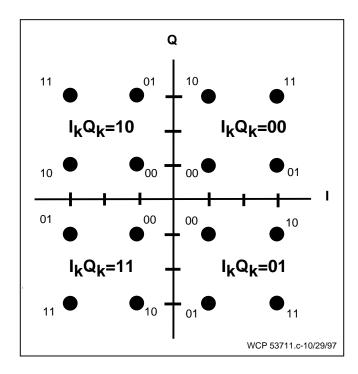


Figure 7. 16 QAM Constellation

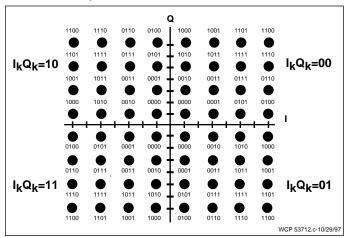


Figure 8. 64 QAM Constellation

Two bits are the same for each modulation type, and are identified as I_KQ_K . The remaining bits are identified as $[b_{q-1}\ldots b_{o]}$, where q=2,4, and 6 for 16, 64 or 256 QAM.

 I_KQ_K are processed by the differential decoder before being fed to the frame sync block. The remaining bits $[b_{q-1}\dots b_{o]}$ are fed directly to the frame sync.

Differential Decoder

Two bits (I_KQ_K) of each symbol are differentially decoded according to the equation:

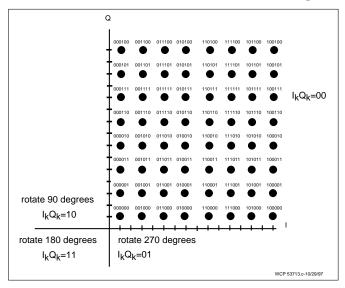


Figure 9. 256 QAM Constellation (DAVIC)

Figure 10. 256 QAM Constellation (DVB/IEEE 802.14)

$$\begin{split} b_{q+1} &= A_k = (I_k \oplus I_{k-1}) \oplus (I_{k-1} \oplus Q_{k-1}) \bullet (1 \oplus I_k \oplus Q_k) \\ b_q &= B_k = (Q_k \oplus Q_{k-1}) \oplus (I_{k-1} \oplus Q_{k-1}) \bullet (1 \oplus I_k \oplus Q_k) \end{split}$$

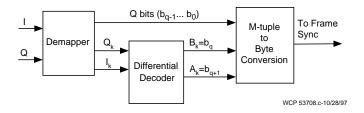


Figure 11. Demapper

Receiver Description

Frame Sync

The frame sync receives symbols from the mapper. Each symbol represents 4, 6 or 8 bits for 16 QAM, 64 QAM, and 256 QAM respectively. These bits are collected into bytes. For 16 QAM, every two symbols are converted into one byte. For 64 QAM, every 4 symbols to are converted into 3 bytes, and for 256 QAM each symbol gives one byte..

Once bytes are formed, the frame sync block looks for a sequence of fixed byte values separated by 203 bytes of data.

$$47_{_{\rm H}}$$
 (203 bytes) $88_{_{\rm H}}$ (203 bytes) $47_{_{\rm H}}$ (203 bytes) $47_{_{\rm H}}$ (203 bytes) $47_{_{\rm H}}$... $47_{_{\rm H}}$... $47_{_{\rm H}}$... $47_{_{\rm H}}$... $88_{_{\rm H}}$...

When the frame sync finds this pattern HIT (Block 1 Register $55_{\rm H}$) times, the frame sync block declares "acquisition" and starts feeding the bytes to the De-Interleaver. The frame sync stays in the "acquisition" state until it misses this pattern MISS (Block 1 Register $56_{\rm H}$) times.

De-Interleaver

This block is a convolutional De-Interleaver, as shown:

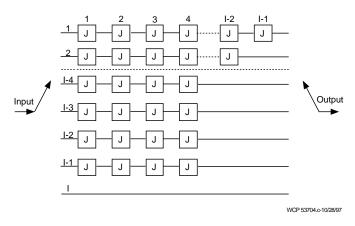


Figure 12. De-Interleaver

I and J are programmable (Block 1 Registers $47_{\rm H}$ and $48_{\rm H}$).

A total memory of J $_{\rm I}$ (I-1) $_{\rm I}$ I/2 is required. The STEL-2176 has 8K internal memory. Up to 64K memory can be added externally without any additional logic, as shown.

Reed-Solomon Decoder

This function decodes Reed-Solomon blocks. Each code block is 204 bytes long and contains 188 bytes of data followed by 16 bytes of checksum. The code blocks are assumed to be coded according to ITU-T (J.83) Annex A FEC shortened R-S algorithm.

If the decoder fails to decode a code block, the decoder sets the undecodable flag "true" for this block. This flag propagates to the STEL-2176 output as RXDECDFLG.

In addition, the number of errors in each decodable block accumulates in Error_cnt[15:0] (Block 1 Registers 72_H and 73_H). This register can be reset by writing a 1 to CLR_ERR (bit 0 of Block 1 Register 74_H).

De-Randomizer

The de-randomizer is exactly the same as the randomizer described by the ITU-T (J.83) Annex A standard.

Output Clock Block

The function of the output clock block is to evenly distribute the output receive data of the STEL-2176 and to eliminate gaps caused by the FEC subsystem. The output of the Reed-Solomon decoder is 188 bytes of data for every 204 input bytes. Therefore, there is a gap of 16 bytes where the checksum information is removed.

The STEL-2176 output can send the received data in bytes on an 8-bit wide buss, or in bits on a single line as shown in Downstream Output Timing Diagrams (Figure 19 through Figure 21). Selecting between "bytewise" versus "bitwise" can be done by setting Serial Mode (bit 0 of Bank 1 Register 69_H) to 1.

ANNEX B

The ITU-T (J.83) Annex B FEC subsystem consists of the following blocks:

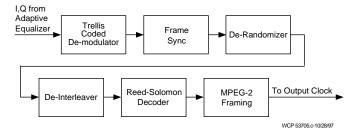


Figure 13. ITU-T (J.83) Annex B FEC Subsystem

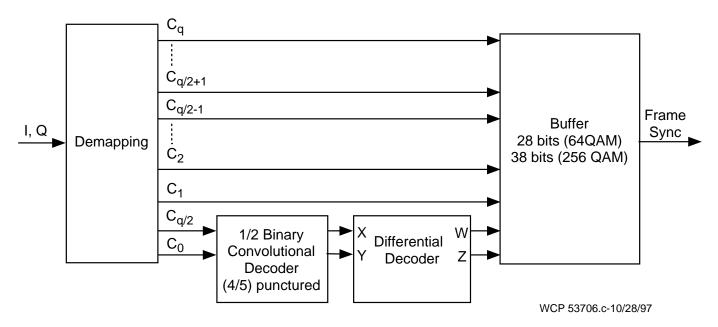


Figure 14. Trellis Coded Demodulator

The demapping block maps the Adaptive Channel Equalizer I and Q outputs for each symbol into 4, 6, or 8

bits for 16, 64, or 256 QAM respectively. The mapping tables are as follows:

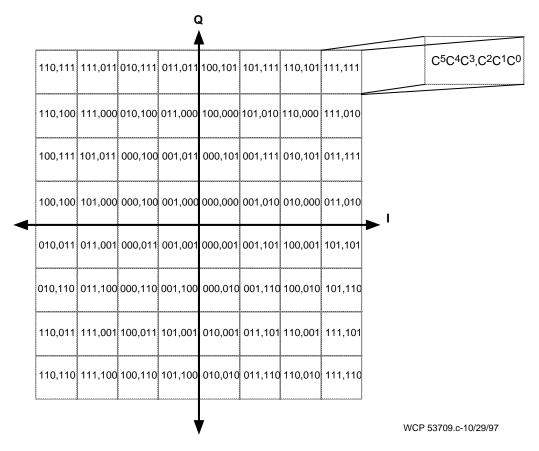


Figure 15. 64 QAM Mapping

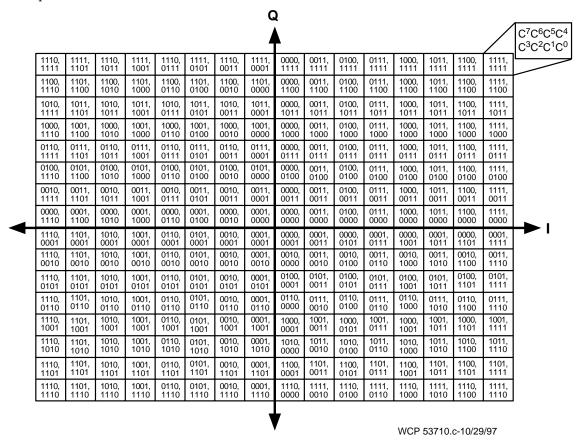


Figure 16. 256 QAM Mapping

The de-mapper generates "q" bits for each symbol where q=6 for 64 QAM and q=8 for 256 QAM. Two bits (b_o and $b_{q/2}$) are processed by the binary convolutional decoder and the differential decoder. The remaining bits are passed directly to the output buffer.

Viterbi Decoder

The binary convolutional decoder is a 1:2 Viterbi decoder (4/5 punctured). For every 5 consecutive input b_o or $b_q/2$ bits, the Viterbi decoder produces only 4 output bits. With this type of punctured code there are 5 possibilities for synchronization. The synchronization can occur automatically, or under manual control using the programmable registers. Setting VitFeedBackEn (bit 4 of Bank 0 Register F4_H) to 1 selects the automatic mode, while setting it to 0 selects the manual mode. In the manual mode, the decoder starts at any point in the puncturing sequence. To skip to the next state, write 1 to VitFeedBack (bit 7 of Bank 0, Register FC_H).

Differential Decoder

The two bit streams coming out of the Viterbi decoder are fed into the differential decoder. The differential decoder uses the following formula to produce its output:

$$\begin{split} & W_k = (X_k \oplus X_{k-1}) \bullet (1 \oplus X_{k-1} \oplus Y_{k-1}) \oplus (Y_k \oplus Y_{k-1}) \\ & \bullet (X_{k-1} \oplus Y_{k-1}) \\ & Z_k = (X_k \oplus Y_{k-1}) \oplus (Y_k \oplus Y_{k-1}) \end{split}$$

Buffer

The trellis coded demodulator buffer converts groups of 5 symbols into a bitstream (28 bits for 64 QAM, or 38 bits for 256 QAM) following Annex B convention.

Frame Sync

This block receives data from the buffer. The frame sync looks for Annex B frame sync patterns which are different for 64 QAM and 256 QAM. Also, the separation distance between successive patterns is different (60 R-S code words for 64 QAM and 88 R-S code words for 256 QAM).

When the frame sync finds this pattern HIT (Bank 1 Register $55_{\rm H}$) times, the frame sync block declares "acquisition" and starts further processing of the data.

The frame sync stays in the "acquisition" state until it misses this pattern MISS (Bank 1 Register 56_H) times.

When in the "acquisition" state, the frame sync patterns are deleted, except the 4 bits identifying the interleaving parameters. These can be used by the De-Interleaver to automatically select the De-Interleaving parameters.

The remaining data, that is all bits between frame syncs, are formed in 7-table bits symbols and passed to the derandomizer.

Derandomizer

The Derandomizer uses a linear feedback shift register as shown below. It works in GF (128). The delay elements are initialized at the beginning of each frame to $7F_{\rm H}$, $7F_{\rm H}$ and $7F_{\rm H}$.

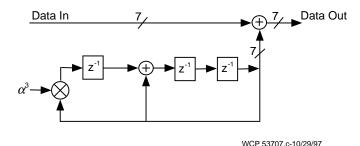


Figure 17. Derandomizer

De-Interleaver

This block is a convolutional De-Interleaver, as shown:

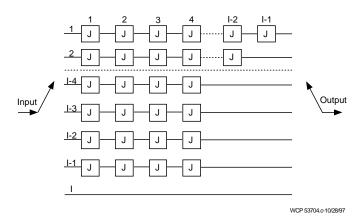


Figure 18. De-Interleaver

I and J (Bank 1 Registers $47_{\rm H}$ and $48_{\rm H}$) are programmable, however in Level II, the I and J values are determined by the 4-bit pattern of the frame sync.

A total memory of J $_{\rm I}$ (I-1) $_{\rm I}$ I/2 is required. The STEL-2176 has 8K internal memory. Up to 64K memory can be added externally without any additional logic, as shown.

Reed-Solomon Decoder

This function decodes Reed-Solomon blocks. Each code block is 128 (7 bits symbols) long and contains 122 (7 bits symbols) of data followed by 6 (7 bits symbols) of checksum. The code blocks are assumed to be coded according to ITU-T (J.83) Annex B FEC R-S algorithm.

If the decoder fails to decode a code block, the decoder sets the undecodable flag "true" for this block. This flag propagates to the STEL-2176 RXDECDFLG output.

In addition, the number of errors in each decodable block accumulates in Error_cnt[15:0] (Bank 1 Registers 72_H and 73_H). This register can be reset by writing a 1 to CLR_ERR (bit 0 of Bank 1 Register 74_H).

MPEG Framing

The R-S decoder's output is serialized and fed through the ITU-T (J.83) Annex B MPEG-2 syndrome converter. The output of the syndrome generator is monitored for the pattern of $47_{\rm H}$ separated by 1496 bits. When "n" (n is a programmable number) successive occurrences of this pattern are found, MPEG-2 frame sync is declared. MPEG-2 packets are framed by converting every 8 bits into one byte.

After declaring successful MPEG-2 frame sync, the absence of a valid code word at the expected location is indicated as a packet error.

MPEG-2 framing can be bypassed if so selected. In this case, the output of the R-S decoder will be reformed into bytes starting at the beginning of each frame.

Output Clock Block

The output clock block functionally the same as the Annex A output clock block. However, the gaps between data bytes occur due to eliminating the R-S checksum symbols, the frame sync information, and the bits that were added to support Viterbi decoding.

RECEIVE AND UNIVERSAL REGISTER DESCRIPTIONS

PROGRAMMING THE 2176 RECEIVE FUNCTIONS

The STEL-2176 has a combination of universal, receive and transmit registers. The registers are arranged as three banks of registers (Bank 0, Bank 1, and Bank 2). The Bank 0 registers are divided into Group 1 and Group 2 registers. The Bank 1 and 2 registers form separate groups (Groups 3 and 4 respectively). The Bank 0 and 1 registers (Groups 1, 2, and 3) are described by the following paragraphs. The Bank 2 registers (Group 4) are described in the Transmitter section (see page 54).

The Bank/Group address, shown below, must be written to register location FF_H to access the respective

bank of registers. Register location FF_H can be accessed from each register bank/group. The registers can be accessed using the Microcontroller Interface's parallel or serial interface (see page 11).

REGISTER DESCRIPTIONS

Bank 0 - Universal Registers (Group 1)

The Universal Registers (Bank 0, Group 1) consist of three sets of registers: Read/Write (see Table 6), Readonly, and Write-only (see Table 7). The Read-only register set (Bank 0 Register F2) is for factory use only and not described by this User Manual.

Bank	Group	Group Name	Bank/Group Address (location FF _H)
0	1	Universal Registers (Group 1)	$00_{\rm H}$
0	2	QAM Demodulator Registers Universal Registers (Group 2)	$00_{\rm H}$
1	3	Downstream FEC Registers	$01_{\rm H}$
2	4	Upstream, or transmitter, Registers	02 _H

Table 6. Read/Write Register Set

Address	7	6	5	4	3	2	1	0
F1 _H			Not Used		FECTestMode Factory Use Only			
					(Bypass QAM)		Program to $0_{\rm H}$	
F4 _H	Not U	Not Used BypassMPE VitFeedBackEn Factory Defined Value - 0 _H Gframe (write only)						
F5 _H			Not Used		Factory Defined Value - 2 _H RxBypassFsyn TxBypassFs			
$F6_H$	Not Used				RxFsynM			
F7 _H	Not Used				RxFsynN			
F8 _H	Not Used				TxFsynM			
F9 _H	Not Used				TxFsynN			
FA_H				No	t Used			
FB_H		Not Use	ed		Factory Use Only			
FD_{H}				QAMAcqui	sitionMaxTries		•	
FE_H		Not Use	ed	QAMEnable	QAMT	Гуре	FEC	Туре

Table 7. Write Only Registers:

Address	7	6	5	4	3	2	1	0
F3 _H			Not I	Used			Reset_OutputFIFO	Factory Defined Value - 0 _H
FC_H	VitFeedBack	Factory Defin	ed Value - 0 _H	LoadRxM	LoadRxN	LoadTxM	LoadTxN	QAM Start

Bank 0, Group 1 Register Data Field Descriptions

BypassMPEGframe This data field is a write only register. Setting it to 1 will bypass MPEG framing.

Factory Use Only This data field is used by the factory and must be programmed to the value indicated

above.

FEC Type Used to select the type of FEC encoding:

00 X Annex A
01 X Annex B
10 X STel use only

FECTestMode For test purposes, the QAM can be bypassed by setting the value to 1. Data is then fed

directly to the FEC.

LoadRxM Setting the value to 1 loads the value of RxFsynM into the Receiver frequency

synthesizer.

LoadRxN Setting the value to 1 loads the value of RxFsynN into the Receiver frequency

synthesizer.

LoadTxM Setting the value to 1 loads the value of TxFsynM into the Transmitter frequency

synthesizer.

LoadTxN Setting the value to 1 loads the value of TxFsynN into the Transmitter frequency

synthesizer.

QAM Start Setting the value to 1 starts the QAM acquisition.

QAMAcquisitionMaxTries The programmed value determines the number of acquisition tries the QAM makes

before it declares an acquisition failure. The acquisition process will be restarted.

QAMEnable QAMEnable must be set to 1 to enable the QAM circuitry, before programming QAM

Start.

QAMType Used to select 16, 64, or 256 QAM

00 8 16 QAM 01 8 64 QAM 10 8 256 QAM

Reset_OutputFIFO Setting the value to 1 resets the FIFO of the output clock in case of overflow.

RxBypassFsyn Setting value to 1 bypasses the frequency synthesizer in the Master Receive Clock

Generator.

RxFsynM Value controls the Receiver Frequency Synthesizer output. RxFsynN Value controls the Receiver Frequency Synthesizer output.

TxBypassFsyn Setting value to 1 bypasses the frequency synthesizer in the Master Transmit Clock

Generator.

TxFsynM Value controls the Transmitter Frequency Synthesizer output.
TxFsynN Value controls the Transmitter Frequency Synthesizer output.

VitFeedBack When use of Viterbi Decoder feedback is enabled, setting the value to 1 forces the

Frame Sync circuit to begin shifting by one symbol and testing for the start of the symbol group. Once the search is externally initiated the value should be returned to

0.

