

Universal Library
™

User’s Guide

Document Revision 7.9, October, 2007

© Copyright 2007, Measurement Computing Corporation

Your new Measurement Computing product comes with a fantastic extra —

Management committed to your satisfaction!

Refer to www.mccdaq.com/execteam.html for the names, titles, and contact information of each key executive at

Measurement Computing.

Thank you for choosing a Measurement Computing product—and congratulations! You own the finest, and you can now

enjoy the protection of the most comprehensive warranties and unmatched phone tech support. It‘s the embodiment of our

mission:

 To provide PC-based data acquisition hardware and software that will save time and save money.

Simple installations minimize the time between setting up your system and actually making measurements. We offer quick

and simple access to outstanding live FREE technical support to help integrate MCC products into a DAQ system.

Lifetime warranty: Every hardware product manufactured by Measurement Computing Corporation is warranted

against defects in materials or workmanship for the life of the product. Products found defective are repaired or replaced

promptly.

Lifetime Harsh Environment Warranty®: We will replace any product manufactured by Measurement Computing

Corporation that is damaged (even due to misuse) for only 50% of the current list price. I/O boards face some tough

operating conditions, some more severe than the boards are designed to withstand. When a board becomes damaged, just

return the unit with an order for its replacement at only 50% of the current list price. We don‘t need to profit from your

misfortune. By the way, we honor this warranty for any manufacturer‘s board that we have a replacement for.

30 Day Money Back Guarantee: You may return any Measurement Computing Corporation product within 30 days

of purchase for a full refund of the price paid for the product being returned. If you are not satisfied, or chose the wrong

product by mistake, you do not have to keep it. Please call for an RMA number first. No credits or returns accepted

without a copy of the original invoice. Some software products are subject to a repackaging fee.

These warranties are in lieu of all other warranties, expressed or implied, including any implied warranty of

merchantability or fitness for a particular application. The remedies provided herein are the buyer’s sole and exclusive

remedies. Neither Measurement Computing Corporation, nor its employees shall be liable for any direct or indirect,

special, incidental or consequential damage arising from the use of its products, even if Measurement Computing

Corporation has been notified in advance of the possibility of such damages.

http://www.mccdaq.com/execteam.html

Universal Library User's Guide

4
SM UL USER'S GUIDE.doc

Licensing Information

Each original copy of Universal Library is licensed for development use on one CPU at a time. It is theft to make copies of

this program for simultaneous program development. If a customer creates an application using the Universal Library,

they may distribute the necessary runtime files (Universal Library driver files) with their application royalty free. They

may not distribute any files that give their customer the ability to develop applications using the Universal Library.

Trademark and Copyright Information

TracerDAQ, Universal Library, Harsh Environment Warranty, Measurement Computing Corporation, and the

Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation.

Windows, Microsoft, and Visual Studio are either trademarks or registered trademarks of Microsoft Corporation

LabVIEW is a trademark of National Instruments.

CompactFlash is a registered trademark of SanDisk Corporation.

XBee and XBee-PRO are trademarks of MaxStream, Inc.

All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corporation is believed to be accurate and reliable. However, no

responsibility is assumed by Measurement Computing Corporation neither for its use; nor for any infringements of patents

or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any

patent or copyrights of Measurement Computing Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form

by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of

Measurement Computing Corporation.

Notice
Measurement Computing Corporation does not authorize any Measurement Computing Corporation product

for use in life support systems and/or devices without prior written consent from Measurement Computing

Corporation. Life support devices/systems are devices or systems which, a) are intended for surgical

implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably

expected to result in injury. Measurement Computing Corporation products are not designed with the

components required, and are not subject to the testing required to ensure a level of reliability suitable for the

treatment and diagnosis of people.

5

Table of Contents

1 Introducing the Universal Library ... 10

Universal Library overview .. 10

2 Installation and Configuration ... 12

Installing the Universal Library .. 12
The CB.CFG file and InstaCal ... 12
Installation – .NET support .. 12
Licensing information .. 12
Redistributing a custom UL application ... 12

Distributing InstaCal in addition to your custom UL application ... 12
Integrating InstaCal into your custom UL installation CD or disk ... 13

3 Getting Started ... 14

Example programs .. 14

4 Universal Library Description and Use ... 15

General UL language interface description ... 15
Function arguments ... 15
Constants .. 15
Options arguments .. 15
Error handling .. 16
16-bit values using a signed integer data type .. 16

Using the Universal Library in Windows .. 16
Real-time acquisition under Windows ... 16
Processor speed ... 16
Visual Basic for Windows .. 17
Microsoft Visual C++ ... 17
Borland C /C++ for Windows ... 17
Delphi example programs ... 18

5 Universal Library for .NET Description & Use 19

Configuring a UL for .NET project ... 19
General UL for .NET language interface description ... 20

MccBoard class ... 20
ErrorInfo class ... 21
MccService class .. 22
GlobalConfig class .. 22
DataLogger Class.. 22
MccDaq enumerations .. 23
Parameter data types .. 25

Differences between the UL and UL for .NET ... 25
Board number ... 25
MCC classes ... 26
Methods .. 26
Enumerated types ... 26
Error handling .. 27
Service methods ... 27
Configuration methods .. 27
Data Logger methods .. 28

6 Analog Input Boards .. 29

Introduction ... 29
Trigger support .. 29

Digital trigger ... 29
Analog trigger .. 29
Pretrigger implementations ... 30

Sampling rate using SINGLEIO .. 30

Universal Library User's Guide

6

PCI-2500 Series .. 31
PCI-DAS6000 Series .. 38
PCI-DAS4020 Series .. 44
PCI-DAS64/Mx/16 Series.. 49
PCI- and CIO-DAS6402 and DAS3202 Series .. 52
PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series ... 56
PCIM-DAS1602 and PCIM-DAS16JR Series .. 60
CIO-DAS800 Series .. 63
CIO-, PCI-, and PC104-DAS08 Series .. 65
CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series .. 68
PCM-DAS08 ... 70
PPIO-AI08 ... 71
CIO- and PC104-DAS16 ... 72
PCM- and PC-CARD-DAS16 Series ... 76
CIO-DAS1400 and CIO-DAS1600 Series ... 79
CIO-DAS48/PGA .. 82
miniLAB 1008 .. 83
USB-1208 Series .. 87
USB-1408FS ... 92
USB-1608FS ... 96
USB-1608HS, USB-1608HS-2AO ... 99
USB-1616FS ... 103
USB-1616HS Series ... 107
USB-2500 Series .. 114
DEMO-BOARD ... 121

7 Analog Output Boards ... 123

Introduction ... 123
DAC04 HS Series ... 124
DAC Series (Excluding HS Series) ... 125
PCI-DAC6700 Series .. 126
PCM- and PC-CARD- DAC Series .. 127
PCIM- and CIO- DDA06 Series ... 128
PCI- and CPCI- DDA Series ... 129
cSBX-DDA04 .. 130
USB-3100 Series .. 131

8 Digital Input/Output Boards ... 134

Introduction ... 134
Basic signed integers .. 134

AC5 Series .. 135
DIO Series .. 136
DIO24/CTR3 and D24/CTR3 Series ... 137
PCI-DIO48/CTR15 .. 138
PDISO8 and PDISO16 Series ... 139

Establishing and requesting control of an E-PDISO16 .. 139
Sending a request for control of an E-PDISO16 .. 140
Receiving a request for control of an E-PDISO16 ... 140
Receiving a message .. 140

CIO-PDMA16 and CIO-PDMA32 .. 141
USB-1024 and USB-DIO24 Series ... 142
USB-DIO96 Series (formerly USB-1096 Series) ... 144
USB-SSR Series ... 146
Switch & Sense 8/8 ... 147
DEMO-BOARD ... 148

9 Digital Input Boards ... 150

Introduction ... 150
CIO- and PC104- DI Series ... 151
CIO-DISO48 .. 152

Universal Library User's Guide

7

10 Digital Output Boards .. 153

Introduction ... 153
CIO-RELAY Series ... 154
USB-ERB Series ... 155
CIO- and PC104-DO Series .. 156

11 Counter Boards .. 157

Introduction ... 157
Visual Basic signed integers ... 157
Counter chip variables ... 157

CTR Series ... 158
INT32 Series ... 160
PPIO-CTR06 ... 161
QUAD Series .. 162
USB-4300 Series .. 164

12 Expansion Boards .. 166

Introduction ... 166
AI-EXP48 .. 167
CIO-EXP Series .. 168
MEGA-FIFO .. 169

13 MetraBus Boards .. 170

Introduction ... 170
MDB64 Series ... 171
MIO and MII Digital I/O ... 172
MEM Series Relay .. 173
MSSR-24 SSR .. 174

14 Temperature Input Boards ... 175

Introduction ... 175
CIO-DAS-TEMP .. 176
DAS-TC Series ... 177
USB-TEMP Series, USB-TC Series .. 178
USB-5203, USB-5201 ... 181
WEB-TEMP, WEB-TC .. 184
WLS Series ... 188

15 Other Hardware .. 193

Introduction ... 193
COM422 Series .. 194
COM485 Series .. 194

Appendix – Measurement Computing Device IDs 195

8

Table of MCC Hardware with UL Support

CPCI boards
CPCI-DDA02/12 129

CPCI-DDA02/16 129

CPCI-DDA04/12 129

CPCI-DDA04/16 129

CPCI-DDA08/12 129

CPCI-DDA08/16 129

CPCI-DIO24H 136

CPCI-DIO48H 136

CPCI-DIO96H 136

Ethernet boards
E-PDISO16 139–40

Expansion boards
AI-EXP48 167

CIO-EXP16 168

CIO-EXP32 168

CIO-EXP-BRIDGE 168

CIO-EXP-GP 168

CIO-EXP-RTD 168

MEGA-FIFO 169

ISA boards
CIO-COM422 195

CIO-COM485 195

CIO-CTR05 158–59

CIO-CTR10 158–59

CIO-CTR10HD 158–59

CIO-CTR20HD 158–59

CIO-DAC02 125

CIO-DAC02/16 125

CIO-DAC04/12-HS 124

CIO-DAC04/16-HS 124

CIO-DAC08 125

CIO-DAC08/16 125

CIO-DAC08-I 125

CIO-DAC16 125

CIO-DAC16/16 125

CIO-DAC16-I 125

CIO-DAS08 65–67

CIO-DAS08/Jr 68

CIO-DAS08/Jr/16 68

CIO-DAS08/Jr/16-AO 68

CIO-DAS08/Jr-AO 68

CIO-DAS1401/12 79–81

CIO-DAS1402/12 79–81

CIO-DAS1402/16 79–81

CIO-DAS16 72–75

CIO-DAS16/330 72–75

CIO-DAS16/330i 72–75

CIO-DAS16/F 72–75

CIO-DAS16/Jr 72–75

CIO-DAS16/Jr/16 72–75

CIO-DAS16/M1 72–75

CIO-DAS16/M1/16 72–75

CIO-DAS1601/12 79–81

CIO-DAS1602/12 79–81

CIO-DAS1602/16 79–81

CIO-DAS48/PGA 82

CIO-DAS48-I 82

CIO-DAS6402/12 52–55

CIO-DAS6402/16 52–55

CIO-DAS800 63–64

CIO-DAS801 63–64

CIO-DAS802 63–64

CIO-DAS802/16 63–64

CIO-DAS-TC....................... 177

CIO-DAS-TEMP 176

CIO-DI192 151

CIO-DI48 151

CIO-DI96 151

CIO-DIO192 136

CIO-DIO24 136

CIO-DIO24/CTR3 137

CIO-DIO24H 136

CIO-DIO48 136

CIO-DIO48H 136

CIO-DIO96 136

CIO-DISO48 152

CIO-DO192H 156

CIO-DO24DD 156

CIO-DO48DD 156

CIO-DO48H 156

CIO-DO96H 156

CIO-DUAL422 195

CIO-DUAL-AC5 135

CIO-INT32 160

CIO-PDISO16 139–40

CIO-PDISO8 139–40

CIO-PDMA16 141

CIO-PDMA32 141

CIO-QUAD02 162–63

CIO-QUAD04 162–63

CIO-RELAY08 154

CIO-RELAY16 154

CIO-RELAY16/M 154

CIO-RELAY24 154

CIO-RELAY32 154

Demo-Board 121–22, 148–49

ISA-MDB64 171

Life support
devices/systems 4

Memory boards
MEGA-FIFO 169

MetraBus boards
MEM-32 173

MEM-8 173

MSSR-24 174

PC104 boards
PC104-AC5 135

PC104-CTR10HD.......... 158–59

PC104-DAC06 125

PC104-DAS08 65–67

PC104-DAS16Jr/12 72–75

PC104-DAS16Jr/16 72–75

PC104-DI48 151

PC104-DIO48 136

PC104-DO48H 156

PC104-MDB64 171

PC104-PDISO8 139–40

PCI boards
cSBX-DDA04 130

PCI-2511 31–37

PCI-2513 31–37

PCI-2515 31–37

PCI-2517 31–37

PCI-CTR05 158–59

PCI-CTR10 158–59

PCI-CTR20HD 158–59

PCI-DAC6702 126

PCI-DAC6703 126

PCI-DAS08 65–67

PCI-DAS1000 56–59

PCI-DAS1001 56–59

PCI-DAS1002 56–59

PCI-DAS1200 56–59

PCI-DAS1200/JR 56–59

PCI-DAS1602/12 56–59

PCI-DAS1602/16 56–59

PCI-DAS3202/16 52–55

PCI-DAS4020/12 44–48

PCI-DAS6013 38–43

PCI-DAS6014 38–43

PCI-DAS6023 38–43

PCI-DAS6025 38–43

PCI-DAS6030 38–43

PCI-DAS6031 38–43

PCI-DAS6032 38–43

PCI-DAS6033 38–43

PCI-DAS6034 38–43

PCI-DAS6035 38–43

PCI-DAS6036 38–43

PCI-DAS6040 38–43

PCI-DAS6052 38–43

PCI-DAS6070 38–43

PCI-DAS6071 38–43

PCI-DAS64/M1/16 49–51

PCI-DAS64/M2/16 49–51

PCI-DAS64/M3/16 49–51

PCI-DAS6402/12 52–55

PCI-DAS6402/16 52–55

PCI-DAS-TC 177

PCI-DDA02/12 129

PCI-DDA02/16 129

PCI-DDA04/12 129

PCI-DDA04/16 129

PCI-DDA08/12 129

PCI-DDA08/16 129

PCI-DIO24 136

PCI-DIO24/LP 136

PCI-DIO24/S 136

PCI-DIO24H 136

PCI-DIO24H/CTR3 137

Universal Library User's Guide

9

PCI-DIO48H 136

PCI-DIO48H/CTR15 138–39

PCI-DIO96 136

PCI-DIO96H 136

PCI-DUAL-AC5 135

PCI-INT32 160

PCIM-DAS1602/16 60–62

PCIM-DAS16JR/16 60–62

PCI-MDB64 171

PCI-PDISO16 139–40

PCI-PDISO8 139–40

PCI-QUAD04 162–63

PCI-QUAD-AC5 135

PCMCIA cards
PC-CARD-D24/CTR3 137

PC-CARD-DAS16/12 76–78

PC-CARD-DAS16/12AO 76–78

PC-CARD-DAS16/16 76–78

PC-CARD-DAS16/16AO 76–78

PC-CARD-DAS16/330 76–78

PC-CARD-DIO48 136

PCM-D24/CTR3 137

PCM-DAS08 70

PCM-DAS16D/12 76–78

PCM-DAS16D/12AO 76–78

PCM-DAS16D/16 76–78

PCM-DAS16S/12 76–78

PCM-DAS16S/16 76–78

PCM-DAS16S/330 76–78

PCM-QUAD02 162–63

PPIO boards
PPIO-AI08 71

PPIO-CTR06 161

PPIO-DIO24 136

USB devices
miniLAB 1008 83–86

Switch & Sense 8/8 147

USB-1024HLS 142–43

USB-1024LS 142–43

USB-1096HFS 144–45, See

USB-DIO96H

USB-1208FS 87–91

USB-1208LS 87–91

USB-1408FS 92–95

USB-1608FS 96–98

USB-1608HS 99–102

USB-1608HS-2AO 99–102

USB-1616FS 103–6

USB-1616HS 107–13

USB-1616HS-2 107–13

USB-1616HS-4 107–13

USB-2523 114–20

USB-2527 114–20

USB-2533 114–20

USB-2537 114–20

USB-3101 131–33

USB-3102 131–33

USB-3103 131–33

USB-3104 131–33

USB-3105 131–33

USB-3106 131–33

USB-3110 131–32

USB-3112 131–32

USB-3114 131–32

USB-4301 164–65

USB-4302 164–65

USB-4303 164–65

USB-4304 164–65

USB-5201 181–93

USB-5203 181–93

USB-DIO24/37 142–43

USB-DIO24H/37 142–43

USB-DIO96H 144–45

USB-DIO96H/50 144–45

USB-ERB08 155

USB-ERB24 155

USB-PDISO8................. 139–40

USB-PDISO8/40 139–40

USB-SSR08 146

USB-SSR24 146

USB-TC 178–80

USB-TC-AI 178–80

USB-TEMP 178–80

USB-TEMP-AI 178–80

Web devices
WEB-TC 184–88

WEB-TEMP 184–88

Wireless devices
WLS-IFC 189–93

WLS-TC 189–93

WLS-TEMP 189–93

10

1

Introducing the Universal Library

Congratulations and thank you for selecting the Universal Library (UL). We believe it is the most

comprehensive and easiest-to-use data acquisition software interface available anywhere. As easy as

Universal Library is to use, significant documentation and explanation is still required to help new users get

going, and to allow previous users to take advantage of all the package's powerful features.

The fast changing nature of the software industry makes it very difficult to provide a totally up to date user

guide in written form. Adding to this complexity are the new features and functions that are constantly being

added to the library. To provide the most complete information possible and at the same time keep the

information current, the Universal Library documentation is offered in four parts:

 Universal Library User's Guide: The User's Guide provides a general description of the UL, offers an

overview of the various features and functions, and discusses and how they can be used in different

operating systems and languages. The User's Guide also provides board-specific information relating to

the features and functions that are included with the Universal Library.

 Universal Library Function Reference: The Function Reference contains detailed information about

the Universal Library functions, usage, and options. This document is available on our web site at

www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.

 Example programs: The examples programs demonstrate the use of many of the most frequently used

functions, and are valuable learning tools. They are written for many popular languages. Each example

program is fully functional, and provides an ideal starting place for your own programming effort. You

can cut and paste from the example programs to create your own programs. It's easier to cut-and-paste

pieces from a known, working program than to start writing everything from scratch.

 Readme files: The best way to get the latest, most up to date information is through Readme files. We

incorporate this information into our documentation as quickly as we can, but for the latest, greatest

information, read the Readme file.

Universal Library overview

The Universal Library is the software that you need to write your own programs for use with any of

Measurement Computing‘s data acquisition and control boards. The library is universal in three ways:

Universal across boards: The library contains high level functions for all of the common operations for all

boards. Each of the boards has different hardware but the Universal Library hides these differences from your

program. So, for example, a program written for use with one A/D board will work "as is" with a different

A/D board.

Universal across languages: The Universal Library provides the identical set of functions and arguments for

each supported language. If you switch languages, you will not have to learn a new library, with new syntax,

and different features.

If you are programming for the .NET framework, you will find that the Universal Library for .NET has the

same "look and feel" as the Universal Library for 32-bit windows applications, and is just as easy to program.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf

Universal Library User's Guide Introducing the Universal Library

11

32-bit languages supported by the Universal Library at the time the library was released are listed in the

following table.

Microsoft Windows Languages .NET Languages Borland Windows Languages

Visual Basic VB .NET Borland C++

Visual C/C++ C# .NET Borland C++ Builder

Quick C for Windows Delphi

Microsoft C

Universal across platforms: The Universal Library provides the same sets of functions for Windows 2000,

Windows XP, and Windows Vista. Additionally, these functions have been extended to support the .NET

environment.

Windows Vista support

USB, PCI, WLS, and WEB devices are supported under Windows Vista. PCMCIA devices (PC-CARD and

PCM hardware) are not supported under Windows Vista.

12

2

Installation and Configuration

Installing the Universal Library

To install the Universal Library, follow the steps below.

1. Place the Measurement Computing Data Acquisition Software CD in your CD drive.

The MCC DAQ dialog opens.

2. Select InstaCal & Universal Library and click the Install button.

3. Follow the installation instructions as prompted.

InstaCal is a powerful installation, test, and calibration software package that is installed with the Universal

Library application. Refer to the Quick Start Guide for examples of using InstaCal with Measurement

Computing's DEMO-BOARD.

The CB.CFG file and InstaCal

All board-specific information, including current installed options, is stored in the file CB.CFG file, which is

read by Universal Library. InstaCal creates and/or modifies this file when board configuration information is

added or updated. The Universal Library does not function without the CB.CFG file.

For this reason, you must use InstaCal to modify all board setups and configurations as well as to install or

remove boards from your system.

Installation – .NET support

Universal Library support for .NET requires that the Microsoft .NET framework already be installed on the

system before you install the Universal Library.

Licensing information

Each original copy of Universal Library is licensed for development use on one CPU at a time. It is theft to

make copies of this program for simultaneous program development.

Redistributing a custom UL application

The easiest way to distribute an application written with the Universal Library is to include a copy of

Measurement Computing's InstaCal installation package with the application. Instruct the end user to install

InstaCal before installing the application.

Some developers may want to integrate the installation of the required Universal Library drivers into the

custom application's installation. This should only be attempted by developers experienced in installation

development.

Following is an overview of the two methods.

Distributing InstaCal in addition to your custom UL application

If you create an application using the Universal Library, you may distribute the necessary runtime files

(Universal Library driver files) with the application royalty free. These files can be installed from

Universal Library User's Guide Installation and Configuration

13

Measurement Computing's InstaCal installation package. To distribute a custom UL application, provide the

end user with two CDs or disks:

 One CD or disk that contains Measurement Computing's InstaCal application. InstaCal must be installed

before the custom UL application.

 One CD or disk that contains the setup program for their custom VB or C++ application.

You may not distribute any files that give the end user the ability to develop applications using the Universal

Library.

Integrating InstaCal into your custom UL installation CD or disk

For developers who wish to distribute their application on one CD, refer to the Universal Library

Redistribution Guide. This document contains procedures to merge the setup programs for both InstaCal and

the custom UL application into one setup program that you can distribute on one CD or disk. The merging

process is complicated — only experienced programmers should attempt to do this.

When you install the software, the Universal Library Redistribution Guide (ULRedistribution.pdf) is copied

to the default installation directory "C:\Program Files\Measurement Computing\DAQ\Documents" on your

local drive.

14

3

Getting Started

The Universal Library is callable from many languages and environments, including Visual Basic®, Visual

C++, Borland C++ Builder, and Delphi. A list of the languages currently supported by the Universal Library

is provided on page 11. Additionally, the UL is now callable from any language supported by the .NET

framework. This chapter describes how to use the library from each of the languages. The first section of the

chapter describes details of the library that apply to all languages. The following sections describe the

differences for each language.

Before starting your application, you should perform the following:

 Set up and test your boards with InstaCal. The Universal Library will not function until InstaCal has

created a configuration file (CB.CFG).

 Run the example programs for the language you program in.

Example programs

You can install example programs for supported languages when you install the Universal Library software. If

selected, the example programs are installed into the following installation subdirectories:

 C

 C#

 CWIN

 DELPHI

 VB.NET

 VBWIN

On Windows 2000 and Windows XP, the example programs are installed by default to \Program

Files\Measurement Computing\DAQ.

On Windows Vista, the example programs are installed by default to \Users\Public\Documents\Measurement

Computing\DAQ. When you install the example programs, an "Examples" shortcut is added to the directory

where you installed the Universal Library software. When selected, the directory containing the example

programs opens in Windows Explorer.

For a complete list of example programs, refer to the Universal Library Function Reference

The Universal Library Function Reference contains tables that list the UL and UL for .NET example

programs. Each table contains the name of the sample program and the functions that the program

demonstrates. This document is available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-

functions.pdf.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf

15

4

Universal Library Description and Use

The Universal Library consists of a set of functions that are callable from your program. These functions are

grouped according to their purpose. All of the groups except for Miscellaneous are based on which type of

device they are used with.

Important - Read the UL documentation, Readme file, and run the example programs

In order to understand the functions, please read the board-specific information section contained in this

manual and in the Readme files supplied on the Universal Library disk. We also urge you to examine and run

one or more of the example programs supplied prior to attempting any programming of your own. Following

this advice can save you hours of frustration and wasted time.

General UL language interface description

The interface to all languages is a set of function calls and a set of constants. The list of function calls and

constants are identical for each language. All of the functions and constants are defined in a "header" file for

each language. Refer to the sections below, and especially to the example programs for each language. This

manual is brief with respect to details of language use and syntax. For more detailed information, review the

example programs. Example programs for each language are located in the installation directory.

Function arguments

Each library function takes a list of arguments and most return an error code. Some functions also return data

via their arguments. For example, one of the arguments to cbAIn() is the name of a variable in which the

analog input value will be stored. All function arguments that return data are listed in the "Returns" section of

the function description.

Constants

Many functions take arguments that must be set to one of a small number of choices. These choices are all

given symbolic constant names. For example, cbTIn() takes an argument called Scale that must be set to

CELSIUS, FAHRENHEIT, or KELVIN. These constant names are defined, and are assigned a value in the "header"

file for each language. Although it is possible to use the numbers rather than the symbolic constant names, we

strongly recommend that you use the names. Using constant names make your programs more readable and

more compatible with future versions of the library. The numbers may change in future versions, but the

symbolic names always remain the same.

Options arguments

Some library functions have an argument called Options. The Options argument is used to turn on and off

various optional features associated with the function. If you set Options = 0, the function sets all of these

options to the default value, or OFF.

Some options can have an alternative value, such as DTCONNECT and NODTCONNECT. If an option can have

more than one value, one of the values is designated as the default. Individual options can be turned on by

adding them to the Options argument. For example:

 Options = BACKGROUND will turn on the "background execution" feature.

 Options = BACKGROUND+CONTINUOUS will select both the "background execution" and the "continuous

execution" feature.

Universal Library User's Guide Universal Library Description and Use

16

Error handling

Most library functions return an error code. If no errors occurred during a library call, 0 (or NOERRORS) is

returned as the error code. Otherwise, it is set to one of the codes listed in the Universal Library Function

Reference "Error Codes" chapter. This document is available on our web site at

www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.

If a non-zero error code is returned, you can use cbGetErrMsg() to convert the error code to a specific error

message. As an alternative to checking the error code after each function call, you can turn on the library's

internal error handling with cbErrHandling().

16-bit values using a signed integer data type

When using functions that require 16-bit values, the data is normally in the range of 0 to 65535. However,

some programming languages such as Visual Basic only provide signed data types. When using signed

integers, reading values above (32767) can be confusing.

The number (32767) in decimal is equivalent to (0111 1111 1111 1111) binary. The next increment (1000

0000 0000 0000) binary has a decimal value of (-32768). The maximum value (1111 1111 1111 1111)

binary translates to (-1) decimal. Keep this in mind if you are using Visual Basic (up to version 6) or other

languages that don‘t support unsigned integers.

There is additional information on this topic in the Universal Library Function Reference. This document is

available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf. Also, refer to the

documentation supplied with your language compiler.

Using the Universal Library in Windows

All 32-bit applications (including console applications) access the 32-bit Windows Dynamic Link Library

(DLL) version of the Universal Library (CBW32.DLL). Example programs that illustrate the use of

CBW32.DLLs are provided for each supported language.

The Universal Library contains four functions for managing Windows global memory buffers:

 cbWinBufAlloc()

 cbWinBufFree()

 cbWinArrayToBuf()

 cbWinBufToArray()

Real-time acquisition under Windows

Real-time acquisition is available for Windows. To operate at full speed in Windows, the A/D board must

have an onboard FIFO buffer. All of our advanced designs have FIFO buffers, including our PCI-DAS boards

(except for the PCI-DAS08), and many of our CIO- boards, such as the CIO-DAS80x, CIO-DAS160x, CIO-

DAS140x, and CIO-DAS16/330x. All of these data acquisition boards will operate at full speed in Windows.

Applying software calibration factors in real time on a per-sample basis eats up machine cycles. If your CPU

is slow, or if processing time is at a premium, withhold calibration until after the acquisition run is complete.

Turning off real-time software calibration saves CPU time during a high speed acquisition run.

Processor speed

Processor speed remains a factor for DMA transfers and for real-time software calibration. Processors of less

than a 150 megahertz (MHz) Pentium class may impose speed limits below the capability of the board (refer

to specific board information.)

http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf

Universal Library User's Guide Universal Library Description and Use

17

If your processor is less than a 150 MHz Pentium and you need an acquisition speed in excess of 200 kilohertz

(kHz), use the NOCALIBRATEDATA option to a turn off real-time software calibration and save CPU time. After

the acquisition is run, calibrate the data with cbACalibrateData().

Visual Basic for Windows

To use the Universal Library with Visual Basic, include the Universal Library declaration file CBW.BAS in

your program. Include the file as a module in the project, or include it by reference inside those Forms which

call into the Universal Library. Once the declarations for the Universal Library have been added to your

project, call the library functions from any Form's event handlers.

For Visual Basic 6.0 and older, Windows memory buffers cannot be mapped onto arrays. As a consequence,

the cbWinArrayToBuf() and cbWinBufToArray() functions must be used to copy data between arrays and

Windows buffers.

Example:
Count = 100

MemHandle = cbWinBufAlloc (Count)

cbAInScan (......, MemHandle,...)

cbWinBufToArray (MemHandle, DataArray(0), 0, Count)

For i = 0 To Count

 Print DataArray(i)

Next i

cbWinBufFree (MemHandle)

Visual Basic example programs

A complete set of Visual Basic example programs is included in the VBWIN folder of the Universal Library

installation directory. Each program illustrates the use of a Universal Library function from within a Visual

Basic program. The .FRM files contain the programs, and the corresponding .VBP files are the project files

used to build the programs for Visual Basic.

Microsoft Visual C++

To use the Universal Library with MS Visual C++, include the Universal Library header file CBW.H in your

C/C++ program and add the library file CBW32.LIB to your library modules for linking to the CBW32.DLL.

Microsoft Visual C++ example programs

The CWIN folder of the Universal Library installation directory contains three sample programs - Wincai01,

Wincai02 and Wincai03. Each program is an example of a simple C program that calls a few of the Universal

Library functions from a Windows application. Use the .DSP project files to build a 32-bit application.

The non-Windows C examples in the C folder of the installation directory provide a more complete set of

examples. You can compile these programs as 32-bit console applications for Windows by using the

MAKEMC32.BAT file.

Borland C /C++ for Windows

For 32-bit Borland (or Inprise) C/C++ compilers, include the Universal Library header file CBW.H in your

program and link with the import library file CBW32BC.LIB.

Borland C/C++ example programs

The non-Windows C examples provide an extensive set of examples. These can be compiled as 32-bit console

applications using the MAKEBC32.BAT file.

Universal Library User's Guide Universal Library Description and Use

18

Delphi example programs

A complete set of Delphi example programs is included in the DELPHI folder of the Universal Library

installation directory. Each program illustrates the use of one Universal Library function from within a Delphi

program. The .PAS files contain the programs. The corresponding .DPR file is the Project file used to build

the program in a 32-bit Delphi environment.

In 32-bit Delphi environments use the cbw32.dll header. Where integers are passed by reference to a

Universal Library function, use the SmallInt data type in 32-bit environments. The relevant functions are

defined this way in the 32-bit header, so if you try to pass an Integer data type you will get a compiler error.

19

5

Universal Library for .NET Description & Use

Programming the Universal Library API is now available through the various languages supported by the

Microsoft .NET framework. All .NET applications access the 32-bit Windows Universal Library

(CBW32.DLL) through the MccDaq .NET assembly (MCCDAQ.DLL). The MccDaq assembly provides an

interface that exposes each Universal Library function that is callable from the .NET language.

The Universal Library for .NET is designed to provide the same "look and feel" as the Universal Library for

32-bit Windows. This design makes it easier to port over existing data acquisition programs, and minimizes

the learning curve for programmers familiar with the CBW32.DLL interface.

In the Universal Library for .NET, each function is exposed as a class method with virtually the same

parameter set as their UL counterparts.

Configuring a UL for .NET project

In a .NET application, there are no header files to include in your project. You define methods and constants

by adding the MccDaq assembly, or Namespace, as a reference to your project. You access UL for .NET

methods through a class that has the Universal Library as a member.

To add the MccDaq Namespace as a reference in a Visual Studio .NET project:

1. Start a new Visual Basic or C# project in Visual Studio .NET.

2. From the Visual Studio .NET Solution Explorer window, right-click on References and select Add

Reference.

The Add Reference window appears.

3. From the .NET tab, select the MccDaq option from the displayed list of .NET assemblies and click on the

Select button.

