
Writing Metasploit Plugins
from vulnerability to exploit

Saumil Shah
ceo, net-square

Xcon 2006, Beijing

© Saumil Shah

• Saumil Shah - “krafty”
ceo, net-square solutions
saumil@saumil.net

author: “Web Hacking - Attacks and
Defense”

who am i
16:08 up 4:26, 1 user, load averages: 0.28 0.40 0.33
USER TTY FROM LOGIN@ IDLE WHAT
saumil console - 11:43 0:05 bash

who am i

© Saumil Shah

From Vulnerability to Exploit

Fuzzing

EIP = 0x41414141

Debugger

Attack Vector

Reliable EIP return
address

Bad characters

Test Shellcode
(INT 3)

INT 3?

Final Shellcode

Working exploit

Shellcode Handling

© Saumil Shah

The CPU’s registers
• The Intel 32-bit x86 registers:

ESPEAX

EBPEBX

ESIECX

EDIEDX

EIP

accumulator

base

counter

data

instruction pointer

destination index

source index

base pointer

stack pointer

© Saumil Shah

The Process Memory Map

environment vars
cmd line arguments

**envp

**argv

argc

main() local vars

…

v heap
^ stack

…
heap - malloc’ed data

.bss
.data
.text

0xc0000000

0x08000000

© Saumil Shah

Stack Overflows
• Error condition when a larger

chunk of data is attempted to be
written into a smaller container
(local var on the stack).

• What will happen if “argv[1]” is
more than 128 bytes?

char buffer[128];
strcpy(buffer, argv[1]);

© Saumil Shah

Overflowing victim1.c
• It’s easy, have an input of more

than 128 characters

• Post-mortem of victim1

$./victim1 AAAAAAAAAAAAAAAAA……AAAAAAAAA
Segmentation fault (core dumped)
$

$ gdb
(gdb) target core core
Core was generated by `./victim1 AAAAAAA……AAAA'.
Program terminated with signal 11, Segmentation
fault.
#0 0x41414141 in ?? ()
(gdb)

© Saumil Shah

Post mortem debugging
• Register dump after a stack overflow:

• EIP’s value is “0x41414141”, i.e. “AAAA”
• EIP got overwritten with bytes from the

overflowed buffer.

(gdb) info registers
esp 0xbffffb24 -1073743068
ebp 0x41414141 1094795585
esi 0x4000ae60 1073786464
edi 0xbffffb74 -1073742988
eip 0x41414141 1094795585

© Saumil Shah

Calling a function
• When a function is called, the

following are pushed onto the stack:
– function parameters
– saved value of registers such as EBP and EIP

• When the function returns, EIP is
popped off from the stack, which
resumes the normal course of
program execution

© Saumil Shah

Calling a function
main()
{

:
func1(str)
:
:
:

} func1(str)
{

:
:
:

}

push str
CALL

(push EIP)
push EBP

RET
(pop EIP)

© Saumil Shah

victim’s Memory Map - before

envp, argv, etc…

main() local vars

ptr to param1

saved EIP

saved EBP

func1::buffer[128]

.bss

.data

.text

Bottom of stack

Top of stack
ESP

frame 0 - func1()

frame 1 - main()

© Saumil Shah

victim’s Memory Map - after

envp, argv, etc…

main() local vars

ptr to param1

saved EIP

saved EBP

func1::buffer[128]

.bss

.data

.text

Bottom of stack

Top of stack
ESP

Stack frame
for func1()

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

A A A A
A A A A

© Saumil Shah

The Stack Overflowed

envp, argv, etc…

main() local vars

ptr to param1

saved EIP

saved EBP

func1::buffer[128]

.bss

.data

.text

Bottom of stack

Top of stack
ESP

when func1 returns
EIP will be popped
EIP = 0x41414141

(“AAAA”)

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

A A A A
A A A A

POP

© Saumil Shah

Registers after the Stack Overflow

• After func1() returns, EIP and
EBP are popped off the stack

• We have control of the instruction
pointer.

(gdb) info registers
esp 0xbffffa24 -1073743324
ebp 0x41414141 1094795585
esi 0x4000ae60 1073786464
edi 0xbffffa74 -1073743244
eip 0x41414141 1094795585

© Saumil Shah

Controlling EIP
• Vulnerabilities may lead to EIP control.
• We can set the instruction pointer to

go to wherever we want…
• …the question is, “where do we want

to go?”
• Can we inject our own code, and

make EIP jump to it?
• And, where do we inject our code?