VitFeedBackEn Setting the value to 1 enables the use of Viterbi Decoder feedback for using the

VitFeedBack register to force the Frame Sync circuit to search for the start of the

symbol group.

Bank 0 - QAM Demodulator Registers Universal Registers (Group 2)

The QAM Demodulator Registers Universal Registers are divided into 6 sub-groups of registers. Each sub-

group has two sets of registers: a Read/Write set which is used for control purposes, and a Read-only set for monitoring purposes. The sub-groups are:

Sub-Group	Name	Read/Write Register Addresses	Read-only Register Addresses
A	Control, address range	$00_{\rm H}$ to $0{\rm E}_{\rm H}$	40_{H} to 45_{H}
В	DDC, Nyquist, AGC, and AFC address range	$0F_H$ to $1B_H$	$46_{\rm H}$ to $52_{\rm H}$
С	Timing, address range	$1C_{\rm H}$ to $20_{\rm H}$	$53_{\rm H}$ to $5B_{\rm H}$
D	FFE, address range	21 _H to 24 _H	$5C_H$ to $5F_H$ and $6B_H$ to $9A_H$
Е	FBE, address range	25 _H to 26 _H	$9B_H$ to $B2_H$
F	PLL, address range	$27_{\rm H}$ to $3F_{\rm H}$	$60_{\rm H}$ to $6A_{\rm H}$

Bank 0, Group 2, Sub-Group 'A' - Control Address Range Registers

Table 8. Group 2, Sub-Group 'A' Read/Write Registers

Address	7	6	5	4	3	2	1	0			
00 _H	QAM_Enable	QAM_SoftR esetEnable	Pwrlvl_corre ctEn	Decimate_Gai nSel	Factory Defined Value - A _H						
01 _H		Factory Defined Value - $19_{\rm H}$									
02 _H				Factory Def	ined Value - $44_{ m H}$						
03 _H				Factory Def	ined Value - $19_{ m H}$						
04 _H				CMA	A1_Ksym						
05 _H				AFC	C1_Ksym						
06 _H				CMA	A2_Ksym						
07 _H				AFC	C2_Ksym						
08 _H				Factory Def	ined Value - $64_{ m H}$						
09 _H				Factory Def	ined Value - $00_{ m H}$						
$0A_{H}$				Factory Def	ined Value - $00_{ m H}$						
0B _H				Factory Def	ined Value - $64_{ m H}$						
0C _H		Factory Defined Value - 40_H = 16 QAM, 53_H = 64 QAM, or 87_H = 256 QAM									
0D _H		Factory Defined Value - 33_H = 16 QAM, 37_H = 64 QAM, or 54_H = 256 QAM									
0E _H		Fac	tory Defined V	alue - $5F_H = 16 Q$	$AM, 76_{H} = 64 QA$	AM , or $A4_{H} = 256$	6 QAM				

Table 9. Sub-Group 'A' Read-Only Registers

Address	7	6	5	4	3	2	1	0	
40_{H}	Symbol	SymbolCnt[1:0] AcquisitionLock AcquisitionFail State							
$41_{\rm H}$				SymbolCn	ıt[9:2]				
42 _H				SymbolK	Cnt				
43 _H				Acquire	Cnt				
$44_{\rm H}$		ErrPwr							
45 _H		•		JitPwi	r		_	_	

Bank 0, Group 2, Sub-Group 'A' Register Data Field Descriptions

AcquireCnt The value indicates the number of times the STEL-2176 has attempted to acquire the

signal.

AcquisitionFail The value is set to 1 when an acquisition failure is declared due to excessive error power;

the STEL-2176 is also returned to the idle mode.

AcquisitionLock The value is set to 1 when acquisition lock is detected.

Decimate_GainSel If GainSel is low (the default), the Nyquist filter output (10 bits plus 1 fractional bit) is

multiplied by a factor of 1.25 (+2 dB power); if GainSel is high, the scale factor is 1.5 (+3.5

dB power).

ErrPwr Provides an indication of the SNR. The conversion between ErrPwr and the SNR can be

determined from Table 10 (intermediate values can be found by interpolation).

Factory Defined Value The specified value must be written to the data field. In a few cases, several values are

provided for selecting a specific mode and one of the specified values must be written to

the data field.

JitPwr

Pwrlvl_correctEn Enables the power level adjuster to correct for deviations in the signal power due to

adjacent channel interference.

QAM_Enable

QAM SoftResetEnable The value is set to 1 to enable soft reset of the QAM.

State

SymbolCnt[9:0] SymbolKCnt

Table 10. SNR to ErrPwr Conversion

		ErrPwr	
SNR(dB)	256 QAM	64 QAM	16 QAM
34	18		
33	23		
32	28		
31	36		
30	44		
29	55		
28	69		
27	84	23	
26	100	28	
25	118	35	
24	135	44	
23	151	55	
22	164	68	
21	176	83	20
20	185	101	26
19		118	33
18		137	41
17		155	51
16		171	64
15		185	78
14		198	95
13			113
12			131
11			148
10			163
9			174
8			184

Bank O, Group 2, Sub-Group 'B' - DDC, Nyquist, AGC, and AFC Address Range Registers

Table 11. Group 2, Sub-Group 'B' Read/Write Registers

Address	7	6	5	4	3	2	1	0		
$0F_{H}$			Factory Defin	ned Value - 34 _H			UpdateEn	Correct_		
		adds								
$10_{\rm H}$			DeltaTh	eta_in[5:0]			CorrectEn	Update_		
								addsub		
$11_{\rm H}$				DeltaTl	heta_in[13:6]					
12 _H		AGC_	GainSel		Nyquist_	AlphaSel	AGC_InvertOu tputB	AGC_Invert OutputA		
13 _H				Factory Def	fined Value - 00 _H	Į.				
14 _H				AGC_	ThresholdA					
15 _H				AGC_	ThresholdB					
16 _H		Fa	ctory Defined V	alue - $22_{\rm H} = 16 \rm C$	$2AM, 2B_{H} = 64 Q$	AM, or 35 _H =	256 QAM			
17 _H			Factory Define	d Value - 26 _H 16	QAM, 37 _H 64 QA	M, or 3C _H 256	6 QAM			
18 _H		Fact	ory Defined Va	lue - 52 _H = Signa	l BW ~5MHz or	3B _H = Signal I	BW ~7MHz			
19 _H		AFC_Cntr_stop1								
$1A_{H}$		AFC_Cntr_stop2								
$1B_{H}$			WARNING:	SHOULD NOT I	BE PROGRAMM	ED BY THE U	JSER			

Table 12. Group 2, Sub-Group 'B' Read-Only Registers

Address	7	6	5	4	3	2	1	0	
46 _H	Factory Use Only								
47 _H				Factor	y Use Only				
48 _H	DDC_DeltaTheta[3:0]								
49 _H				DDC_De	ltaTheta[11:4]				
$4A_{H}$			Factory	Use Only			DDC_Del	taTheta	
							[13:1	[2]	
$4B_{H}$	Factory Use Only								
$4C_{\rm H}$	Factory Use Only								
$4D_{\rm H}$	Factory Use Only								
$4E_{H}$	Factory Use Only								
$4F_{H}$	AGC_PowerEstimate[7:0]								
50 _H	Factory Use Only AGC_PowerEstimate[9:8]							mate[9:8]	
51 _H	Factory Use Only								
52 _H				Factor	y Use Only				

Bank O, Group 2, Sub-Group 'B' Register Data Field Descriptions

AFC_Cntr_stop1[7:0] Set the upper limit for the first frequency offset estimate. Set the upper limit for the second frequency offset estimate. AFC_Cntr_stop2[7:0]

AGC_GainSel[3:0] Sets the gain of the AGC. The effective gain is $1/(2^{GainSel})$. GainSel defaults to 2, and will

normally range from 2 to 8.

InvertOutputA is a checkbutton that inverts the polarity of the AGC's output bits AGC_InvertOutputA

(default is off). When InvertOutput is off, then a low AGC output bit means that the

current power estimate is greater than the corresponding Threshold.

InvertOutputB is a checkbutton that inverts the polarity of the AGC's output bits AGC_InvertOutputB

(default is off). When InvertOutput is off, then a low AGC output bit means that the

current power estimate is greater than the corresponding Threshold.

AGC PowerEstimate[9:0]

AGC_ThresholdA[7:0] There are two gain amplifiers. ThresholdA sets the AGC's power threshold (0 to 2^8-1)

of one amplifier. For 256-QAM, the value ranges from about 75 to 100 (default is 96),

depending on the desired A/D clipping level.

There are two gain amplifiers. ThresholdB sets the AGC's power threshold (0 to 2^8-1) AGC_ThresholdB[7:0]

of one amplifier. For 256-QAM, the value ranges from about 75 to 100 (default is 96),

depending on the desired A/D clipping level.

Correct_addsub should always be the opposite of Update_addsub. Update_addsub Correct_addsub

controls which way the NCO rotates, thereby selecting either the positive or negative passband sidelobe. This allows spectrum inversion. The hardware default value is 1,

which selects the positive sidelobe (spectrum inversion off).

CorrectEn should be set to 1. When set to 0, the DDC ignores the AFC's frequency CorrectEn

correction.

DDC_DeltaTheta

NOT BE PROGRAMMED

Update_addsub

DeltaTheta_in[13:0] DeltaTheta_in[13:0] sets the initial phase increment of the NCO, thereby specifying the

carrier frequency, f_c. DeltaTheta_in should be initialized depending on the carrier and

the sampling frequencies:

DeltaTheta_in = round (f_c/f_s*2^{14}), where f_s is the sample clock frequency.

Note that f_s will be 25 to 30 MHz and f_c will be 6 MHz or 7 MHz.

E.g., for $f_c = 6$ and $f_s = 25$, DeltaTheta_in = $6/25 *2^{14} = 3932$

 $fc = (DeltaTheta_in/2^{14}) * f_s$

Factory Defined Value The specified value must be written to the data field. In a few cases, several values are

provided for selecting a specific mode and one of the specified values must be written

2176 receive and transmit characteristics. The factory programmed value should not be

to the data field.

Factory Use Only This data field is used by the factory and its function is not related to the STEL-2176

receive and transmit characteristics.

Selects the excess BW of the Nyquist matched filter: Nyquist_AlphaSel[1:0]

> 00 -> 12%01 -> 15%10 -> 18%11 -> not valid

Should be set to 1. When set to 0, the DDC's NCO is frozen. UpdateEn

WARNING: SHOULD This data field is used by the factory and the programmed value will affect the STEL-

BY THE USER

Bank 0, Group 2, Sub-Group 'C' - Timing Address Range Register

Table 13. Group 2, Sub-Group 'C' Read/Write Registers

Address	7	6	5	4	3	2	1	0		
1C _H		Factory Defined Value - 14 _H								
$1D_{H}$	Ratio_in[5:2] Factory Defined Value - 3 _H									
1E _H		Ratio_in[13:6]								
1F _H	Ratio_in[21:14]									
20 _H	Factory Defined Value - 42 _H									

Table 14. Group 2, Sub-Group 'C' Read-Only Registers

Address	7	6	5	4	3	2	1	0	
53 _H		Factory Use Only							
$54_{\rm H}$		Factory Use Only							
55 _H				Factor	y Use Only				
56 _H	Ratio_c	out[1:0]			Factory	Use Only			
57 _H		Ratio_out[9:2]							
58 _H		Ratio_out[17:10]							
59 _H		Factory Use Only Ratio_out[21:18]							
5A _H	Pwrlvl_PowerEstimate[6:0] Factory Us Only						Factory Use Only		
$5B_{H}$		Factory Use Only Pwrlvl_powerEstimate[10:7]							

Bank O, Group 2, Sub-Group 'C' Register Data Field Descriptions

Factory Defined Value The specified value must be written to the data field. In a few cases, several values

are provided for selecting a specific mode and one of the specified values must be

written to the data field.

Factory Use Only This data field is used by the factory and its function is not related to the STEL-2176

receive and transmit characteristics.

Pwrlvl_powerEstimate[10:0]

Ratio_in[21:2]

Ratio_out[21:0]

Bank O, Group 2, Sub-Group 'D' - FFE Address Range Registers

Table 15. Group 2, Sub-Group 'D' Read/Write Registers

Address	7	6	5	4	3	2	1	0	
21 _H	Factory Defined Value - $2_{\rm H} = 16 \ {\rm QAM},$ $0_{\rm H} = 64 \ {\rm QAM}, \ {\rm or}$ $3_{\rm H} = 256 \ {\rm QAM}$		DDenable	UpdateEn	CenterTapAddr				
22 _H		Factory Defined Value - $1A_H = 16$ QAM, $1D_H = 64$ QAM, or $1D_H = 256$ QAM							
23 _H	ShiftSel_	W3[1:0]	ShiftSel_W2[2:0]			ShiftSe	el_W1[2:0]	Factory Defined Value - 0 _H	
$24_{\rm H}$	Factory Defined Value - 0 _H		ShiftSel_W5[2:0]		ShiftSel_W4[2:0] Shift			ShiftSel_W3[2]	