MccDaq displays in the Selected Components area on the window.

4. Click on the OK button.

Universal Library User's Guide Universal Library for .NET Description & Use

20

MccDaq appears under the References folder in the Solution Explorer window.

The MccDaq Namespace is now referenced by your Visual Studio .NET project.

General UL for .NET language interface description

The MccDaq Namespace provides an interface that exposes each Universal Library for .NET method as a

member of a class with virtually the same parameters set as their UL counterparts. The MccDaq Namespace is

a logical naming scheme for grouping related types. The .NET Framework uses a hierarchical naming scheme

for grouping types into logical categories of related functionality.

When you develop a .NET application that uses the Universal Library, you add the MccDaq Namespace as a

reference to your project. There are no "header" files in a .NET project.

The MccDaq Namespace contains the classes and enumerated values by which UL for .NET applications

access the Universal Library data types and functions. The MccDaq Namespace contains five main classes:

 MccBoard class

 ErrorInfo class

 MccService class

 GlobalConfig class

 DataLogger class

The MccDaq assembly allows you to design Common Language Specification (CLS)-compliant programs. A

CLS-compliant program contains methods that can be called from any existing or future language developed

for the Microsoft .NET framework. Use CLS-compliant data types to ensure future compatibility.

MccBoard class

The MccBoard class provides access to all of the methods for data acquisition and properties providing board

information and configuration for a particular board.

Class Constructors

The MccBoard class provides two constructors; one which accepts a board number argument and one with no

arguments.

The following code examples demonstrate how to create a new instance of the MccBoard class using the latter

version with a default board number of 0:

Visual Basic Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard()

C# private MccDaq.MccBoard DaqBoard;

DaqBoard = new MccDaq.MccBoard();

Universal Library User's Guide Universal Library for .NET Description & Use

21

The following code examples demonstrate how to create a new instance of the MccBoard class with the board

number passed to it:

Visual Basic Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard(BoardNumber)

C# private MccDaq.MccBoard DaqBoard;

DaqBoard = new MccDaq.MccBoard(BoardNumber);

Class properties

The MccBoard class also contains six properties that you can use to examine or change the configuration of

your board. The configuration information for all boards is stored in the CB.CFG file, and is loaded from

CB.CFG by all programs that use the library.

Properties Description

BoardName Name of the board associated with an instance of the MccBoard class.

BoardNum Number of the board associated with an instance of the MccBoard class.

BoardConfig Gets a reference to a cBoardConfig class object. Use this class reference to get or set

various board settings.

CtrConfig Gets a reference to a cCtrConfig class object. Use this class reference to get or set

various counter settings.

DioConfig Gets a reference to a cDioConfig class object. Use this class reference to get or set

various digital I/O settings.

ExpansionConfig Gets a reference to a cExpansionConfig class object. Use this class reference to get or set

various expansion board settings.

Class methods

The MccBoard class contains close to 80 methods that are equivalents of the function calls used in the standard

Universal Library. The MccBoard class methods have virtually the same parameters set as their UL

counterparts.

The following code examples demonstrate how to call the AIn()method of the MccBoard object MccDaq:

Visual Basic ULStat = DaqBoard.AIn(Chan, Range, DataValue)

C# ULStat = DaqBoard.AIn(Chan, Range, out DataValue);

Many of the arguments are MccDaq enumerated values. Enumerated values take settings such as range types

or scan options and put them into logical groups. For example, to set a range value, reference a value from the

MCCDaq.Range enumerated type, such as Range.Bip5Volts. Refer to Table 1 on page 23 for a list of MccDaq

enumerated values.

The Universal Library Function Reference contains detailed information about all MccBoard class methods.

This document is available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.

ErrorInfo class

Most UL methods return ErrorInfo objects. These objects contain two properties that provide information on

the status of the method called:

 ErrorInfo.Message property gets the text of the error message associated with a specific error code.

 ErrorInfo.Value property gets the named constant value associated with the ErrorInfo object.

The ErrorInfo class also includes error code enumerated values, which define the error number and

associated message which can be returned when you call a method.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf

Universal Library User's Guide Universal Library for .NET Description & Use

22

MccService class

The MccService class contains all members for calling utility UL functions. This class contains the following

static methods (you do not need to create an instance of the MccService class to call these methods):

 DeclareRevision()

 ErrHandling()

 FileGetInfo()

 FileRead()

 GetBoardName()

 GetRevision()

 WinArrayToBuf()

 WinBufAlloc()

 WinBufAlloc32()

 WinBufFree()

 WinBufToArray()

 WinBufToArray32()

The following code examples demonstrate how to call a UL for .NET memory management method from

within a Universal Library program:

WindowHandle=MccService.WinBuffAlloc(1000)

MccService.WinBuffFree(WindowHandle)

GlobalConfig class

The GlobalConfig class contains all of the members for getting global configuration information. This class

contains three properties:

 MccDaq.GlobalConfig.NumBoards property returns the maximum number of boards that you can install

at one time. ConfigGlobal=MccDaq.GlobalConfig.NumBoards

 MccDaq.GlobalConfig.NumExpBoards property returns the maximum number of expansions boards that

are allowed to be installed on the board. ConfigGlobal=MccDaq.GlobalConfig.NumExpBoards

 MccDaq.GlobalConfig.Version property is used to determine compatibility with the library version.
ConfigGlobal=MccDaq.GlobalConfig.Version

Each of these properties is typed as an Integer.

DataLogger Class

The DataLogger class contains all members for reading and converting the data contained in binary log files.

This class contains one property and 14 methods:

 FileName property returns the file name associated with an instance of the DataLogger class.

 ConvertFile() converts a binary log file to a comma-separated values (.CSV) text file or another text

file format that you specify.

 GetAIChannelCount() retrieves the total number of analog channels that were logged in a binary file.

 GetAIInfo() retrieves the channel number and unit value of each analog input channel logged in a binary

file.

 GetCJCInfo() retrieves the number of CJC temperature channels logged in a binary file.

 GetDIOInfo() retrieves the number of digital I/O channels logged in a binary file.

 GetFileInfo() retrieves the version level and byte size of a binary file.

Universal Library User's Guide Universal Library for .NET Description & Use

23

 GetFileName() retrieves the name of the nth file in the directory containing binary log files.

 GetPreferences retrieves API preference settings for time stamp data, analog temperature data, and CJC

temperature data. Returns the default values unless changed using SetPreferences().

 GetSampleInfo() retrieves the sample interval, sample count, and the date and time of the first data point

in a binary file.

 ReadAIChannels() retrieves analog input data from a binary file, and stores the values in an array.

 ReadCJCChannels() retrieves CJC temperature data from a binary file, and stores the values in an array.

 ReadDIOChannels()retrieves digital I/O channel data from a binary file, and stores the values in an array.

 ReadTimeTags() retrieves date and time values logged in a binary file. This method stores date values in

the dateTags array, and time values in the timeTags array.

 SetPreferences() sets formatting preferences for returned time stamp data, analog data, and CJC

temperature data.

The following code examples demonstrate how to use the GetFileName()method from within a Universal

Library program to retrieve the name of a binary log file:

Visual Basic Status = DataLogger.GetFileName(MccService.GetFirst, path, filename)

C# status = DataLogger.GetFileName(MccService.GetFirst, ref path,

ref filename);

MccDaq enumerations

The MccDaq Namespace contains enumerated values which are used by many of the methods available from

the MccDaq classes (see Table 1). Refer to specific method descriptions in the Universal Library Function

Reference for the values of each enumerated type. This document is available on our web site at

www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.

Table 1. MccDaq Enumerated Values

Enumeration Name Description

MccDaq.BCDMode Lists BCD mode options (enabled/disabled).

MccDaq.C8254Mode Lists all of the operating modes for 8254 counters.

MccDaq.C8536OutputControl Lists all of the types of output from an 8536 counters.

MccDaq.C8536TriggerType Lists all of the options for specifying the trigger type for 8536 counters.

MccDaq.C9513OutputControl List all of the types of output from a 9513 counters.

MccDaq.CompareValue List all options for comparing values while configuring a 9513 counter.

MccDaq.ConnectionPin Defines the connector pins to associate with the signal type and direction

when calling the SelectSignal() method.

MccDaq.CounterControl Defines the possible state of each counter channel (enabled/disabled).

MccDaq.CountDirection Defines the count direction when configuring counters.

MccDaq.CountEdge Defines the edge used for counting.

MccDaq.CounterRegister Lists all of the register names used to load counters.

MccDaq.CounterSource Lists all counter input sources.

MccDaq.CountingMode Lists all valid modes for a C7266 counter configuration.

MccDaq.CtrlOutput Lists all of the options for linking counter 1 to counter 2.

MccDaq.DACUpdate Defines the available DAC update modes

MccDaq.DataEncoding Lists the format of the data that is returned by a counter.

MccDaq.DigitalPortDirection Configures a digital I/O port as input or output.

MccDaq.DigitalLogicState Defines all digital logic states.

MccDaq.DigitalPortType Defines all digital port types.

MccDaq.DTMode Lists all modes to transfer to/from the memory boards.

MccDaq.ErrorHandling Defines all error handling options.

MccDaq.ErrorInfo.ErrorCode Defines all error constants.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf

Universal Library User's Guide Universal Library for .NET Description & Use

24

Enumeration Name Description

MccDaq.ErrorReporting Defines all error reporting options.

MccDaq.EventType Lists all available event conditions.

MccDaq.FieldDelimiter Lists all options for specifying the delimiter character used to separate fields

in a converted binary log file.

MccDaq.FlagPins Lists all signals types that can be routed to the FLG1 and FLG2 pins on the

7266 counters.

MccDaq.FunctionType List all valid function types used with data acquisition methods.

MccDaq.GateControl List all of the gating modes for configuring a 9513 counter.

MccDaq.IndexMode List the actions to be taken when the index signal is received by a 7266

counter.

MccDaq.LoggerUnits Lists the options used to specify the units for analog data in a binary file

MccDaq.OptionState Enables or disables various options.

MccDaq.PrimaryBitConfigPortType Defines digital port types for bit level configuration.

MccDaq.PrimaryDigitalPortType Defines digital port types for bit level input/output methods.

MccDaq.Quadrature Lists all of the resolution multipliers for quadrature input.

MccDaq.Range Defines the set of ranges within the UL for A/D and D/A operations.

MccDaq.RecycleMode Lists the recycle mode options for 9513 and 8536 counters.

MccDaq.Reload Lists the options for reloading the 9513 counter.

MccDaq.ScanOptions List the available scan options for paced input/output methods.

MccDaq.SignalType List all signal types associated with a connector pin on boards supporting a

DAQ-Sync connector.

MccDaq.SignalDirection Lists all of the directions available from a specified signal type assigned to a

connector pin.

MccDaq.SignalPolarity List all available polarities for a specified signal.

MccDaq.SignalSource List all of the signal sources of the signal from which the frequency will be

calculated.

MccDaq.SoftwareTriggerType Defines trigger types for software triggering.

MccDaq.StatusBits List all status bits available when reading counter status.

MccDaq.TempScale Lists the options used to specify the units for analog data in a converted file.

MccDaq.TimeFormat Lists all options for specifying the time format of timestamp data.

MccDaq.TimeOfDay List all time of day options for initializing a 9513 counter.

MccDaq.TimeZone Lists all options for specifying the time zone of timestamp data

MccDaq.TriggerType List all valid trigger types for the MccBoard.SetTrigger method.

MccDaq.ThermocoupleOptions Specifies whether or not to apply smoothing to temperature readings.

Universal Library User's Guide Universal Library for .NET Description & Use

25

Parameter data types

Many of the Universal Library for .NET methods are overloaded to provide for signed or unsigned data types

as parameters. The AConvertData() method is shown below using both signed and unsigned data types.

VB.NET

Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As

Short, ByRef chanTags As Short) As MccDaq.ErrorInfo

Member of MccDaq.MccBoard

Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As

System.UInt16, ByRef chanTags As System.UInt16) As MccDaq.ErrorInfo

Member of MccDaq.MccBoard

C# .NET public MccDaq.ErrorInfo AConvertData (System.Int32 numPoints, System.Int16

adData, System.Int16 chanTags)

Member of MccDaq.MccBoard

public MccDaq.ErrorInfo AConvertData (System.Int32 numPoints, System.UInt16

adData, System.UInt16 chanTags)

Member of MccDaq.MccBoard

For most data acquisition applications, unsigned data values are easier to manage. However, since Visual

Basic (version 6 and earlier) does not support unsigned data types, it may be easier to port these programs to

.NET if the signed data types are used for the method parameters. For additional information on using signed

data types, refer to the section ―16-bit values using a signed integer data type‖ on page 16.

The short (Int16) data type is Common Language Specification (CLS) compliant, is supported in VB, and will

be included in any future .NET language developed for the .NET framework. Using CLS-compliant data types

ensures future compatibility. Unsigned data types are not CLS compliant, but are still supported by various

.NET languages, such as C#.

Differences between the UL and UL for .NET

Table 2 lists the differences between the Universal Library and the Universal Library for .NET.

Table 2. Differences between UL and UL for .NET

 Universal Library Universal Library for .NET

Board Number The board number is included as a

parameter to the board functions.

An MccBoard class is created for each board installed,

and the board number is passed to that board class.

Functions Set of function calls defined in a header. Set of methods. Methods of MccBoard or MccService

classes. To access a method, instantiate a UL for .NET

class and call the appropriate method using that class.

Constants Constants are defined and assigned a

value in the "header" file.

Constants are defined as enumerated types.

Return value The return value is an Error code. The return value is an ErrorInfo object that contains the

error's number and message.

Board number

In a .NET application, multiple boards may be programmed by creating an MccBoard Class object for each

board installed:

Board0 = new MccBoard(0)

Board1 = new MccBoard(1)

Board2 = new MccBoard(2)

Note that the board number may be passed into the MccBoard class, which eliminates the need to include the

board number as a parameter to the board methods.

Universal Library User's Guide Universal Library for .NET Description & Use

26

MCC classes

To use board-specific Universal Library functions inside a .NET application, you use methods of the

appropriate class. UL for .NET classes are listed in Table 3.

Table 3. UL for .NET Board Classes

UL for .NET Class Description

MccBoard Access board-related Universal Library functions.

ErrorInfo Utility class for storing and reporting error codes and messages.

BoardConfig Gets and sets board configuration settings.

CtrConfig Gets and sets counter configuration settings.

DioConfig Gets and sets digital I/O configuration settings.

ExpansionConfig Gets and sets expansion board configuration settings.

GlobalConfig Gets and sets global configuration settings.

MccService Access utility Universal Library functions.

DataLogger Reads and converts binary log files.

Refer to the Universal Library Function Reference (available on our web site at

www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf) for additional class information.

Methods

Methods are accessed through the class containing them. The following example demonstrates how to call the

AIn() method from within a 32-bit Windows application and also from a .NET application.

VB Application using CBW32.DLL VB .NET Application using MCCDAQ.DLL

Dim Board As Integer

Dim Channel As Integer

Dim Range As Integer

Dim ULStat As Integer

Dim DataValue As Short

Board =0

Channel = 0

Range =BIP5VOLTS;

ULStat =cbAIn(Board, Channel, Range,
DataValue)

Dim Board0 As MccBoard

Board0 = new MccDaq.MccBoard(0)

Dim Channel As Integer

Dim Range As MccDaq.Range

Dim ULStat As ErrorInfo

Dim DataValue As UInt16

Channel = 0

Range =Range.BIP5VOLTS;

ULStat =Board0.AIn(Channel, Range,
DataValue)

Enumerated types

Instead of using constants such as BIP5VOLTS, the Universal Library for .NET uses enumerated types. An

enumerated type takes settings such as range types, scan options or digital port numbers and puts them into

logical groups. Some examples are:

Range.Bip5Volts

Range.Bip10Volts

Range.Uni5Volts

Range.Uni10Volts

ScanOptions.Background

ScanOptions.Continuous

ScanOptions.BurstMode

TimeZone.GMT

FileType.Text

http://www.measurementcomputing.com/PDFmanuals/sm-ul-functions.pdf

Universal Library User's Guide Universal Library for .NET Description & Use

27

If you are programming inside of Visual Studio .NET, the types that are available for a particular enumerated

value display automatically when you type code:

Error handling

For .NET applications, the return value for the Universal Library functions is an object (ErrorInfo), rather than

a single integer value. The ErrorInfo object contains both the numeric value for the error that occurred, as well

as the associated error message. Within a .NET application, error checking may be performed as follows:

ULStat=Board0.AIn(Channel, Range, DataValue)

'check the numeric value of ULStat

If Not ULStat.Value = ErrorInfo.ErrorCode.NoErrors Then

 'if there was an error, then display the error message

 MsgBox ULStat.Message

EndIf

Service methods

You can access other Universal Library functions that are not board-specific through the MccService class.

This class contains a set of static methods you can access directly, without having to instantiate an

MccService object. The following examples demonstrate library calls to .NET memory management methods:

WindowHandle = MccService.WinBuffAlloc(1000)

MccService.WinBuffFree(WindowHandle)

Configuration methods

In 32-bit Windows applications, you access board configuration information by calling the cbGetConfig and

cbSetConfig API functions. In .NET applications, you access board configuration information through

separate classes, such as cBoardConfig, cCtrConfig, cDioConfig, and cExpansionConfig. Each

configuration item has a separate get and set method.

Some examples of how to access board configuration within a .NET application are shown below:

 UlStat = Board0.BoardConfig.GetRange(RangeValue)

 UlStat = Board1.DioConfig.GetNumBits(DevNumber, Number)

 UlStat = Board2.CtrConfig.GetCtrType(DevNumber, CounterType)

 UlStat = Board3.BoardConfig.SetClock(ClockSource)

 UlStat = Board4.ExpansionConfig.SetCJCChan(DevNumber, CjcChan)

Universal Library User's Guide Universal Library for .NET Description & Use

28

Data Logger methods

In 32-bit Windows applications, you access information contained in binary log files by calling the API

functions. In .NET applications, you access this information by calling the DataLogger class and its methods.

The following example demonstrates how to retrieve the name of the first binary log file using the

cbLogGetFileName() function and GetFileName() method.

C/C++ application C# application

char filename(50);

char* path = "C:\\LogData";

int retval = 0;

retval =

cbLogGetFileName(GetFirst, path,

filename);

string filename = new string('\0',50);

string path = "C:\\LogData";

ErrorInfo status;

status =

DataLogger.GetFileName(MccService.GetFirst,

ref path, ref filename);

29

6

Analog Input Boards

Introduction

All boards that have analog input support the cbAIn()/AIn() and cbAInScan()/AInScan() functions, except

expansion boards, which only support cbAIn(). Boards released after the printing of this manual are described

in Readme files contained on the Universal Library disk.

When hardware-paced A/D conversion is not supported, cbAInScan()/AInScan() loops through software

paced conversions. The scan will execute at the maximum speed possible. This speed will vary with CPU

speed. The only valid option in this case is CONVERTDATA.

Concurrent analog input and output for paced analog inputs, paced analog outputs

For boards with both paced analog inputs and paced analog outputs, concurrent analog input and output scans

are supported. That is, these boards allow operations with analog input functions (cbAInScan/AInScan() and

cbAPretrig/APretrig) and analog output functions (cbAOutScan/AOutScan()) to overlap without having to

call cbStopBackground()/StopBackground() between the start of input and output scans.

Trigger support

Digital trigger

If trigger support is "Polled gate" (as opposed to "Hardware"), you implement a trigger by gating the on-board

pacer. This disables the on-board pacer. The trigger input is then polled continuously until the trigger occurs.

When that happens, the software disables the gate input so that when the trigger returns to its original state, it

does not affect the pacer, and acquisition continues until the requested number of samples has been acquired.

There are two side effects to this type of trigger:

 The polling portion of the function does not occur in the background, even if the BACKGROUND option was

specified (although the actual data acquisition does).

 The trigger does not necessarily occur on the rising edge. Acquisition can start at any time after the

function is called if the trigger input is at "active" level. For this reason, it is best to use a trigger that goes

active for a much shorter time than it is inactive.

Similar to ‗Polled gate‘ triggering is ‗Polled digital input‘ triggering, where the pacer is disabled while the

state of a digital input is polled. When the state changes to active, the pacer is enabled by the software. The

polled digital input trigger type limitations are very similar to the polled gate type explained above.

Analog trigger

You set up the trigger levels for an analog trigger using the function cbSetTrigger / SetTrigger, and passing

the appropriate values to the HighThreshold and LowThreshold arguments.

For most boards that support analog triggering, you can calculate the HighThreshold and LowThreshold

values by passing the required trigger voltage level and the appropriate Range to the cbFromEngUnits /

FromEngUnits function.

However, for some boards, you must manually calculate HighThreshold and LowThreshold. If a board

requires manual calculation, that information will be included in the Trigger information for the specific

product in this section. The procedure for manually calculating these values is detailed in the Universal

Library Function Reference in the description of the cbSetTrigger / SetTrigger function.

Universal Library User's Guide Analog Input Boards

30

Pretrigger implementations

Pretrigger functionality may be implemented through software or hardware. These two methods have different

limitations and requirements. Most Measurement Computing products with pretrigger capability are

implemented in hardware.

When implemented in hardware, the buffer created using cbWinBufAlloc() must be large enough to hold 512

samples more than the requested TotalCount. The trigger location is tracked by a counter on the board. When

the trigger condition is met, data is acquired and the library functions return the actual number of pretrigger

points that were acquired. When run in BACKGROUND mode, the cbGetStatus() function will typically show

CurCount rise to the value of PretrigCount and remain there while CurIndex cycles from 0 to TotalCount

continuously until the trigger is received.

With the software implementation of pretrigger, the additional space in the buffer is not required. The trigger

location is tracked by software. Any triggers that occur before the number of samples defined by the

pretrigger count argument are ignored. When run in BACKGROUND mode, the cbGetStatus() function will

typically show CurCount at a value of 0 and CurIndex at a value of -1 until the trigger is received. They will

then rise from of PretrigCount to TotalCount.

Sampling rate using SINGLEIO

When using this mode of data transfer, the maximum analog sampling rate is dependent on the speed of the

computer in which the board is installed. In general, it is in the range of 5 to 50 kHz. If the requested speed

cannot be sustained, an overrun error will occur. Data will be returned, but likely there will be gaps. Some

boards, such as the CIO-DAS08, support this mode only, so the maximum rate attainable with these boards is

system-dependent.

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

31

PCI-2500 Series

The PCI-2500 Series includes the PCI-2511, PCI-2513, PCI-2515, and PCI -2517 boards.

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbAPretrig()*, cbATrig(),
cbALoadQueue()

UL for .NET: AIn(), AInScan(), FileAInScan(), APretrig()*, ATrig(), ALoadQueue()

 * Pretrigger capability is implemented in software. PretrigCount must be less

than the TotalCount and cannot exceed 100000 samples. TotalCount must be

greater than the PretrigCount. If a trigger occurs while the number of collected

samples is less than the PretrigCount, that trigger will be ignored. Requires a call

to cbSetTrigger (SetTrigger) for the analog trigger type.

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER

 With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan PCI-2517, PCI-2515, PCI-2513:

 0 to 15 in single-ended mode, 0 to 7 in differential mode

 PCI-2511:

 0 to 15 in single-ended mode.

Rate Up to 1 MHz

Range PCI-2517, PCI-2515, PCI-2513:

BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIP2VOLTS (2 V)

BIP1VOLTS (1 V)

BIPPT5VOLTS (0.5 V)

BIPPT2VOLTS (0.2 V)

BIPPT1VOLTS (0.1 V)

 PCI-2511:

BIP10VOLTS (10 V)

Analog output (PCI-2517 and PCI-2515 only)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

 NONSTREAMEDIO can only be used with the number of samples set equal to the size

of the FIFO or less. The FIFO holds 524288 samples.

HighChan PCI-2517: 0 to 3

 PCI-2515: 0 to 1

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

32

Rate 1 MHz

Range Ignored - Not programmable; fixed at BIP10VOLTS (10 volts)

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers).

Pacing Hardware pacing, external or internal clock supported.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

PortType FIRSTPORTA

Port I/O functions, methods, and argument values supported

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

 *FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to

DIO PortNum on page 36 for more information.

Options BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, WORDXFER, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

 The EXTTRIGGER option can only be used with the cbDInScan() function. You can

use the cbSetTrigger() function to program the trigger for rising edge, falling

edge, or the level of the digital trigger input (TTL).

 The WORDXFER option can only be used with FIRSTPORTA.

 The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with

the cbDOutScan() function.

 The NONSTREAMEDIO option can only be used with the number of samples set equal

to the size of the FIFO or less. The FIFO holds 524288 samples.

Rate 12 MHz

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DataValue 0 to 255

 0 to 65535 using the WORDXFER option with FIRSTPORTA

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 23

Counter input

Counter functions and methods supported

UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

mk:@MSITStore:C:\MCC\UniLib.chm::/Function_Reference/Configuration_Functions/cbSetTrigger().htm

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

33

UL for .NET: CIn(), CIn32(), CConfigScan(), CInScan(), CClear()

Note: Counters on these boards are zero-based (the first counter number is "0").

Counter argument values

Rate 6 MHz

CounterNum 0 to 3

Options BACKGROUND, CONTINUOUS, EXTTRIGGER

 You can use the cbSetTrigger() function to program the trigger for rising edge,

falling edge, or the level of the digital trigger input (TTL).

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Timer output

Timer functions and methods supported

UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

Timer argument values

TimerNum 0 to 1

Frequency 15.260 Hz to 1.0 MHz

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

 Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not

supported for pre-trigger acquisitions (cbAPretrig() function). Analog triggering

(TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the

cbCInScan() function.

Threshold Analog hardware triggering, 12-bit resolution:

0 to 4095 (supported for cbAInScan() only)

 Analog software triggering, 16-bit resolution:

0 to 65535 (supported for cbAPretrig() only)

DAQ input

DAQ input functions and methods supported

UL: cbDaqInScan()

UL for .NET: DaqInScan()

DAQ input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER

ChanTypeArray ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, SETPOINTSTATUS

ChanArray ANALOG: PCI-2517, PCI-2515, PCI-2513: 0 to 15 in single-ended mode,

mk:@MSITStore:C:\MCC\UniLib.chm::/Function_Reference/Configuration_Functions/cbSetTrigger().htm

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

34

 0 to 7 in differential mode

 PCI-2511: 0 to 15 in single-ended mode

 DIGITAL8: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

 DIGITAL16: FIRSTPORTA

 CTR16: 0-3 counters

 CTR32LOW: 0-3 counters

 CTR32HIGH: 0-3 counters

 SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible

setpoints.

 ChanTypeArray flag value:

 SETPOINT_ENABLE: Enables a setpoint. Refer to Hardware Considerations on page

36 for more information.

Rate Analog: Up to 1 MHz

 Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1

MHz.

 Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1

MHz.

GainArray ANALOG only; ignore for other ChanTypeArray values.

 PCI-2517, PCI-2515, PCI-2513:

 BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIP2VOLTS (2 V)

BIP1VOLTS (1 V)

BIPPT5VOLTS (0.5 V)

BIPPT2VOLTS (0.2 V)

BIPPT1VOLTS (0.1 V)

 PCI-2511:

Ignored – fixed at BIP10VOLTS (10 V)

ChanCount Number of elements in ChanArray, ChanTypeArray and GainArray. Up to 512

elements max.

PretrigCount 100000 max. This argument is ignored if the EXTTRIGGER option is not specified.

DAQ triggering

DAQ trigger functions and methods supported

UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

DAQ trigger argument values

TrigSource TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW,

TRIG_DIGPATTERN, TRIG_COUNTER, TRIG_SCANCOUNT

TrigSense RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent START_EVENT, STOP_EVENT

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

35

DAQ setpoint

DAQ setpoint functions and methods supported

UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

DAQ setpoint argument values

SetpointFlagsArray SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB,

SF_OUTSIDE_LIMITS, SF_HYSTERESIS, SF_UPDATEON_TRUEONLY,
SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1

 also available for PCI-2515 and PCI-2517:

 SO_DAC0, SO_DAC1

 also available for PCI-2517:

 SO_DAC2, SO_DAC3

LimitAArray Any value valid for the associated input channel

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray Any value valid for the associated input channel and less than LimitA

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array For SetpointOutputArray = SO_NONE:

Ignored

For SetpointOutputArray = SO_FIRSTPORTC:

0 to 65535

For SetpointOutputArray = SO_TMR#:

0 (to disable timer) or 15.26 to 1000000 (to set output frequency)

For SetpointOutputArray = SO_DAC#:

Voltage values between -10 and +10

OutputMask#Array For SetpointOutputArray = SO_FIRSTPORTC:

0 to 65535

For SetpointOutputArray = all other values:

Ignored

SetpointCount 0 (to disable setpoints) to 16

DAQ output (PCI-2517 and PCI-2515 only)

DAQ output functions and methods supported

UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

DAQ output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

ChanType ANALOG, DIGITAL16

ChanArray ANALOG: PCI-2517: 0 to 3

 PCI-2515: 0 to 1

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

36

 DIGITAL16: FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate ANALOG: Up to 1 MHz

 DIGITAL16: Up to 12 MHz if no analog channel is selected.

 Otherwise up to 1 MHz.

Range Ignored

Hardware considerations

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a

BADCOUNT error is returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling

rates when using BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use

NONSTREAMEDIO mode, if supported. The minimum size buffer is 256 for cbAOutScan(). Values less than that

result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning

multiple channels and one or more channels are connected to a high impedance source, you may get better

results by increasing the settling time. Keep in mind that increasing the settling time reduces the maximum

acquisition rate. You can set the time between A/D conversions with the ADC Settling Time option in

InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray

argument values. You set the setpoint criteria with the cbDaqSetSetpoints()/DaqSetSetpoints(). The

number of channels set with the SETPOINT_ENABLE flag must match the number of setpoints set by the

SetpointCount argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The

aggregate size of the data output buffer must be less than or equal to the size of the internal data output FIFO

in the device. The FIFO holds 524288 samples. This allows the data output buffer to be loaded into the

device‘s internal output FIFO. Once the sample data are transferred or downloaded to the device, the device is

responsible for outputting the data. You can't make any changes to the output buffer once the output begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCKTRIG option to trigger a data output operation upon the start of the ADC clock.

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are

treated as one 16-bit port. These functions can only be used with FIRSTPORTA. You must configure both

FIRSTPORTA and FIRSTPORTB for output using the cbDConfigPort() function.

Synchronous scanning with multiple boards

You can operate up to four PCI-2500 Series boards synchronously by setting the direction of the A/D and D/A

pacer pins (XAPCR or XDPCR) in InstaCal.

Universal Library User's Guide Analog Input Boards - PCI-2500 Series

37

On the board used to pace each device, set the pacer pin that you want to use (XAPCR or XDPCR) for

Output. On the board(s) that you want to synchronize with this board, set the pacer pin that you want to use

(XAPCR or XDPCR) for Input.

You set the direction using the InstaCal configuration dialog's XAPCR Pin Direction and XDPCR Pin

Direction settings. If you have an older version of InstaCal, these settings might be labeled "ADC Clock

Output" (set to Enabled to configure XAPCR for output) or "DAC Clock Output" (set to Enabled to configure

XDPCR for output).

Wire the pacer pin configured for output to each of the pacer input pins that you want to synchronize.

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

38

PCI-DAS6000 Series

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),

cbFilePretrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig(),
ALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO,

BURSTMODE, EXTTRIGGER

 Packet size is 512 for all PCI-6000 Series in most configurations. The exceptions

are shown below.

Device Aggregate rate Packet size

PCI-DAS6040

PCI-DAS6070

PCI-DAS6071

400 kHz – 800 kHz 1024

Greater than 800 kHz 2048

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

 For PCI-DAS6031, PCI-DAS6033, and PCI-DAS6071, the following additional

argument values are also valid:

 16 to 63 in single-ended mode, 8 to 31 in differential mode

Rate PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, and PCI-DAS6033

 Up to 100000

 PCI-DAS6013, PCI-DAS6014, PCI-DAS6023, PCI-DAS6025, PCI-DAS6034,

PCI-DAS6035, and PCI-DAS6036

 Up to 200000

 PCI-DAS6040

 Up to 500000 Single-channel

Up to 250000 Multi-channel

 PCI-DAS6052

 Up to 333000

 PCI-DAS6070, PCI-DAS6071

 Up to 1250000

Range PCI-DAS6013*, PCI-DAS6014*, PCI-DAS6023, PCI-DAS6025,

PCI-DAS6034*, PCI-DAS6035*, and PCI-DAS6036*

 BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIPPT5VOLTS (0.5 V)

BIPPT05VOLTS (0.05 V)

 * Note: Mixing high gains (BipPt05Volts, BipPt5Volts) with low gains

(Bip5Volts, Bip10Volts) within an AInScan() function is not supported.