© Saumil Shah

Introducing Metasploit
• An advanced open-source exploit research

and development framework.
• http://metasploit.com
• Current stable version: 2.6

– Written in Perl, runs on Unix and Win32
(cygwin)

– 160+ exploits, 77 payloads, 13 encoders
• Brand new 3.0 beta1

– Complete rewrite in Ruby

© Saumil Shah

Introducing Metasploit
• Generate shellcode.
• Shellcode encoding.
• Shellcode handlers.
• Scanning binaries for specific instructions:

– e.g. POP/POP/RET, JMP ESI, etc.
• Ability to add custom exploits, shellcode,

encoders.
• …and lots more.

© Saumil Shah

EIP = 0x41414141
• How do we determine which 4

bytes go into EIP?
• Use a cyclic pattern as input:

• Metasploit’s
Pex::Text::PatternOffset()

• Generate patterns, find substring.

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1
Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3
Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5
Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5…………

© Saumil Shah

Distance to EIP
• Use Metasploit’s patternOffset.pl

• Based on what EIP gets
overwritten with, we can find the
“distance to EIP” with this pattern.

krafty:~/metasploit$ perl sdk/patternOffset.pl 0x68423768 2000
1012

EIPbuffer
Bottom
of stack

1012 bytes

A a 0 A a 1 A a 2 A a 2 A a 3 ……(cyclic pattern)………………………….… h 8 B h …..

© Saumil Shah

Getting Control of Program Counter

• Stack Overflows
– Direct Program Counter overwrite
– Exception Handler overwrite

• Format String bugs
• Heap Overflows
• Integer Overflows

• Overwrite pc vs. “what” and “where”

© Saumil Shah

Enter Shellcode
• Code assembled in the CPU’s native

instruction set.
• Injected as a part of the buffer that

is overflowed.
• Most typical function of the injected

code is to “spawn a shell” - ergo
“shellcode”.

• A buffer containing shellcode is
termed as “payload”.

© Saumil Shah

Writing Shellcode
• Need to know the CPU’s native

instruction set:
– e.g. x86 (ia32), x86-64 (ia64), ppc, sparc,

etc.

• Tight assembly language.
• OS specific system calls.
• Shellcode libraries and generators.
• Metasploit Framework.

© Saumil Shah

Injecting the shellcode
• Easiest way is to pack it in the

buffer overflow data itself.
• Place it somewhere in the

payload data.
• Need to figure out where it will

reside in the memory of the
target process.

© Saumil Shah

Where do you want to go…today?

• EIP can be made to:
– Return to Stack

Jump directly into the payload.
(reliability issues - addr jitter, stack
protection)

– Return to Shared library
Jump through registers.
Requires certain conditions to be meet.
(highly stable technique)

© Saumil Shah

Return to Stack

EIPbuffer[128]
Bottom
of stack

0xbffff790 0xbffff81cfunc1(str)

EIPbuffer[128]

0xbffff790

nop nop nop nop nop … 0xbffff7c0 0xbffff7c0 0xbffff7c0…… shellcode …….

func1() returns - pop EIP 0xbffff7c0

EIP

EIPEBPbuffer[128]

0xbffff7c0

nop nop nop nop nop … 0xbffff7c0 0xbffff7c0 0xbffff7c0…… shellcode …….

execute shellcode

© Saumil Shah

Jump through Register

EIPbuffer[]
Bottom
of stack

saved EIP
overwritten

AA

strcpy(buffer, s)

EAX

EBX EBP

ESP

ECX

EDX EDI

ESI
EBX points within
the buffer (in this
case)

ESP points beyond
the saved EIP

AAAAAAAA

frame 1….frame 0

© Saumil Shah

Jump through Register

EIP

Return to a known
location within a DLL

DLL addrnop nop nop shellcode

xyz.dll

call EBX

AAAAAAAA

EAX

EBX EBP

ESP

ECX

EDX EDI

ESI

shellcode at the beginning of the buffer

© Saumil Shah

Jump through Register

EIPDLL addrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

abc.dll
jmp ESP

nop nop shellcode

ESP

EBX

EAX

EBP

ECX

EDX EDI

ESI

shellcode at the end of the buffer

© Saumil Shah

Looking for CALL or JMP instructions

• We need to find locations in memory which
contain CALL or JMP instructions, at fixed
addresses.

• Shared libraries get loaded at fixed
addresses within the process memory.

• Ideal for finding CALLs, JMPs.
• We can try manual pattern searching with

opcodes, using a debugger…
• …or we can use msfpescan or msfelfscan.