Table 16. Group 2, Sub-Group 'D' Read-Only Registers

SC_1	Address	7	6	5	4	3	2	1	0			
SE ₁₄	5C _H											
SE ₁₄	$5D_{H}$											
68 ₁₄ Wu0[7a] 6C ₁₄ Wu0[7a] 6C ₁₄ Wu0[7a] 6E ₁₄ WC0[7a] 7a ₁ WI1[7a] 7a ₁ WU1[7a] 7a ₁₄ WC1[7a] 7a ₁₄ WC1[7a] 7a ₁₄ WC2[7a] 7a ₁₄ WC2[7a] 7a ₁₅ WC2[7a] 7a ₁₆ WC2[7a] 7a ₁₇ WC2[7a] 7a ₁₈ WC2[7a] 7a ₁₈ WC2[7a] 7a ₁₉ WC2[7a] 7a ₁₁ WC2[7a] 7a ₁₄ WC2[7a] 7a ₁₅ WC2[7a] 7a ₁₆ WC2[7a] 7a ₁₇ WC2[7a] 7a ₁₈ WC2[7a] 7a ₁₉ WC2[7a] 7a ₁₉ WC2[7a] 7a ₁₉ WC2[7a] 7a ₁₉ WC2[7a] 8a ₁₁ WC2[7a] 8a ₁₂ WC2[7a] 8a ₁₃ WC2[7a] 8a ₁₄ WC2[7a] 8a ₁₅ WC2[7a] 8a ₁₆ WC2[7a] 8a ₁₇												
68th Win(158)												
6C ₁₁ W0[158] 6D ₁₄ WQ0[73] 6D ₁₄ WQ0[73] 6D ₁₄ WQ0[158] 6F ₁₆ WII[70] 7U ₄ WIII[58] 71 ₄₁ WQ1[73] 72 ₄₁ WQ1[73] 72 ₄₁ WQ1[73] 73 ₄₁ WI2[70] 74 ₄₁ WI2[158] 73 ₄₁ W2[70] 74 ₄₁ W12[158] 75 ₄₂ WQ2[73] 76 ₄₃ WQ2[73] 76 ₄₄ WQ2[158] 77 ₄₄ WI3[70] 78 ₄₅ WQ3[73] 78 ₄₆ WQ3[73] 78 ₄₇ WI3[70] 78 ₄₈ WQ3[73] 78 ₄₈ WQ3[73] 78 ₄₈ WQ3[73] 78 ₄₈ WQ3[73] 78 ₄₉ WQ4[73] 78 ₄₁ WI3[70] 78 ₄₁ WI3[70] 78 ₄₁ WQ4[73] 78 ₄₂ WQ4[73] 78 ₄₄ WQ4[73] 78 ₄₅ WQ4[73] 78 ₄₆ WQ5[73] 88 ₄₇ WI5[70] 88 ₄₈ WQ5[73] 88 ₄₉ WG5[73] 88 ₄₁ WG5[73] 88 ₄₂ WG5[73] 88 ₄₃ WG5[73] 88 ₄₄ WG5[73] 88 ₄₅ WG5[73] 88 ₄₆ WG5[73] 88 ₄₇ WG5[73] 88 ₄₈ WG5[73] 88 ₄₉ WG7[73] 88 ₄₁ WG5[73] 88 ₄₁ WG5[73] 88 ₄₂ WG5[73] 88 ₄₃ WG5[73] 88 ₄₄ WG5[73] 88 ₄₅ WG5[73] 88 ₄₆ WG5[73] 88 ₄₇ WG5[73] 88 ₄₈ WG5[73] 88 ₄₉ WG7[73] 88 ₄₁ WG5[73] 88 ₄₁ WG5[73] 88 ₄₂ WG5[73] 88 ₄₃ WG5[73] 88 ₄₄ WG5[73] 88 ₄₅ WG5[73] 88 ₄₆ WG5[73] 88 ₄₇ WG5[73] 88 ₄₈ WG5[73] 88 ₄₉ WG7[73] 88 ₄₉ WG7[73] 88 ₄₁ WG5[73] 88 ₄₁ WG5[73] 88 ₄₁ WG5[73] 88 ₄₂ WG5[73] 88 ₄₃ WG5[73] 88 ₄₄ WG5[73] 88 ₄₅ WG5[73] 88 ₄₆ WG5[73] 88 ₄₇ WG5[73] 88 ₄₈ WG5[73] 88 ₄₉ WG7[73] 88 ₄₉ WG7[73] 88 ₄₁ WG5[73] 88 ₄₁ WG5[73] 88 ₄₂ WG5[73] 88 ₄₃ WG5[73] 88 ₄₄ WG5[73] 88 ₄₅ WG5[73] 88 ₄₆ WG5[73] 88 ₄₇ WG5[73] 88 ₄₈ WG5[73] 88 ₄₉ WG5[73] 88 ₄₉ WG5[73] 88 ₄₉ WG5[73] 88 ₄₁ WG5[73] 88 ₄₁ WG5[73] 88 ₄₂ WG5[73] 88 ₄₃ WG5[73] 88 ₄₄ WG5[73] 88 ₄₅ WG5[73] 88 ₄₆ WG5[73] 88 ₄₇ W					W	I0[7:0]						
6E _H WQ0[158]	6C _H				W]	0[15:8]						
6E _H WQ0[158]					W	Q0[7:0]						
66					WÇ	20[15:8]						
Tolin					W	I1[7:0]						
Times					W]	1[15:8]						
72 _H WQ[158] 73 _H W12[7:0] 74 _H W12[158] 75 _H WQ2[7:0] 75 _H WQ2[7:0] 75 _H WQ2[7:0] 75 _H WQ2[158] 77 _H W3[7:0] 78 _H W3[7:0] 78 _H W3[7:0] 78 _H W03[7:0] 78 _H W03[7:0] 78 _H W03[158] 79 _H WQ4[7:0] 76 _H W44[7:0] 77 _H W44[7:0] 77 _H W44[7:0] 77 _H W44[7:0] 78 _H W04[58] 79 _H W04[58] 79 _H W04[58] 79 _H W04[58] 79 _H W05[58] 80 _H W5[7:0] 80 _H W5[7:0] 80 _H W5[7:0] 81 _H W05[7:0] 82 _H W05[158] 83 _H W05[158] 83 _H W6[7:0] 84 _H W6[158] 85 _H W06[7:0] 86 _H W7[7:0] 88 _H W7[158] 89 _H W07[7:0] 80 _H W9[7:0] 80 _H W9[7:0] 90 _H W9[7:0] 90 _H W9[7:0] 91 _H W09[7:0] 91 _H W09[7:0] 91 _H W09[7:0] 91 _H W10[7:0]	$71_{ m H}$				W	Q1[7:0]						
73 ₁₁	72 _H											
74 _H					W	I2[7:0]						
75 _H WQ2[7:0] 76 _H WQ2[15:8] 77 _H WI3[7:0] 78 _H WI3[5:8]					W]	[2[15:8]						
76 _H WQ2[15:8] 77 _H W13[1:6] 78 _H W3[15:8] 29 _H WQ3[7:0] 7A _H WQ3[15:8] 7B _H W14[7:0] 7C _H W4[7:0] 7D _H WQ4[7:0] 7E _H W15[7:0] 80 _H W15[15:8] 81 _H WQ5[7:0] 82 _H WQ5[7:0] 84 _H W16[15:8] 85 _H WQ6[7:0] 86 _H WQ6[7:0] 86 _H WQ7[7:0] 88 _H WQ7[7:0] 88 _H WQ7[7:0] 88 _H WQ7[7:0] 88 _H WQ7[15:8] 89 _H WQ7[15:8] 80 _H WQ7[15:8] 81 WQ8[15:8] 82 WS[15:8] 83 WQ7[15:8] 84 WQ7[15:8] 85 WQ8[15:8] 86 WQ8[15:8] 87 WQ8[15:8] 86 WQ8[15:8]					W	Q2[7:0]						
77 _H Wi3[7:0] 78 _H Wi3[15:8] 79 _H WQ3[7:0] 7A _H WQ3[15:8] 7B _H WI4[7:0] 7C _H WI4[15:8] 7D _H WQ4[7:0] 7E _H WQ4[15:8] 7F _H WI5[7:0] 80 _H WI5[15:8] 81 _H WQ5[7:0] 82 _H WQ5[7:0] 83 _H W[6](7:0] 84 _H W[6](7:0) 85 _H WQ6[7:0] 86 _H WQ6[15:8] 87 _H W[7](7:0) 88 _H W[7](7:0) 8A _H W[7](7:0) 8B _H W[7](7:0) 8C _H W[7](7:												
78 _H WI3[15:8] 79 _H WQ3[7:0] 7A _H WQ3[15:8] 7B _H WI4[7:0] 7C _H WI4[15:8] 7D _H WQ4[15:8] 7E _H WQ4[15:8] 8F _H WI5[7:0] 8O _H WI5[15:8] 81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H WI6[7:0] 84 _H WI6[15:8] 85 _H WQ6[1:8] 87 _H WI7[7:0] 88 _H WI7[15:8] 89 _H WQ7[7:0] 8A _H WQ7[7:0] 8A _H W[8] 8B _H W[8] 9C _H W[8] 9B _H W[9] 9B _H W[9] 9B _H W[9] 9B _H W[9] 9B _H <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
79 _H WQ3[7:0] 7A _H WQ3[15:8] 7B _H WI4[7:0] 7C _H WI4[15:8] 7D _H WQ4[7:0] 7E _H WQ4[15:8] 7F _H WI5[7:0] 80 _H WI5[15:8] 81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H WI6[7:0] 84 _H WG6[15:8] 85 _H WQ6[15:8] 87 _H WI7[7:0] 88 _H WI7[15:8] 89 _H WQ7[7:0] 8A _H WQ7[15:8] 8B _H WQ7[15:8] 8B _H WQ8[7:0] 8C _H WQ8[7:0] 8C _H WQ8[7:0] 8C _H WQ8[7:0] 8E _H WQ9[7:0] 90 _H WP9[7:0] 90 _H WP9[7:0] 94 _H WQ9[7:0] 96 _H WQ10[7:0]												
7A _H	79 _H				W	Q3[7:0]			·			
7G _H Wi4[7:0] 7C _H Wi4[15:8] 7D _H WQ4[7:0] 7E _H WQ4[5:8] 7F _H WI5[7:0] 80 _H WI5[15:8] 81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H WI6[7:0] 84 _H WI6[15:8] 85 _H WQ6[7:0] 86 _H WQ6[15:8] 87 _H WT7[7:0] 88 _H WI7[15:8] 89 _H WQ7[7:0] 8A _H WI8[7:0] 8C _H WI8[7:0] 8C _H WQ8[7:0] 8E _H WQ8[7:0] 8E _H WQ9[7:0] 9C _H WP9[15:8] 9G _H WQ9[7:0] 92 _H WQ9[7:0] 94 _H WI10[7:0] 94 _H WQ10[7:0] 96 _H WQ10[7:0]	$7A_{H}$				WÇ	23[15:8]						
7C _H WI4[15:8] 7D _H WQ4[7:0] 7E _H WQ4[15:8] 7F _I WI5[7:0] 80 _H WI5[7:0] 81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H WI6[7:0] 84 _H WI6[15:8] 85 _H WQ6[1:8] 87 _H WI7[7:0] 88 _H WY7[15:8] 89 _H WQ7[7:0] 8A _H WQ7[15:8] 8B _H W[8](5:8] 8C _H W[8](5:8] 8D _H WQ8[7:0] 8E _H WQ8[7:0] 8E _H WQ8[7:0] 8E _H WQ9[7:0] 90 _H W[9](5:8] 93 _H WQ9[7:0] 94 _H W[10[7:0] 94 _H W[10[7:0] 96 _H WQ10[7:0]	$7B_{\rm H}$				W	I4[7:0]						
7E _H WQ4[15:8] 7F _H W15[7:0] 80 _H W15[15:8] 81 _H WQ5[7:0] 82 _H W05[15:8] 83 _H W16[7:0] 84 _H W16[15:8] 85 _H WQ6[7:0] 86 _H WQ6[15:8] 87 _H W17[7:0] 88 _H W17[15:8] 89 _H WQ7[7:0] 8A _H WQ7[15:8] 8B _H W18[7:0] 8C _H W18[7:0] 8C _H WQ8[7:0] 8E _H WQ8[15:8] 8F _H W19[7:0] 90 _H W19[7:0] 90 _H WQ9[7:0] 92 _H WQ9[7:0] 94 _H W10[7:0] 96 _H WQ10[7:0]					W]	4[15:8]						
7F _H W15[7:0] 80 _H W15[15:8] 81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H W16[7:0] 84 _H W16[15:8] 85 _H WQ6[7:0] 86 _H WQ6[15:8] 87 _H W17[7:0] 88 _H W17[15:8] 89 _H WQ7[7:0] 8A _H WQ7[15:8] 8B _H W18[7:0] 8C _H W18[15:8] 8D _H WQ8[15:8] 8F _H WQ8[15:8] 8F _H W19[7:0] 90 _H W19[15:8] 91 _H WQ9[7:0] 92 _H WQ9[15:8] 93 _H W10[7:0] 94 _H W10[15:8] 95 _H WQ10[7:0] 96 _H WQ10[7:0]	$7D_{\rm H}$				W	Q4[7:0]						
80 _H WI5[15:8] 81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H WI6[7:0] 84 _H WI6[15:8] 85 _H WQ6[7:0] 86 _H WI7[7:0] 88 _H WI7[15:8] 89 _H WQ7[7:0] 8A _H WQ7[15:8] 8B _H WW8[7:0] 8C _H WW8[7:0] 8C _H WQ8[7:0] 8E _H WQ8[15:8] 8F _H WI9[7:0] 90 _H WY9[15:8] 91 _H WQ9[7:0] 92 _H WQ9[15:8] 93 _H WH10[7:0] 94 _H WH10[7:0] 96 _H WQ10[7:0]					WÇ	24[15:8]						
81 _H WQ5[7:0] 82 _H WQ5[15:8] 83 _H WI6[7:0] 84 _H WI6[15:8] 85 _H WQ6[7:0] 86 _H WQ5[15:8] 87 _H WI7[7:0] 88 _H WI7[15:8] 89 _H WQ7[7:0] 8A _H WQ7[15:8] 8B _H WW8[7:0] 8C _H WI8[7:0] 8C _H WQ8[15:8] 8F _H WQ8[15:8] 8F _H WI9[7:0] 90 _H W99[7:0] 92 _H WQ9[7:0] 92 _H WQ9[15:8] 93 _H WI10[7:0] 94 _H WI10[15:8] 95 _H WQ10[7:0] 96 _H WQ10[15:8]	$7F_{\rm H}$				W	I5[7:0]						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c} 86_{\rm H} & WQ6[15:8] \\ 87_{\rm H} & WI7[7:0] \\ 88_{\rm H} & WI7[15:8] \\ 89_{\rm H} & WQ7[7:0] \\ 8A_{\rm H} & WQ7[15:8] \\ 8B_{\rm H} & WQ7[15:8] \\ 8B_{\rm H} & WI8[7:0] \\ 8C_{\rm H} & WI8[7:0] \\ 8C_{\rm H} & WI8[15:8] \\ 8D_{\rm H} & WQ8[7:0] \\ 8E_{\rm H} & WQ8[7:0] \\ 8E_{\rm H} & WQ8[15:8] \\ 8F_{\rm H} & W19[7:0] \\ 90_{\rm H} & W19[7:0] \\ 90_{\rm H} & WQ9[7:0] \\ 92_{\rm H} & WQ9[7:0] \\ 92_{\rm H} & WQ9[15:8] \\ 93_{\rm H} & WI10[7:0] \\ 94_{\rm H} & WI10[7:0] \\ 94_{\rm H} & WI10[7:0] \\ 96_{\rm H} & WQ10[7:0] \\ \end{array}$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c} 8B_{\rm H} & Wi8[7:0] \\ 8C_{\rm H} & Wi8[15:8] \\ 8D_{\rm H} & WQ8[7:0] \\ 8E_{\rm H} & WQ8[5:8] \\ 8F_{\rm H} & Wi9[7:0] \\ 90_{\rm H} & Wi9[15:8] \\ 91_{\rm H} & WQ9[7:0] \\ 92_{\rm H} & WQ9[7:0] \\ 93_{\rm H} & Wi10[7:0] \\ 94_{\rm H} & Wi10[7:0] \\ 94_{\rm H} & Wi10[7:0] \\ 95_{\rm H} & WQ10[15:8] \\ \end{array}$	89 _H											
$\begin{array}{c c} 8C_{\rm H} & WI8[15:8] \\ 8D_{\rm H} & WQ8[7:0] \\ 8E_{\rm H} & WQ8[15:8] \\ 8F_{\rm H} & WI9[7:0] \\ 90_{\rm H} & WI9[15:8] \\ 91_{\rm H} & WQ9[7:0] \\ 92_{\rm H} & WQ9[15:8] \\ 93_{\rm H} & WI10[7:0] \\ 94_{\rm H} & WI10[7:0] \\ 94_{\rm H} & WI10[15:8] \\ 95_{\rm H} & WQ10[15:8] \\ \end{array}$												
$\begin{array}{c c} 8D_{\rm H} & WQ8[7:0] \\ 8E_{\rm H} & WQ8[15:8] \\ 8F_{\rm H} & WI9[7:0] \\ 90_{\rm H} & WI9[15:8] \\ 91_{\rm H} & WQ9[7:0] \\ 92_{\rm H} & WQ9[15:8] \\ 93_{\rm H} & WI10[7:0] \\ 94_{\rm H} & WI10[7:0] \\ 94_{\rm H} & WQ10[15:8] \\ 95_{\rm H} & WQ10[7:0] \\ \end{array}$	8B _H											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c} 92_{\rm H} & WQ9[15:8] \\ \hline 93_{\rm H} & WI10[7:0] \\ \hline 94_{\rm H} & WI10[15:8] \\ \hline 95_{\rm H} & WQ10[7:0] \\ \hline 96_{\rm H} & WQ10[15:8] \\ \hline \end{array}$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
94 _H WI10[15:8] 95 _H WQ10[7:0] 96 _H WQ10[15:8]												
95 _H WQ10[7:0] 96 _H WQ10[15:8]												
96 _H WQ10[15:8]												
7/m WIIII/:01	97 _H					11[7:0]						
98 _H WI11[15:8]												
99 _H WQ11[7:0]												
9A _H WQ11[15:8]	9A											

Bank O, Group 2, Sub-Group 'D' Register Data Field Descriptions

CenterTapAddr Defines which the taps address that will be set as the "center-tap". There are 12

taps in the FFE that can be designated as the center-tap (0 to 11).

DDenable Allows the FFE to switch to "decision-directed" (DD) mode; otherwise the FFE

will remain in its "blind" equalization mode, aka CMA (constant modulus

algorithm) mode.

Factory Defined Value The specified value must be written to the data field. In a few cases, several values

are provided for selecting a specific mode and one of the specified values must be

written to the data field.

Factory Use Only

This data field is used by the factory and its function is not related to the STEL-

2176 receive and transmit characteristics.

ShiftSel_W1[2:0] The setting specifies the step size of the FFE, the nominal value is 2.

ShiftSel_W2[2:0] The setting specifies the step size of the FFE, the nominal value is 2.

ShiftSel_W3[2:0] The setting specifies the step size of the FFE, the nominal value is 2.

ShiftSel_W4[2:0] The setting specifies the step size of the FFE, the nominal value is 2.

ShiftSel_W5[2:0] ShiftSel_W5[2:0] sets the step size when the PLL is acquiring.

UpdateEn Enables update of the feedforward equalizer (FFE).

WI0[15:0] to WI11[15:0] Current in-phase feedforward equalizer coefficients.

WQ0[15:0] to WO11[15:0] Current quadratic feedforward equalizer coefficients.

Bank O, Group 2, Sub-Group 'E' - FBE Address Range Registers

Table 17. Group 2, Sub-Group 'E' Read/Write Registers

Address	7	6	5	4	3	2	1	0
25 _H	Factor	Factory Defined Value - 7 _H		Update_En	Factory Defi 1 ₁	ned Value -	ShiftSel_W_DD[1:0]	
26 _H				Factory Def	ined Value - 7F _H			

Table 18. Group 2, Sub-Group 'E' Read-Only Registers

Address	7	6	5	4	3	2	1	0			
9B _H				W	T0[7:0]						
9C _H		WQ)[3:0]		WI0[11:8]						
9D _H				WÇ	20[[11:4]						
9E _H		WI1[7:0]									
9F _H		WQ:	1[3:0]		WI1[11:8]						
$A0_{H}$				WÇ	21[[11:4]						
$A1_{H}$				W	T2[7:0]						
A2 _H		WQ2	2[3:0]			W	T2[11:8]				
A3 _H				WQ2[[11:4]							
$A4_{H}$				W	/I3[7:0]						
A5 _H		WQ3	3[3:0]			W	T3[11:8]				
$A6_{H}$		•		WÇ	WQ3[[11:4]						
$A7_{H}$	_	•	_	W	T4[7:0]		_	_			

$A8_{H}$	WQ4[3:0]	WI4[11:8]					
A9 _H	WQ	4[[11:4]					
AA_{H}	W	I5[7:0]					
AB_H	WQ5[3:0]	WI5[11:8]					
ACu	WQ5[[11:4]						

Bank 0, Group 2, Sub-Group 'E' Register Data Field Descriptions

Factory Defined Value The specified value must be written to the data field. In a few cases, several values

are provided for selecting a specific mode and one of the specified values must be

written to the data field.

ShiftSel_W_DD Sets the step size for the FBE when the system initially switches the equalizers to

DD mode.

Update_En Enables update of the feedback equalizer (FBE).

WI0[11:0] to WI5[[11:0] Current in-phase feedback equalizer coefficients.

WQ0[11:0] to WQ5[[11:0] Current quadratic feedback equalizer coefficients.

Bank O, Group 2, Sub-Group 'F' - PLL Address Range Registers

Table 19. Group 2, Sub-Group 'F' Read/Write Registers

Address	7	6	5	4	3	2	1	0				
27 _H				Factory Def	ined Value - 64 _H							
28 _H				Factory Def	ined Value - $2A_{ m H}$							
29 _H				Factory Def	ined Value - F4 _H							
$2A_{H}$					ined Value - D6 _H							
$2B_{H}$					ined Value - 64 _H							
$2C_{H}$				Factory Def	ined Value - $2A_{\rm H}$							
$2D_{H}$				Factory Def	ined Value - F4 _H							
$2E_H$		Factory Defined Value - D6 _H										
$2F_{H}$		Factory Defined Value - 64 _H										
$30_{\rm H}$		Factory Defined Value - 2A _H										
$31_{\rm H}$		Factory Defined Value - F4 _H										
32 _H				•	ined Value - D6 _H							
33 _H				•	ined Value - 3F _H							
$34_{\rm H}$	FBE_ShiftSe	el_W_Lock	FI	FE_ShiftSel_W_L			FFE_ShiftSel_W	DD				
$35_{\rm H}$					ined Value - $80_{ m H}$							
36 _H					ined Value - $00_{\rm H}$							
$37_{\rm H}$				•	ined Value - 3F _H			-				
38_{H}	Factory Define	- 11			ory Defined Valu			UpdateEn				
39_{H}		Facto	ry Defined Valı	**		Fa	actory Defined Va	lue - 7 _H				
$3A_H$					ined Value - 88 _H							
$3B_H$					ined Value - 14 _H							
$3C_{H}$				•	ined Value - 88 _H							
$3D_{H}$					ined Value - 14 _H							
$3E_{H}$					ined Value - $88_{ m H}$							
$3F_{H}$				Factory Def	ined Value - $14_{ m H}$							

Table 20. Group 2, Sub-Group 'F' Read-Only Registers

Address	7	6	5	4	3	2	1	0			
60 _H to 68 _H		Factory Use Only									
69 _H		[7:0]									
$6A_{H}$		DeltaPhase[15:8]									

Bank 0, Group 2, Sub-Group 'F' Register Data Field Descriptions

DeltaPhase[15:0] Specifies the initial value for the PLL's phase increment.

Factory Defined Value The specified value must be written to the data field. In a few cases, several values

are provided for selecting a specific mode and one of the specified values must be

written to the data field.

Factory Use Only This data field is used by the factory and its function is not related to the STEL-

2176 receive and transmit characteristics.