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

39

 PCI-DAS6030, PCI-DAS6031, PCI-DAS6032 and PCI-DAS6033

 BIP10VOLTS (10 V) UNI10VOLTS (0 to 10 V)

BIP5VOLTS (5 V) UNI5VOLTS (0 to 5 V)

BIP2VOLTS (2 V) UNI2VOLTS (0 to 2 V)

BIP1VOLTS (1 V) UNI1VOLTS (0 to 1 V)

BIPPT5VOLTS (0.5 V) UNIPT5VOLTS (0 to 0.5 V)

BIPPT2VOLTS (0.2 V) UNIPT2VOLTS (0 to 0.2 V)

BIPPT1VOLT (0.1 V) UNIPT1VOLTS (0 to 0.1 V)

 PCI-DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071

 BIP10VOLTS (10 V) UNI10VOLTS (0 to 10 V)

BIP5VOLTS (5 V) UNI5VOLTS (0 to 5 V)

BIP2PT5VOLTS (2.5 V) UNI2VOLTS (0 to 2 V)

BIP1VOLTS (1 V) UNI1VOLTS (0 to 1 V)

BIPPT5VOLTS (0.5 V) UNIPT5VOLTS (0 to 0.5 V)

BIPPT25VOLTS (0.25 V) UNIPT2VOLTS (0 to 0.2 V)

BIPPT1VOLTS (0.1 V) UNIPT1VOLTS (0 to 0.1 V)

BIPPT05VOLTS (0.05 V)

Analog output

PCI-DAS6014, PCI-DAS6025, PCI-DAS6030, PCI-DAS6031, PCI-DAS6035, PCI-DAS6036, PCI-

DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS, BACKGROUND, EXTCLOCK, CONTINUOUS (packet size = 512)

HighChan 0 to 1

Rate PCI-DAS6014, PCI-DAS6025, PCI-DAS6035, PCI-DAS6036

 10 kHz

 PCI-DAS6030 and PCI-DAS6031

 100 kHz

 PCI-DAS6040

 1 MHz single-channel

500 kHz multi-channel

 PCI-DAS6052

 333 kHz

 PCI-DAS6070 and PCI-DAS6071

 1.0 MHz

Range PCI-DAS6014, PCI-DAS6025, PCI-DAS6035 and PCI-DAS6036

 Ignored - Not programmable; fixed at BIP10VOLTS (10 V)

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

40

 PCI-DAS6030, PCI-DAS6031, PCI-DAS6040, PCI-DAS6052, PCI-DAS6070

and PCI-DAS6071

 BIP10VOLTS (10 V) UNI10VOLTS (0 to 10 V)

DataValue 0 to 4095

 For the PCI-DAS6014, PCI-DAS6030, PCI-DAS6031, PCI-DAS6036 and PCI-

DAS6052, the following additional argument value is also valid:

 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers).

Pacing Hardware pacing, external or internal clock supported.

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigBit(),
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigBit(), DConfigPort(),

GetDInMask(), GetDOutMask()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 255

BitNum 0 to 7

For the PCI-DAS6025, the following additional argument values are also valid

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH;

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTFIRSTPORTA

*AUXPORT is bitwise configurable for these boards, and must be configured using

cbDConfigBit()/DConfigBit() or cbDConfigPort()/DConfigPort() before use.

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 2

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

41

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

 For the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-

DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071, the following

additional argument values are valid:

 TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW,

GATEINWINDOW, GATEOUTWINDOW

Threshold PCI-DAS6040, PCI-DAS6070 and PCI-DAS6071

0 to 255

 PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, and

PCI-DAS6052

0 to 4095

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER*, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN,
ON_END_OF_AO_SCAN**

*Note that the EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below

the actual number of pretrigger samples available in the buffer.

**Not supported for PCI-DAS6013, PCI-DAS6023, PCI-DAS6032, PCI-DAS6033, and PCI-DAS6034.

Hardware considerations

Advanced timing and control configuration

You can access the advanced features provided by the Auxiliary Input/Output and DAQ-Sync interfaces

through the board configuration page of InstaCal and the UL functions cbGetSignal() and

cbSelectSignal(), or the UL for .NET methods GetSignal() and SelectSignal()*.

ADC_TB_SRC and DAC_TB_SRC are intended to synchronize the timebase of the analog input and output pacers

across two or more boards. Internal calculations of sampling and update rates assume that the external

timebase has the same frequency as its internal clock. Adjust sample rates to compensate for differences in

clock frequencies.

For example, if the external timebase has a frequency of 10 MHz on a board that has an internal clock

frequency of 40 MHz, the scan function samples or updates at a rate of about 1/4 the rate entered. However,

while compensating for differences in the external timebase and internal clock frequency, if the rate entered

results in an invalid pacer count, the function returns a BADRATE error.

*Although the PCI-DAS6013 and PCI-DAS6014 both support cbSelectSignal/SelectSignal(), these

boards do not support DAQ-Sync. Therefore:

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

42

 Using the DS_CONNECT option with the Connection argument for the cbSelectSignal() function

generates a BADCONNECTION error.

 Using the DsConnector option with the connectionPin parameter for the SelectSignal() method

generates a BADCONNECTION error.

Pacing analog input

Hardware pacing, external or internal clock supported. The clock edge is selectable through InstaCal and

cbSelectSignal / SelectSignal().

When using EXTCLOCK and BURSTMODE together, do not use the A/D External Pacer to supply the clock. Use

the A/D Start Trigger input instead. Since BURSTMODE is actually paced by the internal burst clock, specifying

EXTCLOCK when using BURSTMODE is equivalent to specifying EXTTRIGGER.

Except for SINGLEIO transfers, CONTINUOUS mode scans require enough memory for two packets, or 1024

samples. The packet size is 512 samples.

Analog input configuration

16 channel boards: The analog input mode may be 8 channel differential, 16 channel single-ended referenced

to ground or 16 channel single-ended non-referenced, and may be selected using InstaCal.

64-channel boards: The analog input mode may be 32 channel differential, 64 channel single-ended

referenced to ground, or 64 channel single-ended non-referenced, and may be selected using InstaCal.

Triggering and gating

Digital (TTL) hardware triggering is supported for the entire series. cbSetTrigger() / SetTrigger() is

supported for GATEHIGH, GATELOW, TRIGPOSEDGE, TRIGNEGEDGE.

The A/D PACER GATE input is used for gating with GATEHIGH or GATELOW. The A/D START TRIGGER input is used

for triggering with TRIGPOSEDGE and TRIGNEGEDGE.

When using cbAPretrig() or cbFilePretrig() / APretrig() or FilePretrig() , use the A/D Stop Trigger

input to supply the trigger.

For the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6040, PCI-DAS6052,

PCI-DAS6070 and PCI-DAS6071: Analog hardware triggering and gating are supported.

cbSetTrigger()/SetTrigger() is supported for TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS,

GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW.

The analog trigger source may be set via InstaCal as either the ATRIG input (pin #43 on the I/O connector),

or as the first channel in the scan (CH# IN). To use the ATRIG input as the trigger source, set the InstaCal

"Analog Input Trig Source" to "Analog Trigger Pin." To use the first scanned channel as the trigger source,

set InstaCal to "1st Chan in the Scan."

Recommended trigger source when using analog gating features

If using analog gating features, we strongly recommend setting the ATRIG input as the trigger source.

Using the ATRIG input as the Trigger Input

When the trigger source is set to "Analog Trigger Pin," analog thresholds are set relative to the ± 10 V range.

Using the "First Channel in Scan" as the Trigger Input

When the trigger source is set to "1st Chan in Scan," the range used for the thresholds is the same as the A/D

channel. When using analog gating features with "1st Channel in Scan" as the trigger source, be careful to

only scan a single channel.

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

43

Calculating Analog Trigger Thresholds

Analog thresholds for the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033 and PCI-DAS6052

are 12-bit values. For example: a threshold value of 0 equates to -10 volts (V), while a threshold value of 4095

equates to +9.9976 volts (V). Analog thresholds for the PCI-DAS6040, PCI-DAS6070 and PCI-DAS6071

are 8-bit values. For example: a threshold value of 0 equates to -10 V, while a threshold value of 255 equates

to +9.92188 V.

You need to manually calculate trigger threshold values for these PCI-DAS6000 Series boards. For

information on calculating thresholds, refer to the "Notes" section in the "cbSetTrigger()" and

"SetTrigger()" in the Universal Library Function Reference.

Channel-Gain queue

When using cbALoadQueue()/ALoadQueue(), up to 8k elements may be loaded into the queue. For Models

PCI-DAS6013, PCI-DAS6014, PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036: Mixing high gains

(BipPt05Volts, BipPt5Volts) with low gains (Bip5Volts, Bip10Volts) within an AInScan() function is not

supported.

Analog Output

Using cbAOutScan()/AOutScan() in CONTINUOUS mode requires a minimum sample size of two packets. A

packet is 512 samples.

Digital I/O configuration

AUXPORT is bitwise configurable for these boards, and must be configured using cbDConfigBit() or

cbDConfigPort() / DConfigBit() or DConfigPort() before use.

Counters

The source for counters 1 and 2 may be internal 10 MHz, internal 100 kHz, or external, and is selectable using

InstaCal.

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

44

PCI-DAS4020 Series

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

Analog input argument values

Options BACKGROUND, BLOCKIO*, CONTINUOUS, CONVERTDATA, DMAIO, EXTCLOCK,

EXTTRIGGER, and SINGLEIO

 * PCI-4020 Series packet size based on Options settings is as follows:

Options
setting

Packet size

BLOCKIO

2048

See details on chain and packet size in "Memory configuration" on page

46.

HighChan 3 max. When scanning multiple channels, the number of channels scanned must be

even.

Rate Up to 20000000. Contiguous memory may be required to achieve maximum

performance. Refer to "Memory configuration" on page 46 for details.

Range BIP5VOLTS (5 V)

BIP1VOLTS (1 V)

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options NONE

HighChan 1 max

Count 2

Rate Ignored

Range BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

DataValue 0 to 4095

Pacing Software only

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

45

DataValue 0 to 255 for FIRSTPORTA or FIRSTPORTB;

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

BitNum 0 to 23 for FIRSTPORTA

Counter I/O

Counter functions and methods supported

None

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW,

GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold 0 to 4095

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER†, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations

Pacing analog input

Hardware pacing, external or internal clock supported. The clock source can be set via InstaCal to either the

"Trig/Ext Clk" BNC input or the "A/D External Clock" input on the 40 pin connector (P3). Configuring for

the BNC clock input will disable the clock input (pin 10) on the 40-pin connector. When the EXTCLOCK option

is used, the clock signal presented to the "Trig/Ext Clk" BNC input or the "A/D External Clock" input is

divided by 2 in one or two channel mode and is divided by 4 in four channel mode. If both EXTCLOCK and

EXTTRIGGER are used, both the Trigger BNC and pin 10 on the 40-pin connector require signals. This is

further explained in the "Triggering and gating" section below. When using EXTCLOCK, the Rate argument is

used by the Universal Library to calculate the appropriate chain size. Set the Rate argument to the

approximate rate used by the external clock to pace acquisitions.

When executing cbAInScan()/AInScan() with the EXCLOCK option, the first three clock pulses are used to set

up the PCI-DAS4020/12, and the first sample is actually taken on the fourth clock pulse.

The packet size varies. See "Memory configuration" on page 46 for more information.

Triggering and gating

Digital (TTL) hardware triggering supported. The trigger source can be set via InstaCal to either the

"Trig/Ext Clk" BNC input, the "A/D Start Trigger" input on the 40-pin connector (P3) or the "A/D Stop

† The EventData for ON_PRETRIGGER events may not be accurate. In general, this value is below the actual number of

pretrigger samples available in the buffer.

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

46

Trigger" input on the 40-pin connector (P3). Use the A/D Start Trigger input for the cbAInScan() and

cbFileAInScan() functions, and AInScan() and FileAInScan() methods. For the cbAPretrig() or

cbFilePretrig() functions, and the APretrig() or FilePretrig() method, use the A/D Stop Trigger

input.

When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either clock or trigger) must be

assigned to the Trig/Ext Clk BNC input. The function of the Trigger BNC is determined by the setting of

"Trig/Ext Clock Mode" in InstaCal. The Trig/Ext Clock BNC can be set to function as either the trigger ("A/D

Start Trigger") or the clock ("A/D External Clock"). Pin 10 on the 40-pin connector then assumes the opposite

function.

Analog hardware triggering supported. The trigger source can be set via InstaCal to any of the analog BNC

inputs. cbSetTrigger()/SetTrigger() is supported for TRIGBELOW and TRIGABOVE trigger types. Analog

thresholds are set relative to the voltage range set in the scan. For example, using a range of BIP1VOLTS during

a cbAInScan()/AInScan(), (0) corresponds to –1 volt (V) and 4095 corresponds to +1 V.

When using the cbAPretrig() function or the APretrig() method, use either the TRIGGER BNC or pin 8 of

the 40 pin connector. To use the BNC, set InstaCal "Trig/Ext Clock Mode" to A/D Stop Trigger; otherwise, if

not set to this selection, pin 8 of the 40-pin connector is used.

When using cbAPretrig()/APretrig() with EXTCLOCK, the two inputs are required. The TRIGGER BNC

can be set to function as either the pacer clock or the trigger. For the BNC to be setup as the pacer clock, set

InstaCal "Trig/Ext Clk Mode" to A/D External Clock. To use the BNC as the trigger, set this InstaCal option

to A/D Stop Trigger. If neither of these selections are used, the 40-pin connector will be used for both inputs;

pin 8 will be input for A/D Stop Trigger, and pin 10 will be input for the pacer clock signal.

Digital (TTL) hardware gating supported. The gate source can be set via InstaCal to either the "Trig/Ext Clk"

BNC input or the "A/D Pacer Gate" input on the 40-pin connector (P3).

Analog hardware gating supported. Analog thresholds are set relative to the voltage range set in the scan. For

example, using a range of BIP1VOLTS during a cbAInScan()/AInScan(), (0) corresponds to (-1V) and 4095

corresponds to +1V.

The gate must be in the active (enabled) state before starting an acquisition.

For EXTCLOCK or EXTTRIGGER (digital triggering) using the BNC connector, InstaCal provides a configuration

setting for thresholds. The selections available are either 0 V or 2.5 V. Use 0 V if the incoming signal is

BIPOLAR. Use the 2.5 V option if the signal is UNIPOLAR, for example, standard TTL.

When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either clock or trigger) must be

assigned to the Trig/Ext Clk BNC input.

Memory configuration

In order to achieve the maximum sample rate under some conditions, a contiguous area of memory must be

set up. The following is a guide that can be used to determine whether or not you need to set up this memory,

and how to accomplish it using InstaCal.

If the number of samples you are acquiring is less than 2k samples (2,048), then you do NOT need to set up

contiguous memory (leave the Memory Size edit box in InstaCal at zero).

If you are acquiring more than 2,048 samples, contiguous memory may be required, depending on sample

rate. Use the table below to determine if contiguous memory is required.

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

47

of Channels
Rate requiring contiguous memory
(when sample count > 2048)

1 > 4 MHz

2 >2 MHz

4 >1 MHz

If contiguous memory is required, follow the InstaCal procedures below to set the size of the contiguous

memory to reserve:

1. Run InstaCal, select the PCI-DAS4020 board and click the Configure tab.

2. In the Memory Size edit box for the Contiguous Memory Settings, enter the amount of memory in

kilobytes that you need for the acquisition.

To calculate the number of kilobytes required, use the following formula:

(# of kilobytes (KB)) = {(# of samples) x (2 bytes/sample) x (1 KB/1024 bytes)}

or

(# of KB) = {(# of samples)/512}

Memory is allocated in blocks of 4 KB. As a consequence, InstaCal adjusts the amount entered upward to

the nearest integer multiple of 4 KB. For example, the contiguous memory requirements for a 10,000-

sample acquisition would be:

 (10,000/512) = 19.5 rounded up to multiple of 4 KB = 20 KB.

The maximum number of samples allowed for the given contiguous memory size is displayed as the

Sample Count (displayed below the Memory Size edit box).

Note: You can set the size of the contiguous memory up to 262144k, or 134,217,728 samples.

3. Reboot the computer. The Universal Library attempts to reserve the desired amount of contiguous

memory at boot up time. If it is unable to reserve all the memory requested, the amount successfully

reserved memory displays in the Memory Size entry when you run InstaCal.

4. Run InstaCal. In the Memory Size entry, verify the size of the contiguous memory that was successfully

reserved.

Repeat this procedure to change or free the contiguous memory.

The size of the block shown in InstaCal is the total contiguous memory that is available to all boards

installed. Other installed boards that call the cbWinBufAlloc() function or WinBufAlloc() method will also

use this contiguous memory, so plan the size of the contiguous memory buffer accordingly.

With the following functions and methods, be aware of packet size, and adjust the number of samples

acquired accordingly:

 cbAPretrig()/APretrig()

 cbAInScan()/AInScan() with the CONTINUOUS scan option.

These functions and methods use a circular buffer. Align the data by packets in the buffer. For these functions,

the total number of samples must be greater than one packet (refer to the following table), and must be an

integer multiple of packet size. In addition, contiguous memory must be used if noted in the following table.

The minimum value for contiguous memory is calculated using the formula from step 2 above:

(# of KB) = {(# of samples) / 512}

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

48

For example, to run cbAInScan on one channel at 18 MHz with the CONTINUOUS option set, determine the

minimum sample size from the table to be 262,144 (since the Rate is between 14 and 20 MHz). The minimum

contiguous memory is calculated as:

 (262,144 / 512) = 512 KB

Number
of
Channels

Rate in MHz Packet
Size in
Samples

Minimum Sample
Size (two packets)

Contiguous
Memory

Min Contiguous
Memory (based on
Min Sample Size)

1 20 ≥ Rate ≥13.3 131,072 262,144 Required 512 KB

13.3 > Rate > 4 65,536 131,072 Required 256 KB

4 ≥ Rate ≥ 2 4,096 8,192 Not Required 0 KB

2 > Rate 2,048 4,096 Not Required 0 KB

2 20 ≥ Rate ≥ 6.6 131,072 262,144 Required 512 KB

6.6 > Rate ≥ 2 65,536 131,072 Required 256 KB

2 > Rate ≥ 1 4,096 8,192 Not Required 0 KB

1 > Rate 2,048 4,096 Not Required 0 KB

4 10 ≥ Rate ≥ 3.3 131,072 262,144 Required 512 KB

3.3 > Rate ≥ 1 65,536 131,072 Required 256 KB

1 > Rate ≥ 0.5 4,096 8,192 Not Required 0 KB

0.5 > Rate 2,048 4,096 Not Required 0 KB

*Note that the EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below

the actual number of pretrigger samples available in the buffer.

Universal Library User's Guide Analog Input Boards - PCI-DAS64/Mx/16 Series

49

PCI-DAS64/Mx/16 Series

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),

cbFilePretrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig(),
ALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO,

BURSTMODE, EXTTRIGGER

HighChan 0 to 63 in single-ended mode, 0 to 31 in differential mode

Rate PCI-DAS64/M3/16

Single-channel, Single-range: Up to 3000000

Multi-channel, Single-range: Up to 1500000

Channel/Gain Queue: Up to 750000

PCI-DAS64/M2/16

Single-channel, Single-range: Up to 2000000

Multi-channel, Single-range: Up to 1500000

Channel/Gain Queue: Up to 750000

PCI-DAS64/M1/16

Single-channel, Single-range: Up to 1000000

Multi-channel, Single-range: Up to 1000000

Channel/Gain Queue: Up to 750000

Range BIP5VOLTS (±5 V) UNI5VOLTS (0-5 V)
BIP2PT5VOLTS (±2.5 V) UNI2PT5VOLTS (0-2.5 V)
BIP1PT25VOLTS (±1.25 V) UNI1PT25VOLTS (0-1.25 V)
BIPPT625VOLTS (±.625 V)

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

HighChan 1 max

Rate Up to 100000

Range Ignored - Not programmable; fixed at BIP5VOLTS (±5 V)

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Universal Library User's Guide Analog Input Boards - PCI-DAS64/Mx/16 Series

50

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, AUXPORT

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH or AUXPORT

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

0 to 3 for AUXPORT

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW,

GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN,
ON_END_OF_AO_SCAN

Universal Library User's Guide Analog Input Boards - PCI-DAS64/Mx/16 Series

51

Hardware considerations

Pacing analog input

 Hardware pacing, external or internal clock supported.

 The clock edge used to trigger acquisition for the external pacer may be rising or falling and is selectable

using InstaCal.

 The packet size is 512 samples.

Analog Input configuration

The analog input mode may be 32 channel differential or 64 channel single-ended and may be selected using

InstaCal.

Analog Input options

Except for SINGLEIO transfers, CONTINUOUS mode scans require enough memory for half FIFO of memory.

Triggering and gating

Digital (TTL) hardware triggering supported. Use the A/D Start Trigger Input (pin 55) for triggering and

gating with cbAInScan() and cbFileAInScan() / AInScan() and FileAInScan(). Use the A/D Stop Trigger

Input (pin 54) for cbAPretrig() and cbFilePretrig() / APretrig() and FilePretrig().

Analog hardware triggering and gating are supported. cbSetTrigger() / SetTrigger() are supported for

TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW.

Use the Analog Trigger Input (pin 56) for analog triggering. Analog thresholds are set relative to the ±5 V

range. For example: a threshold of 0 equates to -5 V, and a threshold of 65535 equates to +4.999847 V.

When using analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable

for other functions. If the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE,

TRIGBELOW) then DAC0 is available. If the trigger function requires two references (GATEINWINDOW, GATE

OUTWINDOW, GATENEGHYS, GATEPOSHYS) then neither DAC is available for other functions.

Caution! Gating should NOT be used with BURSTMODE scans.

Pacing analog output

 Hardware pacing, external or internal clock supported.

 The clock edge used to trigger analog output updates for the external pacer may be rising or falling and is

selectable using InstaCal.

 EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below the actual

number of pretrigger samples available in the buffer.

These boards support concurrent analog input and output scans. That is, these boards allow for operations of

analog input functions and methods (cbAInScan() and cbAPretrig() / AInScan() and APretrig()) and

analog output functions and methods (cbAOutScan() / AOutScan()) to overlap without having to call

cbStopBackground() between the start of input and output scans.

Output pin 59 configuration

Pin 59 may be configured as the DAC Pacer Output, SSH Output with hold configured as high level, or

SSH Output with hold configured as low level. These options are selected via InstaCal

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

52

PCI- and CIO-DAS6402 and DAS3202 Series

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig()

 For PCI-Versions, the following function also applies:
cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

 For PCI-Versions, the following method also applies:
ALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO*,

BURSTMODE, EXTTRIGGER

 *Packet size: 512 for both CIO- and PCI- boards.

HighChan PCI-DAS6402 and CIO-DAS6402

0 to 63 in single-ended mode, 0 to 31 in differential mode

 PCI-DAS3202

0 to 31

Rate CIO-DAS6402/12 CIO-DAS6402/16 All others

Up to 330000 Up to 100000 Up to 200000

Range BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

For PCI Versions, the following argument values are also valid:

 BACKGROUND, EXTCLOCK, CONTINUOUS

HighChan 1 max

Rate PCI Versions CIO Versions

Up to 100000 Ignored

Range PCI Versions, CIO-DAS6402/12 CIO-DAS6402/16

 BIP10VOLTS Ignored - Not programmable

 BIP5VOLTS

 UNI10VOLTS

 UNI5VOLTS

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

53

DataValue 0 to 4095

 For PCI-DAS6402/16, PCI-DAS3202/16, CIO-DAS6402/16, the following

additional argument values are also valid: 0 to 65535 (Refer to "16-bit values using

a signed integer data type" on page 16 for information on 16-bit values using

unsigned integers.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

 For PCI- Versions, the following additional function is also valid:
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

 For PCI- Versions, the following additional method is also valid:
DConfigPort()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 15

BitNum 0 to 3

* AUXPORT is not configurable for these boards.

For PCI- Versions, the following additional argument values are also valid:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for PORTCL or PORTCH;

0 to 255 for PORTA or PORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

54

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

 For PCI- versions, the following additional argument values are also valid:

TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW,

GATEINWINDOW, GATEOUTWINDOW

Threshold 0 to 4095

 For /16 versions the following argument values are also valid:

0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers).

Event notification

Event notification functions and methods supported (PCI versions Only)

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN,
ON_END_OF_AO_SCAN

Hardware considerations

Pacing Analog input

Hardware pacing, external or internal clock supported. The packet size is 512 samples for both CIO versions

and for PCI versions.

Triggering and gating

Digital (TTL) hardware triggering supported. The PCI version also supports analog hardware triggering.

Analog thresholds are set relative to the ±10 V range. For example, a threshold of 0 equates to -10 V and a

threshold of 65535 equates to +9.999695 V.

When using the UL functions cbAPretrig() or cbFilePretrig() (or the UL for .NET methods APretrig()

or FilePretrig()) on the PCI-DAS6402/16 or PCI-DAS3202/16, use the A/D Stop Trigger In (pin 47) input

to supply the trigger.

When using both EXTCLOCK and BURSTMODE on the PCI-DAS6402/16 or PCI-DAS3202/16, use the A/D Start

Trigger In (pin 45) input to supply the clock and not the A/D External Pacer (pin 42). Since BURSTMODE is

actually paced by the internal burst clock, specifying EXTCLOCK when using BURSTMODE is equivalent to

specifying EXTTRIGGER.

When using analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable

for other functions. If the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE,

TRIGBELOW) then DAC0 is available. If the trigger function requires two references (GATEINWINDOW, GATE

OUTWINDOW, GATENEGHYS, GATEPOSHYS), then neither DAC is available for other functions.

Caution! Gating should NOT be used with BURSTMODE scans.

Gain queue

When using the UL function cbALoadQueue() or the UL for .NET method ALoadQueue() with the PCI

version, up to 8k elements can be loaded into the queue.

Pacing analog output

CIO Version: Software only

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

55

PCI Version: Hardware pacing, external or internal clock supported.

Output pin 49 configuration

On the PCI version, pin 49 may be configured as the DAC Pacer Output, SSH Output with hold configured as

high level or SSH Output with hold configured as low level. These options are selected via InstaCal.

Event notification

The PCI versions of these boards support concurrent analog input and output scans. That is, these boards

allow for operations of analog input functions (cbAInScan() and cbAPretrig()) and analog output functions

(cbAOutScan()) to overlap without having to call cbStopBackground() between the start of input and output

scans. Equivalent UL for .NET methods are AInScan(), APretrig(), AOutScan()and StopBackground().

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

56

PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,

BURSTMODE, EXTTRIGGER

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate PCI-DAS1602/12, PCI-DAS1200, PCI-DAS1200/JR

Up to 330000

 PCI-DAS1000

Up to 250000

 PCI-DAS1602/16, PCI-DAS1002

Up to 200000

 PCI-DAS1001
Up to 150000

Range PCI-DAS1602/12, PCI-DAS1602/16, PCI-DAS1200, PCI-DAS1200Jr,

PCI-DAS1002, PCI-DAS1000
BIP10VOLTS UNI10VOLTS

BIP5VOLTS UNI5VOLTS

BIP2PT5VOLTS UNI2PT5VOLTS

BIP1PT25VOLTS UNI1PT25VOLTS

 PCI-DAS1001
BIP10VOLTS UNI10VOLTS

BIP1VOLTS UNI1VOLTS

BIPPT1VOLTS UNIPT1VOLTS

BIPPT01VOLTS UNIPT01VOLTS

Analog output

Excludes PCI-DAS1200Jr.

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

 For PCI-DAS1602 Series, the following argument values are also valid:

BACKGROUND, CONTINUOUS, EXTCLOCK

HighChan 0 to 1

Rate PCI-DAS1602/16 PCI-DAS1602/12 All others

Up to 100000 Up to 250000 Ignored

Range BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

57

DataValue 0 to 4095

 For PCI-DAS1602/16, the following argument values are also valid: 0 to 65535

(Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for PORTCL or PORTCH

0 to 255 for PORTA or PORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 4 to 6

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG4, LOADREG5, LOADREG6

Triggering

PCI-DAS1602/16 and PCI-DAS1602/12 only

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW,

GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold PCI-DAS1602/16: 0 to 65535

 PCI-DAS1602/12: 0 to 4095

Event notification

Event notification functions and methods supported

PCI Versions Only

UL: cbEnableEvent(), cbDisableEvent()

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

58

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

 For PCI-DAS1602/16 and PCI-DAS1602/12 the following argument values are

also valid:
ON_END_OF_AO_SCAN

Hardware considerations

Pacing analog input

Hardware pacing, external or internal clock supported.

The clock edge used to trigger acquisition for the external pacer may be rising or falling, and is selectable

using InstaCal.

For the PCI-DAS1602/16, the packet size is 256 samples. All others in this series have a packet size of 512

samples.

Analog input configuration

The analog input mode is selectable via InstaCal for either 8-channel differential or 16-channel single-ended.

Triggering and gating - PCI-DAS1602 Series

Digital (TTL) and analog hardware triggering supported.

Analog thresholds are set relative to the ±10 V range. For example: a threshold of 0 equates to -10 V.

Thresholds of 65535 and 4095 correspond to +9.999695 and +9.995116 V for the 16-bit and 12-bit boards,

respectively.

When using analog trigger feature, one or both of the DACs are unavailable for other functions. If the trigger

function requires a single reference (GATE_ABOVE, GATE_BELOW, TRIGABOVE, and TRIGBELOW), DAC0 is

available. If the trigger function requires two references (GATE_IN_WINDOW, GATE_ OUT_WINDOW,

GATE_NEG_HYS and GATE_ POS_HYS), neither DAC is available for other functions.

Triggering and gating - PCI-DAS1200, PCI-DAS1000 Series

Digital (TTL) hardware triggering supported.

Concurrent operations - PCI-DAS1602 Series

Concurrent analog input and output scans supported. That is, PCI-DAS1602 Series boards allow for

operations of analog input functions (cbAInScan() and cbAPretrig()) and analog output functions

(cbAOutScan()) to overlap without having to call cbStopBackground() between the start of input and output

scans. Equivalent UL for .NET methods are AInScan(), APretrig(), AOutScan(), and StopBackground().

Pacing analog output - PCI-DAS1602 Series

Hardware pacing, external or internal clock supported.

The clock edge used to trigger analog output updates for the external pacer may be rising or falling and is

selectable using InstaCal.

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

59

Counters

The source for counter 4 may be internal or external and is selectable using InstaCal.

Although counters 4, 5 and 6 are programmable through the counter functions, the primary purpose for some

of these counters may conflict with these functions.

Potential conflicts include:

 PCI-DAS1200, PCI-DAS1000 Series: Counters 5 and 6 are always available to the user. Counter 4 is

used as a residual counter by some of the analog input functions and methods.

 PCI-DAS1602 Series: Counters 5 and 6 are used as DAC pacers by some analog output functions and

methods. Counter 4 is used as a residual counter by some of the analog input functions and methods.

Universal Library User's Guide Analog Input Boards - PCIM-DAS1602 and PCIM-DAS16JR Series

60

PCIM-DAS1602 and PCIM-DAS16JR Series

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(),cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(),FileAInScan(),ATrig()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,

BURSTMODE, EXTTRIGGER

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate 100000

Range BIP10VOLTS UNI10VOLTS

BIP5VOLTS UNI5VOLTS

BIP2PT5VOLTS UNI2PT5VOLTS

BIP1PT25VOLTS UNI1PT25VOLTS

Analog output (PCIM-DAS1602/16 only)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options Ignored

HighChan 1 max

Count 2

Rate Ignored

Range Ignored - Not programmable

DataValue 0 to 4095

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

The PCIM-DAS1602/16 also supports:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Universal Library User's Guide Analog Input Boards - PCIM-DAS1602 and PCIM-DAS16JR Series

61

Digital I/O argument values

PortNum: AUXPORT*

The PCIM-DAS1602/16 also supports:

PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue: 0 to 15 FIRSTPORTCL, FIRSTPORTCH or AUXPORT*

 0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum: 0 to 23 for FIRSTPORTA

 0 to 3 for AUXPORT*

 *AUXPORT is not configurable for these boards.

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Hardware considerations

Pacing analog input

Hardware pacing, external or internal clock supported.

Universal Library User's Guide Analog Input Boards - PCIM-DAS1602 and PCIM-DAS16JR Series

62

Analog input ranges

For the PCIM-DAS1602/16, the A/D ranges are configured with a combination of a switch (Unipolar /

Bipolar) and a programmable gain code. The state of this switch is set in the configuration file using InstaCal.

After the UNI/BIP switch setting is selected, only matching ranges can be used in Universal Library

programs.

Triggering and gating

Digital (TTL) hardware triggering supported.

Pacing analog output

Software pacing only

Universal Library User's Guide Analog Input Boards - CIO-DAS800 Series

63

CIO-DAS800 Series

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,
EXTTRIGGER

HighChan 0 to 7

Rate CIO-DAS802/16

100000

 All others in series

50,000

Range CIO-DAS800

Ignored - Not programmable.