© Saumil Shah

msfpescan, msfelfscan
• Utilities to scan binaries (executables

or shared libraries).
• Support for ELF and PE binaries.
• Uses metasploit’s built-in

disassemblers.
• Can find CALLs, JMPs, or

POP/POP/RET instruction sets.
• Can be used to find instruction groups

specified by regular expressions.

© Saumil Shah

msfpescan’ning Windows DLLs

• If we need to search for a jump
to ESI:

• We can point EIP to any of these
values…

• …and it will then execute a
JMP/CALL ESI

~/framework$./msfpescan -f windlls/USER32.DLL -j esi
0x77e11c46 call esi
0x77e121b7 call esi
0x77e121c5 call esi
0x77e1222a call esi
: : : :
0x77e6ca97 jmp esi

© Saumil Shah

Candidate binaries
• First, search the executing binary itself.

– Independent of Kernel, Service Packs, libs.
• Second, search shared libraries or DLLs

included with the software itself. (e.g.
in_mp3.dll for Winamp)

• Last, search default shared libraries that get
included from the OS:
– e.g. KERNEL32.DLL, libc.so, etc.
– Makes the exploit OS kernel, SP specific.

© Saumil Shah

Case Study - peercast HTTP overflow

• 1000 byte payload.
• first 780 bytes can be AAAA’s.
• Bytes 781-784 shall contain an

address which will go into EIP.
• Bytes 785 onwards contain

shellcode.

EIPRETAAAAAAAAAAAAAAAAAAAAAAAAAAAA shellcode

ESP

© Saumil Shah

A little about shellcode
• Types of shellcode:

– Bind shell
– Exec command
– Reverse shell
– Staged shell, etc.

• Advanced techniques:
– Meterpreter
– Uploading and running DLLs “in-

process”
– …etc.

© Saumil Shah

Payload Encoders
• Payload encoders create encoded

shellcode, which meets certain criteria.
• e.g. Alpha2 generates resultant shellcode

which is only alphanumeric.
• Allows us to bypass any protocol parsing

mechanisms / byte filters.
• An extra “decoder” is added to the

beginning of the shellcode.
– size may increase.

© Saumil Shah

Payload Encoders
• Example: Alpha2 encoding

• Transforms raw payload into
alphanumeric only shellcode.

• Decoder decodes the payload “in-
memory”.

decoder UnWQ89Jas281EEIIkla2wnhaAS901las

original shellcode (ascii 0-255)

© Saumil Shah

Payload Encoders
• Metasploit offers many types of

encoders.
• Work around protocol parsing

– e.g. avoid CR, LF, NULL
– toupper(), tolower(), etc.

• Defeat IDS
– Polymorphic Shellcode
– Shikata Ga Nai

© Saumil Shah

Exploiting Exception Handling

• Try / catch block

• Pointer to the exception handling
code also saved on the stack, for
each code block.

try {

: code that may throw

: an exception.

}

catch {

: attempt to recover from

: the exception gracefully.

}

© Saumil Shah

Exception handling … implementation

params

saved EIP

saved EBP

Bottom of stack

more frames

frame w/ exception
handling

local vars

addr of exception handler

exception handler
code

(catch block)

© Saumil Shah

Windows SEH
• SEH - Structured Exception

Handler
• Windows pops up a dialog box:

• Default handler kicking in.

© Saumil Shah

Custom exception handlers

• Default SEH should be the last resort.
• Many languages including C++

provide exception handling coding
features.

• Compiler generates links and calls to
exception handling code in accordance
with the underlying OS.

• In Windows, exception handlers form
a LINKED LIST chain on the stack.

© Saumil Shah

SEH Record
• Each SEH record is of 8 bytes

• These SEH records are found on
the stack.

• In sequence with the functions
being called, interspersed among
function (block) frames.

• WinDBG command - !exchain

address of exception handler

ptr to next SEH record

© Saumil Shah

SEH Chain
• Each SEH record is of 8 bytes

addr of ex_handler1

ptr to SEH_record_2

addr of ex_handler2

ptr to next SEH_record_n

default exception handler

0xFFFFFFFF
MSVCRT!exhandler

ex_handler1()

ex_handler2()

bottom of stack

© Saumil Shah

SEH on the stack

address of exception handler

0xFFFFFFFF

main()

^ stack

func_z()

initial entry frameMSVCRT!exhandler

address of exception handler

ptr to next SEH record
ex_handler_z() params

saved EBP
saved EIP
local vars

© Saumil Shah

Yet another way of getting EIP
• Overwrite one of the addresses of the

registered exception handlers…
• …and, make the process throw an

exception!
• If no custom exception handlers are

registered, overwrite the default SEH.
• Might have to travel way down the

stack…
• …but in doing so, you get a long

buffer!