FBE_ShiftSel_W_Lock[1:0] Sets the step size of the FBE when the system has "locked" (steady-state operation).

FFE_ShiftSel_W_DD[2:0] Sets the step size of the FFE when the system initially switches the equalizers to

DD mode

FFE_ShiftSel_W_Lock[2:0] Sets the step size of the FFE when the system has "locked" (steady-state operation).

UpdateEn should be high; if UpdateEn is low, the PLL is disabled.

Bank 1 - FEC Registers (Group 3)

The QAM Demodulator Registers Universal Registers are divided into 7 sub-groups of registers. Each sub-

group can have a Read/Write set of registers which are used for control purposes, a Read-only set which are used for monitoring purposes, or a combination of both types of registers. The sub-groups are:

Sub-Group	Name	Read/Write Register Addresses	Read-only Register Addresses
A	Viterbi and De-Mapper	$00_{\rm H}$	Not Used
В	De-Randomizer	Not Used	$41_{ m H}$
С	De-Interleaver	45 _H to 48 _H	43_{H} to 44_{H} and 49_{H} to $4A_{\mathrm{H}}$
D	MPEG Frame Sync	$4B_{H}$ to $4E_{H}$	$4F_{\rm H}$ to $52_{\rm H}$
Е	Frame Sync	53 _H to 57 _H	58 _H to 65 _H
F	Output Clk	66 _H to 6A _H	Not Used
G	Reed-Solomon Decoder	$70_{\rm H}$, $71_{\rm H}$, and $74_{\rm H}$	$72_{\rm H}$ to $73_{\rm H}$

Bank 1, Group 3, Sub-Group 'A' - Viterbi and De-Mapper Registers

Table 21. Group 3, Sub-Group 'A' Read/Write Registers

Address	7	6	5	4	3	2	1	0
$00_{\rm H}$	DVB & IEEE 802.14 map						Factory Defined Value - 3 _F	

Bank 1, Group 3, Sub-Group 'A' Register Data Field Descriptions

DVB & IEEE 802.14 map

Set the value to 1 to select 256 QAM DVB & IEEE 802.14 demapper, 0 selects the

DAVIC 256 QAM demapper.

Factory Defined Value The specified value must be written to the data field. In a few cases, several values

are provided for selecting a specific mode and one of the specified values must be

written to the data field.

Bank 1, Group 3, Sub-Group 'B' - De-Randomizer Registers

Table 22. Group 3, Sub-Group 'B' Read-Only Registers

Address	7	6	5	4	3	2	1	0
$41_{ m H}$	Not Used				DataOut[6:0]			

Bank 1, Group 3, Sub-Group 'B' Register Data Field Descriptions

DataOut

Bank 1, Group 3, Sub-Group 'C' - De-Interleaver Registers

Table 23. Group 3, Sub-Group 'C' Read/Write Registers

Address	7	7 6 5 4 3 2 1								
45 _H		Not used ShadowMode Level2								
$46_{\rm H}$		Not used TestMode								
$47_{\rm H}$		I_test								
48 _H		Not used J_test								

Table 24. Group 3, Sub-Group 'C' Read-Only Registers

Address	7	7 6 5 4 3 2 1 0										
43 _H		I_test										
$44_{ m H}$		J_test										
49_{H}		SRAM_addr[15:8]										
$4A_{H}$		SRAM_addr[7:0]										

Bank 1, Group 3, Sub-Group 'C' Register Data Field Descriptions

I_test (Read / Write) The I value used during test mode.

I_test (Read-Only) Read register that permits looking at I value when the interleaver is running

during test.

J_test (Read/Write) The J value used during test mode.

J_test (Read-Only) Read register that permits looking at J value when the interleaver is running

during test.

Level2 There are two distinct operating modes of interleaving for Annex B. If Level2 is 1,

the depth of interleaving is variable and depends on a control word from Frame Sync. If Level2 is 0 (level 1), interleaving is always 128 X 1; the control word does

not matter.

ShadowMode There is 8 Kbytes of internal memory for the interleaver. In normal operation, the

interleaver first fills up its internal memory, then uses external memory. If

Shadow mode is 1, internal memory is bypassed.

SRAM_addr[15:0] The address is used by the interleaver to access the SRAM. For Annex A, 256-

QAM requires external SRAM.

TestMode The Interleaving type is set elsewhere by selecting QAM and Annex type. Setting

this register to 1, enables use of the I and J values stored in the I_test and J_test

Read/Write registers.

Bank 1, Group 3, Sub-Group 'D' - MPEG FrameSync Registers

Table 25. Group 3, Sub-Group 'D' Read/Write Registers

Address	7	7 6 5 4 3 2 1										
$4B_{\rm H}$		HIT										
$4C_{\rm H}$		MISS										
$4D_{\rm H}$		SyncSymbol										
$4E_{\rm H}$		Not used OP_ERR										

Table 26. Group 3, Sub-Group 'D' Read-Only Registers

Address	7	6	5	4	3	2	1	0			
$4F_{\rm H}$		Factory Use Only									
$50_{\rm H}$		Factory Use Only									
$51_{\rm H}$		Factory Use Only									
52 _H		Factory Use Only									

Bank 1, Group 3, Sub-Group 'D' Register Data Field Descriptions

Factory Use Only This data field is used by the factory and its function is not related to the STEL-

2176 receive and transmit characteristics.

HIT The number of Syncs that must be detected before data is output.

MISS The number of misses before the MPEG Frame Sync state machine goes into idle.

OP_ERR Setting the value to 1 enables flagging of data errors via the checksum in the

Frame Sync byte.

SyncSymbol Used in Annex A only to input an arbitrary MPEG FRAME sync symbol; normally

47_H.

Bank 1, Group 3, Sub-Group 'E' - FrameSync Registers

Table 27. Group 3, Sub-Group 'E' Read/Write Registers

Address	7	6	5	4	3	2	1	0
53 _H		ErrorTolerance[5:0] ErrorTolEn NoMissN						NoMissMode
54 _H	TRACK[7:0]							
55 _H	HIT[7:0]							
56 _H		MISS[7:0]						
57 _H		SyncSymbol[7:0]						

Table 28. Group 3, Sub-Group 'E' Read-Only Registers

Address	7	6	5	4	3	2	1	0
58 _H to 65 _H		Factory Use Only						

Bank 1, Group 3, Sub-Group 'D' Register Data Field Descriptions

Factory Use Only This data field is used by the factory and its function is not related to the STEL-

2176 receive and transmit characteristics.

NoMissMode If NoMissMode is 1, then once Frame Sync is acquired the state machine will

never go to the idle mode, even if all data is bad.

ErrorTolEn If ErrorTolEn is 1, then all bits in the Frame Sync sequence must match the

expected pattern. This is for Annex B only.

ErrorTolerance Sets the number of bits that can be wrong in the Frame Sync sequence and have

the sequence considered valid.

TRACK The number of frames the Frame Sync state machine must detect before telling the

Viterbi that data should be realigned. This is for Annex B only.

HIT The number of Syncs that must be detected before data is output.

MISS The number of misses before the Frame Sync state machine goes into idle.

SyncSymbol Used in Annex A only to input an arbitrary FRAME sync symbol; normally 47_H.

Bank 1, Group 3, Sub-Group 'F' - OutputClk Registers

Table 29. Group 3, Sub-Group 'F' Read/Write Registers

Address	7	6	5	4	3	2	1	0
66 _H		Nominal_value[7:0]						
67 _H		Nominal_Value[15:8]						
68 _H		Nominal_Value[19:16]						
69 _H		Not Used				ByPass Mode	LSB_First	Serial Mode
$6A_{H}$	Not Used				Sc	ale[3:0]		

Bank 1, Group 3, Sub-Group 'F' Register Data Field Descriptions

ByPass Mode Setting to 0, enables output clock block to eliminate gaps between MPEG frames.

LSB_First set

Nominal_Value[19:0] The 20-bit value is programmed according to the Annex and QAM type, as shown

below. It controls how fast the output clock is operating by setting the ratio of the

high speed clock to the output clock.

Annex A Annex B STEL Use Only

16-QAM64-QAM256-QAM

Scale Controls the amount of jitter in the output clock. If Scale is set to low, acquisition

of the input data will be slower (i.e., locking onto it will take longer) but the clock

will be smoother.

Serial Mode is 1, the data is serial.

Bank 1, Group 3, Sub-Group 'G' - Reed-Solomon Decoder Registers

Table 30. Group 3, Sub-Group 'G' Read/Write Registers

Address	7	6	5	4	3	2	1	0	
$70_{\rm H}$	Factory Defined Value - CC_H = Annex A:, 80_H = Annex B:								
$71_{\rm H}$		Not Used			OutputDataRate				
$74_{\rm H}$	Not Used CLR_I					CLR_ERR			

Table 31. Group 3, Sub-Group 'G' Read-Only Registers

Address	7	6	5	4	3	2	1	0
72 _H		Error_cnt[7:0]						
73 _H		Error_cnt[15:8]						

Bank 1, Group 3, Sub-Group 'G' Register Data Field Descriptions

Factory Defined Value The specified value must be written to the data field. In a few cases, several values

are provided for selecting a specific mode and one of the specified values must be

written to the data field.

CLR_ERR Clears the Error_cnt register

Error_cnt[15:0] Error_cnt[7:0] is byte 0 of the number of errors found in a block and

Error_cnt[15:8] is byte 1 of the number of errors found in a block.

OutputDataRate The value to be written to the OutputDataRate data field is dependent on the value of

Register $FE_{H}[3:0]$.

When Register FE _H [3:0] is:	OutputDataRate[4:0] should be set to:
0_{H}	10 _H
1 _H	Not Valid
2 _H	10 _H
$4_{ m H}$	0A _H
5 _H	08 _H
6 _H	0А _н
8 _H	08 _H
9 _H	07 _H
A_{H}	Not Valid

TIMING

The basic input to the receiver is an analog input; basic outputs consist of data (serial or parallel), an output clock and a frame sync. These outputs are shown in the four timing diagrams that follow.

There are four output modes depending on whether there are gaps between frames and depending on whether the data output is parallel (8 bit) or serial.

The addition of the Read-Solomon checksum creates gaps in the transmission of the MPEG-2 frame. But the STEL-2176 provides the option of spreading the gap over a frame so there appears to be no gap. For gap or no-gap mode, data may be parallel or serial.

The four modes are as follows:

NO GAP, PARALLEL MODE

Here Frame-Sync/ indicates the first byte of an MPEG-2 frame, and Output Clock is approximately 50% of the byte period. There are 188 bytes in a frame

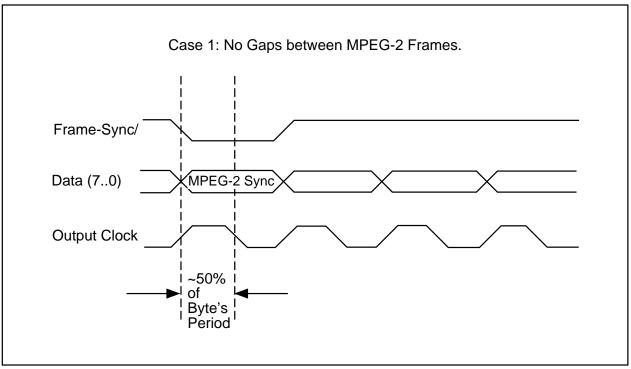
with one byte per symbol.

NO GAP, SERIAL MODE

This is similar to the above. Here the frame length is 8 X 188 bits, and the Output Clock is for a bit period rather than a byte period.

GAPS, PARALLEL MODE

In this mode there are two differences:

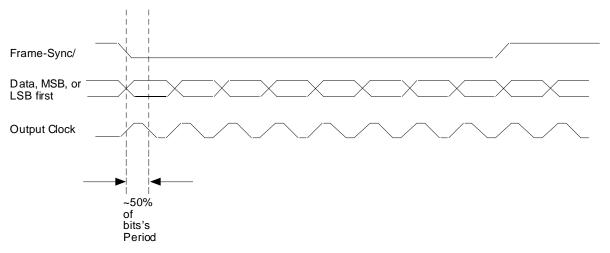

The Output Clock is now approximately 8 nanoseconds.

The Output Clock goes for 188 bytes, then the data and clock stop until Frame-Sync/ is asserted again.

GAPS, SERIAL MODE

This mode is the same as above, but here the bytes are serialized. There are 8 X 188 clocks and 8 X 188 bits per Frame-Sync/.

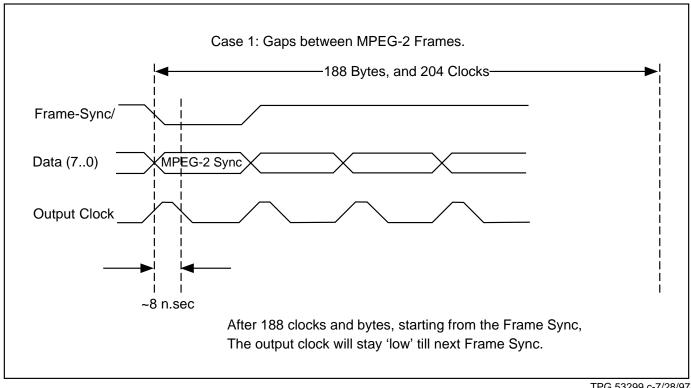
DOWNSTREAM OUTPUT TIMING (SERIAL DATA OUTPUT)



TPG 53298.c-7/28/97

Figure 19.

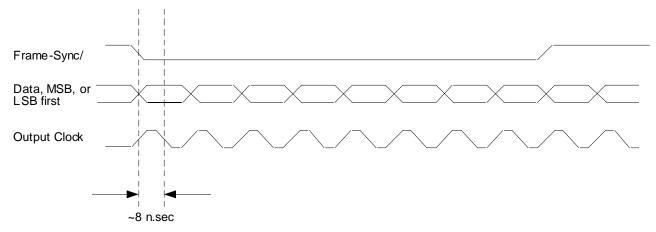
DOWNSTREAM OUTPUT TIMING (SERIAL OUTPUT)


Case 1: No Gaps between MPEG-2 Frames.

TPG 53300.c-7/28/97

Figure 20.

DOWNSTREAM OUTPUT TIMING (PARALLEL DATA OUTPUT)

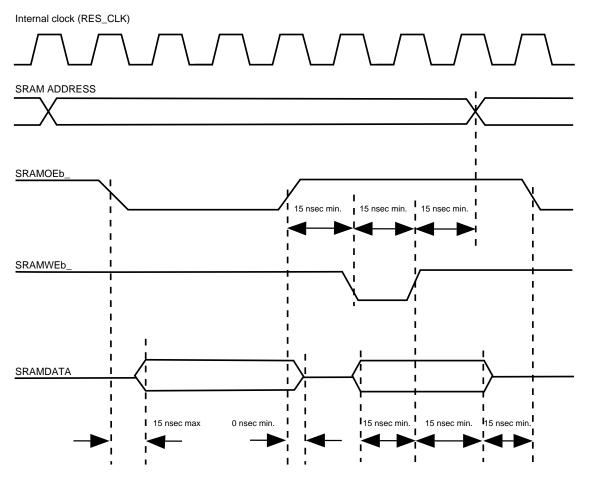


TPG 53299.c-7/28/97

Figure 21.

DOWNSTREAM OUTPUT TIMING (SERIAL DATA OUTPUT)

Case 1: No Gaps between MPEG-2 Frames.



After 8*204 clocks and 8*204 bITS, starting from the Frame Sync, The output clock will stay 'low' till next Ftame Sync.

TPG 53297.c-7/28/97

Figure 22.

DE-INTERLEAVER EXTERNAL SRAM TIMING

WCP 53888.C-12/6/97

Figure 23.

TRANSMITTER

INTRODUCTION

The STEL-2176¹ contains a highly integrated, maximally flexible, burst transmitter targeted to the cable modem market. It receives serial data, randomizes the data, performs FEC and differential encoding, maps the data to a constellation before modulation, and outputs an analog RF signal.

The STEL-2176 is the latest in a series of modulator chips that comprise the STEL-1103 through STEL-1109 modulators. Several key components (e.g., a 64-bit FIR and a clock multiplier) have been incorporated in the STEL-2176 and the enhancements have resulted in significant improvements to the chip's performance.

The STEL-2176 is capable of operating at data rates of up to 10 Mbps in BPSK mode, 20 Mbps in QPSK mode, and 40 Mbps in 16QAM mode. It operates at clock frequencies of up to 165 MHz, which allows its internal, 10-bit Digital-to-Analog Converter (DAC) to generate RF carrier frequencies of 5 to 65 MHz.

The STEL-2176 also uses digital FIR filtering to optimally shape the spectrum of the modulating data prior to modulation. This optimizes the spectrum of the modulated signal, and minimizes the analog filtering required after the modulator. The filters are designed to have a symmetrical (mirror image) polynomial transfer function, thereby making the phase response of the filter linear. This also eliminates the inter-symbol interference that results from group delay distortion. In this way, it is possible to change the carrier frequency over a wide frequency range without having to change filters, thus providing the ability to operate a single system in many channels.

The STEL-2176 can operate with very short gaps between transmitted bursts to increase the efficiency of Time Division Multiple Access (TDMA) systems. The STEL-2176 operates properly even when the interburst gap is less than four (4) symbols (half the length of the FIR filter response). In this case the

postcursor of the previous burst overlaps and is superimposed on the precursor of the following burst.

Signal level scaling is provided after the FIR filter to allow the STEL-2176's maximum arithmetic dynamic range to be utilized. Signal levels can be changed over a wide range depending on how the device is programmed.

In addition, the STEL-2176 is designed to operate from a 3.3 Vdc power supply and the chip can be interfaced with logic that operates at 5 Vdc.

FUNCTIONAL BLOCK DIAGRAM DESCRIPTIONS

The STEL-2176 is comprised of the Data Path (see page 39) and Control Unit (see page 52) sections shown in Figure 24. The Data Path is comprised of a Bit Sync Block, Bit Encoder Block (i.e., the Scrambler, Reed-Solomon Encoder, and two Multiplexers shown in Figure 25), Symbol Mapper Block (i.e., the Bit Mapper, Differential Encoder, and Symbol Mapper are shown in Figure 28), two channels (one for I and one for Q), a Combiner, and a 10-bit DAC. Each channel consists of a Nyquist Filter, Interpolation Filter, and Modulator. The Control Unit is comprised of a Bus Interface Unit (BIU), Clock Generator, and NCO.

Table 32 summarizes the main features of the circuits described by the remaining paragraphs of this section.

DATA PATH DESCRIPTION

Bit SYNC Block

The Bit Sync Block has two functions: latching input data, and synchronizing the STEL-2176 TXBITCLK and symbol counters to the user data.