 CIO-DAS801 supports the following A/D ranges
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI1VOLTS
BIP1VOLTS UNIPT1VOLTS
BIPPT5VOLTS UNIPT01VOLTS
BIPPT05VOLTS
BIPPT01VOLTS

 CIO-DAS802 supports the following A/D ranges
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS
BIPPT625VOLTS

 CIO-DAS802/16 supports the following A/D ranges
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

Analog Output

These boards do not have D/A converters and do not support analog output functions.

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT (not configurable for these boards)

DataValue cbDOut() cbDIn()

0 to 15 0 to 7

BitNum cbDOut() cbDIn()

0 to 3 0 to 2

Universal Library User's Guide Analog Input Boards - CIO-DAS800 Series

64

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Hardware considerations

Pacing analog input

Hardware pacing, external or internal clock supported.

The packet size is 128 samples. Note that digital output is not compatible with concurrent

cbAInScan()/AInScan() operation, since the channel multiplexer control shares the register with the digital

output control. Writing to this register during a scan may adversely affect the scan.

Triggering and gating

Digital hardware triggering supported.

Universal Library User's Guide Analog Input Boards - CIO-, PCI-, and PC104-DAS08 Series

65

CIO-, PCI-, and PC104-DAS08 Series

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, EXTTRIGGER

HighChan 0 to 7

Rate From 63 up to 50000 (Refer to the "Sampling Rate using SINGLEIO" on page 30.)

Range DAS08 series

Since the DAS08 series does not have programmable gain, the Range arguments

for the analog input functions are ignored.

 PCI-DAS08

BIP5VOLTS (±5 V)

 CIO-DAS08 and PC104-DAS08
BIP10VOLTS UNI10VOLTS
BIP5VOLTS

 CIO-DAS08-PGH and CIO-DAS08-AOH
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI1VOLTS
BIP1VOLTS UNIPT1VOLTS
BIPPT5VOLTS UNIPT01VOLTS
BIPPT1VOLTS BIPPT01VOLTS
BIPPT05VOLTS BIPPT005VOLTS

 CIO-DAS08-PGL and CIO-DAS08-AOL
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS
BIPPT625VOLTS

 CIO-DAS08-PGM and CIO-DAS08-AOM
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI1VOLTS
BIPPT5VOLTS UNIPT1VOLTS
BIPPT1VOLTS UNIPT01VOLTS
BIPPT05VOLTS

Analog output

AO, -AOH, -AOM, -AOL versions only

Analog output functions and methods supported

UL: cbAOut(), AOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

HighChan 1 max

Rate Ignored

Universal Library User's Guide Analog Input Boards - CIO-, PCI-, and PC104-DAS08 Series

66

Count 2 max

Range Ignored - Not programmable

DataValue 0 to 4095

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

 For CIO-DAS08 and CIO-DAS08-AOx, the following function and method is

also supported:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Digital I/O argument values

PortNum AUXPORT

DataValue 0 to 15 using cbDOut()or DOut()

 0 to 7 using cbDIn()or DIn()

BitNum 0 to 3 using cbDBitOut() or DBitOut()

0 to 2 using cbDBitIn()or DBitIn()

 For CIO-DAS08 and CIO-DAS08-AOx the following argument values are also

valid:

 FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

PortNum 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Hardware considerations

Pacing analog input

Hardware pacing, external or internal clock supported.

Universal Library User's Guide Analog Input Boards - CIO-, PCI-, and PC104-DAS08 Series

67

Before using the cbAInScan() function or the AInScan() method for timed analog input with a CIO- or

PC104- series board, the output of counter 1 must be wired to the Interrupt input; if you have a CIO-DAS08

board revision 3 or higher, a jumper is provided on the board to accomplish this. An interrupt level must have

been selected in InstaCal and the CB.CFG file saved.

Triggering and gating

Polled digital input triggering (TTL) supported. Refer to "Trigger support" on page 29 for more information.

Use pin 25 as the trigger input.

Pacing analog output

Software pacing only

Digital Output

Since the channel settings and DOut bits share a register, attempting to change the digital output value during

an analog input scan may result in no change or unexpected values in digital output ports.

Universal Library User's Guide Analog Input Boards - CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series

68

CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options CONVERTDATA

HighChan 0 to 7

Rate Ignored

Range Since these boards do not have programmable gain, the Range arguments for the

analog input functions are ignored.

Analog output

(If optional D/A converters are installed)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

HighChan 1 max

Rate Ignored

Count 2 max

Range Ignored - Not programmable; fixedat BIP5VOLTS (±5 V)

DataValue 0 to 4095

 For CIO-DAS08/Jr/16-AO, the following argument values are also valid:

0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 255

BitNum 0 to 7

 * AUXPORT is not configurable for these boards.

Universal Library User's Guide Analog Input Boards - CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series

69

Counter I/O

Counter functions and methods supported

None

Hardware considerations

Pacing analog input

Software pacing only

Universal Library User's Guide Analog Input Boards - PCM-DAS08

70

PCM-DAS08

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, NOTODINTS,

EXTTRIGGER, NOCALIBRATEDATA

HighChan 0 to 7

Rate 25000 max. For other restrictions, refer to the PCM-DAS08 User's Manual at

www.mccdaq.com/PDFmanuals/pcm-das08.pdf.

Range This board does not have programmable gain, so the Range argument to analog

input functions is ignored.

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT

DataValue 0 to 7

BitNum 0 to 2

Hardware considerations

Pacing analog input

Internal or external clock

Maximizing sampling rates

When paced by the onboard clock, the rate is set by an onboard oscillator running at 25 kHz. The oscillator

output may be divided by 2, 4 or 8, resulting in rates of 12.5 kHz, 6.25 kHz or 3.13 kHz. When pacing a single

channel from the onboard clock, these are the four choices of rate available. When a rate is requested within

the range of 3000 to 25000, the library selects the closest of the four available rates.

Scanning more than one channel divides the rate requested among the number of channels requested. The

maximum rate when scanning eight channels is 3130 (25000 divided by eight channels).

http://www.mccdaq.com/PDFmanuals/pcm-das08.pdf

Universal Library User's Guide Analog Input Boards - PPIO-AI08

71

PPIO-AI08

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options CONVERTDATA

HighChan 0 to 7

Rate Ignored

Range This board does not have programmable gain, so the Range arguments for the

analog input functions are ignored.

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT*

DataValue cbDOut() cbDIn()

0 to 15 0 to 7

BitNum cbDOut() cbDIn()

0 to 3 0 to 2

 * AUXPORT is not configurable for this board.

Hardware considerations

Pacing analog input

Software pacing only

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

72

CIO- and PC104-DAS16

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

 The DAS16/330, DAS16/330i, DAS16/M1, and DAS16/M1/16 also support:

UL: cbAPretrig(), cbFileAInScan(), cbFilePretrig()

UL for .NET: APretrig(), FileAInScan(), FilePretrig()

 The DAS16/330i and DAS16/M1 also support:

UL: cbALoadQueue()

UL for .NET: cbALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, EXTTRIGGER

 For DAS16/330, DAS16/330i, DAS16/M1 and DAS16/M1/16, the following

argument values are also valid:

DTCONNECT, BLOCKIO (packet size: 512), EXTMEMORY

 For DAS16, DAS16/F, DAS16/Jr, DAS16/Jr/16 and PC104-DAS16Jr series, the

following argument values are also valid:

SINGLEIO, DMAIO

 For DAS16/M1/16, the following argument value is also valid:
BURSTMODE

HighChan DAS16/M1 and DAS16/M1/16

0 to 7

 All others

0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate DAS16/M1 & DAS16/M1/16 DAS16/330 & 330i

Up to 1000000 Up to 330000

 PC104-DAS16Jr/12 CIO-DAS16Jr
Up to 160000 Up to 130000

 DAS16/F & DAS16Jr/16 CIO-DAS16

Up to 100000 Up to 50000

Range CIO-DAS16 & CIO-DAS16/F

These boards do not have programmable gain so the Range argument to analog

input functions is ignored.

 All other boards in this series support the following ranges:
BIP5VOLTS UNI10VOLTS
BIP2PT5VOLTS UNI5VOLTS
BIP1PT25VOLTS UNI2PT5VOLTS
 UNI1PT25VOLTS

 For all programmable gain boards in this series except the DAS16/M1/16, the

following argument value is also valid:
BIP10VOLTS

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

73

 For all programmable gain boards in this series except the CIO-DAS16Jr/16 and

PC104-DAS16Jr/16, the following argument value is also valid:
BIPPT625VOLTS

Analog output

CIO-DAS16 & CIO-DAS16/F only

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

HighChan 1 max

Rate Ignored

Count 2 max

Range Ignored - Not programmable

DataValue 0 to 4095

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

The CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16, the following function is also

supported:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 15

BitNum 0 to 3

 * AUXPORT is not configurable for these boards.

For CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 the following additional argument

values are also valid:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

74

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

 The CIO-DAS16/M1/16 also supports these argument values:

4 to 6

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

 For CIO-DAS16/M1/16 the following argument values are also valid

LOADREG4, LOADREG5, LOADREG6

Triggering (CIO-DAS16/M1/16 only)

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Threshold 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Hardware considerations

Pacing analog input

 Hardware pacing, external or internal clock supported.

 The packet size is 512 samples

 The DMAIO option cannot be used while using the chan/gain queue on the DAS-330i board.

CIO-DAS16/M1

If you use the timed analog functions with the CIO-DAS16/M1 board to acquire more than 2048 data points,

you may not be able to achieve the full 1 MHz rate. On slow machines, these functions may hang if the scan

rate is fast, generally in the range of 500 to 700 kHz.

Determine the maximum rate by passing in different high rates until the maximum rate is achieved without

hanging the system. If the full 1.0 MHz rate is required, add a MEGA FIFO memory board and specify the

EXTMEMORY option on the call to cbAInScan()or AInScan().

CIO-DAS16/M1/16 also supports counter numbers 4 through 6, with counter 4 being the only independent

user counter.

Triggering and gating

 For the CIO-DAS16/M1/16, Digital (TTL) and analog hardware triggering is supported.

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

75

 For all others in this series, digital (TTL) polled gate triggering is supported. Refer to "Trigger support"

on page 29

Pacing analog output

Software only

Universal Library User's Guide Analog Input Boards - PCM- and PC-CARD-DAS16 Series

76

PCM- and PC-CARD-DAS16 Series

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS*, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,

EXTTRIGGER, NOTODINTS, NOCALIBRATEDATA

 The PC-CARD-DAS16 series also supports BURSTMODE.

HighChan DAS16/S and DAS16/330

 0 to 15

 DAS16/D

 0 to 7

Rate DAS16/330

 330000

 PC-CARD-DAS16/16

 200000

 All others in series

 100000

Range For DAS16x/12, the following A/D ranges are valid:

 BIP10VOLTS UNI10VOLTS

 BIP5VOLTS UNI5VOLTS

 BIP2PT5VOLTS UNI2PT5VOLTS

 BIP1PT25VOLTS UNI1PT25VOLTS

 For DAS16x/16, the following A/D ranges are valid:

 BIP10VOLTS BIP5VOLTS

 BIP2PT5VOLTS BIP1PT25VOLTS

 For DAS16/330, the following A/D ranges are valid:

 BIP10VOLTS BIP5VOLTS

Analog output

PCM-DAS16D/12AO and PC-CARD-DAS16/xx-AO only

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS (PCM version only)

HighChan 1 max

Universal Library User's Guide Analog Input Boards - PCM- and PC-CARD-DAS16 Series

77

Rate Ignored

Count 2 max

Range Ignored - Not programmable; fixedat BIP10VOLTS (±10 V)

 For PC-CARD-DAS16/12AO and PCM-DAS16D/12AO, the following argument

values are also valid:

 BIP10VOLTS

 BIP5VOLTS

DataValue 0 to 4095

 For PC-CARD-DAS16/16AO, the following argument values are also valid:

 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum PC-CARD-DAS16/xxAO

 FIRSTPORTA

 All others in this series:

 FIRSTPORTA, FIRSTPORTB

DataValue PC-CARD-DAS16/xxAO

 0 to 15 for FIRSTPORTA

 All others in this series:

 0 to 15 for FIRSTPORTA or FIRSTPORTB

BitNum PC-CARD-DAS16/xxAO

0 to 3 for FIRSTPORTA

 All others in this series:

0 to 7 for FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Universal Library User's Guide Analog Input Boards - PCM- and PC-CARD-DAS16 Series

78

Triggering

PC-Card Only

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW (All at A/D External trigger

input)

Hardware considerations

Pacing analog input

 Internal or external clock

 The packet size is 256 samples for PCM boards; 2048 samples for

PC-CARD boards.

For CONTINUOUS mode scans, the sample count should be at least one packet size (>=2048 samples) for

the PC-CARD- boards.

These cards do not have residual counters, so BLOCKIO transfers must acquire integer multiples of the packet

size before completing the scan. This can be lengthy for the PC-CARDs which must acquire 2048 samples

between interrupts for BLOCKIO transfers. In general, it is best to allow the library to determine the best

transfer mode (SINGLEIO vs. BLOCKIO) for these boards.

Triggering and gating

 External digital (TTL) polled gate trigger supported on PCM versions. Refer to "Trigger support" on

page 29.

 External digital (TTL) hardware trigger supported on PC-CARD versions.

Universal Library User's Guide Analog Input Boards - CIO-DAS1400 and CIO-DAS1600 Series

79

CIO-DAS1400 and CIO-DAS1600 Series

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(),FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BURSTMODE,
EXTTRIGGER

 For CIO-DAS1600, the following argument values are also valid:

DTCONNECT, EXTMEMORY.

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate DAS1401/12, DAS1402/12, DAS1601/12, DAS1602/12

160000

 DAS1602/16, DAS1402/16

 100000

 DAS1401/12, DAS1402/12, DAS1601/12, DAS1602/12 to external memory

330000

Range CIO-DAS1402, CIO-DAS1602, CIO-DAS1402/16 and CIO-DAS1602/16
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

 CIO-DAS1401 and CIO-DAS1601
BIP10VOLTS UNI10VOLTS
BIP1VOLTS UNI1VOLTS
BIPPT1VOLTS UNIPT1VOLTS
BIPPT01VOLTS UNIPT01VOLTS

Analog output (CIO-DAS1600 series only)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

HighChan 1 max

Count 2 max

Rate Ignored

Pacing Software pacing only

Range Analog output gain is not programmable, so the Range argument is ignored.

DataValue 0 to 4095

Universal Library User's Guide Analog Input Boards - CIO-DAS1400 and CIO-DAS1600 Series

80

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

For DAS1600, the following function and method are also valid:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 15

BitNum 0 to 3

 * AUXPORT is not configurable for these boards.

 For DAS1600, the following additional argument values are also valid:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH;

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Hardware considerations

Pacing analog input

Hardware pacing, external or internal clock supported.

Specifying SINGLEIO while also specifying BURSTMODE is not recommended. If this combination is used, the

Count value should be set as low as possible, preferably to the number of channels in the scan. Otherwise,

overruns may occur.

When EXTMEMORY is used with the CIO-DAS1600 the cbGetStatus() function or GetStatus() method does

not return the current count and current index. This is a limitation imposed by maintaining identical registers

to the KM-DAS1600.

Universal Library User's Guide Analog Input Boards - CIO-DAS1400 and CIO-DAS1600 Series

81

Triggering and gating

External digital (TTL) polled gate trigger supported. Refer to "Trigger support" on page 29.

Range

The CIO-DAS1400 and CIO-DAS1600 A/D ranges are configured with a combination of a switch (Unipolar

/ Bipolar) and a programmable gain code. The state of this switch is set in the configuration file using

InstaCal. After the UNI/BIP switch setting is selected, only matching ranges can be used in Universal Library

programs.

Universal Library User's Guide Analog Input Boards - CIO-DAS48/PGA

82

CIO-DAS48/PGA

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options CONVERTDATA

HighChan 47 (23 differential)

Rate This board does not have a timer, so the Rate argument to the analog scanning

functions is ignored.

Range The board may be configured with a jumper for either voltage or current input.

 In voltage mode
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS
BIPPT625VOLTS

 In current mode
MA4TO20 MA2TO10
MA1TO5 MAPT5TO2PT5

Analog output

Analog output functions and methods supported

The CIO-DAS48/PGA board does not support any of the analog output functions.

Digital I/O

Digital I/O functions and methods supported

The CIO-DAS48/PGA does not support any of the digital I/O functions.

Counter I/O

Counter functions and methods supported

The CIO-DAS48/PGA does not support any of the counter I/O functions.

Universal Library User's Guide Analog Input Boards - miniLAB 1008

83

miniLAB 1008

The miniLAB 1008 supports the following UL and UL for .NET features.

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

 *The channel-gain queues are limited to eight channel-gain pairs.

Analog input argument values

Options BACKGROUND, BLOCKIO***, BURSTIO**, CONTINUOUS, EXTTRIGGER, CONVERTDATA,

and NOCALIBRATEDATA.

 **BURSTIO cannot be used with the CONTINOUS option.

 ** BURSTIO can only be used with sample count scans of 4096 or less.

 *** The BLOCKIO packet size is 64 samples wide.

HighChan 0 to 7 in single-ended mode, 0 to 3 in differential mode.

Rate 8000 maximum for BURSTIO mode (1200 maximum for all other modes.)

 When using cbAInScan() or AInScan(), the minimum rate is 100 S/s aggregate.

Range Single-ended mode:

BIP10VOLTS (± 10 V)

 Differential mode:

 BIP20VOLTS (± 20 V) BIP2PT5VOLTS (± 2.5 V)

BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)

BIP5VOLTS (± 5 V) BIP1PT25VOLTS (± 1.25 V)

BIP4VOLTS (± 4 V) BIP1VOLTS (± 1 V)

Pacing Hardware pacing, internal clock supported.

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGHIGH, TRIGLOW

 Digital (TTL) hardware triggering supported. The hardware trigger is source

selectable via InstaCal (AUXPORT inputs 0–3).

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Universal Library User's Guide Analog Input Boards - miniLAB 1008

84

Analog output argument values

HighChan 1

Range Ignored - Not programmable; fixedat UNI5VOLTS (0 to 5 V)

DataValue 0 to 1023

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT*, FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

PortType AUXPORT*

 * Only AUXPORT is bitwise configurable on this board, and must be configured

using cbDConfigBit() or cbDConfigPort() (or the UL for .NET methods

DConfigBit() or DConfigPort()) before use for output.

Port I/O functions, methods, and argument values supported

UL: cbDIn(),cbDOut()

UL for .NET: DIn(), DOut()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, AUXPORT

DataValue 0 to 15 for AUXPORT, FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT, FIRSTPORTA

BitNum 0 to 3 on AUXPORT

0 to 23 on FIRSTPORTA

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more

appropriate. The values returned may be greater than the data types that are used by cbCIn() and CIn() can

handle.

**cbCLoad(), CLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the

counter.

Universal Library User's Guide Analog Input Boards - miniLAB 1008

85

Counter I/O argument values

CounterNum 1

Count: 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

RegNum: LOADREG1

Event notification

Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations

Resolution

When configured for single-ended mode, the resolution of the data is 11-bits (data values between 0 and

2047). However, the Universal Library maps this data to 12-bit values, so the range of data is no different

from the differential configuration. Consequently, the data returned contains only even numbers between 0

and 4094 when the NOCALIBRATEDATA option is used.

BURSTIO

Allows higher sampling rates (up to 8000 Hz) for sample counts up to 4096. Data is collected into the

miniLAB 1008's local FIFO. Data is collected into the USB device's local FIFO. Data transfers to the PC don't

occur until the scan completes. For BACKGROUND scans, the Count and Index returned by cbGetStatus() and

GetStatus() remain 0, and Status=RUNNING until the scan finishes. The Count and Index are not updated

until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus()and

GetStatus()are updated to the current Count and Index, and Status = IDLE.

BURSTIO is the default mode for non-CONTINUOUS fast scans (aggregate sample rates above 1000 Hz) with

sample counts up to 4096. BURSTIO mode allows higher sampling rates (up to 8000 Hz) for sample counts up

to 4096. Non-BURSTIO scans are limited to a maximum of 1200 Hz. To avoid the BURSTIO default, specify

BLOCKIO mode.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, you should consider the packet size and the

number of channels being scanned. In order to keep the data aligned properly in the array, make the total

number of samples an integer multiple of the packet size and the number of channels.

Concurrent operations

Concurrent operations on a particular USB device are not allowed. If you invoke a UL or UL for .NET

function on a USB device while another function is running on that USB device, the ALREADYACTIVE error is

returned.

Universal Library User's Guide Analog Input Boards - miniLAB 1008

86

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular

device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1208 Series

87

USB-1208 Series

The USB-1208LS and USB-1208FS support the following UL and UL for .NET features.

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Analog input argument values

Options USB-1208LS

 BACKGROUND, BLOCKIO*, BURSTIO**, CONTINUOUS, EXTTRIGGER, NOCALIBRATEDATA,

and CONVERTDATA

 USB-1208FS

 BACKGROUND, BLOCKIO*, CONTINUOUS, EXTCLOCK, EXTTRIGGER, RETRIGMODE***,

NOCALIBRATEDATA, and SINGLEIO

 * USB-1208 Series packet size based on Options settings are as follows:

Device Options setting Packet size

USB-1208LS BLOCKIO 64

USB-1208FS
BLOCKIO 31

SINGLEIO 1

 ** BURSTIO can only be used with the number of samples (Count) set equal to the

size of the FIFO or less. The USB-1208LS FIFO holds 4096 samples. BURSTIO

cannot be used with the CONTINUOUS option.

 *** RETRIGMODE can only be used with cbAInScan()/AInScan().

HighChan 0 to 7 in single-ended mode

 0 to 3 in differential mode

Count In CONTINUOUS mode, Count must be an integer multiple of the packet size.

Rate USB-1208LS

 8000 Hz maximum for BURSTIO mode. The maximum rate is 1200 Hz for all other

modes. When using cbAInScan() or AInScan(), the minimum sample rate is

100 Hz.

 USB-1208FS

 50 kHz maximum for BLOCKIO mode. The throughput is system

dependant. Most systems will be able to achieve 40 kHz aggregate. Best results are

obtained when using Windows XP or Windows Vista. When using cbAInScan() or

AInScan(), the minimum sample rate is 1 Hz.

Range Single-ended mode:

BIP10VOLTS (± 10 V)

 Differential mode:

 BIP20VOLTS (± 20 V) BIP2PT5VOLTS (± 2.5 V)

BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)

BIP5VOLTS (± 5 V) BIP1PT25VOLTS (± 1.25 V)

BIP4VOLTS (± 4 V) BIP1VOLTS (± 1 V)

Universal Library User's Guide Analog Input Boards - USB-1208 Series

88

Pacing Hardware pacing, internal clock supported.

External clock supported via the SYNC pin.

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType USB-1208LS

 TRIGHIGH and TRIGLOW

 USB-1208FS

 TRIGPOSEDGE and TRIGNEGEDGE

 Both products support external digital (TTL) hardware triggering. Use the Trig_In

input for the external trigger signal.

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options USB-1208LS

Ignored

 USB-1208FS

BACKGROUND, CONTINUOUS

 For the USB-1208FS, the number of samples (Count) in a CONTINUOUS scan needs

to be an integer multiple of the packet size (32).

HighChan 0 to 1

Count USB-1208LS

(HighChan – LowChan) + 1

 USB-1208FS

Count must be an integer multiple of the number of channels in the scan. In a

CONTINUOUS scan, Count must be an integer multiple of the packet size (32).

Rate USB-1208LS

Ignored

 USB-1208FS

 Up to 10 kHz maximum for a single channel

Up to 5 kHz maximum for two channels

 Performance varies when operating on systems other than Windows XP or

Windows Vista.

Range USB-1208LS

Ignored - Not programmable; fixedat UNI5VOLTS (0 to 5 V)

Universal Library User's Guide Analog Input Boards - USB-1208 Series

89

 USB-1208FS

Ignored - Not programmable; fixedat UNI4VOLTS (0 to 4 V, nominal. Actual range

is 0 to 4.096 V)

DataValue USB-1208LS

 0 to 1023

 USB-1208FS

 0 to 4095

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum FIRSTPORTA, FIRSTPORTB

DataValue 0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 15 on FIRSTPORTA

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

Universal Library User's Guide Analog Input Boards - USB-1208 Series

90

RegNum LOADREG1

Event notification

Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR (analog input), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

 The USB-1208FS also supports ON_END_OF_AO_SCAN and ON_SCAN_ERROR (analog

output)

Hardware considerations

Acquisition Rate (USB-1208FS)

Since the maximum data acquisition rate depends on the system connected to the USB-1208FS, it is possible

to "lose" data points when scanning at higher rates. The Universal Library cannot always detect this data loss.

Maximum rates may be lower in Windows operating systems that predate Windows XP.

Most systems can sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1 kS/s aggregate in SINGLEIO

mode.

BURSTIO (USB-1208LS)

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The USB-1208LS

FIFO holds 4096 samples. Data is collected into the device's local FIFO. Data transfers to the PC don't occur

until the scan completes. For BACKGROUND scans, the Count and Index returned by cbGetStatus() and

GetStatus() remain 0, and Status=RUNNING until the scan finishes. The Count and Index are not updated

until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus() and

GetStatus() are updated to the current Count and Index, and Status = IDLE.

The USB-1208LS uses BURSTIO as the default mode for non-CONTINUOUS fast scans with sample counts up to

the size of the FIFO (4096 samples). BURSTIO mode allows higher sampling rates for sample counts up to the

size of the FIFO. Maximum Rate values of non-BURSTIO scans are limited (see Rate on page 87). To avoid

the BURSTIO default, specify BLOCKIO mode.

EXTCLOCK (USB-1208FS)

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To

configure the pin for pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test

or calibrate the device with InstaCal, as the SYNC pin drives the output.

RETRIGMODE (USB-1208FS)

When using cbAInScan()/AInScan(), you can use RETRIGMODE to set up repetitive trigger events.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and

2047). However, the Universal Library maps this data to 12-bit values, so the range of data is no different

from the differential configuration. Consequently, the data returned contains only even numbers between 0

and 4094 when the NOCALIBRATEDATA option is used.

Universal Library User's Guide Analog Input Boards - USB-1208 Series

91

Continuous scans

When running cbAInScan() with the CONTINUOUS option, consider the packet size and the number of channels

being scanned. To keep the data aligned properly in the array, make the total number of samples an integer

multiple of the packet size and the number of channels in the scan.

Concurrent operations

USB-1208LS: Concurrent operations are not allowed. If you invoke a UL or UL for .NET function on a USB-

1208LS while another function is running on that same unit, the ALREADYACTIVE error is returned.

USB-1208FS: The following table lists the concurrent operations supported by the USB-1208FS.

UL function/method Can be run with…

cbAOutScan()/AOutScan()

(BACKGROUND mode)

 cbDOut()/DOut()

 cbCLoad()/CLoad()

 cbCLoad32()/CLoad32()

cbAInScan()/AInScan()

(BACKGROUND mode)

 cbAOut()/AOut()

 cbDIn()/DIn()

 cbDBitIn()/DBitIn()

 cbDOut()/DOut()

 cbDBitOut()/DBitOut()

 cbDConfigPort()/DConfigPort()

 cbCIn()/CIn()

 cbCIn32()/CIn32()

 cbCLoad()/CLoad()

 cbCLoad32()/CLoad32()

Channel-gain queue

USB-1208LS: When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to eight

elements.

USB-1208FS: When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to 16

elements.

The queue accepts any combination of valid channels and gains in each element.

Analog output (USB-1208FS)

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated

simultaneously.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular

device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1408FS

92

USB-1408FS

The USB-1408FS supports the following UL and UL for .NET features.

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Analog input argument values

Options BACKGROUND, BLOCKIO*, CONTINUOUS, EXTCLOCK, EXTTRIGGER, NOCALIBRATEDATA,

RETRIGMODE**, and SINGLEIO

 * USB-1408FS packet size based on Options settings are as follows:

Device Options setting Packet size

USB-1408FS
BLOCKIO 31

SINGLEIO 1

 ** RETRIGMODE can only be used with cbAInScan()/AInScan().

HighChan 0 to 7 in single-ended mode

 0 to 3 in differential mode

Count In CONTINUOUS mode, Count must be an integer multiple of the packet size.

Rate 48 kHz maximum for BLOCKIO mode. The throughput is system dependent. Most

systems will be able to achieve 40 kHz aggregate. Best results are obtained when

using Windows XP or Windows Vista. When using cbAInScan() or AInScan() the

minimum sample rate is 1 Hz.

Range Single-ended mode:

BIP10VOLTS (± 10 V)

 Differential mode:

 BIP20VOLTS (± 20 V) BIP2PT5VOLTS (± 2.5 V)

BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)

BIP5VOLTS (± 5 V) BIP1PT25VOLTS (± 1.25 V)

BIP4VOLTS (± 4 V) BIP1VOLTS (± 1 V)

Pacing Hardware pacing, internal clock supported.

 External clock supported via the SYNC pin.

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE and TRIGNEGEDGE

 External digital (TTL) hardware triggering supported. Use the Trig_In input for

the external trigger signal.

Universal Library User's Guide Analog Input Boards - USB-1408FS

93

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS

 The number of samples (Count) in a CONTINUOUS scan needs to be an integer

multiple of the packet size (32).

HighChan 0 to 1

Count The Count needs to be an integer multiple of the number of channels in the scan. In

a CONTINUOUS scan, Count needs to be an integer multiple of the packet size (32).

Rate Up to 10 kHz maximum for a single channel

 Up to 5 kHz maximum for two channels

 Performance varies when operating on systems other than Windows XP or

Windows Vista.

Range Ignored - Not programmable; fixedat UNI4VOLTS (0 to 4 V, nominal. Actual range

is 0 to 4.096 V)

DataValue 0 to 4095

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB

Port I/O functions, methods, and argument values supported

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum FIRSTPORTA, FIRSTPORTB

DataValue 0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 15 on FIRSTPORTA

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

Universal Library User's Guide Analog Input Boards - USB-1408FS

94

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

RegNum LOADREG1

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR (analog input), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN,

ON_END_OF_AO_SCAN and ON_SCAN_ERROR (analog output)

Hardware considerations

Acquisition Rate

Since the maximum data acquisition rate depends on the system connected to the USB-1408FS, it is possible

to "lose" data points when scanning at higher rates. The Universal Library cannot always detect this data loss.

Maximum rates may be lower in Windows operating systems that predate Windows XP. Most systems can

sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1 kS/s aggregate in SINGLEIO mode.

EXTCLOCK

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To

configure the pin for pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test

or calibrate the device with InstaCal, as the SYNC pin drives the output.

RETRIGMODE

When using cbAInScan()/AInScan(), you can use RETRIGMODE to set up repetitive trigger events.

Resolution

When configured for single-ended mode, the resolution of the data is 13 bits (data values between 0 and

8191). However, the Universal Library maps this data to 14-bit values, so the range of data is no different

from the differential configuration. Consequently, the data returned contains only even numbers between 0

and 16383 when the NOCALIBRATEDATA option is used.

Universal Library User's Guide Analog Input Boards - USB-1408FS

95

Continuous scans

When running cbAInScan() with the CONTINUOUS option, consider the packet size and the number of channels

being scanned. To keep the data aligned properly in the array, set the total number of samples to be an integer

multiple of the packet size and the number of channels in the scan.

Concurrent operations

The following table lists the concurrent operations supported by the USB-1408FS.

UL function/method Can be run with…

cbAOutScan()/AOutScan()

(BACKGROUND mode)

 cbDOut()/DOut()

 cbCLoad()/CLoad()

 cbCLoad32()/CLoad32()

cbAInScan()/AInScan()

(BACKGROUND mode)

 cbAOut()/AOut()

 cbDIn()/DIn()

 cbDBitIn()/DBitIn()

 cbDOut()/DOut()

 cbDBitOut()/DBitOut()

 cbDConfigPort()/DConfigPort()

 cbCIn()/CIn()

 cbCIn32()/CIn32()

 cbCLoad()/CLoad()

 cbCLoad32()/CLoad32()

Channel-gain queue

When using cbALoadQueue()/ALoadQueue(), the channel gain queue is limited to 16 elements. The queue

accepts any combination of valid channels and gains in each element.

Analog output

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated

simultaneously.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular

device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1608FS

96

USB-1608FS

The USB-1608FS supports the following UL and UL for .NET features:

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

 * The channel-gain queue is limited to eight elements. The USB-1608FS accepts

only unique contiguous channels in each element, but the gains may be any valid

value.

Analog input argument values

Options BACKGROUND, BLOCKIO*, SINGLEIO*, BURSTIO**, CONTINUOUS, EXTTRIGGER,

CONVERTDATA, NOCALIBRATEDATA, and EXTCLOCK

 *The packet size is based on the Options setting as follows:

Options setting Packet size

BLOCKIO 31

SINGLEIO Equals the number of channels being sampled.