© Saumil Shah

Overwriting SEH

address of exception handler

ptr to next SEH record

ex_handler()

params
saved EBP
saved EIP

buffer[12]

© Saumil Shah

BBBB
BBBB
BBBB
: : :

Overwriting SEH

BBBB
AAAA

ex_handler()

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

EIP = 0x41414141
causes segmentation fault.

OS invokes registered
exception handler in the chain

EIP = 0x42424242

© Saumil Shah

Case study - sipXtapi CSeq overflow

• sipXtapi library - popular open source
VoIP library.

• Used in many soft phones
– AOL Triton soft phone uses sipXtapi.

• 24 byte buffer overflow in the CSeq SIP
header.

• Too small for any practical shellcode.
• We can hack it up by overwriting SEH.

© Saumil Shah

Writing Metasploit exploit modules

• Integration within the Metasploit
framework.

• Multiple target support.
• Dynamic payload selection.
• Dynamic payload encoding.
• Built-in payload handlers.
• Can use advanced payloads.
• …a highly portable, flexible and

rugged exploit!

© Saumil Shah

How Metasploit runs an exploit

create payload

launch attack

get connection

EXPLOIT
preamble

List of known
target values

user supplied
exploit info Metasploit

Shellcode
Library

Encoders

Payload
handlers

© Saumil Shah

Writing a Metasploit exploit
• Perl module (2.6), Ruby module (3.0)
• Pre-existing data structures

– %info, %advanced
• Constructor

– sub new {…}
• Exploit code

– sub Exploit {…}

© Saumil Shah

Structure of the exploit perl module
package Msf::Exploit::name;
use base “Msf::Exploit”;
use strict;
use Pex::Text;

my $advanced = { };

my $info = { };

sub new {

}

sub Exploit {

}

information block

constructor
return an instance of our exploit

exploit block

© Saumil Shah

%info
• Name
• Version
• Authors
• Arch
• OS
• Priv
• UserOpts

• Payload
• Encoder
• Refs
• DefaultTarget
• Targets
• Keys

© Saumil Shah

Metasploit Pex
• Perl EXtensions.

<metasploit_home>/lib/Pex.pm
<metasploit_home>/lib/Pex/

• Text processing routines.
• Socket management routines.
• Protocol specific routines.
• These and more are available for

us to use in our exploit code.

© Saumil Shah

Pex::Text
• Encoding and Decoding (e.g.

Base64)
• Pattern Generation
• Random text generation (to

defeat IDS)
• Padding
• …etc

© Saumil Shah

Pex::Socket
• TCP
• UDP
• SSL TCP
• Raw UDP

© Saumil Shah

Pex - protocol specific utilities

• SMB
• DCE RPC
• SunRPC
• MSSQL
• …etc

© Saumil Shah

Pex - miscellaneous utilities
• Pex::Utils
• Array and hash manipulation
• Bit rotates
• Read and write files
• Format String generator
• Create Win32 PE files
• Create Javascript arrays
• …a whole lot of miscellany!

© Saumil Shah

metasploit_skel.pm
• A skeleton exploit module.
• Walk-through.
• Can use this skeleton to code up

exploit modules.
• Place finished exploit modules in:

<path_to_metasploit>/exploits/

© Saumil Shah

Finished examples
• my_peercast.pm
• my_sipxtapi.pm

© Saumil Shah

Some command line Metasploit tools
• msfcli

– Metasploit command line interface.
– Can script up metasploit framework

actions in a non-interactive manner.

• msfpayload
– Generate payload with specific options.

• msfencode
– Encode generated payload.

© Saumil Shah

More command line Metasploit tools

• msfweb
– Web interface to the Metasploit

framework.

• msfupdate
– Live update for the Metasploit

framework.

© Saumil Shah

New in Version 3.0
• msfd

– Metasploit daemon, allows for client-
server operation of Metasploit.

• msfopcode
– command line interface to Metasploit’s

online opcode database.

• msfwx
– a GUI interface using wxruby.

© Saumil Shah

New in Version 3.0
• New payloads, new encoders.
• Ruby extension - Rex (similar to

Pex)
• NASM shell.
• Back end Database support.
• …whole lot of goodies here and

there.

© Saumil Shah

Thank You!

Saumil Shah
saumil@saumil.net

http://net-square.com
+91 98254 31192