The STEL-2176 utilizes advanced signal processing techniques which are covered by U.S. Patent Number 5,412,352.

Table 32. Transmit Features

Feature	Characteristic
Carrier frequency:	5 to 65 MHz (maximum of approximately 40% of master clock)
Symbol rate:	From Master clock divided by 16 down to Master clock divided by 16384 (in steps of 4) yielding a maximum symbol rate of 10 Msps with a 160 MHz clock.
FIR filter tap coefficients:	64 programmable taps (10 bits each), symmetric response
Modulation:	BPSK, QPSK, or 16QAM
16QAM constellation:	Eight selectable bit-to-symbol mappings
	Five selectable symbol-to-constellation mappings
I and Q modulator signs / Spectral Inversion	Signs of I and Q plus the mapping to Sine and Cosine carriers is programmable.
Reed-Solomon Encoder:	Selectable on/off
	Two selectable generator polynomials
	Block length shortened any amount
	Error correction capability $T = 1$ to 10
Scrambler:	Selectable on/off
	Self-synchronizing or frame synchronized (sidestream)
	Location before or after RS Encoder
	Programmable generator polynomial
	Programmable length up to 2 ²⁴ - 1
	Programmable initial seed
Differential Encoder:	Selectable on/off

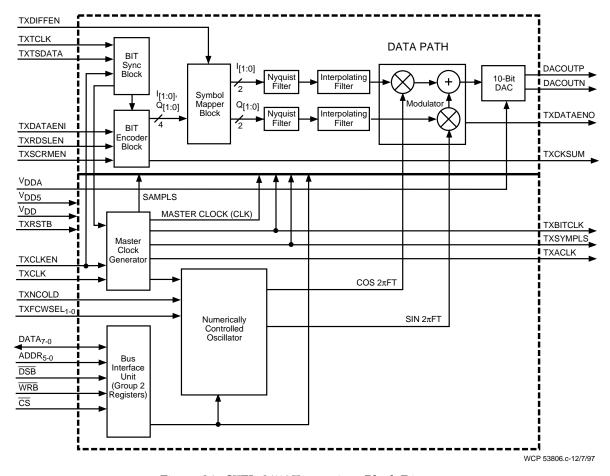


Figure 24. STEL-2176 Transmitter Block Diagram

			0 1	
Data Source	Latched By	Register 2C Bit 7	Register 2D Bits 1,0	Mode Name
TXTSDATA	TXBITCLK	0	X,0	Master Mode
TXTSDATA	TXTCLK	1	X,0	Slave Mode
PN Code 10, 3	TXBITCLK	0	0,1	Test Mode
PN Code 23, 18	TXBITCLK	0	1,1	Test Mode

Table 33. Data Latching Options

Latching Input Data

Latching of input data is accomplished in one of three modes:

- Externally supplied TXTSDATA is latched by the internal TXBITCLK (Master mode).
- Externally supplied TXTSDATA is latched by an externally provided TXTCLK (Slave mode).
- Internally generated PN code data is latched by the internal TXBITCLK (Test mode).

See Table 33 for register settings to implement each mode.

TXBITCLK latches data on its falling edge. TXTCLK latches data on its rising edge.

Whenever the TXCLKEN input is low, the TXBITCLK output will stop. There is also an auxiliary continuous clock (TXACLK) output which is discussed later in the clock generator section. The TXACLK output is primarily for use in master mode where users may need a clock to run control circuits during the time between bursts.

When using slave mode, the data that is latched by the rising edge of TXTCLK is re-latched internally by the next falling edge of TXBITCLK which re-synchronizes the data to the internal master clock.

Synchronizing TXBITCLK / TXSYMPLS

The synchronization circuit aligns the STEL-2176 TXBITCLK and its TXSYMPLS counter circuits to the beginning of the first user data symbol. The circuit has two parts, an arming circuit and a trigger circuit. Once armed, the first rising edge on the TXTCLK input will activate (trigger) the synchronization process.

The circuit can be armed in two ways; taking TXCLKEN from low to high, or toggling Block 2 Register $2E_H$ bit 0 from low to high to low again. In a normal burst mode application, the circuit is automatically re-armed between bursts because

TXCLKEN goes low. For applications that will not allow TXCLKEN to cycle low between bursts, some system level precautions should be observed to maintain synchronization of user data to the STEL-2176 TXBITCLK.

Once triggered, the sync circuit re-starts the TXBITCLK and TXSYMPLS counters. The TXBITCLK output starts high, and TXSYMPLS resets to the start of a symbol. There is a delay equal to about three cycles of the master clock from the rising edge of the TXTCLK input before this re-start occurs. During this brief delay period, the TXBITCLK and TXSYMPLS counters are still free running and may or may not have transitions.

In master mode, the rising edge of TXTCLK normally marks the transition of the first user data bit (which will be latched in by the next falling edge of TXBITCLK). In slave mode, the first user data bit must already be valid at this first rising edge of TXTCLK.

Bit Encoder Block

The Bit Encoder Block consists of a Scrambler, a Reed-Solomon Encoder, and data path controls (multiplexers), as shown in **Figure 25**.

Data Path Control (Multiplexers)

The STEL-2176 provides a great deal of flexibility and control over the routing of data through or around the encoding functions. With appropriate register selections, data can be routed around (bypass) both encoders, through either one and around the other, through the scrambler then the RS Encoder, or through the RS Encoder and then the scrambler. Control over the bypassing can be set for software control or external

(user) input signal control. Generally, if an encoding function will be left either on or off continuously, then software control is appropriate. If the function must be turned on and off dynamically (typically in order to send the preamble 'in the clear' i.e. unencoded), then external (user) input control is required. If the Reed-Solomon encoder will not be used at all, then a separate

bypass option can be activated to remove an 8-bit delay register from the data path that is required if the possibility of turning on the encoder exists. Each of the external (user) input control pins (if enabled) turns on the encoding function when high and bypasses the function when low.

The TXDATAENI input signal determines whether or not data will advance (shift through) the encoding blocks. The presence of a high on the TXDATAENI input when the TXBITCLK output goes low allows the circuits to advance data through them. The TXDATAENI signal is delayed internally to allow the rising edge of TXDATAENI to coincide with the first rising edge of TXTCLK.

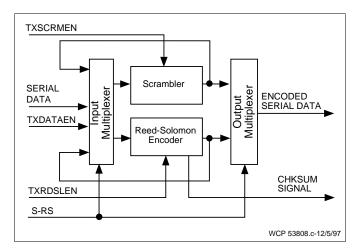


Figure 25. Bit Encoder Functional Diagram

See Table 34 for a summary of register settings required to achieve the various data path possibilities.

Data Path	Register 36 Bits 6,5	Register 38 Bits 7-2
Data stopped (continuously)	X,X	01 XX XX
Data path on (continuously)	X,X	11 XX XX
Data path enabled by pin 109	X,X	X0 XX XX
Scrambler off (continuously)	X,X	XX XX 01
Scrambler on (continuously)	X,X	XX XX 11
Scrambler enabled by pin 118	X,X	XX XX X0
RS Encode off (continuously)	1,X	XX 01 XX
RS Encode on (continuously)	1,X	XX 11 XX
RS Encode enabled by pin 117	1,X	XX X0 XX
Scrambler then RS Encoder	1,1	XX XX XX
RS Encoder then Scrambler	1,0	XX XX XX
Bypass RS Encoder	0,X	XX XX XX

Table 34. BIT Encoding Data Path Options

Scrambler

The scrambler can be used to randomize the serial data in order to avoid a strong spectral component that might otherwise arise from the occurrence of repeating patterns in the input data. The Scrambler (Figure 26) uses a Pseudo-Random (PN) generator to generate a PN code pattern. All 24 registers are presettable and any combination of the registers can be connected (tapped) to form any polynomial of up to 24 bits. The scrambler may be either frame synchronized or self synchronized. Table 35 shows the registers involved.

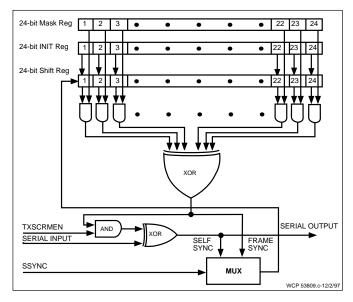


Figure 26. Scrambler Block Diagram

The value in the INIT registers is loaded into the scrambler shift registers whenever the scrambler is at disabled. The scrambler will scramble data one bit a time at each falling edge of TXBITCLK that occurs while both the scrambler and TXDATAENI are active

(enabled). Internal delays on the TXSCRMEN control signal input allow for a rising edge to occur coincident with the rising edge of TXBITCLK that precedes the latching of the first data bit to be scrambled.

The Mask, Init, and SSync fields can be programmed for different scrambler configurations. For example, the DAVIC Scrambler configuration shown in Figure 27 can be implemented by programming the Mask, Init, and SSync fields with the values indicated by Table 36.

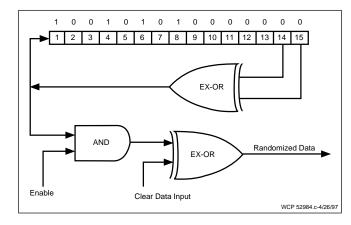


Figure 27. DAVIC Scrambler

Parameter	Characteristic	В	lock 2 Register Setti	ng
Generator Polynomial (Mask Reg)	$p(x) = c_{24}x^{24} + c_{23}x^{23} + + c_1x + 1$ where c_i is a binary value $(0, 1)$	Register 35 Bit 7 to Bit 0 c_{24} to c_{17}	Register 34 Bit 7 to Bit 0 c_{16} to c_{9}	Register 33 Bit 7 to Bit 0 c_8 to c_1
Seed (INIT Reg)	Any 24-bit binary value, s ₂₄₋₁	Register 32 Bit 7 to Bit 0 s_{24} to s_{17}	Register 31 Bit 7 to Bit 0 s ₁₆ to s ₉	$\begin{array}{ccc} \text{Register 30} \\ \text{Bit 7} & \text{to} & \text{Bit 0} \\ \text{s}_8 & \text{to} & \text{s}_1 \end{array}$
Scrambler Type	Frame synchronized (sidestream)	Register 36 Bit 4 Set to zero		
Scrambler Type	Self-synchronized	Register 36 Bit 4 Set to one		

Table 35. Scrambler Parameters

Table 36. Sample Scramble Register Values

Parameter	Characteristic	Bl	ock 2 Register Setti	ng
Generator Polynomial (Mask Reg)	$p(x) = x^{15} + x^{14} + 1$	Register 35 Bit 7 to Bit 0 0000 0000	Register 34 Bit 7 to Bit 0 0110 0000	Register 33 Bit 7 to Bit 0 0000 0000
Seed (INIT Reg)	0000A9 _н	Register 32 Bit 7 to Bit 0 0000 0000	Register 31 Bit 7 to Bit 0 0000 0000	Register 30 Bit 7 to Bit 0 1010 1001
Scrambler Type	Frame synchronized (sidestream)	Register 36 Bit 4 Set to zero		

Reed-Solomon Encoder

The STEL-2176 uses a standard Reed-Solomon (RS) Encoder for error correction encoding of the serial data stream. The error correction encoding uses GF (256) and can be programmed for an error correction capability of 1 to 10, a block length of 3 to 255, and one of two primitive polynomials using the data fields listed in Table 37

When TXDATAENI is high and the RS Encoder is enabled, the serial data stream both passes straight through the RS Encoder and also into encoding circuitry. The encoding circuitry computes a checksum that is 2T bytes long for every K bytes of input data. After the last bit of each block of K bytes of input data,

the RS Encoder inserts its checksum (2T bytes of data) into the data path. There is no adverse effect to letting TXTCLK or TXTSDATA continue to run during the checksum; the data input will be ignored. TXCKSUM will be asserted high to indicate that the checksum bytes are being inserted into the data stream and will be lowered at the end of the checksum data insertion. The width of the TXCKSUM pulse is 2T bytes.

The STEL-2176 registers include two bits for determining the bit order for data into and checksum out of the RS Encoder circuitry. Set these to match the Reed-Solomon decoding circuitry along with the other parameters.

Table 37. Reed-Solomon Encoder Parameters

Field Name	Block 2 Register	Description
PP	36 _H (bit 7)	1-bit field for selecting Primitive Polynomial:
		$0 \Rightarrow p(x) = x^8 + x^4 + x^3 + x^2 + 1$
		$1 \Rightarrow p(x) = x^8 + x^7 + x^2 + x + 1$
T	36 _H (bits 3-0)	4-bit field for setting Error Correction Capability. Programmable over the range of 1 to 10.
K	37 _H (bits 7-0)	8-bit field for setting User Data Packet Length (K) in bytes. Programmable over the range of 1 to (255 - 2T). [Net block length, $N = K + 2T$]
LDLSBF	39 _H (bit 4)	Determines whether the first bit of the serial input is to be the MSB (bit $4=0$) or LSB (bit $4=1$) of the byte applied to the RS Encoder.
TRLSBF	39 _H (bit 5)	Determines whether the MSB (bit $5 = 0$) or LSB (bit $5 = 1$) of the RS Encoder checksum byte is to be the first bit of the serial output data.

Notes:

GF (256).

Code generator polynomial 1 is used when PP=1:
$$G(x) = \prod_{i=120}^{119+2T} (x - \alpha^i) \Big|_{\alpha = 02H}$$

Code generator polynomial 2 is used when PP=0. $G(x) = \prod_{i=0}^{2T-1} (x - \alpha^i) \Big|_{\alpha = 02H}$

Code generator polynomial 2 is used when PP=0.
$$G(x) = \prod_{i=0}^{2T-1} (x - \alpha^i) \Big|_{\alpha} = 02H$$

Symbol Mapper Block

The Symbol Mapper Block (Figure 28) maps the serial data bits output by the Bit Encoder Block to symbols, differentially encodes the symbols, and (in 16QAM) maps the symbols to one of five constellations. The Symbol Mapper Block functions are modulation dependent. The modulation mode also defines the number of bits per symbol. The Symbol Mapper Block outputs 2 bits for each symbol to each of the two Nyquist (FIR) Filters.

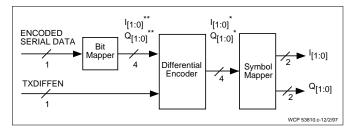


Figure 28. Mapping Block Functional Diagram

Bit Mapper

The Bit Mapper receives serial data and maps the serial data bits to output symbol bits (I_1^{**} , I_0^{**} , Q_1^{**} , and Q_0^{**}). There are four output bits per symbol even in BPSK and QPSK modes. In BPSK, all bits are set equal to each other. In QPSK, each input symbol bit drives a pair of output bits. The four symbol bits are routed to the Differential Encoder in parallel.

For BPSK modulation, each bit (symbol = b_0) of the input serial data stream is mapped directly to I_1^{**} , Q_1^{**} , I_0^{**} , and Q_0^{**} (i.e., $I_1^{**} = I_0^{**} = Q_1^{**} = Q_0^{**} = b_0$). Thus, bit mapping has no affect on the respective value of the symbol's four bits, as shown in Table 38.

For QPSK modulation, each pair of bits (a dibit) forms a symbol (b_0 b_1). The QPSK dibit is mapped so that $I_1^{**} = I_0^{**}$ and $Q_1^{**} = Q_0^{**}$ as shown in Table 38.

For 16QAM, every four bits (a nibble) forms a symbol $(b_0b_1b_2b_3)$. The 16QAM nibble is mapped to I_1^{**} , Q_1^{**} , I_0^{**} , and Q_0^{**} , as shown in Table 38.

	Bit-To-Symbol Mapping				Bit Mapping	Mod Mode
Mode	b _o	$\mathbf{b}_{_{1}}$	\mathbf{b}_{2}	$\mathbf{b}_{\scriptscriptstyle 3}$	Register 2D bits 6-4	Register 2C bits 3,2
BPSK	$I_1^{**} Q_1^{**} I_0^{**} Q_0^{**}$	N/A	N/A	N/A	XXX	1X
QPSK	$I_1^{**}I_0^{**}$	$Q_{1}^{**} Q_{0}^{**}$	N/A	N/A	XX0	00
QPSK	$Q_1^{**} Q_0^{**}$	$\mathbf{I_1}^{**} \mathbf{I_0}^{**}$	N/A	N/A	XX1	00
16QAM	I_1^{**}	${ m I_0}^{**}$	Q_1^{**}	$Q_0^{\star\star}$	000	01
16QAM	Q_1^{**}	Q_0^{**}	${ m I_1}^{**}$	\mathbf{I}_0^{**}	001	01
16QAM	I_0^{**}	${ m I_1}^{**}$	$Q_0^{\star\star}$	$Q_1^{\star\star}$	010	01
16QAM	Q_0^{**}	Q_1^{**}	${ m I_0}^{**}$	I_1^{**}	011	01
16QAM	I_1^{**}	Q_1^{**}	${ m I_0}^{**}$	$Q_0^{\star\star}$	100	01
16QAM	Q_1^{**}	I_1^{**}	Q_0^{**}	I_0^{**}	101	01
16QAM	I_0^{**}	Q_0^{**}	I ₁ **	$Q_1^{\star\star}$	110	01
16QAM	Q_0^{**}	${ m I_0}^{**}$	Q_1^{**}	I_1^{**}	111	01
Note: b ₀ is the first serial data bit to arrive at the Bit Mapper						

Table 38. Bit Mapping Options

Differential Encoder

The Differential Encoder encodes the bits (i.e., I_1^{**} , I_0^{**} , Q_1^{**} , and Q_0^{**}) of each symbol received from the Bit Mapper to determine the output bit values (i.e., I_1^{*} , Q_1^{*} , I_0^{*} , and Q_0^{*}), which are routed to the Symbol Mapper.

The differential encoder can be either enabled or bypassed under the control of either a register bit or a user supplied control signal (TXDIFFEN). The selection between user input pin control or register control is made in another register bit, as shown in Table 39.

Table 39. Differential Encoder Control

Level/Value	Register 38 Bits 1,0
Encoding off (continuously)	0,1
Encoding on (continuously)	1,1
Encoding enabled by pin 116 high - enable the Differential Encoder low - disable the Differential Encoder	X,0

For any modulation mode, if differential encoding is disabled then:

$$I_1^* Q_1^* I_0^* Q_0^* = I_1^{**} I_0^{**} Q_1^{**} Q_0^{**}$$

If differential encoding is enabled, then the results are described below for each modulation type.

<u>BPSK</u>

In BPSK mode, the next output bit is found by XORing the input bit with the current output bit. The result is a

180 degree phase change if the output is high and 0 degrees if the output is low.

QPSK

In QPSK mode, the next output dibit is found by XORing the input dibit with the current output dibit. Table 40 shows the results of the differential encoding performed for QPSK modulation and the resulting phase shift. In the table, $I = I_1 = I_0$ and $Q = Q_1 = Q_0$.