 ** BURSTIO can only be used with the number of samples

(Count) set equal to the size of the FIFO or less. The USB-1608FS FIFO holds

32,768 samples. BURSTIO cannot be used with the CONTINUOUS option.

Mode Single-ended

HighChan 0 to 7 in single-ended mode

Count In BURSTIO mode, Count must be an integer multiple of the number of channels in

the scan.

 ▪ For one-, two- , four-, and eight-channel scans, the maximum Count is 32768

 samples.

 ▪ For three- and six-channel scans, the maximum Count is 32766 samples.

 ▪ For five-channel scans, the maximum Count is 32765 samples.

 ▪ For seven-channel scans, the maximum Count is 32767 samples.

Rate 200 kHz maximum for BURSTIO mode (50 kHz for any one channel). The

maximum rate is 100 kHz for all other modes (50 kHz for any one channel). When

using cbAInScan() or AInScan(), the minimum sample rate is 1 Hz. In BURSTIO

mode, the minimum sample rate is 20 Hz/channel.

Range BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)

 BIP5VOLTS (± 5 V) BIP1VOLTS (± 1 V)

Pacing Hardware pacing, internal clock supported. External clock supported via the

SYNC pin.

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Universal Library User's Guide Analog Input Boards - USB-1608FS

97

Trigger argument values

TrigType Digital triggering: TRIGPOSEDGE, TRIGNEGEDGE. External digital (TTL) hardware

triggering supported. Set the hardware trigger source with the Trig_In input.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT (eight bits, bit-configurable)

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

 **cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

RegNum LOADREG1

Universal Library User's Guide Analog Input Boards - USB-1608FS

98

Event notification

Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations

Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to

"lose" data points when scanning at higher rates. If the requested speed cannot be sustained, an OVERRUN error

will occur.

Maximum rates may be lower in Windows operating systems that predate Windows XP.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, you should consider the packet size and the number

of channels being scanned. In order to keep the data aligned properly in the array, make the total number of

samples an integer multiple of the packet size and the number of channels.

EXTCLOCK

You can set the SYNC pin on the USB-1608FS as a pacer input or a pacer output from InstaCal. By default,

this pin is set for pacer input. If set for output when using the cbAInScan()/AInScan() option, EXTCLOCK

results in a BADOPTION error.

BURSTIO

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The USB-1608FS

device's FIFO holds 32,768 samples. Data is collected into the device's local FIFO. Data transfers to the PC

don't occur until the scan completes. For BACKGROUND scans, the Count and Index returned by cbGetStatus()

and GetStatus() remain 0, and Status=RUNNING until the scan finishes. The Count and Index are not

updated until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus() and

GetStatus() are updated to the current Count and Index, and Status = IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to

the size of the FIFO (32,768 samples). Count settings must be an integer multiple of the number of channels

in the scan.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer,

use these functions to identify a particular device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1608HS, USB-1608HS-2AO

99

USB-1608HS, USB-1608HS-2AO

The USB-1608HS and USB-1608HS-2AO support the following UL and UL for .NET features:

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbFileAInScan(), cbATrig(),cbALoadQueue()*

UL for .NET: AIn(), AInScan(), FileAInScan(), ATrig(), ALoadQueue()*

 * The channel-gain queue is limited to eight elements. The USB-1608HS series

accepts only unique contiguous channels in each element, but the gains may be any

valid value.

Analog input argument values

Options BACKGROUND, BLOCKIO*, SINGLEIO*, CONTINUOUS, EXTTRIGGER, CONVERTDATA,

NOCALIBRATEDATA, RETRIGMODE, and EXTCLOCK

 * The packet size is rate-dependent. The following table lists the aggregate rates

and packet sizes when using cbAInScan()/AInScan() with devices connected to a

high-speed USB 2.0 port:

Options setting Aggregate rate Packet size

BLOCKIO

<100 kHz 256 samples

100 kHz to 200 kHz 512 samples

200 kHz to 500 kHz 1024 samples

500 kHz to 1 MHz 2048 samples

> 1 MHz 4096 samples

SINGLEIO
Equals the number of

channels being sampled.

Mode Single-ended and differential

HighChan 0 to 7 in single-ended and differential mode

Rate 250 kHz per channel

Range BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)

 BIP5VOLTS (± 5 V) BIP1VOLTS (± 1 V)

Pacing Hardware pacing, internal clock supported.

 External clock supported via the SYNC_IN pin.

Analog output (USB-1608HS-2AO only)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS

 NONSTREAMEDIO can only be used with the number of samples set equal to the size

of the FIFO or less. The FIFO holds 524288 samples.

HighChan 0 to 1

Rate 70 kHz for one channel

Universal Library User's Guide Analog Input Boards - USB-1608HS, USB-1608HS-2AO

100

 47 kHz for two channels

Range BIP10VOLTS (10 volts)

Packet size 512 samples

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers).

Pacing Hardware pacing, internal clock supported.

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType Analog triggering: TRIGABOVE, TRIGBELOW. Digital triggering: TRIGPOSEDGE,

TRIGNEGEDGE, TRIGHIGH, TRIGLOW. External digital (TTL) hardware triggering

supported. Set the hardware trigger source with the Trig_In input.

Threshold 0 to 65535 (BIP10VOLTS) (Hardware actually has 12 bit resolution, but the library

uses a 16 bit value so that cbFromEngUnits() can be used to obtain the trigger

value.)

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

Universal Library User's Guide Analog Input Boards - USB-1608HS, USB-1608HS-2AO

101

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

 **cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

RegNum LOADREG1

Configuration

Configuration functions and methods supported

UL: cbGetConfig(), cbSetConfig(), cbGetConfigString(), cbSetConfigString()

ConfigItem: BIADTRIGCOUNT, BINODEID

Device Number: 0

maxConfigLen: At least 64 for BINODEID

Event notification

Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations

Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the device, it is possible to

"lose" data points when scanning at higher rates. If the requested speed cannot be sustained, an OVERRUN error

will occur.

Maximum rates may be lower in Windows operating systems that predate Windows XP.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, you should consider the packet size and the number

of channels being scanned. In order to keep the data aligned properly in the array, make the total number of

samples an integer multiple of the packet size and the number of channels.

Device identifier

You can enter up to 64 characters for the value of the device's text identifier using the ConfigItem option

BINODEID with cbSetConfigString().

Universal Library User's Guide Analog Input Boards - USB-1608HS, USB-1608HS-2AO

102

Output scan restriction

You cannot access cbSetTrigger()/SetTrigger() or call BINODEID while an analog output scan is in

progress.

Analog triggering

When using cbAInScan()/AInScan() with EXTTRIGGER, the value entered to cbSetTrigger() threshold

arguments for analog trigger modes should be a 16 bit value. The resolution of the circuitry is actually 12 bits,

but the library uses a 16 bit value so that cbFromEngUnits() can be used to obtain the trigger value.

Retriggering

When using cbAInScan()/AInScan(), you can use RETRIGMODE to set up repetitive trigger events. When using

RETRIGMODE, it is best to set the values for the Count argument (cbAInScan()/AInScan()) and the

BIADTRIGCOUNT argument (cbSetConfig()/SetAdRetrigCount()) to an integer multiple of the packet size

(and the number of channels if using CONTINUOUS). That way, the entire buffer, or the portion of the buffer

defined by BIADTRIGCOUNT, will contain updated data.

Remote sensing (USB-1608HS-2AO)

You can enable remote sensing for each of the two analog outputs on the USB-1608HS-2AO with InstaCal.

The remote sensing feature compensates for the voltage drop error that occurs in applications where the USB-

1608HS-2AO's analog outputs are connected to its load through a long wire or cable type interconnect.

The remote sensing feature can compensate for I*R induced voltage losses up to 750 mV, and for any series

resistance up to 75 Ω between its remote sensing terminal pins and its output load.

 To configure the remote sensing connection, connect two separate output wires — one from the

VDACn_F (force) output terminal, and one from the VDACn_S (sense) output terminal — to the high

side or positive input terminal of the field device (load).

 If you are not using the remote sensing feature, simply connect a single output wire or cable from the

VDACn_F (force) output terminal to the load, and leave the VDACn_S (sense) terminal unconnected.

Refer to the USB-1608HS-2AO User's Guide for more information about remote sensing.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink. When you have several USB devices connected to the computer,

use these functions to identify a particular device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1616FS

103

USB-1616FS

The USB-1616FS supports the following UL and UL for .NET features.

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

 *The channel-gain queue is limited to 16 elements. The USB-1616FS accepts only

unique contiguous channels in each element, but the gains may be any valid value.

Analog input argument values

Options: BACKGROUND, BLOCKIO**, BURSTIO***, CONTINUOUS, EXTTRIGGER, SINGLEIO**, and
EXTCLOCK

 **USB-1616 Series packet size based on Options settings

Device Options setting Packet size

USB-1616FS
BLOCKIO 62

SINGLEIO Equals the number of channels being sampled.

 *** BURSTIO can only be used with the number of samples (Count) set equal to the

size of the FIFO or less. The USB-1616FS FIFO holds 32,768 samples. Also,

BURSTIO cannot be used with the CONTINUOUS option.

HighChan 0 to 15 in single-ended mode

Count In BURSTIO mode, Count needs to be an integer multiple of the number of channels

in the scan.

 For one-, two- , four-, eight-, and 16-channel scans, the maximum Count is 32768

samples.

 For three- and six-channel scans, the maximum Count is 32766 samples

 For five-channel scans, the maximum Count is 32765 samples

 For seven-channel scans, the maximum Count is 32767 samples

 For 9-, 10-, 12-, 13-, 14-, and 15-channel scans, the maximum Count is

32760 samples

 For 11-channel scans, the maximum Count is 32758 samples.

Rate: 200 kilohertz (kHz) maximum for BURSTIO mode (50 kHz for any one channel).

For all other modes, the maximum rate per channel depends on the number of

channels being scanned.

No. of channels
in the scan

Maximum rate No. of channels
in the scan

Maximum rate

1 or 2 50 kHz 10 14 kHz

3 36 kHz 11 12.5 kHz

4 30 kHz 12 12 kHz

5 25 kHz 13 11.25 kHz

6 22 kHz 14 10.5 kHz

7 19 kHz 15 10 kHz

8 17 kHz 16 9.5 kHz

9 15 kHz

 When using cbAInScan() or AInScan(), the minimum sample rate is 1 Hz. In

BURSTIO mode, the minimum sample rate is 20 Hz/channel.

Universal Library User's Guide Analog Input Boards - USB-1616FS

104

Range: Single-ended:

 BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)

BIP2VOLTS (± 2 volts) BIP1VOLTS (± 1 volt)

Pacing: Hardware pacing, internal clock supported.

 External clock supported via the SYNC pin.

Triggering

Triggering functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType: TRIGPOSEDGE, TRIGNEGEDGE

 External digital (TTL) hardware triggering supported. You set the hardware trigger

source with the TRIG_IN input terminal.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()** *

 Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle. **cbCLoad(),

cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are

used to reset the counter.

Universal Library User's Guide Analog Input Boards - USB-1616FS

105

Counter I/O argument values

CounterNum: 1

Count 232-1 when reading the counter.

 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or CIn() for values greater

than 32767, and when using cbCIn32() or CIn32() for values greater than 2147483647.

Event notification

Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations

Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the USB-1616FS, it is possible

to "lose" data points when scanning at higher rates. The Universal Library cannot always detect this data loss.

Maximum rates may be lower in Windows operating systems that predate Windows XP. Most systems can

sustain rates of 80 kS/s aggregate. If you need to sample at higher rates than this, consider using the BURSTIO

option explained later in this topic.

EXTCLOCK

You can set the SYNC pin as a pacer input or a pacer output from InstaCal. By default, this pin is set for pacer

input. If set for output, using the cbAInScan()/AInScan() option EXTCLOCK results in a BADOPTION error.

BURSTIO

Allows higher sampling rates up to the size of the FIFO. The USB-1616FS FIFO holds 32,768 samples. Data

is collected into the USB device's local FIFO. Data transfers to the PC don't occur until the scan completes.

For BACKGROUND scans, the Count and Index returned by cbGetStatus() and GetStatus() remain 0, and

STATUS=RUNNING until the scan finishes. The Count and Index are not updated until the scan is

completed. When the scan is complete and the data is retrieved, cbGetStatus() and GetStatus() are updated

to the current Count and Index, and STATUS=IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to

the size of the FIFO (32,768 samples). Count settings must be an integer multiple of the number of channels

in the scan (see Count above).

Continuous scans

When running cbAInScan()/AInScan() with the CONTINUOUS option, you should consider the packet size and

the number of channels being scanned. In order to keep the data aligned properly in the array, make the total

number of samples an integer multiple of the packet size and the number of channels.

When running cbAInScan()/AInScan() with the CONTINUOUS option, you must set the count to an integer

multiple of the packet size (62) and the number of channels in the scan.

Universal Library User's Guide Analog Input Boards - USB-1616FS

106

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

107

USB-1616HS Series

The USB-1616HS Series includes the USB-1616HS, USB-1616HS-2, and USB-1616HS-4.

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig(),
cbAPretrig()*

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig, APretrig()*

 * Pretrigger capability is implemented in software. PretrigCount must be less

than the TotalCount and cannot exceed 100000 samples. TotalCount must be

greater than the PretrigCount. If a trigger occurs while the number of collected

samples is less than the PretrigCount, that trigger will be ignored. Requires a call

to cbSetTrigger (SetTrigger) for the analog trigger type.

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER*

 * With EXTTRIGGER mode, the first channel in the scan is the analog trigger

channel.

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode. (0 to 63 single-ended,

0 to 31 differential if the AI-EXP48 expansion board is installed.)

Rate Up to 1 MHz

Range BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIP2VOLTS (2 V)

BIP1VOLTS (1 V)

BIPPT5VOLTS (0.5 V)

BIPPT2VOLTS (0.2 V)

BIPPT1VOLTS (0.1 V)

Analog output (USB-1616HS-4 and USB-1616HS-2 only)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

 NONSTREAMEDIO can only be used with the number of samples set equal to the size

of the FIFO or less. The FIFO holds 524288 samples.

HighChan USB-1616HS-4: 0 to 3

USB-1616HS-2: 0 to 1

Rate 1 MHz

Range Ignored - Not programmable; fixed at BIP10VOLTS (10 volts)

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers).

Pacing Hardware pacing, external or internal clock supported.

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

108

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

Port I/O functions, methods, and argument values supported

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

 *FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to

DIO PortNum on page 113 for more information.

Options BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, WORDXFER, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

 The EXTTRIGGER option can only be used with the cbDInScan() function. You can

use the cbSetTrigger() function to program the trigger for rising edge, falling

edge, or the level of the digital trigger input (TTL).

 The WORDXFER option can only be used with FIRSTPORTA.

 The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with

the cbDOutScan() function.

 The NONSTREAMEDIO option can only be used with the number of samples set equal

to the size of the FIFO or less. The FIFO holds 524288 samples.

Rate 12 MHz

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DataValue 0 to 255

 0 to 65535 using the WORDXFER option with FIRSTPORTA

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 23

Counter input

Counter functions and methods supported

UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan(), CInScan(), CClear()

Note: Counters on these devices are zero-based (the first counter number is "0").

Counter argument values

Rate 6 MHz

CounterNum 0 to 3

Options BACKGROUND, CONTINUOUS, EXTTRIGGER

mk:@MSITStore:C:\MCC\UniLib.chm::/Function_Reference/Configuration_Functions/cbSetTrigger().htm

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

109

 You can use the cbSetTrigger() function to program the trigger for rising edge,

falling edge, or the level of the digital trigger input (TTL).

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Timer output

Timer functions and methods supported

UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

Timer argument values

TimerNum 0 to 1

Frequency 15.260 Hz to 1.0 MHz

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

 Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not

supported for pre-trigger acquisitions (cbAPretrig() function). Analog triggering

(TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the

cbCInScan() function.

Threshold Analog hardware triggering, 12-bit resolution:

0 to 4095 (supported for cbAInScan() only)

 Analog software triggering, 16-bit resolution:

0 to 65535 (supported for cbAPretrig() only)

Temperature input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan(), cbGetTCValues()

UL for .NET: TIn(), TInScan(), GetTCValues()

Temperature input argument values

Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 7 (0 to 31 if the AI-EXP48 expansion board is installed.)

DAQ input

DAQ input functions and methods supported

UL: cbDaqInScan()

UL for .NET: DaqInScan()

DAQ input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER

mk:@MSITStore:C:\MCC\UniLib.chm::/Function_Reference/Configuration_Functions/cbSetTrigger().htm

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

110

ChanTypeArray ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, CJC, TC,
SETPOINTSTATUS

 Note: for information on associating CJC channels with TC channels, refer to

Hardware considerations on page 112.

ChanArray ANALOG: 0 to 15 in single-ended mode, 0 to 7 in differential mode

 (0 to 63 single-ended, 0 to 31 differential if the AI-EXP48

 expansion board is installed.)

 DIGITAL8: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

 DIGITAL16: FIRSTPORTA

 CTR16: 0-3 counters

 CTR32LOW: 0-3 counters

 CTR32HIGH: 0-3 counters

 CJC: 0 to 5 (0 to 11 if the AI-EXP48 expansion board is installed.)

 TC: 0 to 7 (0 to 31 if the AI-EXP48 expansion board is installed.)

 SETPOINTSTATUS: 16-bit port that indicates the current state of

the 16 possible setpoints.

 ChanTypeArray flag value:

 SETPOINT_ENABLE: Enables a setpoint. Refer to Hardware considerations on page

112 for more information.

Rate Analog: Up to 1 MHz

 Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1

MHz.

 Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1

MHz.

GainArray ANALOG only; ignore for other ChanTypeArray values.

 BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIP2VOLTS (2 V)

BIP1VOLTS (1 V)

BIPPT5VOLTS (0.5 V)

BIPPT2VOLTS (0.2 V)

BIPPT1VOLT (0.1 V)

PreTrigCount 100000 max

DAQ triggering

DAQ trigger functions and methods supported

UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

DAQ trigger argument values

TrigSource TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW,

TRIG_DIGPATTERN, TRIG_COUNTER, TRIG_SCANCOUNT

TrigSense RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

111

TrigEvent START_EVENT, STOP_EVENT

DAQ setpoint

DAQ setpoint functions and methods supported

UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

DAQ setpoint argument values

SetpointFlagsArray SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB,

SF_OUTSIDE_LIMITS, SF_HYSTERESIS, SF_UPDATEON_TRUEONLY,
SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1

 also available for USB-1616HS-2:

 SO_DAC0, SO_DAC1

 also available for USB-1616HS-4:

 SO_DAC0, SO_DAC1, SO_DAC2, SO_DAC3

LimitAArray Any value valid for the associated input channel

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray Any value valid for the associated input channel and less than LimitA

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array For SetpointOutputArray = SO_NONE:

Ignored

For SetpointOutputArray = SO_FIRSTPORTC:

0 to 65535

For SetpointOutputArray = SO_TMR#:

0 (to disable timer) or 15.26 to 1000000 (to set output frequency)

For SetpointOutputArray = SO_DAC#:

Voltage values between -10 and +10

OutputMask#Array For SetpointOutputArray = SO_FIRSTPORTC:

0 to 65535

For SetpointOutputArray = all other values:

Ignored

SetpointCount 0 (to disable setpoints) to 16

DAQ output (USB-1616HS-4 and USB-1616HS-2 only)

DAQ output functions and methods supported

UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

DAQ output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

ChanType ANALOG, DIGITAL16

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

112

ChanArray ANALOG: USB-1616HS-4: 0 to 3

 USB-1616HS-2: 0 to 1

 DIGITAL16: FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate ANALOG: Up to 1 MHz

 DIGITAL16: Up to 12 MHz (system-dependent) if no analog channel is

selected. Otherwise up to 1 MHz.

Range BIP10VOLTS (10 V)

Hardware considerations

Associating CJC channels with TC channels

The TC channels must immediately follow their associated CJC channels in the channel array. For accurate

thermocouple readings, associate CJC channels with the TC channels as listed in the following table:

CJC channels TC channels

CJC0 TC0

CJC1 TC1 and TC2

CJC2 TC3

CJC3 TC4

CJC4 TC5 and TC6

CJC5 TC7

When the AI-EXP48 board is installed:

CJC6 TC8 through TC11

CJC7 TC12 through TC15

CJC8 TC16 through TC19

CJC9 TC20 through TC23

CJC10 TC24 through TC27

CJC11 TC28 through TC31

The board must be configured for differential inputs when using thermocouples

TC inputs are supported by differential mode configuration only.

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a

BADCOUNT error is returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling

rates when using BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use

NONSTREAMEDIO mode, if supported. The minimum size buffer is 256 for cbAOutScan(). Values less than that

result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning

multiple channels and one or more channels are connected to a high impedance source, you may get better

results by increasing the settling time. Keep in mind that increasing the settling time reduces the maximum

acquisition rate. You can set the time between A/D conversions with the ADC Settling Time option in

InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Universal Library User's Guide Analog Input Boards - USB-1616HS Series

113

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray

argument values. You set the setpoint criteria with cbDaqSetSetpoints()/DaqSetSetpoints(). The number

of channels set with the SETPOINT_ENABLE flag must match the number of setpoints set by the SetpointCount

argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The

aggregate size of the data output buffer must be less than or equal to the size of the internal data output FIFO

in the device. The FIFO holds 524288 samples. This allows the data output buffer to be loaded into the

device's internal output FIFO. Once the sample updates are transferred or downloaded to the device, the

device is responsible for outputting the data. You can't change the output buffer once the output begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCKTRIG option to trigger a data output operation upon the start of the ADC clock.

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are

treated as one 16-bit port. These functions can only be used with FIRSTPORTA. You must configure both

FIRSTPORTA and FIRSTPORTB for output using the cbDConfigPort() function.

Synchronous scanning with multiple boards

You can operate up to four USB-1616HS Series boards synchronously by setting the direction of the A/D and

D/A pacer pins (APR or DPR) in InstaCal.

On the board used to pace each device, set the pacer pin that you want to use (APR or DPR) for Output. On

the board(s) that you want to synchronize with this board, set the pacer pin that you want to use (APR or

DPR) for Input.

You set the direction using the InstaCal configuration dialog's APR Pin Direction and DPR Pin Direction

settings

Wire the pacer pin configured for output to each of the pacer input pins that you want to synchronize.

Quadrature encoder operations

To configure a counter channel as a multi-axis quadrature encoder, use the cbCConfigScan()/CConfigScan()

Mode argument values to set a specified counter to encoder mode, set the encoder measurement mode to X1,

X2, or X4, and then set the count to be latched either by the internal "start of scan" signal (default) or by the

signal on the mapped counter.

You can optionally perform the following operations:

 Enable gating, so that the counter is enabled when the mapped channel to gate the counter is high. When

the mapped channel is low, the counter is disabled but holds the count value.

 Enable "latch on Z" to latch counter outputs using the Encoder Z mapped signal.

 Enable "clear on Z" so that the counter is cleared on the rising edge of the mapped (Z) counter. By

default, clear on Z" is disabled, and the counter is not cleared.

Universal Library User's Guide Analog Input Boards - USB-2500 Series

114

USB-2500 Series

The USB-2500 Series includes the USB-2523, USB-2527, USB-2533, and USB-2537 devices.

Analog input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue(), cbFileAInScan(), cbATrig(),
cbAPretrig()*

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig(), APretrig()*

 * Pretrigger capability is implemented in software. PretrigCount must be less

than the TotalCount and cannot exceed 100000 samples. TotalCount must be

greater than the PretrigCount. If a trigger occurs while the number of collected

samples is less than the PretrigCount, that trigger will be ignored. Requires a call

to cbSetTrigger (SetTrigger) for the analog trigger type.

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER

 With EXTTRIGGER mode, the first channel in the scan is the analog trigger channel.

HighChan USB-2537, USB-2533:

 0 to 63 in single-ended mode, 0 to 31 in differential mode

 USB-2527, USB-2523:

 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate Up to 1 MHz

Range BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIP2VOLTS (2 V)

BIP1VOLTS (1 V)

BIPPT5VOLTS (0.5 V)

BIPPT2VOLTS (0.2 V)

BIPPT1VOLTS (0.1 V)

Analog output (USB-2537 and USB-2527 only)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

 NONSTREAMEDIO can only be used with the number of samples set equal to the size

of the FIFO or less. The FIFO holds 524288 samples.

HighChan 0 to 3

Rate 1 MHz

Range Ignored - Not programmable; fixed at BIP10VOLTS (10 volts)

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers).

Universal Library User's Guide Analog Input Boards - USB-2500 Series

115

Pacing Hardware pacing, external or internal clock supported.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

Port I/O functions, methods, and argument values supported

UL: cbDIn(), cbDOut(), cbDInScan(), cbDOutScan()*

UL for .NET: DIn(), DOut(), DInScan(), DOutScan()*

 *FIRSTPORTA and FIRSTPORTB must be set for output to use this function. Refer to

DIO PortNum on page 120 for more information.

Options BACKGROUND, CONTINUOUS, EXTCLOCK, EXTTRIGGER, WORDXFER, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

 The EXTTRIGGER option can only be used with the cbDInScan() function. You can

use the cbSetTrigger() function to program the trigger for rising edge, falling

edge, or the level of the digital trigger input (TTL).

 The WORDXFER option can only be used with FIRSTPORTA.

 The NONSTREAMEDIO, ADCCLOCKTRIG, and ADCCLOCK options can only be used with

the cbDOutScan() function.

 The NONSTREAMEDIO option can only be used with the number of samples set equal

to the size of the FIFO or less. The FIFO holds 524288 samples.

Rate 12 MHz

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

DataValue 0 to 255

 0 to 65535 using the WORDXFER option with FIRSTPORTA

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 23

Counter input

Counter functions and methods supported

UL: cbCIn(), cbCIn32(), cbCConfigScan(), cbCInScan(), cbCClear()

UL for .NET: CIn(), CIn32(), CConfigScan(), CInScan(), CClear()

Note: Counters on these devices are zero-based (the first counter number is "0").

Counter argument values

Rate 6 MHz

CounterNum 0 to 3

Options BACKGROUND, CONTINUOUS, EXTTRIGGER

mk:@MSITStore:C:\MCC\UniLib.chm::/Function_Reference/Configuration_Functions/cbSetTrigger().htm

Universal Library User's Guide Analog Input Boards - USB-2500 Series

116

 You can use the cbSetTrigger() function to program the trigger for rising edge,

falling edge, or the level of the digital trigger input (TTL).

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Timer output

Timer functions and methods supported

UL: cbTimerOutStart(), cbTimerOutStop()

UL for .NET: TimerOutStart(), TimerOutStop()

Timer argument values

TimerNum 0 to 1

Frequency 15.260 Hz to 1.0 MHz

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGABOVE, TRIGBELOW, TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE

 Digital triggering (TRIGHIGH, TRIGLOW, TRIGPOSEDGE, TRIGNEGEDGE) is not

supported for pre-trigger acquisitions (cbAPretrig() function). Analog triggering

(TRIGABOVE, TRIGBELOW) is not supported for the cbDInScan() function and the

cbCInScan() function.

Threshold Analog hardware triggering, 12-bit resolution:

0 to 4095 (supported for cbAInScan() only)

 Analog software triggering, 16-bit resolution:

0 to 65535 (supported for cbAPretrig() only)

Temperature input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan(), cbGetTCValues()

UL for .NET: TIn(), TInScan(), GetTCValues()

Temperature input argument values

Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 3

DAQ input

DAQ input functions and methods supported

UL: cbDaqInScan()

UL for .NET: DaqInScan()

DAQ input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, DMAIO, BLOCKIO, EXTTRIGGER

mk:@MSITStore:C:\MCC\UniLib.chm::/Function_Reference/Configuration_Functions/cbSetTrigger().htm

Universal Library User's Guide Analog Input Boards - USB-2500 Series

117

ChanTypeArray ANALOG, DIGITAL8, DIGITAL16, CTR16, CTR32LOW, CTR32HIGH, CJC, TC,
SETPOINTSTATUS

 Note: for information on associating CJC channels with TC channels, refer to

Hardware considerations on page 119.

ChanArray ANALOG: USB-2537, USB-2533: 0 to 63 in single-ended mode,

 0 to 31 in differential mode

 USB-2527, USB-2523: 0 to 15 in single-ended mode,

 0 to 7 in differential mode

 DIGITAL8: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC

 DIGITAL16: FIRSTPORTA

 CTR16: 0-3 counters

 CTR32LOW: 0-3 counters

 CTR32HIGH: 0-3 counters

 CJC: 0 to 2

 TC: 0 to 3

 SETPOINTSTATUS: 16-bit port that indicates the current state of the 16 possible

setpoints.

 ChanTypeArray flag value:

 SETPOINT_ENABLE: Enables a setpoint. Refer to Hardware considerations on page

119 for more information.

Rate Analog: Up to 1 MHz

 Digital: Up to 12 MHz if no analog channel is selected. Otherwise up to 1

MHz.

 Counter: Up to 12 MHz if no analog channel is selected. Otherwise up to 1

MHz.

GainArray ANALOG only; ignore for other ChanTypeArray values.

 BIP10VOLTS (10 V)

BIP5VOLTS (5 V)

BIP2VOLTS (2 V)

BIP1VOLTS (1 V)

BIPPT5VOLTS (0.5 V)

BIPPT2VOLTS (0.2 V)

BIPPT1VOLT (0.1 V)

PreTrigCount 100000 max

DAQ triggering

DAQ trigger functions and methods supported

UL: cbDaqSetTrigger()

UL for .NET: DaqSetTrigger()

DAQ trigger argument values

TrigSource TRIG_IMMEDIATE, TRIG_EXTTTL, TRIG_ANALOGHW, TRIG_ ANALOGSW,

TRIG_DIGPATTERN, TRIG_COUNTER, TRIG_SCANCOUNT

Universal Library User's Guide Analog Input Boards - USB-2500 Series

118

TrigSense RISING_EDGE, FALLING_EDGE, ABOVE_LEVEL, BELOW_LEVEL, EQ_LEVEL, NE_LEVEL

TrigEvent START_EVENT, STOP_EVENT

DAQ setpoint

DAQ setpoint functions and methods supported

UL: cbDaqSetSetpoints()

UL for .NET: DaqSetSetpoints()

DAQ setpoint argument values

SetpointFlagsArray SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA, SF_GREATERTHAN_LIMITB,

SF_OUTSIDE_LIMITS, SF_HYSTERESIS, SF_UPDATEON_TRUEONLY,
SF_UPDATEON_TRUEANDFALSE

SetpointOutputArray SO_NONE, SO_FIRSTPORTC, SO_TMR0, SO_TMR1

 also available for USB-2537 and USB-2527:

 SO_DAC0, SO_DAC1, SO_DAC2, SO_DAC3

LimitAArray Any value valid for the associated input channel

Ignored for SF_GREATERTHAN_LIMITB

LimitBArray Any value valid for the associated input channel and less than LimitA

Ignored for SF_EQUAL_LIMITA, SF_LESSTHAN_LIMITA

Output#Array For SetpointOutputArray = SO_NONE:

Ignored

For SetpointOutputArray = SO_FIRSTPORTC:

0 to 65535

For SetpointOutputArray = SO_TMR#:

0 (to disable timer) or 15.26 to 1000000 (to set output frequency)

For SetpointOutputArray = SO_DAC#:

Voltage values between -10 and +10

OutputMask#Array For SetpointOutputArray = SO_FIRSTPORTC:

0 to 65535

For SetpointOutputArray = all other values:

Ignored

SetpointCount 0 (to disable setpoints) to 16

DAQ output (USB-2537 and USB-2527 only)

DAQ output functions and methods supported

UL: cbDaqOutScan()

UL for .NET: DaqOutScan()

DAQ output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS, NONSTREAMEDIO,

ADCCLOCKTRIG, ADCCLOCK

ChanType ANALOG, DIGITAL16

ChanArray ANALOG: 0 to 3

Universal Library User's Guide Analog Input Boards - USB-2500 Series

119

 DIGITAL16: FIRSTPORTA (FIRSTPORTB must be configured as an output)

Rate ANALOG: Up to 1 MHz

 DIGITAL16: Up to 12 MHz (system-dependent) if no analog channel is

selected. Otherwise up to 1 MHz.

Range Ignored

Hardware considerations

Associating CJC channels with TC channels

The TC channels must immediately follow their associated CJC channels in the channel array. For accurate

thermocouple readings, associate CJC0 with TC0, CJC1 with TC1 and TC2, and CJC2 with TC3.

The board must be configured for differential inputs when using thermocouples

TC inputs are supported by differential mode configuration only.

Channel count

For input and output scans, the count must be set to an integer multiple of the number of channels or a

BADCOUNT error is returned.

Sampling and update rates

Sampling and update rates are system-dependent. Data overruns/underruns may occur with higher sampling

rates when using BACKGROUND and CONTINUOUS modes. To avoid this, use a larger buffer/count size, or use

NONSTREAMEDIO mode, if supported. The minimum size buffer is 256 for cbAOutScan(). Values less than that

result in a BADBUFFERSIZE error.