16QAM

In 16QAM mode, the differential encoding algorithm is the same as in QPSK. Only the two MSB's, I_1^{**} and Q_1^{**} are encoded. The output bits I_0^{*} and Q_0^{*} are set equal to the inputs bits I_0^{**} and Q_0^{**} .

Table 40. QPSK Differential Encoding and Phase Shift

Current Input (IQ)	Current Output (IQ)	Next Output (IQ)	Phase Shift (degrees)
00	00	00	0
	01	01	-90 (CW)
	10	10	90 (CCW)
	11	11	180
01	00	01	-90 (CW)
	01	11	180
	10	00	0
	11	10	90 (CCW)
10	00	10	90 (CCW)
	01	00	0
	10	11	180
	11	01	90 (CCW)
11	00	11	180
	01	10	90 (CCW)
	10	01	-90 (CW)
	11	00	0

Symbol Mapper

The Symbol Mapper receives I_1^* , Q_1^* , I_0^* , Q_0^* of each symbol. Based on the signal modulation and the symbol mapping selection, the Symbol Mapper block maps the symbol to a constellation data point (I_1,Q_1,I_0,Q_0) . The Symbol Mapping field (bits 7-5 of Block 2 Register $2E_H$) will map the four input bits to a new value, as indicated in Table 41.

BPSK and QPSK

For BPSK and QPSK, the settings of the symbol to constellation mapping bits is ignored. The constellations for BPSK (Figure 29) and QPSK (Figure 30) are shown below. I_1Q_1 values are indicated by large, bold font ($\bf{00}$ and $\bf{11}$) and I_0Q_0 values by the smaller font ($\bf{00}$ and $\bf{11}$).

16QAM

For 16QAM modulation, the Symbol Mapper maps each input symbol to one of the 16QAM constellations. The specific constellation is programmed by the Symbol

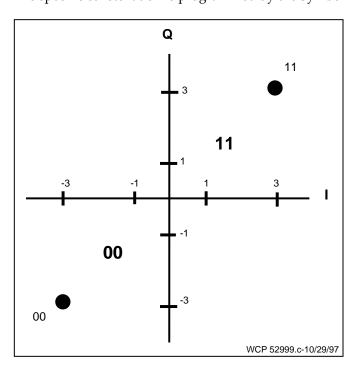


Figure 29. BPSK Constellation

Mapping field (bits 7-5 of Block 2 Register $2E_H$) to select the type of symbol mapping. If the MSB of the Symbol Mapping field is set to 0, the mapping will be bypassed and $I_1Q_1I_0Q_0 = I_1^*Q_1^*I_0^*Q_0^*$. The resulting constellation (Figure 31) is the natural constellation for the STEL-2176.

If the MSB of the Symbol Mapping field is set to 1, bits 6-5 can select any of four possible types of symbol mapping (Gray, DAVIC, Left, or Right), as indicated by Table 41.

Table 42 summarizes the symbol mapping and the resulting constellations are shown in Figure 31 and Figure 32. In these figures, I_1Q_1 are indicated by large, bold font (**00**, **01**, **10**, and **11**) and I_0Q_0 by the smaller font (00, 01, 10, and 11).

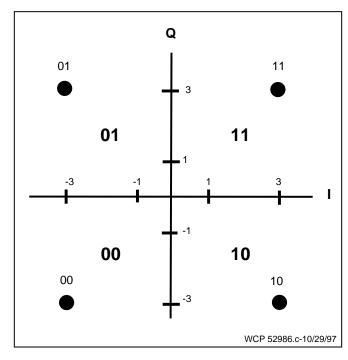


Figure 30. QPSK Constellation

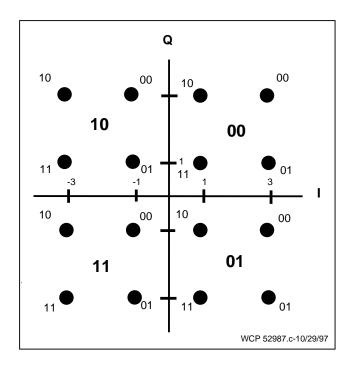


Table 41. Symbol Mapping Selections

Mapping Selection	Register 2E Bits 7-5
Natural	0XX
Gray	100
DAVIC	101
Left	110
Right	111

Figure 31. Natural Mapping Constellation

Table 42. Symbol Mapping

Input Code					
Natural Mapping (Bypass) I ₁ Q ₁ I ₀ Q ₀	Gray I₁˙Q₁˙I₀˙Q₀˙	$\begin{array}{c} \textbf{DAVIC} \\ \textbf{I}_1 \cdot \textbf{Q}_1 \cdot \textbf{I}_0 \cdot \textbf{Q}_0 \end{array}$	Left I₁˙Q₁˙I₀˙Q₀˙	$\begin{array}{c} \text{Right} \\ \text{I}_1 \hat{\ } \text{Q}_1 \hat{\ } \text{I}_0 \hat{\ } \text{Q}_0 \end{array}$	$\begin{array}{c} \textbf{Output} \\ \textbf{Code} \\ \textbf{I}_1 \textbf{Q}_1 \textbf{I}_0 \textbf{Q}_0 \end{array}$
0000	0011	0011	0011	0011	0000
0001	0010	0001	0010	0001	0001
0010	0001	0010	0001	0010	0010
0011	0000	0000	0000	0000	0011
0100	0110	0110	0101	1010	0100
0101	0111	0111	0111	1011	0101
0110	0100	0100	0100	1000	0110
0111	0101	0101	0110	1001	0111
1000	1001	1001	1010	0101	1000
1001	1000	1000	1000	0100	1001
1010	1011	1011	1011	0111	1010
1011	1010	1010	1001	0110	1011
1100	1100	1100	1100	1100	1100
1101	1101	1110	1101	1110	1101
1110	1110	1101	1110	1101	1110
1111	1111	1111	1111	1111	1111

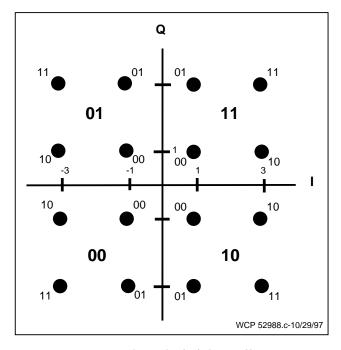


Figure 32. Gray Coded Constellation

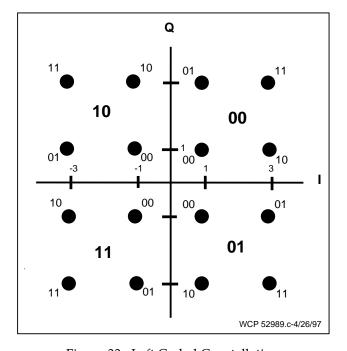


Figure 33. Left Coded Constellation

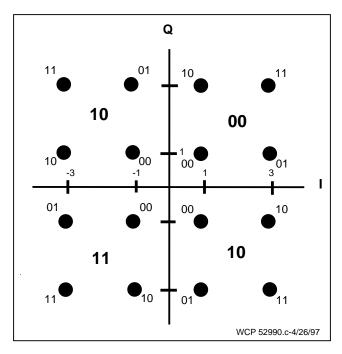


Figure 34. DAVIC Coded Constellation

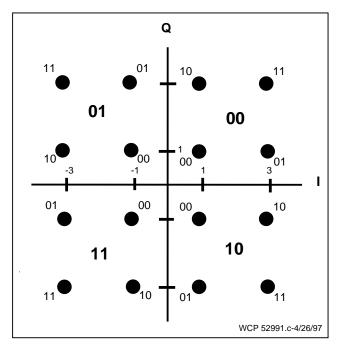


Figure 35. Right Coded Constellation

Nyquist FIR Filter

The finite impulse response (FIR) filters are used to shape each transmitted symbol pulse by filtering the pulse to minimize the sidelobes of its spectrum. The Symbol Mapper Block outputs the I_1I_0 data to a pair of I-channel FIR filters and the Q_1Q_0 data to a pair of Q-channel FIR filters. Figure 36 shows the filter block diagram for a channel pair (I or Q). The FIR filter can be bypassed altogether or, in BPSK or QPSK modes, individual channels can be turned on and off which changes the effective filter gain. Table 43 shows the various FIR configuration options.

Table 43. FIR Filter Configuration Options

Mode	Gain	Register 2E Bits 4-1	Register 2C Bit 1
No FIR Filter	N/A	XXXX	1
16QAM	Unity	1010	0
BPSK/QPSK	Unity	0000	0
BPSK/QPSK	x2	1111	0
BPSK/QPSK	x3	1010	0

Each of the 32-tap, linear phase, FIR filters use 16 ten-bit, coefficients, which are completely programmable for any symmetrical (mirror image) polynomial. The FIR filter coefficients are stored in addresses $09_{\rm H}$ - $28_{\rm H}$, using two addresses for each 10-bit coefficient as shown in Table 50. The coefficients are stored as Two's Complement numbers in the range -512 to +511 ($200_{\rm H}$ to $1{\rm FF}_{\rm H}$). The filter is always constrained to have symmetrical coefficients, resulting in a linear phase response. This allows each coefficient to be stored once for two taps, as shown in Table 44.

Interpolating Filter

The Interpolating Filter, shown in Figure 37, is a configurable, three-stage, interpolating filter. The filter increases the STEL-2176's sampling rate (to permit the wide range of RF carrier frequencies possible) by interpolating between the FIR filter steps at the master clock frequency. This smoothes the digital representation of the signal which removes spurious signals from the spectrum

The interpolation filter contains accumulators. As the interpolation ratio grows larger, the number of accumulations per period of time increases. If the interpolation ratio becomes too large, the accumulator

Table 44. FIR Filter Coefficient Storage

MSB	LSB	
(Bits 9-8)	(Bits 7-0)	Filter Taps
$0A_{H}$	09 _H	Taps 16 and 47
$0C_{H}$	$0B_{H}$	Taps 17 and 46
$0E_{H}$	$0D_{H}$	Taps 18 and 45
10 _H	$0F_{H}$	Taps 19 and 44
•••	•••	•••
26 _H	25 _H	Taps 30 and 33
28_{H}	27_{H}	Taps 31 and 32
3B _H	$3A_{H}$	Taps 0 and 63
$3D_{H}$ $3C_{H}$		Taps 1 and 62
56 _H	55 _H	Taps 13 and 50
58 _H	57 _H	Taps 14 and 49
5A _H	59 _H	Taps 15 and 48

Note: For MSB storage, only bits 1-0 are used.

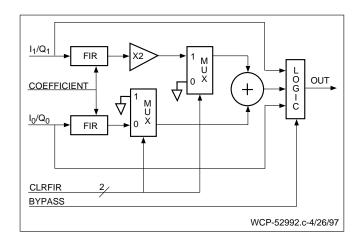


Figure 36. Nyquist FIR Filter

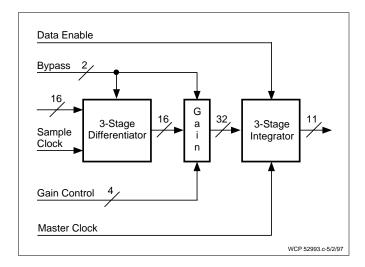


Figure 37. Interpolation Filter Block Diagram

will overflow which will destroy the output spectral characteristics. To compensate for this, the interpolation filter has a gain function. This gain is normally set empirically. If the output spectrum is broad band noise or if it appears correct but has regular momentary "hits" of broad band spectral noise, then the digital gain is too high. The interpolation filter gain is the first place to adjust gain because it does not directly affect the shape of the signal spectrum and it has a very wide adjustment range. Overall, gain can affected in the FIR filter function, the interpolation gain function, and by the number of interpolation stages (and therefore accumulators) used.

Normally, three interpolation stages are used, but there is a bypass option for use when the interpolation is very high. It should be used only as a last resort after all other gain reduction options have been exercised because of the severe impact to spurious performance.

The register bits that affect the interpolation filter functions are shown in Table 45 and Table 46.

Modulator

The interpolated I and Q data signals are input from the Interpolation Filter, fed into two complex modulators, and multiplied by the sine and cosine carriers which are generated by the NCO. The I channel signal is multiplied by the cosine output from the NCO and the Q channel signal is multiplied by the sine output. The resulting modulated sine and cosine carriers are applied to an adder and either added or subtracted

together according to the register settings shown in Table 47. This provides control over the characteristics of the resulting RF signal by allowing either or both of the two products to be inverted prior to the addition.

Data Enable Output. The TXDATAENO output is a modified replica of the TXDATAENI input. TXDATAENO is asserted as a high 2 symbols after TXDATAENI goes high and it is asserted as a low 13 symbols after TXDATAENI goes low. In this way, a high on the TXDATAENO line indicates the active period of the DAC during transmission of the data burst. However, if the guard time between the current and next data burst is less than 13 symbols, then the TXDATAENO line will be held high through the next burst.

Table 45. Interpolation Filter Bypass Control

Number of Interpolation Stages Selected	Interpolation Filter Bypass Register 2B Bits 5,4
3	0 0
2	0 1
2	1 0
1	11

Table 46. Interpolation Filter Signal Level Control

Gain Factor (Relative)	Filter Gain Control Register 2A Bits 7-4
2^{0}	0_{H}
21	1 _H
2 ²	2 _H
2 ³	3 _H
2^4	$4_{ m H}$
2 ⁵	5 _H
2^6	6 _H
2 ⁷	$7_{ m H}$
2 ⁸	8 _H
2 ⁹	9 _H
210	A_{H}
211	B _H
2 ¹²	C_H
213	D_{H}
214	E _H
215	F_{H}

Table 47. Signal Inversion Control

Output of Adder Block	Invert I/Q Channel Register 2B Bits 1,0
$Sum = I \cdot \cos(\omega t) + Q \cdot \sin(\omega t)$	0 0
$Sum = -I \cdot \cos(\omega t) + Q \cdot \sin(\omega t)$	0 1
$Sum = I \cdot \cos(\omega t) - Q \cdot \sin(\omega t)$	10
$Sum = -I \cdot \cos(\omega t) - Q \cdot \sin(\omega t)$	11

10-Bit DAC

The 10-bit Digital-to-Analog Converter (DAC) receives the modulated digital data and the Master clock. The DAC samples the digital data at the rate of the Master clock and outputs a direct analog RF signal at a frequency of 5 to 65 MHz. The DAC outputs, DACOUTP and DACOUTN, are complementary current sources designed to drive double terminated 50Ω or 75Ω (25Ω or 37.5Ω total) load to ground. The nature of digitally sampled signals creates an image spur at a frequency equal to the Master Clock minus the output RF frequency. This image spur should be filtered by a user supplied low pass filter. For best overall spurious performance, the gain of the STEL-2176 should be the highest possible (before digital overflow occurs - see Interpolation Filter discussion).

CONTROL UNIT DESCRIPTION

Bus Interface Unit

The Bus Interface Unit (BIU) is part of the Microcontroller Interface (see page 11). If contains the Block 2 Registers (90 programmable 8-bit registers). The Reset (TXRSTB) input signal is the master reset for the STEL-2176. Asserting a low on TXRSTB will reset the contents of all Block 2 Registers to 00_H (as well as clearing the data path registers). Asserting a high on TXRSTB enables normal operation. After power is applied and prior to configuring the STEL-2176, a low should be asserted on TXRSTB. Since TXRSTB is asynchronous, the TXCLKEN input should be held low whenever TXRSTB is low.

The parallel address bus (ADDR $_{5-0}$) is used to select one of the 90 Block 2 Registers by placing its address on the ADDR $_{5-0}$ bus lines. The data bus (DATA $_{7-0}$) is an 8-bit, bi-directional data bus for writing data into or reading data from the selected Block 2 Register.

The access operation is performed using the control signals \overline{DSB} , \overline{CS} , and \overline{WRB} . The Chip Select (\overline{CS}) input signal is used to enable or disable access operations to the STEL-2176. When a high is asserted on \overline{CS} , all access operations are disabled and a low is asserted to enable the access operations. The \overline{CS} input only affects Block 2 Register access and has no effect on the data path.

The Data Strobe (\overline{DSB}) input signal is used to write the data that is on the data bus (DATA₇₋₀) into the Block 2

Register selected by ADDR₅₋₀. The Write/Read ($\overline{\text{WRB}}$) input signal is used to control the direction of the Block 2 Register access operation. When $\overline{\text{WRB}}$ is high, the data in the selected Block 2 Register is output onto the DATA₇₋₀ bus. When $\overline{\text{WRB}}$ is low, the rising edge of $\overline{\text{DSB}}$ is used to latch the data on the DATA₇₋₀ bus into the selected Block 2 Register. (Refer to the Write and Read Timing diagrams in the Timing Diagrams section.)

Some of the Block 2 Register data fields are used for factory test and must be set to specific values for normal operation. These values are noted in Table 50.

Master Transmit Clock Generator

The STEL-2176 uses a master clock (CLK) to control the transmit timing functions. CLK can be generated in either of three ways as shown in Figure 38.

A transmit bypass clock can be applied to the TXBYPCLK input and selected to drive CLK.

An external clock can be applied to the TXOSCIN input or a crystal can be connected across the TXOSCIN and TXOSCOUT inputs. The oscillator circuit outputs a 20-50 MHz signal to a frequency multiplier PLL, which upconverts the signal to a 100-150 MHz clock. When the bypass clock is not used, the multiplexer is set to select the output of the frequency multiplier to drive the CLK signal. The frequency multiplier output can also be routed to the TXPLLCLK output for test purposes.



Figure 38. Master Clock Generation

Clock Generator

The timing of the STEL-2176 is controlled by the Clock Generator, which uses an master clock (CLK) and programmable dividers to generate all of the internal and output clocks. There are primarily two clock systems, the auxiliary clock and the data path timing signals (bit, symbol, and sampling rate signals).

The auxiliary clock (TXACLK) output is primarily for use in master mode where users may need a clock to run control circuits during the guard time between bursts (when TXCLKEN is low and TXBITCLK has stopped). The output clock rate is set by the frequency (f_{CLK}) of the external master clock and the value (N) of the Auxiliary Clock Rate Control field (bits 3-0 of Block 2 Register $2A_H$). The clock rate is set to:

$$TXACLK = \frac{|f_{CLK}|}{N+1} | 2 \le N \le 15$$

If N is set to 1 or 0, the TXACLK output will remain set high, thereby disabling this function. If the TXACLK signal is not required, it is recommended that it be set in this mode to conserve power consumption. The TXACLK output is a pulse that will be high for 2 cycles of CLK and low for (N-1) CLK cycles. Unlike other functions, the TXACLK output is not affected by TXCLKEN.