Settling time

For most applications, settling time should be left at the default value of 1 µs. However, if you are scanning

multiple channels and one or more channels are connected to a high impedance source, you may get better

results by increasing the settling time. Keep in mind that increasing the settling time reduces the maximum

acquisition rate. You can set the time between A/D conversions with the ADC Settling Time option in

InstaCal. Select between 1 µs, 5 µs, 10 µs, or 1 ms.

Setpoints

You enable setpoints with the SETPOINT_ENABLE flag. This flag must be OR'ed with the ChanTypeArray

argument values. You set the setpoint criteria with cbDaqSetSetpoints()/DaqSetSetpoints(). The number

of channels set with the SETPOINT_ENABLE flag must match the number of setpoints set by the SetpointCount

argument (cbDaqSetSetpoints()/DaqSetSetpoints()).

Output non-streamed data to a DAC output channel

With NONSTREAMEDIO mode, you can output non-streamed data to a specific DAC output channel. The

aggregate size of the data output buffer must be less than or equal to the size of the internal data output FIFO

in the device. The FIFO holds 524288 samples. This allows the data output buffer to be loaded into the

device's internal output FIFO. Once the sample updates are transferred or downloaded to the device, the

device is responsible for outputting the data. You can't change the output buffer once the output begins.

Trigger DAC output operations with the ADC clock

Specify the ADCCLOCKTRIG option to trigger a data output operation upon the start of the ADC clock.

Universal Library User's Guide Analog Input Boards - USB-2500 Series

120

DIO PortNum

For cbDOutScan()/DOutScan() and cbDaqOutScan()/DaqOutScan(), FIRSTPORTA and FIRSTPORTB are

treated as one 16-bit port. These functions can only be used with FIRSTPORTA. You must configure both

FIRSTPORTA and FIRSTPORTB for output using the cbDConfigPort() function.

Synchronous scanning with multiple boards

You can operate up to four USB-2500 Series boards synchronously by setting the direction of the A/D and

D/A pacer pins (XAPCR or XDPCR) in InstaCal.

On the board used to pace each device, set the pacer pin that you want to use (XAPCR or XDPCR) for

Output. On the board(s) that you want to synchronize with this board, set the pacer pin that you want to use

(XAPCR or XDPCR) for Input.

You set the direction using the InstaCal configuration dialog's XAPCR Pin Direction and XDPCR Pin

Direction settings. If you have an older version of InstaCal, these settings might be labeled "ADC Clock

Output" (set to Enabled to configure XAPCR for output) or "DAC Clock Output" (set to Enabled to configure

XDPCR for output).

Wire the pacer pin configured for output to each of the pacer input pins that you want to synchronize.

Universal Library User's Guide Analog Input Boards - DEMO-BOARD

121

DEMO-BOARD

The DEMO-BOARD is a software simulation of a data acquisition board that simulates analog input and

digital I/O operations.

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, SINGLEIO, DMAIO

HighChan 7 max

Rate 300000

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn(), cbDBitIn(), cbDInScan(), cbDOut(), cbDBitOut(), cbDOutScan(),
cbDConfigPort()

UL for .NET: DIn(), DBitIn(), DInScan(), DOut(), DBitOut(), DOutScan(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, AUXPORT

DataValue 0 to 255 using FIRSTPORTA, FIRSTPORTB, or AUXPORT

BitNum 0 to 15 using FIRSTPORTA

0 to 7 using AUXPORT

Using the DEMO-BOARD

Analog input

The DEMO-BOARD simulates eight channels of 16-bit analog input. InstaCal is used to configure the

following waveforms on the analog input channels:

 sine wave

 square wave

 saw-tooth, ramp

 damped sine wave

 input from a data file

The data file is a streamer file, so any data that has been previously saved in a streamer file can be used as a

source of demo data by the board. Data files are named DEMO0.DAT through DEMO7.DAT. When a data file is

assigned to a channel, the library tries to extract data for that channel from the streamer file. If data for that

channel does not exist, then the first (and possibly only) channel data in the streamer is extracted and used.

For example, DEMO2.DAT is assigned as the data source for channel 5 on the DEMO-BOARD. The library will

try to extract data from the file that corresponds to channel 5. If DEMO2.DAT has scan data that corresponds to

channels 0 through 15, then channel 5 data is extracted. If DEMO2.DAT only has data for a single channel, the

data for that channel is used as the data source for channel 5.

Universal Library User's Guide Analog Input Boards - DEMO-BOARD

122

Digital I/O

The DEMO-BOARD simulates the following:

 One eight-bit AUXPORT configurable digital input/output port. Each bit of the AUXPORT generates a square

wave with a different period.

 Two eight-bit configurable digital I/O ports—FIRSTPORTA, FIRSTPORTB—which can be used for high

speed scanning. FIRSTPORTA functions like AUXPORT in that it generates square waves. Each bit of

FIRSTPORTB generates a pulse with a different frequency.

123

7

Analog Output Boards

Introduction

All boards with analog outputs support the cbAOut() and cbAOutScan() functions. Boards released after the

printing of this manual are described in Readme files on the Universal Library disk.

cbAOutScan()/AOutScan() are designed primarily for boards that support hardware-paced analog output, but

it is also useful when simultaneous update of all channels is desired. If the hardware is configured for

simultaneous update, this function loads each DAC channel with the appropriate value before issuing the

update command.

Universal Library User's Guide Analog Output Boards - DAC04 HS Series

124

DAC04 HS Series

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

HighChan 0 to 3

Rate 500000

Range Ignored - Not programmable

DataValue 0 to 4095

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 255

BitNum 0 to 7

 * AUXPORT is not configurable for these boards.

Hardware considerations

Pacing analog output

Hardware pacing, external or internal clock supported.

The external clock is hardwired to the DAC pacer. If an internal clock is to be used, do not connect a signal to

the External Pacer input.

Universal Library User's Guide Analog Output Boards - DAC Series (Excluding HS Series)

125

DAC Series (Excluding HS Series)

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS

HighChan DAC02 DAC08

0 to 1 0 to 7

 DAC06 DAC16

0 to 5 0 to 15

Rate Ignored

Count HighChan - LowChan + 1 max

Range Ignored - Not programmable

DataValue 0 to 4095

 For the /16 series, the following argument values are also valid:

0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Hardware considerations

Pacing analog output

Software only

Universal Library User's Guide Analog Output Boards - PCI-DAC6700 Series

126

PCI-DAC6700 Series

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

HighChan: PCI-DAC6702: 7

 PCI-DAC6703: 15

Count: HighChan - LowChan + 1 max

Rate: Ignored

Range: Ignored - Not programmable; fixed at BIP10VOLTS (±10.1 V)

DataValue: 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort(),
cbDConfigBit()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort(), DConfigBit()

Digital I/O argument values

PortNum: AUXPORT is bitwise configurable for these boards, and must be configured using

cbDConfigBit() or cbDConfigPort() before use as output.

DataValue 0 to 255

BitNum 0 to 7

Configuration

Configuration functions and methods supported

UL: cbGetConfig(), cbSetConfig()

UL for .NET: GetDACStartup(), GetDACUpdateMode(), SetDACStartup(),
SetDACUpdateMode()

Configuration argument values

ConfigItem: BIDACSTARTUP, BIDACUPDATEMODE, BIDACUPDATECMD

Hardware considerations

Pacing analog output

Software only

Universal Library User's Guide Analog Output Boards - PCM- and PC-CARD- DAC Series

127

PCM- and PC-CARD- DAC Series

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options PCM-DAC02

Ignored

 PCM-DAC08 and PC-CARD-DAC08
SIMULTANEOUS

HighChan DAC02: 0 to 1

 DAC08: 0 to 7

Rate Ignored

Count HighChan - LowChan + 1 max

Range PCM-DAC08 and PC-CARD-DAC08

Ignored - Not programmable; fixed at BIP5VOLTS (±5 V)

 PCM-DAC02
BIP10VOLTS BIP5VOLTS
UNI10VOLTS UNI5VOLTS

DataValue 0 to 4095

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB

DataValue 0 to 15 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 7 using FIRSTPORTA

Hardware considerations

Pacing analog output

Software only

Digital configuration

Supports two configurable 4-bit ports—FIRSTPORTA and FIRSTPORTB. Each can be independently configured

as either inputs or outputs via cbDConfigPort() or DConfigPort().

Universal Library User's Guide Analog Output Boards - PCIM- and CIO- DDA06 Series

128

PCIM- and CIO- DDA06 Series

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS (CIO-DDA06 Series only)

HighChan 0 to 5

Count HighChan - LowChan + 1 max

Rate Ignored

Range Ignored - Not programmable

DataValue 0 to 4095

 For the /16 series, the following argument values are also valid

0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTC

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 using FIRSTPORTA

Hardware considerations

Pacing analog output

Software only

Initializing the ‘zero power-up’ state

When using the CIO-DDA06 "zero power-up state" hardware option, use cbAOutScan() or AOutScan() to set

the desired output value and enable the DAC outputs.

Universal Library User's Guide Analog Output Boards - PCI- and CPCI- DDA Series

129

PCI- and CPCI- DDA Series

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument ranges

Options SIMULTANEOUS

HighChan DDA02: 0 to 1

DDA04: 0 to 3

DDA08: 0 to 7

Rate Ignored

Count HighChan - LowChan + 1 max

Range BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS

DataValue 0 to 4095

 For the /16 series, the following argument values are also valid

0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, SECONDPORTA,

SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue 0 to 15 for PORTCH and PORTCL

 0 to 255 for PORTA or PORTB

BitNum 0 to 47 using FIRSTPORTA

Hardware considerations

Pacing analog output

Software only.

Universal Library User's Guide Analog Output Boards - cSBX-DDA04

130

cSBX-DDA04

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument ranges

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

Rate 300,000

Pacing Hardware pacing, external or internal clock supported

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDInScan(), cbDOutScan()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 255 using cbDIn() or cbDInScan(), 0 to 16383

BitNum 0 to 7 using cbDBitIn()

0 to 13 using cbDBitOut()

Rate 500 kHz (refer to "Notes" below).

Pacing Hardware

* AUXPORT is not configurable for this board.

Notes

The cSBX-DDA04 board allows interleaving of analog and digital output data. To support interleaving, a

control bit indicates the data type. The control bit is the MSB of each 16-bit word of analog or digital data.

The MSB = 0 for analog data, and 1 for digital data. The data is passed to the board and then directed to the

correct output type by hardware on the board which detects and acts on the MSB control bit.

 To use this interleaving capability with the UL, set HighChan and LowChan to NOTUSED, and indicate

the data type and channel in the most significant four bits of the data values in the buffer.

 To use this interleaving capability with the UL for .NET, set HighChan and LowChan to NOTUSED, and

indicate the data type and channel in the most significant four bits of the data values in the buffer.

Universal Library User's Guide Analog Output Boards - USB-3100 Series

131

USB-3100 Series

The USB-3100 Series includes the USB-3101, USB-3102, USB-3103, USB-3104, USB-3105, USB-3106,

USB-3110, USB-3112, and USB-3114 devices.

Analog output

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument ranges

Options SIMULTANEOUS (cbAOutScan() / AOutScan() only)

HighChan USB-3101, USB-3102, and USB-3110: 0 to 3

 USB-3103, USB-3104, and USB-3112: 0 to 7

 USB-3105, USB-3106, and USB-3114: 0 to 15

Rate Ignored

Count HighChan – LowChan + 1 max

Range Ignored - Not programmable; selectable for BIP10VOLTS (±10 V), UNI10VOLTS

(0 to 10 V), or MA0TO20 (0 to 20 mA) via InstaCal

 USB-3102, USB-3104, USB-3106:

Also selectable for MA0TO20 (0 to 20mA) via InstaCal

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16.)

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Universal Library User's Guide Analog Output Boards - USB-3100 Series

132

Counter I/O

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

 **cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

RegNum LOADREG1

Hardware considerations

Scan options

The SIMULTANEOUS scan option can only be used with cbAOutScan() / AOutScan().

Simultaneous mode

Set the direction of the SYNCLD pin (pin 49) with the Simultaneous Mode option in InstaCal to be either

Master (output) or Slave (input).

 Specify the SIMULTANEOUS scan option and set the Simultaneous Mode option to Master to output the

internal D/A LOAD signal on the SYNCLD pin.

 Specify the SIMULTANEOUS scan option and set the Simultaneous Mode option to Slave to configure the

SYNCLD pin to receive the D/A LOAD signal from an external source. Output channels are updated

simultaneously when the SYNCLD receives the signal.

In slave mode, analog outputs may either be updated immediately or when a positive edge is seen on the

SYNCLD pin (this is under software control.) The SYNCLD pin must be at a low logic level for DAC

outputs to update immediately. If an external source is pulling the pin high, no update will occur.

When you do not specify SIMULTANEOUS, the analog outputs are updated in sequential order, and the SYNCLD

pin is ignored.

External current limiting may be required for high drive devices (USB-3110, USB-3112, USB-3114)

The voltage outputs on the USB-3110, USB-3112, and USB-3114 incorporate high-drive current output

capability. The high drive current outputs allow each of the voltage outputs to sink/source up to 40 mA

(maximum) of load current.

The voltage outputs should not be kept in a short-circuit condition for longer than the specified 100 ms. For

those applications that may potentially exceed the 40 mA maximum current limit or the 100 ms short-circuit

condition, external current limiting must be used to prevent potential damage to the USB-3100 series device.

Universal Library User's Guide Analog Output Boards - USB-3100 Series

133

Simultaneous update of voltage and current outputs (USB-3102, USB-3104, USB-3106)

Each voltage output channel on the USB-3102, USB-3104, and USB-3106 has an associated current output.

The voltage and current outputs are grouped as channel pairs. Each D/A converter output controls a voltage

and current channel pair simultaneously. When you write to a voltage output, its associated current output is

also updated. Each channel pair can be updated individually or simultaneously.

Each voltage/current channel pair can be updated individually or simultaneously. Leave each pair of unused

voltage and current outputs disconnected.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular

device by making its USB LED blink.

134

8

Digital Input/Output Boards

Introduction

This section has details on using digital I/O boards in conjunction with the Universal Library. Boards released

after the printing of this manual will be described in Readme files on the Universal Library disk.

Basic signed integers

When reading or writing ports that are 16-bits wide, be aware of the following issue using signed integers (as

you are forced to do when using Basic):

On some boards, for example the PDISO16, the AUXPORT digital ports are set up as one 16-bit port. When

using cbDOut() or DOut(), the digital values are written as a single 16-bit word. Using signed integers,

writing values above 0111 1111 1111 1111 (32767 decimal) can be confusing. The next increment,

1000 0000 0000 0000, has a decimal value of -32768. Using signed integers, this is the value that you would

use for turning on the MSB only. The value for all bits on is −1. Keep this in mind if you are using Basic,

since Basic does not supply unsigned integers (values from 0 to 65536).

To fully understand and maximize the performance of this and other digital input function calls, refer to the

82C55 data sheet in the Documents subdirectory of the installation. This data sheet is also available from our

web site at www.mccdaq.com/PDFmanuals/82C55A.pdf. Also refer to the 8536 data sheet (this data sheet file

is not available in PDF format).

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf

Universal Library User's Guide Digital Input/Output Boards - AC5 Series

135

AC5 Series

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

All boards in this series support:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 using FIRSTPORTCL or FIRSTPORTCH

0 to 255 using FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 using FIRSTPORTA

 DUAL-AC5 and QUAD-AC5 boards also support:

PortNum SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue 0 to 15 using SECONDPORTCL or SECONDPORTCH

0 to 255 using SECONDPORTA or SECONDPORTB

BitNum 0 to 47 using FIRSTPORTA

 QUAD-AC5 boards also support:

PortNum THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,

FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

DataValue 0 to 15 using THIRDPORTCL or THIRDPORTCH

0 to 255 using THIRDPORTA or THIRDPORTB

BitNum 0 to 95 using FIRSTPORTA

Universal Library User's Guide Digital Input/Output Boards - DIO Series

136

DIO Series

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

 For DIO48, DIO48H, DIO96, and DIO192, the following values are also valid:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

 For DIO96, and DIO192, the following argument values are also valid:

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,

FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

 For DIO192, the following values are also valid:

FIFTHPORTA through EIGHTHPORTCH

DataValue 0 to 15 for PORTCL or PORTCH

0 to 255 for PORTA or PORTB

BitNum 0 to 23 using FIRSTPORTA

 For DIO48, DIO48H, DIO96, and DIO192, the following values are also valid:

24 to 47 using FIRSTPORTA

 For DIO96, and DIO192, the following values are also valid:

48 to 95 using FIRSTPORTA

 For DIO192, the following values are also valid:

96 to 191

Event notification (CIO- and PCI- DIO24 and DIO24H; PCI-DIO24/LP and PCI-
DIO24/S only)

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT (UL)/OnExternalInterrupt (UL for .NET)

Hardware considerations

Event Notification

DIO Series boards that support event notification only support external rising edge interrupts.

Universal Library User's Guide Digital Input/Output Boards - DIO24/CTR3 and D24/CTR3 Series

137

DIO24/CTR3 and D24/CTR3 Series

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 using FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16.)

RegNum LOADREG1, LOADREG2, LOADREG3

Event notification

CIO-DIO24/CTR3 and PC-CARD-D24/CTR3

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT

Hardware considerations

Counter configuration

Counter source functions are programmable using InstaCal.

Universal Library User's Guide Digital Input/Output Boards - PCI-DIO48/CTR15

138

PCI-DIO48/CTR15

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, SECONDPORTA,

SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 47 using FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 15

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

RegNum: LOADREG1 – LOADREG15

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT

Universal Library User's Guide Digital Input/Output Boards - PDISO8 and PDISO16 Series

139

PDISO8 and PDISO16 Series

Digital I/O

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue PDISO8

0 to 255 for AUXPORT

 PDISO16

0 to 65535 for AUXPORT (Refer to "16-bit values using a signed integer data type"

on page 16 for information on 16-bit values using unsigned integers.)

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum PDISO8

0 to 7 on AUXPORT

 PDISO16

0 to 15 on AUXPORT

Miscellaneous

Miscellaneous functions and methods supported (USB-PDISO8, USB-PDISO8/40, and E-PDISO16

only)

UL: cbFlashLED()

UL for .NET: FlashLED()

These functions cause the USB LED on a Measurement Computing USB module to blink, and the LINK LED

on a Measurement Computing Ethernet module to blink.

When you have several USB modules connected to the computer, or Ethernet modules on the network, use

these functions to identify a particular module by making its LED blink.

Establishing and requesting control of an E-PDISO16

Through InstaCal, you can configure the system to automatically attempt to establish control over the

E-PDISO16 when an application starts up. To do this, check the "Try to acquire ownership on application

startup" option on InstaCal's Ethernet Settings tab. Note that only one computer should have this option

selected; otherwise, two or more computers might compete for control over the E-PDISO16. To manually

request control over the E-PDISO16, press the Request Ownership button on the Ethernet Settings tab.

Only one computer can establish control over an E-PDISO16 at a time. Additional computers that contact the

device can only query the state of the device and its ports. The name of the computer with control over the

E-PDISO16 appears in the Device Owner property on the Ethernet Settings tab.

Universal Library User's Guide Digital Input/Output Boards - PDISO8 and PDISO16 Series

140

Sending a request for control of an E-PDISO16

If another computer already has control over E-PDISO16 when you connect to it, you can send a message to

the controlling computer. Do the following.

1. From InstaCal's main window, double-click on the E-PDISO16.

2. From the Ethernet Settings tab, click on the Request Ownership button.

3. On the Request Ownership dialog, enter your message (up to 256 characters). Press Ctrl and Enter to go

to a new line. You can set how long the message is displayed on the computer that controls the

E-PDISO16 from the Maximum Wait drop-down list box.

4. Click on the Send button to send the message.

Receiving a request for control of an E-PDISO16

If your computer controls an E-PDISO16 and you receive a message from another person requesting control

of the device, the message shows on your screen for the time set in the Maximum Wait drop-down list.

 To disconnect and give control of the E-PDISO16 to the person requesting, click on the Yes button.

 To retain control of the E-PDISO16, click on the No button.

Receiving a message

When a computer sends a message to the computer controlling the device, the message displays on the

monitor of the controlling computer for the time specified by the Time-out value.

The message box has two buttons used to respond to the message. When you receive a message, enter a

response in the message box and click on one of the following buttons.

 Yes: Click on Yes to give up ownership/control over the network device.

The computer automatically disconnects from the network connection, and control over the device

transfers to the computer that sent the message. The Device Owner property in InstaCal updates with the

name of the computer that gained control of the device.

 No: Click on No when you do not agree to give up ownership or control over the network device.

When you click on a button, the message box and selected response displays on the computer that sent the

message.

Universal Library User's Guide Digital Input/Output Boards - CIO-PDMA16 and CIO-PDMA32

141

CIO-PDMA16 and CIO-PDMA32

Digital I/O

Digital I/O functions and methods supported

UL: cbDOutScan(), cbDInScan(), cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(),
cbDConfigPort()

UL for .NET: DOutScan(), DInScan(), DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, AUXPORT

DataValue 0 to 7 using AUXPORT (only cbDOut()is supported),

0 to 255 using FIRSTPORTA and FIRSTPORTB,

0 to 65535 using WORDXFER FIRSTPORTA.

BitNum 0 to 2 using AUXPORT (only cbDBitOut() and DBitOut()are supported),

0 to 15 using PORTA.

Rate CIO-PDMA16: 125 Kwords

 CIO-PDMA32: 750 Kwords

Options BACKGROUND, CONTINUOUS, EXTCLOCK, WORDXFER

Hardware considerations

Digital I/O Pacing

Hardware pacing, external or internal clock supported.

Universal Library User's Guide Digital Input/Output Boards - USB-1024 and USB-DIO24 Series

142

USB-1024 and USB-DIO24 Series

The USB-1024LS, USB-1024HLS, USB-DIO24/37, and USB-DIO24H/37 support the following UL and UL

for .NET features.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH

0 to 255 for FIRSTPORTA or FIRSTPORTB

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 23 on FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter argument values

CounterNum 1

Count 0 to 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid. The ―Basic signed integers‖

guidelines on page 134 apply when using cbCIn() or CIn() for values greater than

32767, and when using cbCIn32() or CIn32() for values greater than 2147483647.

RegNum LOADREG1

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Universal Library User's Guide Digital Input/Output Boards - USB-1024 and USB-DIO24 Series

143

Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular

device by making its LED blink.

Universal Library User's Guide Digital Input/Output Boards - USB-DIO96 Series (formerly USB-1096 Series)

144

USB-DIO96 Series (formerly USB-1096 Series)

The USB-DIO96H, USB-DIO96H/50, and USB-1096HFS support the following UL and UL for .NET

features.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigPort()

UL for .NET: DConfigPort()

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, SECONDPORTA,

SECONDPORTB, SECONDPORTCL, SECONDPORTCH, THIRDPORTA, THIRDPORTB,

THIRDPORTCL, THIRDPORTCH, FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL,
FOURTHPORTCH

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum PORTA, PORTB, PORTCL, PORTCH

DataValue 0 to 15 for PORTCL or PORTCH

0 to 255 for PORTA or PORTB

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum 0 to 95 on FIRSTPORTA

Counter I/O

Counter functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn()/CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

 **cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

CounterNum: 1

Count 0 to 232-1 when reading the counter.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

 0 when loading the counter.

 cbCLoad() and cbCLoad32()/CLoad() and CLoad32()are only used to reset the

counter for this module to 0. No other values are valid.

RegNum LOADREG1

Universal Library User's Guide Digital Input/Output Boards - USB-DIO96 Series (formerly USB-1096 Series)

145

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Universal Library User's Guide Digital Input/Output Boards - USB-SSR Series

146

USB-SSR Series

The USB-SSR24 and USB-SSR08 support the following UL and UL for .NET features.

Digital I/O

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum USB-SSR08:

FIRSTPORTCL, FIRSTPORTCH

 USB-SSR24:

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue USB-SSR08:

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

 USB-SSR24:

0 to 255 for FIRSTPORTA or FIRSTPORTB

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum USB-SSR08:

16 to 23 on FIRSTPORTA

 USB-SSR24:

0 to 23 on FIRSTPORTA

Miscellaneous

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Hardware considerations

Do not change state of switches while program is running

Do not change the state of any switches (labeled S1, S2, and S3) on a USB-SSR module while a program is

running. UL stores the current state of each switch, and changing a switch setting while a program is running

can cause unpredictable results.

Universal Library User's Guide Digital Input/Output Boards - Switch & Sense 8/8

147

Switch & Sense 8/8

The Switch & Sense 8/8 supports the following UL and UL for .NET features.

Digital I/O

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Miscellaneous

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Universal Library User's Guide Digital Input/Output Boards - DEMO-BOARD

148

DEMO-BOARD

The DEMO-BOARD is a software simulation of a data acquisition board that simulates analog input and

digital I/O operations.

Analog Input

Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, SINGLEIO, DMAIO

HighChan 7 max

Rate 300000

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn(), cbDBitIn(), cbDInScan(), cbDOut(), cbDBitOut(), cbDOutScan(),
cbDConfigPort()

UL for .NET: DIn(), DBitIn(), DInScan(), DOut(), DBitOut(), DOutScan(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, AUXPORT

DataValue 0 to 255 using FIRSTPORTA, FIRSTPORTB, or AUXPORT

BitNum 0 to 15 using FIRSTPORTA

0 to 7 using AUXPORT

Using the Demo-Board

Analog input

The DEMO-BOARD simulates eight channels of 16-bit analog input. InstaCal is used to configure the

following waveforms on the analog input channels:

 sine wave

 square wave

 saw-tooth, ramp

 damped sine wave

 input from a data file

The data file is a streamer file, so any data that has been previously saved in a streamer file can be used as a

source of demo data by the board. Data files are named DEMO0.DAT through DEMO7.DAT. When a data file is

assigned to a channel, the library tries to extract data for that channel from the streamer file. If data for that

channel does not exist, then the first (and possibly only) channel data in the streamer is extracted and used.

For example, DEMO2.DAT is assigned as the data source for channel 5 on the DEMO_BOARD. The library will

try to extract data from the file that corresponds to channel 5. If DEMO2.DAT has scan data that corresponds to

channels 0 through 15, then channel 5 data is extracted. If DEMO2.DAT only has data for a single channel, the

data for that channel is used as the data source for channel 5.

Universal Library User's Guide Digital Input/Output Boards - DEMO-BOARD

149

Digital I/O

The DEMO-BOARD simulates the following:

 One eight-bit AUXPORT configurable digital input/output port. Each bit of the AUXPORT generates a square

wave with a different period.

 Two eight-bit configurable digital I/O ports—FIRSTPORTA, FIRSTPORTB—which can be used for high

speed scanning. FIRSTPORTA functions like AUXPORT in that it generates square waves. Each bit of

FIRSTPORTB generates a pulse with a different frequency.

150

9

Digital Input Boards

Introduction

This section provides details on using digital input boards in conjunction with the Universal Library. Boards

released after the printing of this document will be described in Readme files on the Universal Library disk.

To fully understand and maximize the performance of this and other digital input function calls, refer to the

82C55 data sheet in the Documents subdirectory of the installation (C:\Program files\Measurement

Computing\DAQ\Documents by default), or from our web site at www.mccdaq.com/PDFmanuals/82C55A.pdf.

Refer also to the 8536 data sheet (this data sheet file is not available in PDF format).

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf

Universal Library User's Guide Digital Input Boards - CIO- and PC104- DI Series

151

CIO- and PC104- DI Series

Digital I/O

Digital input functions and methods supported

UL: cbDIn, cbDBitIn()

UL for .NET: DIn, DBitIn()

Digital input argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.

 For DI48, DI96, and DI192, the following argument values are also valid:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

 For DI96, and DI192, the following argument values are also valid:

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,

FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

 For DI192, the following argument value is also valid:

FIFTHPORTA through EIGHTHPORTCH

DataValue 0 to 255 for PORTA or PORTB,

0 to 15 for PORTCL or PORTCH

BitNum 0 to 23 for FIRSTPORTA

 For DI48, DI96, and DI192, the following argument values are also valid:

24 to 47 using FIRSTPORTA

 For DI96, and DI192, the following argument values are also valid:

48 to 95 using FIRSTPORTA

 For DI192, the following argument values are also valid:

96 to 191

Universal Library User's Guide Digital Input Boards - CIO-DISO48

152

CIO-DISO48

Digital I/O

Digital input functions and methods supported

UL: cbDIn, cbDBitIn()

UL for .NET: DIn, DBitIn()

Digital input argument values

PortNum FIRSTPORTA, SECONDPORTA, THIRDPORTA, FOURTHPORTA, FIFTHPORTA, SIXTHPORTA

DataValue 0 to 255

BitNum 0 to 47 using FIRSTPORTA

153

10

Digital Output Boards

Introduction

This chapter provides details on using digital output boards in conjunction with the Universal Library. Boards

released after the printing of this document will be described in Readme files on the Universal Library disk.

To fully understand and maximize the performance of this and other digital input function calls, refer to the

82C55 data sheet in the Documents subdirectory of the installation (C:\Program files\Measurement

Computing\DAQ\Documents by default), or from our web site at www.mccdaq.com/PDFmanuals/82C55A.pdf.

Refer also to the 8536 data sheet (this data sheet file is not available in PDF format).

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf

Universal Library User's Guide Digital Output Boards - CIO-RELAY Series

154

CIO-RELAY Series

Digital I/O

Digital output functions and methods supported

UL: cbDOut, cbDBitOut()

UL for .NET: DOut, DBitOut()

Digital output argument values

PortNum FIRSTPORTA

 For CIO-RELAY16 & 16/M, the following argument values are also valid:
FIRSTPORTB

 For CIO-RELAY24, the following argument values are also valid:
SECONDPORTA

 For CIO-RELAY32, the following argument values are also valid:
SECONDPORTB

DataValue 0 to 255

BitNum 0 to 7 using FIRSTPORTA

 For CIO-RELAY16 & 16/M, the following argument values are also valid:

0 to 15 using FIRSTPORTA

 For CIO-RELAY24, the following argument values are also valid:

0 to 23 using FIRSTPORTA

 For CIO-RELAY32, the following argument values are also valid:

0 to 31 using FIRSTPORTA

Universal Library User's Guide Digital Output Boards - USB-ERB Series

155

USB-ERB Series

The USB-ERB08 and USB-ERB24 support the following UL and UL for .NET features.

Digital I/O

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum USB-ERB08:

FIRSTPORTCL, FIRSTPORTCH

 USB-ERB24:

FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue USB-ERB08:

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

 USB-ERB24:

0 to 255 for FIRSTPORTA or FIRSTPORTB

0 to 15 for FIRSTPORTCL or FIRSTPORTCH

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType FIRSTPORTA

BitNum USB-ERB08:

16 to 23 on FIRSTPORTA

 USB-ERB24:

0 to 23 on FIRSTPORTA

Miscellaneous

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Do not change state of invert/non-invert switch (S1) while program is running

Do not change the state of the invert/non-invert switch (labeled S1) on a USB-ERB module while a program

is running. UL stores the current state of this switch, and changing the switch setting while a program is

running can cause unpredictable results.

Universal Library User's Guide Digital Output Boards - CIO- and PC104-DO Series

156

CIO- and PC104-DO Series

Digital I/O

Digital output functions and methods supported

UL: cbDOut, cbDBitOut()

UL for .NET: DOut, DBitOut()

Digital output argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.

 For DO48H, DO48DD, DO96H and DO192H, the following argument values are

also valid:

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

 For DO96H and DO192H, the following argument values are also valid:

THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,

FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

 For DO192H, the following argument values are also valid:

FIFTHPORTA through EIGHTHPORTCH

DataValue 0 to 255 for PORTA or PORTB,

0 to 15 for PORTCL or PORTCH

BitNum 0 to 23 for FIRSTPORTA

 For DO48H, DO48DD, DO96H and DO192H the following argument values are

also valid:

24 to 47 using FIRSTPORTA

 For DO96H and DO192H, the following argument values are also valid:

48 to 95 using FIRSTPORTA

 For DO192H, the following argument values are also valid:

96 to 191

157

11

Counter Boards

Introduction

This chapter provides details on using counter/timer boards in conjunction with the Universal Library. Boards

released after the printing of this user‘s guide are explained in Readme files on the Universal Library

installation disk.

Visual Basic signed integers

When reading or writing ports that are 16-bits wide, be aware of the following issue using signed integers

(which is required when using Visual Basic):

On some boards, such as the CIO-CTR10 count register or AUXPORT digital ports, the ports are 16-bits wide.