The data path timing is based on the ratio of the master clock frequency to the symbol data rate. The ratio must be a value of four times an integer number (N+1). The value of N must be in the range of 3 to 4095. This value is represented by a 12-bit binary number that is programmed by LSB and MSB Sampling Rate Control fields [Block 2 Register $29_{\rm H}$ (LSB) and bits 3-0 of Block 2 Register $39_{\rm H}$ (MSB)], which sets the TXSYMPLS frequency [based on the frequency ($f_{\rm CLK}$) of the external master clock] to:

Symbol Rate =
$$\frac{1}{4} * \frac{f_{CLK}}{N+1} \begin{vmatrix} 3 \le N \le 4095 \end{vmatrix}$$

The symbol pulse (TXSYMPLS) signal output is intended to allow the user to verify synchronization of the external serial data (TXTSDATA) with the STEL-2176 symbol timing. TXSYMPLS is normally low and pulses high for a period of one CLK cycle at the point where the last bit of the current symbol is internally latched by the falling edge of the internal BIT Clock (TXBITCLK) signal. (Refer to the Timing Diagrams section.)

The internal TXBITCLK period is a function of the MOD field (bits 3-2 of Block 2 Register $2C_H$), which determines the signal modulation. TXBITCLK has a 50% duty cycle for BPSK and QPSK modes. It also has a 50% duty cycle in 16QAM mode when N+1 is even. If N+1 is odd, then TXBITCLK will be high for (N÷2)+1 clocks and then low for N÷2 clocks. (Refer to the Bit Clock Synchronization Timing diagram in the Timing Diagrams section.)

The **TXBITCLK** frequency is determined by :

BITCLK =
$$\frac{\text{CLK}}{(\text{N+1})*\text{K}}$$

$$K = 1 \text{ for 16QAM,}$$

$$2 \text{ for QPSK,}$$

$$4 \text{ for BPSK}$$

$$3 \le \text{N} \le 4095$$

NCO

A 24-bit, Numerically Controlled Oscillator (NCO) is used to synthesize a digital carrier for output to the Modulator. The NCO gives a frequency resolution of about 6 Hz at a clock frequency of 100 MHz. The NCO also uses 12-bit sine and cosine lookup tables (LUTs) to synthesize a carrier with very high spectral purity, typically better than -75 dBc at the digital outputs.

The STEL-2176 provides register space for three different carrier frequencies. The carrier frequency that will drive the modulator is selected by the TXFCWSEL₁₋₀ control pin input signals. A high on the TXNCOLD input pin causes the registers selected by TXFCWSEL to drive the NCO at the frequency determined by the register value.

The NCO's frequency is programmable using the NCO field (Block 2 Registers $08_{\rm H}$ - $00_{\rm H}$). The nine 8-bit registers at addresses $00_{\rm H}$ through $08_{\rm H}$ are used to store the three 24-bit frequency control words FCW 'A', FCW 'B' and FCW 'C' as shown in Table 48.

The output carrier frequency of the NCO (f_{CARR}) will be:

$$f_{CARR} = \frac{f_{CLK} \cdot FCW}{2^{24}}$$

where, f_{CLK} is the frequency of the CLK input signal.

The FZSINB field (bit 7 Block 2 Register $2D_{\rm H}$) controls the sine component output of the NCO. This can be used in BPSK to rotate the constellation 45 degrees (to 'on axis' modulation). For normal operation, it should be set to one.

Table 48.	FCW Selection

		FCW Value Bits		
TXFCWSEL ₁₋₀	FCW Selected	23 - 16	15 - 8	7 - 0
00	FCW A	Register 02 _H Bits 7 - 0	Register 01 _H Bits 7 - 0	Register $00_{ m H}$ Bits 7 - 0
01	FCW B	Register 05 _H Bits 7 - 0	Register 04 _H Bits 7 - 0	Register 03 _H Bits 7 - 0
10	FCW C	Register 08 _H Bits 7 - 0	Register 07 _H Bits 7 - 0	Register 06 _H Bits 7 - 0
11	Zero Frequency			

TRANSMIT REGISTER DESCRIPTIONS

Programming the 2176 Transmit and Receive Functions

The STEL-2176 has a total of xxx registers and they are arranged as three banks of registers. As indicated in Table 49, Bank 0 is sub-divided into two groups of registers which yields a total of four register groups. Table 49 shows the Bank Address that must be written to location FF_H in order to access the respective register

group. The registers comprising The Bank 0 and Bank 1 registers are described in the Receiver Section (see page 20). The registers comprising Bank 2 are described below. When the Bank 2 (Group 4) registers are accessed, the hexadecimal register addresses listed in Table 50 are sent to the Microcontroller Interface (see page 11) for doing a read or write operation on a specific register.

Table 49. Addresses of the STEL-2176 Register Groups

Group	Bank	Group Name	Bank Address (location FF _H)
1	0	Universal Registers	$00_{\rm H}$
2	0	QAM Demodulator Registers Universal Registers	$00_{\rm H}$
3	1	Downstream FEC Registers	$01_{\rm H}$
4	2	Upstream, or transmitter, Registers	02 _H

Block 2, Upstream Registers (Group 4)

Description

Each of the Block 2 registers (see Table 50) is an 8-bit, Read/Write register and each register contains one or more data fields, described below. The data fields are

the transmit parameters which control the transmit characteristics of the STEL-2176. When a transmit parameter requires more than 8 bits, it is stored in multiple data fields and stored used two or more registers.

Table 50. Transmit Block 2 Register Data Fields

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
08-00				NCO F	requency Contro	ol Word		
28-09				F	IR Filter Coeffic	rients		
29		Sampling Rate Control						
2A		CIC Filter C	Gain Control			Auxiliary Cl	ock Rate Contro	ol
2B	DCINB	ICIN	Int. Fil	t. Bypass	MSB	ACCIN	Invert	I/Q Chan.
2C	TCLK Sel.		ENDAC	FWDB	GAINB		PN Sel	PN Mod
2D	FZSIN	NITV	LSB	REV	GAINB		PN Sel	PN Mod
2E	MAPBPB	MAP	SEL		CLR	FIR		Sync
2F								TEST
30		SCRAMBLER Init Reg [7:0]						
31				SCRAMBL	ER Init Reg [15:8	[
32				SCRAMBLE	ER Init Reg[23:16	6]		
33				SCRAMBLE	ER Mask Reg [7:0)]		
34				SCRAMBLE	R Mask Reg[15:	8]		
35				SCRAMBLE	R Mask Reg[23:1	6]		
36	PP	BPB	S-RS	ssync			T	
37					K			
38	DATA-	DATA-	RSENBP	RSENS-	SCRME-	SCRM-	DiffDC-BP	DiffDCS-EL
	ENBP	ENSEL		EL	NBP	ENSEL		
39			TRLSBP	LDLSBF		MSB Sa	mpling rate	
3A-59		FIR Filter Coefficients				·		

Transmit Parameter Descriptions

Auxiliary Clock Rate Sets the divide-by ratio of f_{CLK} for generating an output clock for use with external

Divider control circuits.

Bit Mapping Selects the Bit-to-Symbol mapping option when QPSK or 16QAM modulation is selected.

Bit Sync Re-arm Used to arm the TXBITCLK synchronization circuit when TXCLKEN cannot be applied

low between bursts.

BypassB Allows the Scrambler and Reed-Solomon Encoder to be bypassed.

CLRFIR Controls the Gain of the FIR Filter.

DATAENBPB Continuously enables or disables the input multiplexer of the Bit Encoder Block.

DATAENSEL Selects software (DATAENBPB) or hardware (input pin 109) control for enabling the

input multiplexer of the Bit Encoder Block.

DiffDCBPB Allows the Differential Encoder to be bypassed.

DiffDCSEL Selects software (DiffDCBPB) or hardware (input pin 116) control for enabling the

Differential Encoder.

ENDAC Setting this bit to 0 will make the DAC output enable controlled by the TXDATAENO

signal (see page 65). Setting it to 1 will make the DAC enabled all the time. The default

is 0.

FIR bypass Controls routing of I/Q data through or around the FIR filters.

FIR Filter Sixteen 10-bit FIR coefficients. Each coefficient is applied to two taps of the FIR filter to

Coefficients control its filter characteristics.

FZSINB Controls the sine component of the NCO output. Setting the field to 0 rotates the

constellation by 45° for on-axis modulation of a BPSK signal.

Interpolation Filt. Controls the number of filter stages the Interpolation Filter will use for filtering the

Bypass

signal.

Interpolation Filter

Gain Control

Sets the gain of the Interpolation Filter.

Invert I/O Chan. Controls the signal inversion of the I and Q channels by using an adder to add or

subtract the two channels.

K Defines the length of the User Data Packet in bytes.

LDLSBF Determines whether the MSB or LSB of the checksum byte is to be output as the first bit

of the serial output data.

LSB Sampling Rate

Control

A 12-bit word that controls the sampling rate of the 10-Bit DAC. Register 29 contains the

8 LSBs and Register 39 contains the 4 MSBs.

MOD Selects type of modulation (BPSK, QPSK, or 16QAM).

Three 24-bit frequency control words. The word selected for setting the frequency of the **NCO**

NCO carrier is selected by the input pins TXFCWSEL[1-0].

PN Code Sel Selects one of two PN codes when pseudo-random generator is enabled.

PN On/Off Enables or disables the pseudo-random generator

PPolynomial Selects one of two primitive polynomials for use with the Reed-Solomon Encoder for

encoding data.

Allows the Reed-Solomon Encoder to be bypassed. **RSENBPB**

Selects software (RSENBPB) or hardware (input pin 117) control for enabling the Reed-**RSENSEL**

Solomon Encoder.

SCRAMBLER Init

Registers

A 24-bit word that is loaded into the PN generator to initialize its shift register.

SCRAMBLER Mask

Registers

A 24-bit word that is masks the output of the PN generator shift register.

SCRMENBPB Allows the Scrambler to be bypassed.

Selects software (SCRMENBPB) or hardware (input pin 118) control for enabling the SCRMENSEL

Scrambler.

Self-Sync Controls selection of the self sync or frame sync signal for routing back to the PN

generator shift circuit.

Controls whether the input data is to be scrambled then encoded by the Scrambler and S-RS

Reed-Solomon Encoder or whether it is to be encoded then scrambled.

Selects one of five symbol mapping options when 16QAM modulation is selected. Symbol Mapping

Sets the error correction capability of the error correction encoding.

TCLK Sel. Selects an externally generated clock for external control of data latching.

TRLSBF Determines whether the first input bit is the MSB or LSB of the byte applied to the RS

Encoder.

TIMING DIAGRAMS

CLOCK TIMING

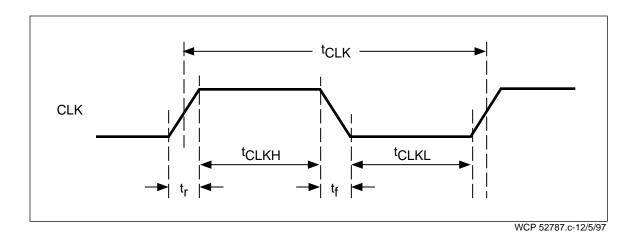
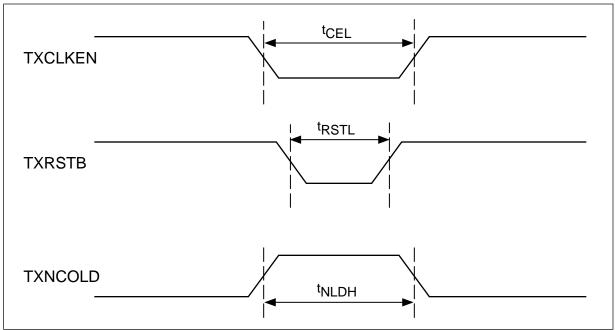



Table 51. Clock Timing AC Characteristics $(V_{DD}=3.3~V~\pm10\%,~V_{SS}=0~V,~T_a=-40^\circ~to~85^\circ~C)$

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
	Clock Frequency $(\frac{1}{t_{CLK}})$			165	MHz	
t_{CLK}	Clock Period	6			nsec	
t _{CLKH}	Clock High Period	2.5			nsec	
t _{CLKL}	Clock Low Period	2.5			nsec	
t_R	Clock Rising Time			0.5	nsec	
$t_{\scriptscriptstyle{\mathrm{F}}}$	Clock Falling Time			0.5	nsec	

TRANSMIT PULSE WIDTH

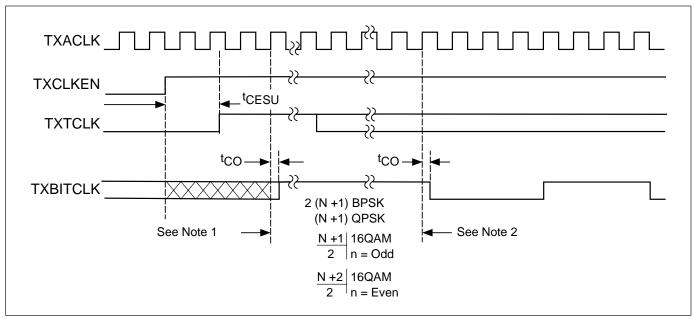

WCP 53811.c-12/5/97

Table 52. Pulse Width AC Characteristics

$$(V_{DD} = 3.3 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_a = -40^{\circ} \text{ to } 85^{\circ} \text{ C})$$

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{CEL}	Clock Enable (TXCLKEN) Low	4			nsec	
t_{RSTL}	Reset (TXRSTB) Low	5			nsec	
t_{NLDH}	NCO Load (TXNCOLD) High	1			CLK cycles	

BIT CLOCK SYNCHRONIZATION

WCP 53826.c-12/5/97

Note 1: TXBITCLK will be forced high on the second rising edge of CLK following the rising edge of TXTCLK.

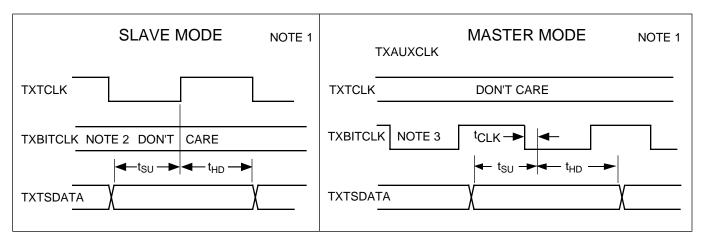

Note 2: The period of time that TXBITCLK is high is measured in cycles of CLK (e.g. (N + 1) in QPSK). "N" is a 12-bit binary number formed by taking bits 3-0 of Block 2 Register 39_H as the MSB's and taking bits 7-0 of Block 2 Register 29_H as the LSB's. The TXBITCLK low period is the same except for 16QAM when "N" is even in which case the low period is (N/2) yielding the correct TXBITCLK period but not a perfect squarewave.

Table 53. Bit Clock Synchronization AC Characteristics

$$(V_{DD} = 3.3 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_a = -40^{\circ} \text{ to } 85^{\circ} \text{ C})$$

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{CO}	Clock to TXBITCLK, TXSYMPLS, TXDATAENO, or			2	nsec	
	TXACLK edge					
t_{CESU}	Clock Enable (TXCLKEN to TXTCLK Setup)	3			nsec	

TRANSMIT INPUT DATA AND CLOCK TIMING

- Note 1: Mode is determined by setting of BIT 7 in Block 2 Register 2C_H. Bit 7 high is slave mode; Bit 7 low is master mode.
- Note 2: In slave mode, even though TXBITCLK is shown as "Don't Care", it should be noted that internally the STEL 2176 will relatch the data on the next falling edge of TXBITCLK. Thus, avoid changing the control signal inputs (TXDATAENI, TXDIFFEN, TXRDSLEN, TXSCRMEN) at the falling edges of TXBITCLK.
- Note 3: In the STEL-2176, data is latched on the rising edge of the CLK that follows the falling edge of TXBITCLK. Thus, the data validity window is one CLK period (t_{CLK}) delayed. CLK not shown.