When accessing the data at these ports, the digital values are arranged as a single 16-bit word. Using signed

integers, values above 0111 1111 1111 1111 (32767 decimal) can be confusing. The next increment, 1000

0000 0000 0000 has a decimal value of -32768. Using signed integers, this is the value that is returned from a

16-bit counter at half of maximum count. The value for full count (just before the counter turns over) is -1.

Keep this in mind if you are using Visual Basic, since Visual Basic does not supply unsigned integers (values

from 0 to 65535) or unsigned longs (values from 0 to 4,294,967,295). Refer to "16-bit values using a signed

integer data type" on page 16 for more information.

The Universal Library provides functions for the initialization and configuration of counter chips, and can

configure a counter for any of the counter operations. However, counter configuration does not include

counter-use, such as event counting and pulse width. Counter-use is accomplished by programs which use the

counter functions. The Universal Library provides the cbCFreqIn() function for counter use, while the

Universal Library for .NET provides the CFreqIn() method. Other functions and methods may be added for

counter use to later revisions.

Read the counter chip's data sheet

To use a counter for any but the simplest counting function, you must read, understand, and employ the

information contained in the chip manufacturer's data sheet. Technical support of the Universal Library does

not include providing, interpreting, or explaining the counter chip data sheet.

To fully understand and maximize the performance of the counter/timer boards and their related function

calls, review the following related data sheet(s):

Counter/Timer Data Sheet

82C54 82C54.pdf is located in the Documents installation subdirectory, and is also available from our

web site at www.mccdaq.com/PDFmanuals/82C54.pdf.

AM9513 9513A.pdf is located in the Documents installation subdirectory, and is also available from our

web site at www.mccdaq.com/PDFmanuals/9513A.pdf.

Z8536 The data book for the Z8536 counter chip is included with the product that employs this chip.

LS7266 LS7266R1.pdf is located in the Documents installation subdirectory, and is also available from

our web site at www.mccdaq.com/PDFmanuals/ls7266r1.pdf.

Counter chip variables

UL counter initialization and configuration functions include names for bit patterns, such as ALEGATE, which

stands for Active Low Enabled Gate N. In any case where the UL has a name for a bit pattern, it is allowed

to substitute the bit pattern as a numeric. This will work, but your programs will be harder to read and debug.

http://www.measurementcomputing.com/PDFmanuals/82C54.pdf
http://www.measurementcomputing.com/PDFmanuals/9513A.pdf
http://www.measurementcomputing.com/pdfmanuals/ls7266r1.pdf

Universal Library User's Guide Counter Boards - CTR Series

158

CTR Series

Counter I/O

Counter functions and methods supported

UL: cbC9513Config(), cbC9513Init(), cbCStoreOnInt(), cbCFreqIn(), cbCIn(),
cbCLoad()

UL for .NET: C9513Config(), C9513Init(), CStoreOnInt(), CFreqIn(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 5 (All boards in this series)

 CTR10 & CTR10HD also support counters 6 through 10

CTR20HD also supports counters 11 through 20

RegNum LOADREG1 – 5, HOLDREG1 – 5, ALARM1CHIP1, ALARM2CHIP1

 CTR10 & CTR10HD also support LOADREG6 – 10, HOLDREG6 – 10,

ALARM1CHIP2, ALARM2CHIP2

CTR20HD also supports LOADREG11 – 20, HOLDREG11 – 20, ALARM1CHIP3,

ALARM2CHIP3, ALARM1CHIP4, ALARM2CHIP4

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

ChipNum 1 (All boards in this series)

 CTR10 & CTR10HD also support chip 2

CTR20HD also support chips 3 and 4

FOutSource CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the

sources on that particular chip. For example, to set the source to the input for

counter 6, use CTRINPUT1 (the first counter on the second 9513 chip).

CountSource TCPREVCTR, CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the

sources on that particular chip. For example, to set the source to the input for

counter 6, use CTRINPUT1 (the first counter on the second 9513 chip). Likewise for

the TCPREVCTR value; when applied to the first counter on a chip (counter 6, for

example) the ―previous counter‖ is counter 5 on that chip (for this example,

counter 10).

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT*

DataValue CTR05: 0 to 255

CTR10: 0 to 65535. Refer to "Basic signed integers" on page 157.

BitNum CTR05: 0 to 7; CTR10: 0 to 15

* AUXPORT is not configurable for these boards.

Universal Library User's Guide Counter Boards - CTR Series

159

Event notification

Event notification functions and methods supported

PCI-CTR05, PCI-CTR10 and PCI-CTR20HD only

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT (UL)/OnExternalInterrupt (UL for .NET)

Hardware considerations

Clock input frequency (PCI boards only)

The clock source for each of the four counters is configurable with InstaCal:

PCI-CTR05, PCI-CTR10: 1 MHz, 1.67 MHz, 3.33 MHz, 5 MHz

PCI-CTR20HD: 1 MHz, 1.67 MHz, 3.33 MHz, 5 MHz, or External

Event Notification

ON_EXTERNAL_INTERRUPT cannot be used with cbCStoreOnInt() or CStoreOnInt().

CTR Series boards that support event notification only support external rising edge interrupts.

Universal Library User's Guide Counter Boards - INT32 Series

160

INT32 Series

Counter I/O

Counter functions and methods supported

UL: cbC8536Config(), cbC8536Init(), cbCIn(), cbCLoad()

UL for .NET: C8536Config(), C8536Init(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 6

ChipNum 1 or 2

RegName LOADREG1 through LOADREG6

LoadValue Values up to 65,535 (216–1) can be used. Refer to "Basic signed integers" on page

157 for more information.

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, SECONDPORTA, SECONDPORTB and

SECONDPORTCL.

DataValue 0 to 255 using PORTA or PORTB

0 to 15 using PORTCL

BitNum 0 to 39 using FIRSTPORTA

Hardware considerations

Argument Value vs. configuration

These boards have two 8536 chips, which have both counter and digital I/O and interrupt vectoring

capabilities. The numbers stated for digital I/O apply when both chips are configured for the maximum

number of digital devices. The numbers stated for counter I/O apply when both chips are configured for the

maximum number of counter devices.

Universal Library User's Guide Counter Boards - PPIO-CTR06

161

PPIO-CTR06

Counter I/O

Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 6

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 15, or 0 to 255, depending on jumper setting

BitNum 0 to 3, or 0 to 7, depending on jumper setting

 * AUXPORT is not configurable for this board.

Universal Library User's Guide Counter Boards - QUAD Series

162

QUAD Series

Counter I/O

Counter functions and methods supported

UL: cbC7266Config(), cbCIn(), cbCIn32(), cbCLoad(), cbCLoad32(), cbCStatus()

UL for .NET: C7266Config(), CIn(), CIn32(), CLoad(), CLoad32(), CStatus()

Counter argument values

CounterNum PCM-QUAD02, CIO-QUAD02

 1 to 2

 CIO-QUAD04, PCI-QUAD04

1 to 4

RegName UL:

COUNT1, COUNT2, PRESET1, PRESET2, PRESCALER1, PRESCALER2

UL for .NET:

QuadCount1, QuadCount2, QuadPreset1, QuadPreset2, QuadPreScaler1,
QuadPreScaler2

 CIO-QUAD04, PCI-QUAD04 also support:

UL:

COUNT3, COUNT4, PRESET3, PRESET4, PRESCALER3, PRESCALER4

UL for .NET:

QuadCount3, QuadCount4, QuadPreset3, QuadPreset4, QuadPreScaler3,
QuadPreScaler4

LoadValue When using cbCLoad32() or CLoad32() to load the COUNT# or PRESET# registers,

values up to 16.78 million (224–1) can be loaded. Values using cbCLoad() and

CLoad()are limited to 65,535 (216–1). Refer to "Basic signed integers" on page 157

for more information. When loading the PRESCALER# register, values can be from 0

to 255. (Digital Filter Clock frequency = 10 MHz/LoadValue + 1.)

Hardware considerations

Loading and Reading 24-bit values

The QUAD series boards feature a 24-bit counter. For counts of less than 16-bits (65535), you can use the

cbCIn() and cbCLoad() functions, or the CIn() and CLoad() methods. You can use the cbCIn32() and

cbCLoad() functions, or the CIn32() and CLoad32() methods for any number supported by the LS7266

counter (24 bits = 16777216).

Cascading counters (PCI-QUAD04 only)

The PCI-QUAD04 can be set up for cascading counters. By setting the appropriate registers, you can have (4)

24-bit counters, (2) 48-bit counters, (1) 24-bit and (1) 72-bit counters, or (1) 96-bit counter. The OUTPUT pins

of a counter are directed to the next counter by setting the FLG1 to CARRY/BORROW and the FLG2 to UP/DOWN.

Bits 3 and 4 of the IOR Register control are set to 1,0 to accomplish this.

You can set these bits by using the functions cbC7266Config(BoardNum, CounterNum, Quadrature,

CountingMode, DataEncoding, IndexMode, InvertIndex, FlagPins, and GateEnable). When using the

Universal Library for .NET, use the C7266Config() method.

The constant CARRYBORROW_UPDOWN (value of 3) is used for the parameter FlagPins.

Universal Library User's Guide Counter Boards - QUAD Series

163

The IOR register cannot be read. However, you can read the values of the BADR2+9 register. The value for

Base 2 can be determined by looking at the resources used by the board. The 8-bit region is BADR2. The

BADR+9 register contains values for PhxA and PhxB, for x = 1 to 4 to identify counters. The diagram below

indicates the routing of the FLG pins depending on the value of PhxA and PhxB. The actual values of the

BADR2+9 register are shown below:

1
0

1
0

1A FLG1

FLG2

LS7266

FLG1

FLG3

FLG4

LS7266

FLG3

3A

3A

1
0

1
0

1
0

1
0
1
0

1
0

10
01
00

10

3B

3B

4B

4B

4A

4A

1
0

1
0

PH4AB1/B0

PH3A

PH3A

PH2A

PH2A

1B

2A

2B

1A

1B

2A

2B

Counter Cascading Functional Diagram

3A

3A
3B

3B
4B

4B

4A

4A

Register BADR2 + 9 D0-D6

 PH2A PH2B PH3A PH3B PH4A PH4B1/PH4B0 Value

Case 1: (4) 24-bit counters (1/2/3/4) 0 0 0 0 0 0,0 00

Case 2: (2) 48-bit counters (1-2/3/4) 1 1 0 0 1 1,0 53

Case 3: (1) 24-bit, (1) 72-bit (1/2-3-4) 0 0 1 1 1 0,1 3C

Case 4: (1) 96-bit counter (1-2-3-4) 1 1 1 1 1 0,1 3F

Defaults to 0x00 (no inter-counter connections).

Examples

Case 1: (4) 24-bit counters (1/2/3/4)
cbC7266Config(0,1,0,0,2,0,0,1,0)

cbC7266Config(0,2,0,0,2,0,0,1,0)

cbC7266Config(0,3,0,0,2,0,0,1,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 2: (2) 48-bit counters (1-2/3-4)
cbC7266Config(0,1,0,0,2,0,0,3,0)

cbC7266Config(0,2,0,0,2,0,0,1,0)

cbC7266Config(0,3,0,0,2,0,0,3,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 3: (1) 24-bit & (1) 72-bit counter (1/2-3-4)
cbC7266Config(0,1,0,0,2,0,0,1,0)

cbC7266Config(0,2,0,0,2,0,0,3,0)

cbC7266Config(0,3,0,0,2,0,0,3,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 4: (1) 96-bit counter (1-2-3-4)
cbC7266Config(0,1,0,0,2,0,0,3,0)

cbC7266Config(0,2,0,0,2,0,0,3,0)

cbC7266Config(0,3,0,0,2,0,0,3,0)

cbC7266Config(0,4,0,0,2,0,0,1,0)

The actual value of the BADR+9 register is not set until the cbCLoad()/CLoad() command is called.

Counter4 setting

Setting Counter4 to CARRYBORROW-UPDOWN is NOT VALID.

Universal Library User's Guide Counter Boards - USB-4300 Series

164

USB-4300 Series

The USB-4300 Series includes the USB-4301, USB-4302, USB-4303, and USB-4304 devices.

Counter I/O

Counter functions and methods supported

UL: cbC9513Config(), cbC9513Init(), cbCStoreOnInt(), cbCFreqIn(),cbCIn32(),

cbCIn(), cbCLoad32(), cbCLoad()

UL for .NET: C9513Config(), C9513Init(), CStoreOnInt(), CFreqIn(), CIn32(), CIn(),

Cload32(), CLoad()

Counter argument values

CounterNum USB-4301 and USB-4302: 1 through 5

 USB-4303 and USB-4304: 1 through 5, and 6 through 10

RegNum USB-4301 and USB-4302: LOADREG1 – 5, HOLDREG1 – 5, ALARM1CHIP1,
ALARM2CHIP1

 USB-4303 and USB-4304: LOADREG1 – 10, HOLDREG1 – 10, ALARM1CHIP1,

ALARM2CHIP1, ALARM1CHIP2, ALARM2CHIP2

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 16 for

information on 16-bit values using unsigned integers.)

ChipNum USB-4301: 1

USB-4302: 1

USB-4303: 1, 2

USB-4304: 1, 2

FOutSource CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the

sources on that particular chip. For example, to set the source to the input for

counter 6, use CTRINPUT1 (the first counter on the second 9513 chip).

CountSource TCPREVCTR, CTRINPUT1 – 5, GATE1 – 5, FREQ1 – 5

These values refer to the sources on a particular 9513 chip, so are limited to the

sources on that particular chip.

 For example, to set the source to the input for counter 6, use CTRINPUT1 (the first

counter on the second 9513 chip). Likewise for the TCPREVCTR value: when applied

to the first counter on a chip (for counter 6, the "previous counter" is counter 5 on

that chip (for this example, counter 10).

Digital I/O

Port I/O functions and methods supported

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum AUXPORT*

DataValue 0 to 255

 * AUXPORT is not configurable for these boards.

Bit I/O functions and methods supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

Universal Library User's Guide Counter Boards - USB-4300 Series

165

PortType AUXPORT*

BitNum 0 to 7

 * AUXPORT is not configurable for these boards.

Event notification

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT

EventParameter LATCH_DI, LATCH_DO

LATCH_DI can only be used with cbDIn() and cbDBitIn(). LATCH_DO can only be used with cbDOut() and

cbDBitOut().

Hardware considerations

Clock input frequency

The clock speed is configurable with InstaCal for 1 MHz, 1.67 MHz, 3.33 MHz, or 5 MHz.

Event Notification

ON_EXTERNAL_INTERRUPT can't be used with cbCStoreOnInt() or CStoreOnInt().

Interrupt Input pin

You can configure the interrupt input pin (INT) with InstaCal to trigger off rising or falling edge inputs. You

can program this pin to perform the following tasks:

 Send an event notification to the computer. The transfer rate is system-dependent.

 Latch digital input data.

 Latch digital output data.

 Save the current value of a counter. You can configure this option for each counter individually.

Digital bit latching

Digital input bit latching is supported by cbDIn() and cbDBitIn(). Digital output bit latching is supported by

cbDOut() and cbDBitOut().

 Use the EventParam option LATCH_DI with cbDIn() and cbDBitIn() to return the data that was latched in

at the most recent interrupt edge. The current value of the digital inputs (0 or 1) is read and stored. The

stored value is updated when an active edge occurs on the Interrupt Input pin.

There is a latency period between when an active interrupt edge occurs on the INT pin and when the

action triggered by that interrupt occurs. This latency can be as long as 100 µs, but typically varies from

about 9 µs to about 40 µs between interrupts.

 Use the EventParam option LATCH_DO with cbDOut() and cbDBitOut() to latch out the data most

recently written to the device. The digital outputs are not set to the value written until an active edge

occurs on the Interrupt Input pin.

166

12

Expansion Boards

Introduction

This chapter provides details on using expansion (EXP) boards in conjunction with the Universal Library.

Boards released after the printing of this user‘s guide are described in Readme files on the Universal Library

disk.

Auto-detected expansion boards are automatically added to the InstaCal configuration when InstaCal is

launched. The device properties are automatically adjusted to reflect the expansion properties. These types of

expansion boards are not shown as a separate device in the device tree.

Manually configured expansion boards, such as the CIO-EXP series, are added to the InstaCal configuration

by selecting the compatible board on the main InstaCal form, and selecting the Add Exp Board… option

from the Install menu. The expansion board will then be shown in the device tree as a branch attached to the

device it was added to.

Universal Library User's Guide Expansion Boards - AI-EXP48

167

AI-EXP48

The AI-EXP48 expansion board can be used in combination with compatible parent boards, such as a USB-

1616HS Series board.

The AI-EXP48 supports all of the analog input and temperature input capabilities of the parent board, but

expands the channel count as follows:

Analog Input

Analog input argument values

HighChan 16 to 63 in single-ended mode, 8 to 31 in differential mode

Temperature Input

Temperature input argument values

HighChan 8 to 31

DAQ input

DAQ input argument values

ChanArray ANALOG: 0 to 63 in single-ended mode, 0 to 31 in differential mode

 CJC: 6 to 11

 TC: 8 to 31

Hardware considerations

Associating CJC channels with TC channels

The TC channels must immediately follow their associated CJC channels in the channel array. For accurate

thermocouple readings, associate CJC channels with the TC channels as listed in the following table:

CJC channels TC channels

CJC6 TC8 through TC11

CJC7 TC12 through TC15

CJC8 TC16 through TC19

CJC9 TC20 through TC23

CJC10 TC24 through TC27

CJC11 TC28 through TC31

The parent board must be configured for differential inputs when using thermocouples

TC inputs are supported by differential mode configuration only.

Universal Library User's Guide Expansion Boards - CIO-EXP Series

168

CIO-EXP Series

Temperature Input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan From 16 up to 255 for 16-channel boards, and from 64 up to 303 for 64-channel

boards. The value depends on the number of boards connected and the application.

Hardware considerations

CIO-EXP boards are used only in combination with an A/D board. Channel numbers for accessing the

expansion boards begin at 16 for 8-channel and 16-channel boards, and at 64 for 64-channel boards. To

calculate the channel number for access to CIO-EXP channels, use the following formula:

Chan = (ADChan * 16) + (16 + MuxChan)

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the

expansion board. An EXP32 has two banks, so the channel numbers for one EXP32 connected to an A/D

board would range from 16 to 47.

If all A/D channels are not used for CIO-EXP output, direct input to the A/D board is still available at these

channels (using channel numbers below 16).

When CIO-EXP boards are used for temperature input, set the gain of the A/D board to a specific range.

When using A/D boards with programmable gain, the range is set by the Universal Library. However, when

using boards with switch-selectable gains, you must set the gain to a range that is dependent on the

temperature sensor in use. Generally, thermocouple measurements require the A/D board to be set to 5 V

bipolar, if available (or 10 V bipolar if not). RTD sensors require a setting of 10 V unipolar, if available.

These checks are made when you configure the system for temperature measurement using InstaCal.

Universal Library User's Guide Expansion Boards - MEGA-FIFO

169

MEGA-FIFO

Memory I/O

Memory I/O is only used in combination with a board which has DT-Connect.

Memory functions and methods supported

UL: cbMemSetDTMode(), cbMemReset(), cbMemRead(), cbMemWrite(),
cbMemReadPretrig()

UL for .NET: MemSetDTMode(), MemReset(), MemRead(), MemWrite(), MemReadPretrig()

Some of these functions are integrated into the cbAInScan() function and AInScan() method. For example, if

you use MEGA-FIFO with an A/D board and select the EXTMEMORY option, you would not have to call the

cbMemSetDTMode() and cbMemWrite functions, or the MemSetDTMode() and MemWrite()methods.

EXTMEMORY option

Continuous mode can't be used with the EXTMEMORY/ExtMemory option.

170

13

MetraBus Boards

Introduction

This section provides details on using all MetraBus boards in conjunction with the Universal Library. Future

releases will be described in Readme files on the Universal Library installation disk.

To use any MetraBus I/O board, a MetraBus interface board, such as the ISA-MDB64, PCI-MDB64 or a

CPCI-MDB64, is required for the Universal Library functions to operate correctly. The interface board and a

MetraBus cable provide the interface between the PC bus (ISA-, PC104-, PCI-, or CPCI-) and the MetraBus

I/O Boards.

The MetraBus system is made up of at least one controller board that communicates with real world interface

boards via a data bus (ribbon cable). The implication is that there will always be two or more boards in the

system.

Universal Library User's Guide MetraBus Boards - MDB64 Series

171

MDB64 Series

This series makes up the controller portion of the MetraBus system. The Universal Library contains no

function to communicate specifically with this board. The functions in the library are directed to the devices

on the bus instead.

For example, if this board was installed in InstaCal as board 0, and an MII-32 was installed as board 1, the

communication would be directed to board 1. If you wanted to read digital bits from this configuration, use

the cbDBitIn() function or the DBitIn() method. The value of the BoardNum argument would be 1.

Universal Library User's Guide MetraBus Boards - MIO and MII Digital I/O

172

MIO and MII Digital I/O

All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to

interface to the host computer system.

Digital In

MII-32 Only

Digital input functions and methods supported

UL: cbDIn, cbDBitIn()

UL for .NET: DIn, DBitIn()

Digital input argument values

PortNum FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue 0 to 255 for PORTA or PORTB

BitNum 0 to 31 for FIRSTPORTA

Digital Out

MIO-32 Only

Digital output functions and methods supported

UL: cbDOut, cbDBitOut(), cbDBitIn(), cbDIn()

UL for .NET: DOut, DBitOut(), DBitIn(), DIn()

Digital output argument values

PortNum FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue 0 to 255 for PORTA or PORTB

BitNum 0 to 31 for FIRSTPORTA

Functions/methods for reading back the MIO-32 output state

Although the MIO-32 is a digital output-only board, the state of the outputs can be read back using the UL

functions cbDIn() and cbDBitIn(), or the UL for .NET methods DIn() and DBitIn().

Universal Library User's Guide MetraBus Boards - MEM Series Relay

173

MEM Series Relay

All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to

interface to the host computer system.

Digital I/O

Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum FIRSTPORTA

 For MEM-32, the following argument values are also valid:

FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue 0 to 255 for PORTA or PORTB

BitNum 0 to 7 for FIRSTPORTA

 For MEM-32, the following argument values are also valid:

0 to 31 for FIRSTPORTA

Functions/methods for reading back the MEM Series Relay output state

Although the MEM Series Relay is a digital output-only board, the state of the outputs can be read back

using the UL functions cbDIn() and cbDBitIn(), or the UL for .NET methods DIn() and DBitIn().

Universal Library User's Guide MetraBus Boards - MSSR-24 SSR

174

MSSR-24 SSR

All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to

interface to the host computer system.

Digital I/O

Digital I/O functions and methods supported

UL: cbDIn, cbDBitIn(), cbDOut, cbDBitOut()

UL for .NET: DIn, DBitIn(), DOut, DBitOut()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, SECONDPORTA

DataValue 0 to 255

BitNum 0 to 24 using FIRSTPORTA

175

14

Temperature Input Boards

Introduction

This chapter provides details on using temperature input boards in conjunction with the Universal Library and

Universal Library for .NET. Boards released after the printing of this user‘s guide will be described in

Readme files on the Universal Library disk.

For information on the CIO-EXP board series, refer to on page 167.

Universal Library User's Guide Temperature Input Boards - CIO-DAS-TEMP

176

CIO-DAS-TEMP

Temperature input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 31

Hardware considerations

Pacing Input

The rate of measurement is fixed at approximately 25 samples per second.

Selecting Thermocouples

J, K, E, T, R, S or B type thermocouples may be selected using InstaCal.

Universal Library User's Guide Temperature Input Boards - DAS-TC Series

177

DAS-TC Series

Temperature Input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 15

Hardware considerations

Pacing input

The rate of measurement is fixed at approximately 25 samples per second.

Selecting thermocouples

J, K, E, T, R, S, N, or B type thermocouples may be selected using InstaCal.

Open thermocouples

When using cbTInScan() or TInScan() with the DAS-TC, an open thermocouple error (OPENCONNECTION) on

any of the channels will cause all data to be returned as –9999.0. This is a hardware limitation. If your

application requires isolating channels with defective thermocouples attached and returning valid data for the

remainder of the channels, use the cbTIn() function or TIn() method instead.

To read the voltage input of the thermocouple, select VOLTS for the Scale parameter in cbTIn() and

cbTInScan(), or TIn() and TInScan().

Universal Library User's Guide Temperature Input Boards - USB-TEMP Series, USB-TC Series

178

USB-TEMP Series, USB-TC Series

The USB-TEMP Series includes the USB-TEMP and USB-TEMP-AI devices. The USB-TC Series includes

the USB-TC and USB-TC-AI devices.

Each series supports the following UL and UL for .NET features:

Temperature input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options N/A

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan USB-TEMP and USB-TC: 0 to 7

 USB-TEMP-AI and USB-TC-AI: 0 to 3

Voltage input (USB-TEMP-AI, USB-TC-AI)

Voltage input functions and methods supported

UL: cbVIn()

UL for .NET: VIn()

Voltage input argument values

Options N/A

HighChan 0 to 3

Range This board uses the Range set in InstaCal, so the Range argument to this function is

ignored.

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDIn(),cbDOut()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 on AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

Universal Library User's Guide Temperature Input Boards - USB-TEMP Series, USB-TC Series

179

BitNum 0 to 7 on AUXPORT

Counter I/O (USB-TEMP-AI, USB-TC-AI)

Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or

CIn32() may be more appropriate, since the values returned may be greater than

the data types used by cbCIn() and CIn() can handle.

**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These

functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the

counter for this board to 0. No other values are valid.

 The ―Basic signed integers‖ guidelines on page 134 apply when using cbCIn() or

CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for

values greater than 2147483647.

RegNum LOADREG1

Hardware considerations

Pacing readings

The internal update rate for measurement is a fixed value for these devices. If the UL reads the device faster

than the internal update rate, readings "repeat." For example, if using cbTIn() in a loop to measure a rapidly

changing temperature, readings do not change for several iterations of the loop, then "jump" when the update

occurs internally.

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not

have sensors attached. It is best to use cbTIn() for these configurations, since you can select which channels

to read. If you use cbTInScan(), however, data for all channels over the entire range of channels are returned.

Since some channels are not populated in this configuration, you should filter out the data for channels

without sensors.

Saving configuration settings

InstaCal allows you to save configuration settings to a file or load a configuration from a previously saved

file.

 Each USB-TEMP and USB-TEMP-AI channel can be configured to measure temperature data collected

by one of five categories of temperature sensors: thermistors, thermocouples, RTDs, semiconductors, and

Disabled.

 Each USB-TC and USB-TC-AI channel can be configured to measure temperature data collected by one

of eight types of thermocouples.

 Each USB-TEMP-AI and USB-TC-AI voltage input channel can be configured for single-ended or

differential mode and for one of four ranges - ±10 V, ±5 V, ±2.5 V, or ±1.25 V.

Universal Library User's Guide Temperature Input Boards - USB-TEMP Series, USB-TC Series

180

Recommended warm-up time

Allow the device to warm-up for 30 minutes before taking measurements. This warm-up time minimizes

thermal drift and achieves the specified rated accuracy of measurements.

For RTD or thermistor measurements, this warm-up time is also required to stabilize the internal current

reference.

Calibration

Any time the sensor category is changed in the configuration, a calibration is automatically performed by

InstaCal. If the device has not been warmed up when this occurs, you should re-calibrate after the specified

warm-up time.

Error codes

 The UL returns -9999 when a value is out of range or an open connection is detected.

 The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered

up and calibration factors are being loaded.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Universal Library User's Guide Temperature Input Boards - USB-5203, USB-5201

181

USB-5203, USB-5201

The USB-5203 and USB-5201 support the following UL and UL for .NET features.

Temperature input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options N/A

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 7

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Data Logging

Data logger functions and methods supported

UL: cbLogConvertFile(), cbLogGetAIChannelCount(), cbLogGetAIInfo(),

cbLogGetCJCInfo(), cbLogGetDIOInfo(), cbLogGetFileInfo(),

cbLogGetFileName(), cbLogGetPreferences(), cbLogGetSampleInfo(),

cbLogReadAIChannels(), cbLogReadCJCChannels(), cbLogReadDIOChannels(),

cbLogReadTimeTags(), cbLogSetPreferences()

UL for .NET: ConvertFile(), GetAIInfo(),GetAIChannelCount(), GetCJCInfo(),

GetDIOInfo(), GetFileInfo(), GetFileName(), GetPreferences(),

GetSampleInfo(), ReadAIChannels(), ReadCJCChannels(),

ReadDIOChannels(), ReadTimeTags(), SetPreferences()

 The cbLogGetCJCInfo() function and the GetCJCInfo() method return the

number of CJC temperature channels logged in the binary file ("0" or "2".)

Universal Library User's Guide Temperature Input Boards - USB-5203, USB-5201

182

 The cbLogGetDIOInfo() function and the GetDIOInfo() method return the

number of digital I/O channels logged in the binary file ("0" to "8".)

Data logger argument values

Delimiter Comma, Semicolon, Space, Tab

LoggerUnits Temperature, Raw

Units Celsius, Fahrenheit, Kelvin

TimeFormat TwelveHour, TwentyFourHour

TimeZone Local, GMT

Hardware considerations

Logging and storing measurement data

Temperature measurements can be stored onto a CompactFlash® memory card (64 MB CF card included with

hardware). Each sample is stored on the card in a binary file. You set up your logging options through

InstaCal:

 temperature input channels to log

 channel format as raw data or temperature

 start mode to begin a logging session

 interval (sec.) between samples

 set up alarm conditions to trigger DIO bits

InstaCal provides further options for copying, converting, and deleting the binary files. You can access log

data stored on the memory card with a CompactFlash reader, or by transferring the files from InstaCal to a

computer for processing and conversion using the USB bus.

Note: A card reader is not required to access log data on a device installed with firmware 3.0 and later. A

device with this firmware version appears in Windows Explorer as a removable drive from which you can

directly access the log data.

External power required for data logging

Due to processing limitations, data logging to the memory card is not allowed when the device is connected to

your computer's active USB bus. When operating as a data logger, disconnect the USB cable from the

computer, and connect the external power supply shipped with the device.

Note: If you are using a self-powered hub, make sure it is attached to the PC‘s USB port before connecting it

to the USB-5201 or USB-5203. If a powered hub is connected to the device first, it may be detected by the

device as a power supply and go into logging mode.

Configuring the DIO channels to generate alarms

The USB-5203 and USB-5201 both provide eight independent temperature alarms. Each alarm controls an

associated digital I/O channel as an alarm output. The input to each alarm is one of the temperature input

channels. Use InstaCal to set up the temperature conditions to activate an alarm, and the output state of the

channel (active high or low) when activated.

Digital channels that are configured as alarms will power up in an output state. When an alarm is activated,

the associated DIO channel is driven to the output state defined by the alarm configuration.

The alarms function both in data logging mode and while attached to the USB port on a computer. The alarm

configurations are stored in non-volatile memory on the device and are loaded on power up.

Universal Library User's Guide Temperature Input Boards - USB-5203, USB-5201

183

Pacing temperature readings

The internal update rate for temperature measurement is a fixed value for these devices. If the UL reads the

device faster than the internal update rate, temperature readings "repeat." For example, if using cbTIn() in a

loop to measure a rapidly changing temperature, readings do not change for several iterations of the loop, then

"jump" when the update occurs internally.

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not

have sensors attached. It is best to use cbTIn() for these configurations, since you can select which channels

to read. If you use cbTInScan(), however, data for all channels over the entire range of channels are returned.

Since some channels are not populated in this configuration, you should filter out the data for channels

without sensors.

Saving configuration settings

InstaCal allows you to save USB-5203 and USB-5201 configuration settings to a file, or load a configuration

from a previously saved file.

 Each USB-5203 channel can be configured to measure temperature data collected by one of five

categories of temperature sensors: thermistors, thermocouples (one of eight types), RTDs,

semiconductors, and Disabled.

 Each USB-5201 channel can be configured to measure temperature data collected by one of eight types of

thermocouples.

Recommended warm-up time

Allow a warm-up time of 30 minutes before taking measurements. This warm-up time minimizes thermal drift

and achieves the specified rated accuracy of measurements.

For RTD or thermistor measurements (USB-5203 only), this warm-up time is also required to stabilize the

internal current reference.

Calibration

Any time the sensor category is changed in the configuration for the USB-5203, a calibration is automatically

performed by InstaCal. If the device has not been warmed up when this occurs, you should re-calibrate after

the specified warm-up time.

Error codes

 The UL returns -9999 when a value is out of range or an open connection is detected.

 The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered

up and calibration factors are being loaded.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on the side of the module to blink twice for visual identification.

When you have several modules connected to the computer, use these functions to identify a particular

module by making its LED blink.

Universal Library User's Guide Temperature Input Boards - WEB-TEMP, WEB-TC

184

WEB-TEMP, WEB-TC

The WEB-TEMP and WEB-TC support the following UL and UL for .NET features.