Table 54. Input Data and Clock AC Characteristics

$$(V_{DD} = 3.3 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_a = -40^{\circ} \text{ to } 85^{\circ} \text{ C})$$

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{CLK}	Clock Period	6			nsec	
t_{SU}	TXTSDATA to Clock Setup	2			nsec	
t _{HD}	TXTSDATA to Clock Hold	2			nsec	

WRITE TIMING

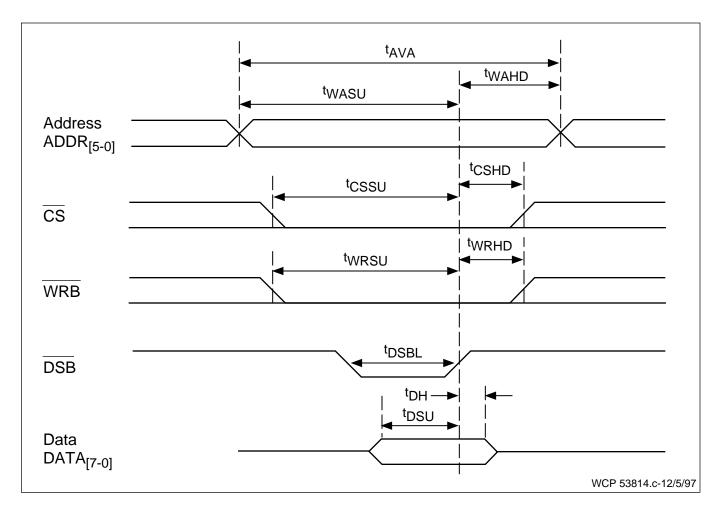


Table 55. Write Timing AC Characteristics

$$(V_{DD} = 3.3 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_a = -40^{\circ} \text{ to } 85^{\circ} \text{ C})$$

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{wasu}	Write Address Setup	10			nsec	
t_{WAHD}	Write Address Hold	6			nsec	
t_{AVA}	Address Valid Period	20			nsec	
t_{CSSU}	Chip Select (CS) Setup	5			nsec	
t_{CSHD}	Chip Select (CS) Hold	3			nsec	
t_{WRSU}	Write Setup (WRB)	5			nsec	
t_{WRHD}	Write Hold (WRB)	3			nsec	
t _{DSBL}	Data Strobe Pulse Width	10			nsec	
t_{DH}	Data Hold Time	1			nsec	
$t_{ m DSU}$	Data Setup Time	3			nsec	

READ TIMING

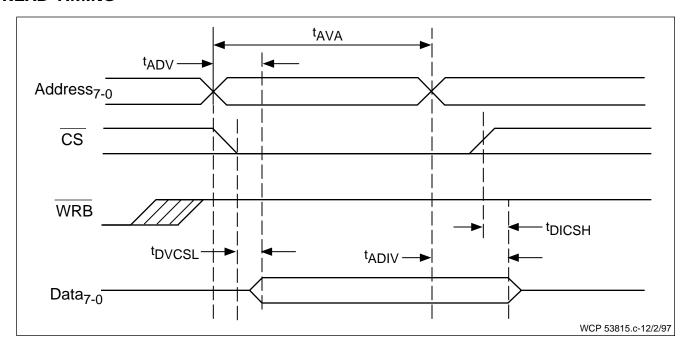
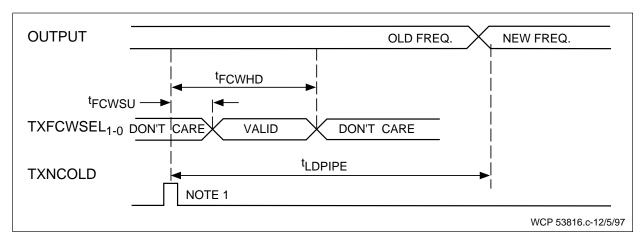
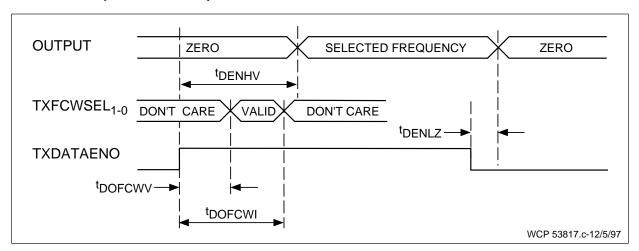



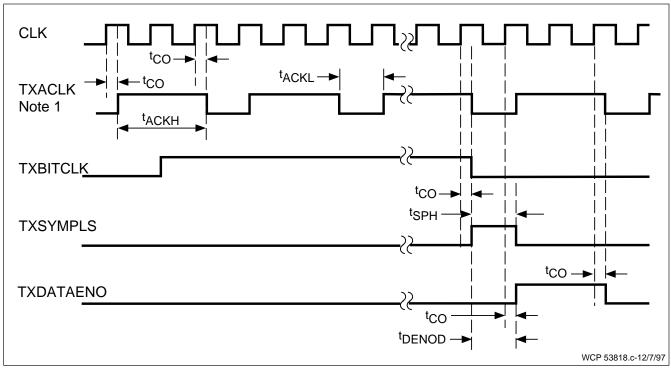
Table 56. Read Timing AC Characteristics


$$(V_{DD}=3.3~V~\pm10\%,~V_{SS}=0~V,~T_a=-40^\circ$$
 to 85° C)

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{AVA}	Address Valid Period	20			nsec	
t_{ADV}	Address to Data Valid Delay			9	nsec	
t_{ADIV}	Address to Data Invalid Delay	6			nsec	
t_{DVCSL}	Data Valid After Chip Select Low	2			nsec	
t _{DICSH}	Data Invalid After Chip Select High			1	nsec	

NCO LOADING (USER CONTROLLED)

NCO LOADING (AUTOMATIC)



NOTE 1: The first rising edge of CLK after TXNCOLD goes high initiates the load process.

Table 57. NCO Loading AC Characteristics (V_{DD} = 3.3 V $\pm 10\%$, V_{SS} = 0 V, T_a = -40° to 85° C)

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{LDPIPE}	NCO-LD to Change in Output Frequency Pipeline		23		CLK cycles	
	Delay					
t_{FCWSU}	TXFCWSEL ₁₋₀ to NCO-LD Setup			3	CLK cycles	
t_{FCWHD}	TXFCWSEL ₁₋₀ to NCO-LD Hold	10			CLK cycles	
t_{DENLZ}	TXDATAENO Low to Zero Frequency Out Delay		23		CLK cycles	
t_{DENHV}	TXDATAENO High to Valid Frequency Out		23		CLK cycles	
	Delay					
t _{DOFCWV}	TXDATAENO to TXFCWSEL ₁₋₀ Valid			3	CLK cycles	
t _{DOFCWI}	TXDATAENO to TXFCWSEL ₁₋₀ Invalid	10			CLK cycles	

DIGITAL OUTPUT TIMING

NOTE 1: TXACLK shown for "n" equal to 2: where n is the 4-bit binary value in Block 2 Register $2A_{H}$, BITS 3-0.

Table 58. Digital Output Timing AC Characteristics

(V
$$_{DD}$$
 = 3.3 V ±10%, V $_{SS}$ = 0 V, T $_{a}$ = -40° to 85° C)

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t_{CO}	Clock to TXBITCLK , TXSYMPLS, TXDATAENO,			2	nsec	
	or TXACLK edge					
t _{ACKH}	Auxiliary Clock (TXACLK) High		2		CLK cycles	
t_{ACKL}	Auxiliary Clock (TXACLK) Low		(n-1)		CLK cycles	Note 1
t_{SPH}	Symbol Pulse (TXSYMPLS) High		1		CLK cycles	
t_{DENOD}	TXBITCLK Low to TXDATAENO edge		1		CLK cycles	
NI-t						

Notes:

1. "n" is the 4-bit binary value in Block 2 Register 2A_H, bits 3-0.

TXDATAENI TO TXDATAENO TIMING

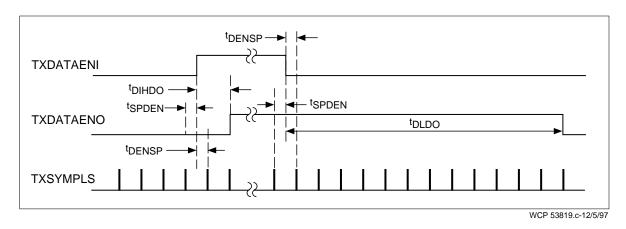
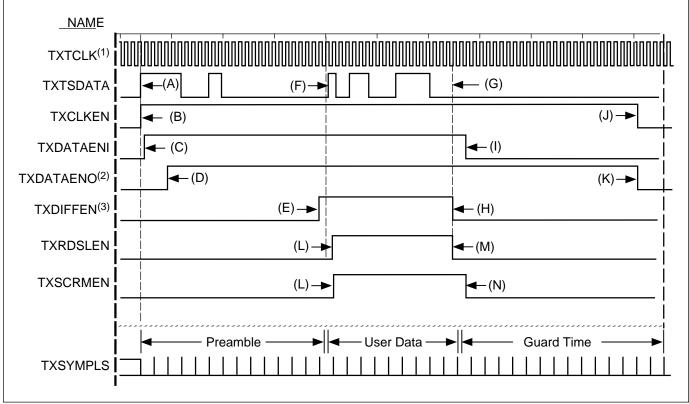


Table 59. TXDATAENI to TXDATAENO Timing AC Characteristics

$$(V_{DD} = 3.3 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_a = -40^{\circ} \text{ to } 85^{\circ} \text{ C})$$

Symbol	Parameter	Min.	Nom.	Max.	Units	Conditions
t _{DIHDO}	TXDATAENI High to TXDATAENO High		2 nd		TXSYMPLS	Note 1
t_{DLDO}	TXDATAENI Low to TXDATAENO Low		13^{th}		TXSYMPLS	Note 1
t_{SPDEN}	TXSYMPLS (trailing edge) to TXDATAENI Setup	3			nsec	
t_{DENSP}	TXDATAENI to TXSYMPLS (trailing edge) Setup	5			nsec	

Notes:

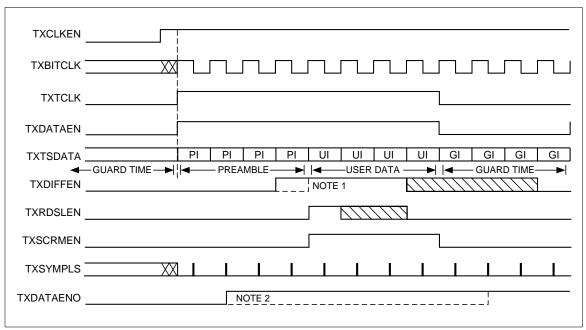

BURST TIMING EXAMPLES

The following seven timing diagrams are qualitative in nature and meant to illustrate the functional relationships between the control inputs and signal outputs in various modes of burst operation. Use the key at right to interpret the timing marks. Only the first diagram is of a complete and realistic burst. The remaining diagrams are too short in duration to show TXDATAENO and TXCLKEN going low.

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care. Any Change Permitted	Changing. State Unknown
>>	Does Not Apply	Center Line is High- Impedance "Off" State

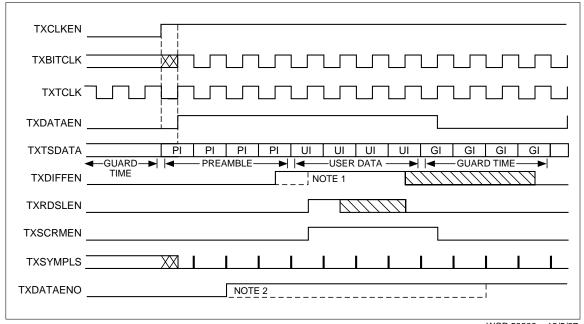
^{1.} Shown for Block 2 Register 36_H , bit 6=0 (No Reed-Solomon). If bit 6 of Register 36_H is a "1", then the edges of TXDATAENO will be delayed from those illustrated by 8, 4, or 2 TXSYMPLS for BPSK, QPSK, or 16QAM, respectively.

SLAVE MODE, QPSK - BURST TIMING: FULL BURST



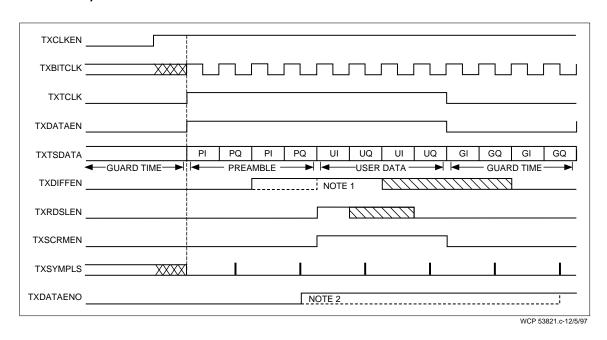
WCP 53820.c -12/5/97

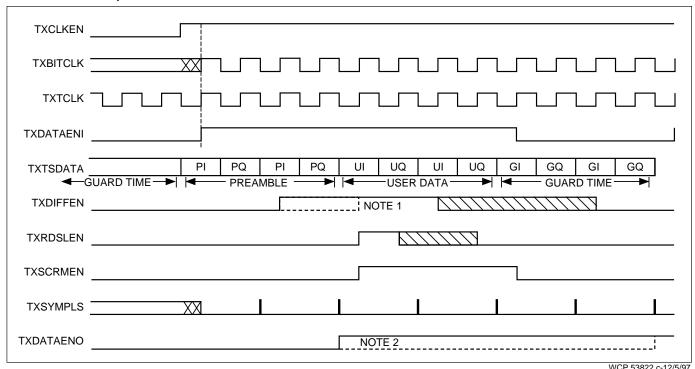
NOTES:


- (1) All input signals shown are derived from TXTCLK. Each edge is delayed from a TXTCLK edge by typically 6 to 18 nsec. DATAENO does not depend on TXTCLK but its edges are synchronized to TXTCLK. TXTCLK itself can be turned off after TXDATAENI goes low.
- (2) DATAENO shown at its minimum pipeline delay position. This is achieved by setting bit 6 of Block 2 Register 36_H to zero. Reed-Solomon cannot be used in this mode. If bit 6 is set high, allowing Reed-Solomon an additional pipeline delay of 8 bits is inserted into the data path. This will shift both edges of DATAENO to the right by 8 cycles of TXTCLK.
- (3) If the preamble is not encoded the same as the user data, the TXDIFFEN control can be toggled in mid transmission as shown. Otherwise, the TXDIFFEN control can be held high or low depending on encoding desired.
- (A) First data bit transition on falling edge of TXTCLK (first of 14 preamble symbols). The data will be valid on the next rising edge of TXTCLK.
- (B) TXCLKEN rises on the same falling edge of TXTCLK that the data starts on. TXCLKEN is allowed to rise any time earlier than shown.
- (C) TXDATAENI rises on the first rising edge of TXTCLK (middle of the first preamble bit).
- (D) DATAENO rises on the falling edge of TXTCLK (at the end of the second symbol).
- (E) TXDIFFEN rises on the rising edge of TXTCLK one symbol before the first user data symbol.
- (F) User data bits change on the falling edge of TXTCLK and must be valid during the next rising edge of TXTCLK.
- (G) End of user data. Note that the data is allowed to go away immediately after it is latched in by the rising of TXTCLK which occurs in the middle of the last user data bit.
- (H) TXDIFFEN goes low on rising edge of TXTCLK (last user data symbol).
- (I) TXDATAENI goes low on rising edge of TXTCLK (on the cycle of TXTCLK after the last user data bit).
- (J) TXCLKEN must stay high until any time on or after the point where DATAENO goes low.
- (K) DATAENO stays high until the 13th TXSYMPLS after TXDATAENI goes low.
- (L) TXRDSLEN and TXSCRMEN go high on the first rising edge of TXTCLK in the User Data.
- (M) TXRDSLEN goes low on the rising edge of TXTCLK (last user data symbol).
- (N) TXSCRMEN goes low on the rising edge of TXTCLK (on the cycle of TXTCLK after the last user data bit).

MASTER MODE, BPSK - BURST TIMING SIGNAL RELATIONSHIPS

WCP 53837.c-12/5/97

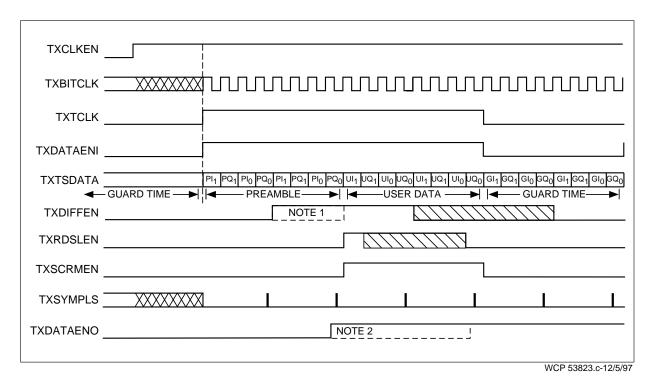

SLAVE MODE, BPSK - BURST TIMING SIGNAL RELATIONSHIPS


STEL receivers differentially decode relative to the last preamble symbol. To encode the NOTE 1: first symbol against a "zero" symbol reference instead, bring TXDIFFEN high at the leading edge of the user data packet (dotted line).

If bit 6 of Block 2 Register $36_{\rm H}$ is a "1" then the rising edge of DATAENO will be delayed by eight cycles of TXBITCLK (dotted line). This is required if the Reed-NOTE 2: Solomon encoder is used.

MASTER MODE, QPSK - BURST TIMING SIGNAL RELATIONSHIPS

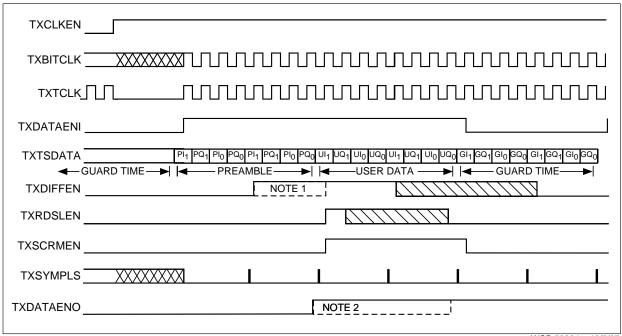
SLAVE MODE, QPSK: FULL VIEW - BURST TIMING SIGNAL RELATIONSHIPS



WCP 53822.c-12/5/97

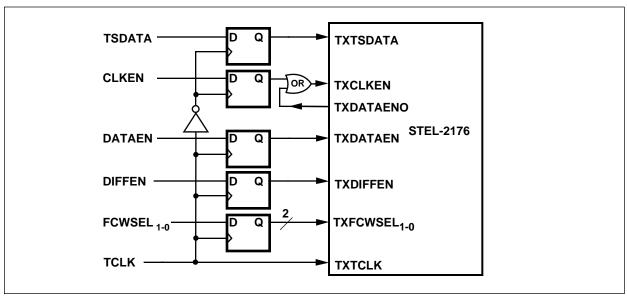
NOTE 1: STEL receivers differentially decode relative to the last preamble symbol. To encode the first symbol against a "zero" symbol reference instead, bring TXDIFFEN high at the leading edge of the user data packet (dotted line).

NOTE 2: If bit 6 of Block 2 Register $36_{\rm H}$ is a "1" then the rising edge of DATAENO will be delayed by eight cycles of TXBITCLK (dotted line). This is required if the Reed-Solomon encoder is used.

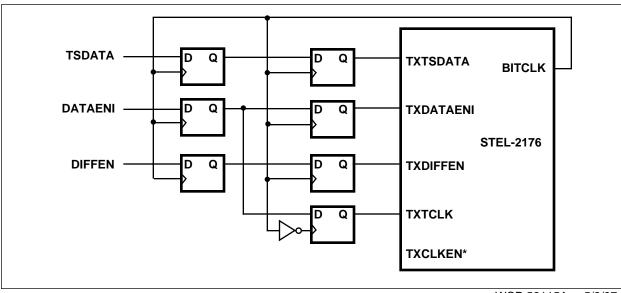

MASTER MODE, 16QAM - BURST TIMING SIGNAL RELATIONSHIPS

STEL receivers differentially decode relative to the last preamble symbol. To encode the first symbol against a "zero" symbol reference instead, bring TXDIFFEN high at the leading edge of the user data packet (dotted line). NOTE 1:

If bit 6 of Block 2 Register $36_{\rm H}$ is a "1" then the rising edge of DATAENO will be delayed by eight cycles of TXBITCLK (dotted line). This is required if the Reed-NOTE 2: Solomon encoder is used.


SLAVE MODE, 16QAM - BURST TIMING SIGNAL RELATIONSHIPS

WCP 53824.c-12/5/97


RECOMMENDED INTERFACE CIRCUITS

SLAVE MODE INTERFACE

WCP 52995.c-5/2/97

MASTER MODE INTERFACE

WCP 52115A.c 5/2/97

* TXCLKEN may be turned off between bursts to conserve power as long as it is kept on until after TXDATAENO goes low. Note that the TXBITCLK output goes inactive whenever TXCLKEN is low.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied

warranty, relating to sale and/or use of Intel® products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

For Further Information Call or Write

INTEL CORPORATION

Cable Network Operation 350 E. Plumeria Drive, San Jose, CA 95134 Customer Service Telephone: (408) 545-9700 Technical Support Telephone: (408) 545-9799

FAX: (408) 545-9888