Temperature input

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options N/A

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 7

Digital I/O

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDIn(), cbDOut()

UL for .NET: DIn(), DOut()

PortNum AUXPORT

DataValue 0 to 255 on AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Configuration

Configuration functions and methods supported

UL: cbGetConfig(), cbSetConfig(), cbGetConfigString(), cbSetConfigString()

Configuration argument values

ConfigItem: BINODEID, BINETIOTIMEOUT, BIHIDELOGINDLG

Device Number 0

maxConfigLen Up to 48

Miscellaneous

UL: cbDeviceLogin(), cbDeviceLogout(), cbFlashLED()

UL for .NET: DeviceLogin(), DeviceLogout(), FlashLED()

Universal Library User's Guide Temperature Input Boards - WEB-TEMP, WEB-TC

185

Hardware considerations

Web based

If the user name and password have been changed from the default, the user must log in with the new user

name and password to change configuration settings. Only one user can be logged in at a time. The log in

session times out after five minutes of inactivity. Log in is not required to view the current configuration in

InstaCal.

Hardware options are configurable on the web browser or with InstaCal. If hardware options are changed on

the web browser while InstaCal is open, restart or refresh InstaCal to update its configuration pages with the

settings stored on the device. Network parameters and some configuration settings for resistance measurement

are configurable with InstaCal only.

Configuration options are stored in non-volatile memory in EEPROM, and are loaded on power up.

Network parameters

The following network parameters are configurable with InstaCal. Configurable network options are enabled

when you start InstaCal if the default user name and password are still assigned. If a custom user name and

password have been assigned, the configurable network options are enabled after you log in.

 Identifier: Text that identifies the WEB device. This value is optional, and is not set by default. You can

enter up to 48 alpha-numeric characters. You can set this value in code using the Universal Library

ConfigItem option BINODEID with cbSetConfigString().

 DHCP: Enables automatic configuration of the IP address of the WEB device by a DHCP Server. When a

DHCP-enabled server is available, an IP address is automatically assigned to the device when it is

detected on the network. This value is set to Enabled by default. Disable this option when the server is

not DHCP-enabled, or when you want to enter a static IP address.

 IP: The IP address that is currently stored on the device is displayed in the Current Settings frame in

InstaCal‘s Board Configuration dialog. By default, this address is set automatically when a DHCP server

is available. If you are setting a static IP address manually, enter it in the IP text box on the Default

Settings frame. Every device connected to the network must have a unique IP address. This value is set

to 192.168.0.101 by default.

 Subnet: The Subnet Mask that is currently stored on the device is displayed in the Current Settings

frame in InstaCal‘s Board Configuration dialog. The Subnet Mask is the part of the IP address that

denotes the local Subnet. By default, the Subnet Mask is set automatically when a DHCP server is

available. If you are setting a static IP address manually, enter the Subnet Mask in the Subnet text box on

the Default Settings frame.

This value is set to 255.255.255.0 by default. The first three groups of numbers indicate the network

number to which the device is connected, and the last group indicates the node number within the

network that identifies the device.

 Gateway: The Gateway IP address that is currently stored on the device is displayed in the Current

Settings frame in InstaCal‘s Board Configuration dialog. By default, the Gateway IP address is set

automatically when a DHCP server is available. If you are setting a static IP address manually, enter the

Gateway in the Gateway text box on the Default Settings frame. This value is set to 192.168.0.1 by

default. The Gateway parameter is used for communication between devices on different networks.

 Server: Enables or disables the device's web page server. This value is set to Enabled by default. When

enabled, you can view the device's web page with a web browser. When disabled, you can only access the

device with InstaCal or the Universal Library. Disable when you want to restrict access to the device's

web page. Changes to this setting take affect the next time you power up the device.

 Change Login button: Opens a dialog to change the user name and password used to log in to a device

session. Once changed, log in is required to change configurable options on the device. The user name

and password are not stored on the host computer, and must be entered each time you start the

application. Refer to Logging in to a device session on page 186 for more information.

Universal Library User's Guide Temperature Input Boards - WEB-TEMP, WEB-TC

186

 Login button: This button is enabled when login is required.

InstaCal's configuration page also lists the unique 64-bit physical (MAC) address assigned to the device. You

cannot change this address.

Logging in to a device session

You must be logged in to a device session in order to change the configuration settings of a device or change

the state of the digital outputs. A user name and password are required to log in if they are not set to the

default values. For security, it is recommended that you change the login values from the defaults. The log in

session times out after five minutes of inactivity.

The default user name is set to webtemp for the WEB-TEMP, and webtc for the WEB-TC. The default

password is mccdaq for both devices. You can change these values in InstaCal with the Change Login button

after you are logged in to a device session. Each value can be up to eight alphanumeric characters.

Using InstaCal, when the user name and password have been changed from the default values, the

configuration page opens with configurable items disabled and the Login button enabled. Click the Login

button and then enter the values. The INVALIDLOGIN error is returned if the login information is not valid. The

SESSIONINUSE error is returned if you attempt to log in when a session is currently open by another user. Only

one user can be logged in to a session at a time.

Similarly, applications written with the Universal Library will perform a background log in when required if

the login parameters are set to the default values. If custom values have been set, you have the option to allow

the default login dialog to pop up when required or to disable the default dialog and handle login in your code.

To disable the default login dialog when using the Universal Library, you can select the "Show Login dialog

prompt" option in InstaCal, or for a more permanent result, disable the default dialog using cbSetConfig()

with the BIHIDELOGINDLG ConfigItem argument within your application code.

Factory default reset

To restore the network parameters (including the user name and password) to the factory default settings,

press and hold the device's reset button for three seconds. You do not have to be logged in to restore the

default network settings.

Manually adding a device to InstaCal

If a device is not yet connected to the local network, or if it is connected remotely to a different LAN,

InstaCal will be unable to detect it. If autodetection fails, you can manually add the device to InstaCal using

the Web tab on the Board Selection List dialog, and specify the IP address and port to use in the broadcast.

The default IP address and port add a placeholder to the configuration of a WEB device detected on the

network. The default IP address broadcasts to all devices detected on the local subnet. The default port lists

the default port number that is used to interface with the UL.

Any instance of the device type responding to the broadcast will attach to the placeholder. You can specify the

device to attach to the placeholder by clicking the MAC check box and entering the device's type and instance

ID. Enter C0 to locate a WEB-TC, or C2 to locate a WEB-TEMP. Enter any value from 0x00000 to 0x2FFFE

(except 0x1FFFF) for the instance ID. The first three octets of a MAC address indicate the vendor ID and

cannot be changed.

Configuring the DIO channels to generate alarms

The WEB-TEMP and WEB-TC provide eight independent temperature alarms. Each alarm controls an

associated digital I/O channel as an alarm output. The input to each alarm is one of the temperature input

channels. You set up the temperature conditions to activate an alarm, and the output state of the digital

channel (active high or low) when activated. You can view the alarm status on the web browser.

Universal Library User's Guide Temperature Input Boards - WEB-TEMP, WEB-TC

187

Digital channels that are configured as alarms will power up in an output state. When an alarm is activated,

the associated DIO channel is driven to the output state defined by the alarm configuration. The alarm

configurations are stored in non-volatile memory on the device and are loaded on power up. Alarm settings

can be configured using the device's web browser or InstaCal.

Pacing temperature readings

The internal update rate for temperature measurement is a fixed value for these devices. If the UL reads the

device faster than the internal update rate, temperature readings "repeat." For example, if using cbTIn() in a

loop to measure a rapidly changing temperature, readings do not change for several iterations of the loop, then

"jump" when the update occurs internally.

Using single sensors with cbTInScan() (WEB-TEMP only)

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not

have sensors attached. It is best to use cbTIn() for these configurations, since you can select which channels

to read. If you use cbTInScan(), however, data for all channels over the entire range of channels are returned.

Since some channels are not populated in this configuration, filter out the data for channels without sensors.

Channel names

You can specify a custom name for each of the device channels with InstaCal. Enter up to 10 alpha-numeric

characters in the Name text box on each channel configuration page.

Saving configuration settings

InstaCal allows you to save hardware configuration settings to a file, or load a configuration from a previously

saved file.

Each WEB-TEMP channel can be configured to measure temperature data collected by one of five categories

of temperature sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled. Each WEB-TC

channel can be configured to measure temperature data collected by one of eight types of thermocouples.

Recommended warm-up time

Allow the WEB device to warm-up for 30 minutes before taking measurements. This warm-up time

minimizes thermal drift and achieves the specified rated accuracy of measurements. For RTD or thermistor

measurements, this warm-up time is also required to stabilize the internal current reference.

Calibration

You can manually calibrate a WEB device using InstaCal or the web interface. Any time a sensor is changed

using the WEB interface, a calibration is automatically performed. If the device has not been warmed up when

this occurs, you should re-calibrate after the specified warm-up time.

Timeout errors

In some cases, there can be delays in obtaining the data from the WEB device, causing a NOREMOTEACK error to

be generated. This can be caused by other users making configuration changes on the device, or by slow or

busy network connections.

You can use the ConfigItem option BINETIOTIMEOUT with cbSetConfig() to set the time (in mS) to wait for

a device to acknowledge a command or query made via the network connection.

FlashLED()

Call this function to flash the POWER/COMM LED on a WEB device. This is useful if you have multiple

devices connected and you want to identify a particular device.

Universal Library User's Guide Temperature Input Boards - WLS Series

188

WLS Series

The WLS-IFC, WLS-TEMP, and WLS-TC support the following UL and UL for .NET features.

Temperature input (WLS-TEMP and WLS-TC)

Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values

Options N/A

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 7

Digital I/O (WLS-TEMP and WLS-TC)

Configuration functions, methods, and argument values supported

UL: cbDConfigBit(), cbDConfigPort()

UL for .NET: DConfigBit(), DConfigPort()

PortNum AUXPORT

PortType AUXPORT

Port I/O functions, methods, and argument values supported

UL: cbDOut(), cbDIn()

UL for .NET: DOut(), DIn()

PortNum AUXPORT

DataValue 0 to 255 for AUXPORT

Bit I/O functions, methods, and argument values supported

UL: cbDBitIn(), cbDBitOut()

UL for .NET: DBitIn(), DBitOut()

PortType AUXPORT

BitNum 0 to 7 on AUXPORT

Configuration

Configuration functions and methods supported

UL: cbGetConfig(), cbSetConfig(), cbGetConfigString(), cbSetConfigString()

UL for .NET: GetDeviceNotes(), SetDeviceNotes(), GetDeviceId(), SetDeviceId(),

GetPANID(), SetPANID(), GetRFChannel(), SetRFChannel(), GetRSS()

Configuration argument values

ConfigItem: BIRFCHANNEL, BIPANID, BINODEID, BIDEVNOTES

 The following argument value is also valid for the WLS-TEMP and WLS-TC

when they are operating as remote devices:

 BIRSS

Universal Library User's Guide Temperature Input Boards - WLS Series

189

Hardware considerations

Wireless operation

You can operate the WLS-TEMP and WLS-TC as remote devices that communicate with the computer

through a USB-to-wireless interface device, such as the WLS-IFC. The interface device can communicate

with multiple remote WLS-Series devices over a wireless link.

Network parameters (wireless operation)

Use InstaCal to configure the network parameters required for wireless communication. Configuration options

are stored in non-volatile memory in EEPROM, and are loaded on power up.

Network parameters can only be modified when the device is connected locally to the computer through the

USB port. After configuring the network settings for a remote device, unplug from the computer and move the

device to its remote location.

The following network parameters are programmable with InstaCal:

 Identifier: Text that identifies the WLS Series device. This value is optional, and is not set by default.

You can enter up to 20 alpha-numeric characters.

You can set the text identifier value using the ConfigItem option BINODEID with cbSetConfigString()

or SetDeviceId() while the device is connected locally to the computer through the USB port, or when

the device is operating remotely.

 PAN (hex): The personal area network ID assigned to the device. This value is set to 1000 hex by default

(4096 decimal).

Most users do not need to change this value. However, you may want to change the PAN value in the

following situations:

- You have multiple WLS Series devices and do not want to allow communication between all of them.

Set the PAN ID to the same value on each device that you want to communicate.

- If other WLS Series devices are operating in the vicinity, you can avoid accidental changes to your

device settings by changing the default PAN value.

To change the PAN ID, enter a 16-bit hexadecimal value between 0 and FFFE. (Hexadecimal values

consist of numbers between 0 and 9 and letters between A and F. In this case, up to four characters could

be entered.)

You can set the PAN value using the ConfigItem option BIPANID with cbSetConfig() when the device

is connected locally to the computer through the USB port.

 CH: The IEEE 802.15.4 radio frequency (RF) channel number assigned to the device. This is the channel

number used to transmit and receive data over the wireless link.

The table below lists each channel available along with its corresponding transmission frequency.

RF
Channel

Transmission
Frequency (GHz)

RF
Channel

Transmission
Frequency (GHz)

12 2.410 18 2.440

13 2.415 19 2.445

14 2.420 20 2.450

15 2.425 21 2.455

16 2.430 22 2.460

17 2.435 23 2.465

The channel number is set to 16 by default. Select a different channel number if another group of WLS

Series devices is already transmitting on that channel, or if the signal is spotty or intermittent, indicating

noise on the channel. If you change the channel for one device, remember to also change the channel

number on all other devices with which you want to communicate.

Universal Library User's Guide Temperature Input Boards - WLS Series

190

The level of noise per channel is system-dependent, and depends on the number of transmitters in the

local vicinity, including wireless telephones, video monitors, and so on.

You can set the RF channel using the ConfigItem option BIRFCHANNEL with cbSetConfig() while the

device is connected locally to the computer through the USB port.

 AES Key: The value used to encrypt a message (optional).

This value is disabled by default. To enable encryption, click the AES Key button and enter up to

16 alpha-numeric characters in the text box. This value is write-only; it cannot be read back.

Unless you suspect that there are other users of WLS Series devices in the area, there should be no need

to enable encryption. However, if you suspect that there are other WLS Series devices in the area, and

you need to secure the devices from being accessed by other users, enable this feature.

Note that enabling encryption does NOT secure the device from access through a local USB connection.

A remote device configured for encryption can be connected locally through the USB port to access other

remote WLS Series devices with the same settings; you may need to physically secure the remote devices

to prevent tampering of the of device's network.

Set the PAN ID, RF channel, and AES key to the same value for each device that you want to
communicate

Only devices with matching parameter settings for PAN ID, RF channel, and AES encryption (if set) can

communicate with each other.

InstaCal's configuration page also lists the unique 64-bit address assigned to the device. You cannot change

this address.

Use the Device Notes tab to enter up to 239 ASCII characters of additional text — for example, what the

device is measuring, and which device it is communicating with. You can set the text to store in the device's

memory using the ConfigItem option BIDEVNOTES with cbSetConfigString().

Received Signal Strength (wireless operations)

When a WLS Series device is operating remotely, InstaCal's configuration page includes a bar graph. The bar

graph indicates the strength of the signal received by the remote device from the wireless interface module,

and the fade margin of signals received by a device (refer to the following table.)

Active bars fade margin Rss (dBm)

0 – Weak signal < 10 dBm -82 dBm > rss

1 – Moderate signal ≥ 10 dBm -72 dBm > rss >= -82 dBm

2 – Strong signal ≥ 20 dBm -62 dBm > rss >= -72 dBm

3 – Very strong signal ≥ 30 dBm rss > -62 dBm

The number of bars corresponds to the number of LEDs that are lit on the remote device. The bar graph

display updates every two seconds on the InstaCal form.

If the signal is not strong enough for communication between the interface device and the remote device, no

bars or LEDs show, and a NOREMOTEACK error is returned. If this occurs, try moving or re-orienting the device

to increase the strength of the signal

You can retrieve the value in dBm of the signal strength received by a remote device using the ConfigItem

option BIRSS with cbGetConfig().

External power required for wireless operations

An external power supply is required to power remote devices. For wireless operations, connect the device's

USB cable to the AC-to-USB power adapter that shipped with the device.

Universal Library User's Guide Temperature Input Boards - WLS Series

191

Always connect an external hub to its power supply

If you are using a hybrid hub — one that can operate in either self-powered or bus-powered mode — always

connect it to its external power supply.

If you use a hub of this type without connecting to external power, communication errors may occur that

could result in corrupt configuration information on the wireless device. You can restore the factory default

configuration settings with InstaCal.

Factory default reset

To restore factory default configuration settings, click on the Reset Defaults button on InstaCal's

configuration page. The device must be connected locally to the computer's USB port to restore default

settings.

Configuring the DIO channels to generate alarms (WLS-TEMP and WLS-TC)

The WLS-TEMP and WLS-TC both provide eight independent temperature alarms. Each alarm controls an

associated digital I/O channel as an alarm output. The input to each alarm is one of the temperature input

channels. Use InstaCal to set up the temperature conditions to activate an alarm, and the output state of the

channel (active high or low) when activated.

Digital channels that are configured as alarms will power up in an output state. When an alarm is activated,

the associated DIO channel is driven to the output state defined by the alarm configuration. The alarms

function both in wireless mode and while attached to the USB port on a computer. The alarm configurations

are stored in non-volatile memory on the device and are loaded on power up.

Alarm settings can be configured when the device is connected locally to the computer through the USB port,

or when the device is operated remotely through a wireless interface.

Pacing temperature readings

The internal update rate for temperature measurement is a fixed value for these devices. If the UL reads the

device faster than the internal update rate, temperature readings "repeat." For example, if using cbTIn() in a

loop to measure a rapidly changing temperature, readings do not change for several iterations of the loop, then

"jump" when the update occurs internally.

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not

have sensors attached. It is best to use cbTIn() for these configurations, since you can select which channels

to read. If you use cbTInScan(), however, data for all channels over the entire range of channels are returned.

Since some channels are not populated in this configuration, you should filter out the data for channels

without sensors.

Saving configuration settings (WLS-TEMP and WLS-TC)

InstaCal allows you to save configuration settings to a file, or to load a configuration from a previously saved

file.

 Each WLS-TEMP channel can be configured to measure temperature data collected by one of five

categories of temperature sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled.

 Each WLS-TC channel can be configured to measure temperature data collected by one of eight types of

thermocouples.

Recommended warm-up time

Allow the WLS-TEMP and WLS-TC to warm-up for 30 minutes before taking measurements. This warm-up

time minimizes thermal drift and achieves the specified rated accuracy of measurements.

Universal Library User's Guide Temperature Input Boards - WLS Series

192

For RTD or thermistor measurements, this warm-up time is also required to stabilize the internal current

reference.

Calibration

Any time the sensor category is changed in the configuration for the WLS-TEMP, a calibration is

automatically performed by InstaCal. If the device has not been warmed up when this occurs, you should re-

calibrate after the specified warm-up time.

Error codes

 The UL returns -9999 when a value is out of range or an open connection is detected.

 The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered

up and calibration factors are being loaded.

 With wireless operations, the UL returns NOREMOTEACK when the signal is not strong enough for

communication between the interface device and the remote device.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink. When you have several modules

connected to the computer, use these functions to identify a particular module by making its LED blink.

193

15

Other Hardware

Introduction

This chapter provides details on using communications boards in conjunction with the Universal Library and

Universal Library for .NET. Boards released after the printing of this user‘s guide will be described in

Readme files on the Universal Library disk.

Universal Library User's Guide Other Hardware - COM422 Series

194

COM422 Series

No library functions are supported for these boards, but InstaCal can be used to configure the serial protocol

in conjunction with the Set422.exe utility. All other serial communications are handled by Windows standard

serial communications handlers.

COM485 Series

The COM485 Series board supports the UL function cbRS485() and the UL for .NET method RS485() for

controlling the transmit and receive enable register. All other serial communications are handled by Windows

standard serial communications handlers.

195

Appendix – Measurement Computing Device IDs

This appendix lists the device ID associated with each Measurement Computing hardware type. This

information is returned by the BoardName and BoardNum arguments.

Board Name Device ID
PCI-DAS1602/16 1

CIO-DAS6402/12 8
CIO-DAS16/M1/16 9
CIO-DAS6402/16 10
PCI-DIO48H 11
PCI-PDISO8 12
PCI-PDISO16 13
CPCI-GPIB 14
PCI-DAS1200 15
PCI-DAS1602/12 16
CIO-RELAY16M 17
CIO-PDMA32 18
CIO-DAC04/16-HS 19
PCI-DIO24H 20
PCI-DIO24H/CTR3 21
PCI-DIO48H/CTR15 22
PCI-DIO96H 23
PCI-CTR05 24
PCI-DAS1200Jr 25
PCI-DAS1001 26
PCI-DAS1002 27
PCI-DAS1602JR_16 28
PCI-DAS6402/16 29
PCI-DAS6402/12 30
PCI-DAS16/M1 31
PCI-DDA02/12 32
PCI-DDA04/12 33
PCI-DDA08/12 34
PCI-DDA02/16 35
PCI-DDA04/16 36
PCI-DDA08/16 37
PCI-DAC04/12HS 38
PCI-DAC04/16HS 39
PCI-DIO24 40
PCI-DAS08 41
CIO-RELAY24 42
CIO-RELAY32 43
PCI-INT32 44
DEMO-BOARD 45
CIO-DAS-TC 46
CIO-QUAD02 47
CIO-QUAD04 48
PCM-QUAD02 49
PCI-DAS64 50
PCI-DUAL-AC5 51
PCI-DAS-TC 52
PCI-DAS64/M1/16 53
PCI-DAS64/M2/16 54
PCI-DAS64/M3/16 55

Board Name Device ID
PC-CARD-DAS16/16 56
PC-CARD-DAS16/16-AO 57
PC-CARD-DAS16/12 58
PC-CARD-DAS16/12-AO 59
PC-CARD-DAS16/330 60
PC-CARD-D24/CTR3 61
PC-CARD-DIO48 62
PCI-COM232 63
PCI-COM232/2 64
PCI-COM232/4 65
PCI-COM422 66
PCI-COM422/2 67
PCI-COM485 68
PCI-COM485/2 69
ISA-MDB64 70
MII-32 71
MIO-32 72
MEM-8 73
MEM-32 74
PCI-MDB64 75
PCI-DAS1000 76
PCI-QUAD04 77
MSSR-24 78
PC104-MDB64 79
MAI-16 80

PCI-DAS4020/12 82
PCIM-DDA06/16 83
PCI-DIO96 84
CPCI-DIO24H 85
PCIM-DAS1602/16 86
PCI-DAS3202/16 87
PC104-AC5 88
PCI-QUAD-AC5 89
CPCI-DIO96H 90
CPCI-DIO48H 91
PC-CARD-DAC08 92
PCI-DAS6023 93
PCI-DAS6025 94
PCI-DAS6030 95
PCI-DAS6031 96
PCI-DAS6032 97
PCI-DAS6033 98
PCI-DAS6034 99
PCI-DAS6035 100
PCI-DAS6040 101
PCI-DAS6052 102
PCI-DAS6070 103
PCI-DAS6071 104

Universal Library User's Guide Appendix – Measurement Computing Device IDs

196

Board Name Device ID
PCI-CTR10 110
PCI-DAS6036 111
PCI-DAC6702 112
PCI-DAC6703 113

PCI-CTR20HD 116
miniLAB 1008 117
PMD-1024LS 118
PCI-DIO24/LP 119
PCI-DAS6013 120
PCI-DAS6014 121
USB-1208LS, PMD-1208LS 122
PCIM-DAS16JR/16 123

USB-1608FS, PMD-1608FS 125
PCI-DIO24/S 126
USB-1024HLS, PMD-1024HLS 127
6K-EXP16 128
USB-1616FS 129
USB-1208FS, PMD-1208FS 130
USB-1096HFS 131
Switch & Sense 8/8 132
USB-SSR24 133
USB-SSR08 134

E-PDISO16 137
USB-ERB24 138
USB-ERB08 139
USB-PDISO8 140
USB-TEMP 141

USB-TC 144

USB-DIO96H 146
USB-DIO24/37 147
USB-DIO24H/37 148
USB-DIO96H/50 149
USB-PDISO8/50 150
USB-5203 (< Rev. 3 fw) 151
USB-5201 (< Rev. 3 fw) 152
USB-1608HS-2AO 153
USB-3101 154
USB-3102 155
USB-3103 156
USB-3104 157
USB-3105 158
USB-3106 159

USB-1408FS 161
USB-3110 162
USB-3112 163
USB-3114 164
PCI-2511 165
PCI-2513 166
PCI-2515 167
PCI-2517 168

Board Name Device ID
USB-4301 174
USB-5201 (Rev. 3 fw and later) 175
USB-5203 (Rev. 3 fw and later) 176
USB-2523 177
USB-2527 178
USB-2533 179
USB-2537 180
WLS-IFC 181
WLS-TC 182
WLS-TEMP 183
USB-4302 184
USB-4303 185
USB-4304 186
USB-TC-AI 187
USB-TEMP-AI 188
USB-1608HS 189

WEB-TC 192

WEB-TEMP 194

USB-1616HS 203
USB-1616HS-2 204
USB-1616HS-4 205

CIO-DAS16 257
CIO-DAS16/F 258
CIO-DAS16/Jr 259
CIO-DAS16/330 260
CIO-DAS16/330i 261
CIO-DAS16/M1 262
PC104-DAS16Jr/12 263
PC104-DAS16Jr/16 264
CIO-DAS16/Jr16 265

CIO-SSH16 513

CIO-EXP16 769
CIO-EXP32 770
CIO-EXP-GP 771
CIO-EXP-RTD 772
CIO-EXP-BRIDGE 773

CIO-DIO24 1025
CIO-DIO24H 1026
CIO-DIO48 1027
CIO-DIO96 1028
CIO-DIO192 1029
CIO-DIO24/CTR3 1030
CIO-DIO48H 1031
CIO-DUAL-AC5 1032
CIO-DI48 1033
CIO-DO48H 1034
CIO-DI96 1035
CIO-DO96H 1036
CIO-DI192 1037

Universal Library User's Guide Appendix – Measurement Computing Device IDs

197

Board Name Device ID
CIO-DO192H 1038
CIO-DO24DD 1039
CIO-DO48DD 1040
PC104-DIO48 1041
PC104-DI48 1042
PC104-DO48H 1043

CIO-PDMA16 1281
CIO-DAC02 1537
CIO-DAC08 1538
CIO-DAC16 1539
CIO-DAC16I 1540
CIO-DAC08I 1541

PC104-DAC06 1543
CIO-DDA06/12 1793
CIO-DDA06/16 1794
CIO-DDA06/Jr 1795
CIO-DAC02/16 1796
CIO-DAC08/16 1797
CIO-DAC16/16 1798
CIO-DDA06Jr/16 1799

CIO-CTR05 2049
CIO-CTR10 2050
CIO-CTR10-HD 2051
CIO-CTR20-HD 2052
PC104-CTR10-HD 2053

CIO-PDISO8 2305
CIO-PDISO16 2306
PC104-PDISO8 2307

CIO-DAC04/12-HS 2564

PPIO-DIO24H 2817
PPIO-AI08 2818
PPIO-CTR06 2819

CIO-DAS08 3073
CIO-DAS08PGL 3074
CIO-DAS08PGH 3075
CIO-DAS08/AOL 3076
CIO-DAS08/AOH 3077
CIO-DAS08PGM 3078
CIO-DAS08/AOM 3079
CIO-DAS08/Jr 3080
PC104-DAS08 3081
CIO-DAS08Jr/16 3082

CIO-DAS48PGA 3329

CIO-DAS1601/12 3585
CIO-DAS1602/12 3586
CIO-DAS1602/16 3587
CIO-DAS1401/12 3588

Board Name Device ID
CIO-DAS1402/12 3589
CIO-DAS1402/16 3590

MEGA-FIFO 3841
CIO-RELAY16 4097
CIO-RELAY08 4098
CIO-RELAY16/M 4099
CIO-DAS-TEMP 4353

CIO-DISO48 8193

CIO-INT32 12289

PCM-DAS08 16385
PCM-D24/CTR3 16386
PCM-DAC02 16387
PCM-COM422 16388
PCM-COM485 16389
PCM-DAS16D/12 16390
PCM-DAS16S/12 16391
PCM-DAS16D/16 16392
PCM-DAS16S/16 16393
PCM-DAS16S/330 16394
PCM-DAS16D/12AO 16395

PCM-DAC08 16401

CIO-COM422 20481
CIO-COM485 20482
CIO-DUAL422 20483

CIO-DAS800 24577
CIO-DAS801 24578
CIO-DAS802 24579

CIO-DAS802/16 24580

Measurement Computing Corporation
10 Commerce Way

Suite 1008
Norton, Massachusetts 02766

(508) 946-5100
Fax: (508) 946-9500

E-mail: info@mccdaq.com
www.mccdaq.com

mailto:info@mccdaq.com
http://www.mccdaq.com/

	Table of Contents
	Table of MCC Hardware with UL Support
	Introducing the Universal Library
	Universal Library overview

	Installation and Configuration
	Installing the Universal Library
	The CB.CFG file and InstaCal
	Installation – .NET support
	Licensing information
	Redistributing a custom UL application
	Distributing InstaCal in addition to your custom UL application
	Integrating InstaCal into your custom UL installation CD or disk

	Getting Started
	Example programs

	Universal Library Description and Use
	General UL language interface description
	Function arguments
	Constants
	Options arguments
	Error handling
	16-bit values using a signed integer data type

	Using the Universal Library in Windows
	Real-time acquisition under Windows
	Processor speed
	Visual Basic for Windows
	Visual Basic example programs

	Microsoft Visual C++
	Microsoft Visual C++ example programs

	Borland C /C++ for Windows
	Borland C/C++ example programs

	Delphi example programs

	Universal Library for .NET Description & Use
	Configuring a UL for .NET project
	General UL for .NET language interface description
	MccBoard class
	Class Constructors
	Class properties
	Class methods

	ErrorInfo class
	MccService class
	GlobalConfig class
	DataLogger Class
	MccDaq enumerations
	Parameter data types

	Differences between the UL and UL for .NET
	Board number
	MCC classes
	Methods
	Enumerated types
	Error handling
	Service methods
	Configuration methods
	Data Logger methods

	Analog Input Boards
	Introduction
	Trigger support
	Digital trigger
	Analog trigger
	Pretrigger implementations

	Sampling rate using SINGLEIO
	PCI-2500 Series
	PCI-DAS6000 Series
	PCI-DAS4020 Series
	PCI-DAS64/Mx/16 Series
	PCI- and CIO-DAS6402 and DAS3202 Series
	PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series
	PCIM-DAS1602 and PCIM-DAS16JR Series
	CIO-DAS800 Series
	CIO-, PCI-, and PC104-DAS08 Series
	CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series
	PCM-DAS08
	PPIO-AI08
	CIO- and PC104-DAS16
	PCM- and PC-CARD-DAS16 Series
	CIO-DAS1400 and CIO-DAS1600 Series
	CIO-DAS48/PGA
	miniLAB 1008
	USB-1208 Series
	USB-1408FS
	USB-1608FS
	USB-1608HS, USB-1608HS-2AO
	USB-1616FS
	USB-1616HS Series
	USB-2500 Series
	DEMO-BOARD

	Analog Output Boards
	Introduction
	DAC04 HS Series
	DAC Series (Excluding HS Series)
	PCI-DAC6700 Series
	PCM- and PC-CARD- DAC Series
	PCIM- and CIO- DDA06 Series
	PCI- and CPCI- DDA Series
	cSBX-DDA04
	USB-3100 Series

	Digital Input/Output Boards
	Introduction
	Basic signed integers

	AC5 Series
	DIO Series
	DIO24/CTR3 and D24/CTR3 Series
	PCI-DIO48/CTR15
	PDISO8 and PDISO16 Series
	Establishing and requesting control of an E-PDISO16
	Sending a request for control of an E-PDISO16
	Receiving a request for control of an E-PDISO16
	Receiving a message

	CIO-PDMA16 and CIO-PDMA32
	USB-1024 and USB-DIO24 Series
	USB-DIO96 Series (formerly USB-1096 Series)
	USB-SSR Series
	Switch & Sense 8/8
	DEMO-BOARD

	Digital Input Boards
	Introduction
	CIO- and PC104- DI Series
	CIO-DISO48

	Digital Output Boards
	Introduction
	CIO-RELAY Series
	USB-ERB Series
	CIO- and PC104-DO Series

	Counter Boards
	Introduction
	Visual Basic signed integers
	Counter chip variables

	CTR Series
	INT32 Series
	PPIO-CTR06
	QUAD Series
	USB-4300 Series

	Expansion Boards
	Introduction
	AI-EXP48
	CIO-EXP Series
	MEGA-FIFO

	MetraBus Boards
	Introduction
	MDB64 Series
	MIO and MII Digital I/O
	MEM Series Relay
	MSSR-24 SSR

	Temperature Input Boards
	Introduction
	CIO-DAS-TEMP
	DAS-TC Series
	USB-TEMP Series, USB-TC Series
	USB-5203, USB-5201
	WEB-TEMP, WEB-TC
	WLS Series

	Other Hardware
	Introduction
	COM422 Series
	COM485 Series

	Appendix – Measurement Computing Device IDs

