
Introduction

User Program

Program Execution

Operating Statuses and Program
Execution Levels

Interrupt and Error Diagnosis

Integrated Special Functions

Extended Data Block DX 0

Memory Assignment and
Memory Organization

Memory Access Using
Absolute Addresses

Multiprocessor Mode and
Communication in the S5-155U

PG Interfaces and
Functions

Appendix

Further Reading

List of Abbreviations,
List of Key Words,
List of Tables and Figures

The Pocket Guide CPU 922/CPU 928/CPU 928B/
CPU 948
Order No. 6ES5 997-3UA22
is included with this manual.

SIMATIC S5

Programming Guide

S5-155U
CPU 948

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Order No. 6ES5 998-3PR21
Release 03

C79000-H8576-C848-03

Copyright

Copyright © Siemens AG 1993 All Rights Reserved

The reproduction, transmission or use of this document or its contents is not permitted without express
written authority.
Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a
utility model or design, are reserved.

Disclaimer of liability
We have checked the contents of this manual for agreement with the hardware and software described.
Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in
this manual are reviewed regularly and any necessary corrections included in subsequent editions. Sug-
gestions for improvement are welcomed.

Technical data subject to change.

Safety-related guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well
as to protect the product and connected equipment. These notices are highlighted in the manual by
a warning triangle and are marked as follows according to the level of danger:

Warning
indicates that death, severe personal injury or substantial property damage can result
if proper precautions are not taken.

Caution
indicates that minor personal injury or property damage can result if proper
precautions are not taken.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons
are defined as persons who are authorized to commission, to ground and to tag equipment, systems
and circuits in accordance with established safety practices and standards.

Siemens Aktiengesellschaft 6ES5 998-3PR21
EWK Elektronikwerk Karlsruhe

Printed in the Federal Republic of Germany

!

!

How to Use this Manual

Scope

This programming guide describes the following versions of the
CPU 948 and its system software:

Versions of the CPU 948

•• CPU 948-1 with 640 Kbytes of user memory,
Order no. 6ES5 948-3UA11, from version A03

•• CPU 948-2 with 1 664 Kbytes of user memory,
Order no. 6ES5 948-3UA21, from version A03

CPU 948 Programming Guide

C79000-H8576-C848-03 0 - 1

Overview of the Chapters

Chapter 1 This informs you about the areas of application of the S5-155U
programmable controller with the CPU 948 and its device structure.
It explains the typical mode of operation of the CPU and illustrates
how a CPU program is structured.
The chapter also contains suggestions about how to tackle
programming and which characteristics of the CPU 948 are important
for programming.
If you have already worked with the CPU 946/947 and want to know
the differences between these CPUs and the CPU 948 you will find
this information in this chapter.

Chapter 2 This explains the components of a STEP 5 user program and how the
program can be structured.

Chapter 3 This is intended for readers who do not yet have much experience of
using the STEP 5 programming language. It therefore deals with the
basics of STEP 5 programming and explains the STEP 5 operations in
detail (with examples).

Experienced readers who may find that the information about specific
operations in the pocket guide is inadequate, can use Section 3.5 as a
reference section.

Chapter 4 This provides an overview of the modes and program execution levels
of the CPU 948. It provides you with detailed information about
various start-up modes and the associated organization blocks in
which you can program your routines for differrent start-up situations.

The chapter also explains the differences between the program
execution levels "cyclic processing", "time-controlled processing" and
"interrupt-driven processing" and which blocks are available for your
user program.

Chapter 5 This informs you about errors to be avoided when planning and
writing your STEP 5 programs.
The chapter tells you about the help you can obtain from the system
program for diagnosing errors and which reactions can be expected
and informs you about the blocks in which you can program reactions
to certain errors.
The chapter also explains the CPU 948 self-test.

How to Use this Manual

CPU 948 Programming Guide

0 - 2 C79000-H8576-C848-03

Chapter 6 This covers the special functions integrated in the system program. It
tells you how to use the special functions and how to call and assign
parameters to the special function OBs. The chapter also explains how
to recognize and deal with errors in the processing of a special
function.

Chapter 7 This describes the use of data block DX 0 and its structure. The
chapter informs you of the significance of the various DX 0
parameters. Based on examples, you will learn how to create data
block DX 0 or how to assign the parameters in a screen form.

Chapter 8 This is a reference section for experienced system users. It provides
information about the memory organization of the CPU 948 and
certain system data words which contain information that can be
called up by the user.

Chapter 9 This is also for experienced system users. The chapter explains how to
address data in certain memory areas using absolute addresses.

Chapter 10 This explains when the multiprocessor mode can be used and how
data can be exchanged between the CPUs and CPs. The chapter
provides information about programming for multiprocessor operation.
The remainder of the chapter provides detailed information and
application examples for exchanging larger amounts of data in the
multiprocessor mode (multiprocessor communication).

Chapter 11 This tells you how to connect your CPU to a PG and the functions
provided by the PG software to test your STEP 5 program.

Chapter 12 This contains the Appendix with technical data (e.g. typical operation
execution times, system runtimes, memory capacity) of the CPU 948.

How to Use this Manual

CPU 948 Programming Guide

C79000-H8576-C848-03 0 - 3

Chapter 13 This lists documentation for further reading.

Chapter 14 This is intended to help you find themes quickly and contains a list of
abbreviations and a list of keywords as well as lists of all the
numbered tables and figures.

How to Use this Manual

CPU 948 Programming Guide

0 - 4 C79000-H8576-C848-03

Conventions used in the text

To provide you with an overview of the contents of the pages, the
manual uses the following conventions in addition to a 2nd and 3rd
order of titles:

Entries in the margin Entries in the margin are keywords printed in italics on the left-hand
edge of a page. They provide information about the contents of one or
more paragraphs on the page.

Fourth order entries Fourth order entries are not numbered but appear in the margin in bold
face and identify a longer section of text.

The following conventions are also used.

Notes
Note
Important information is indicated in this format.

Instructions Instructions (often a sequence of operations to be performed) are
represented in tables, e.g.

Step Action Result

1 Switch the mode selector
from RUN to STOP.

The CPU is in the stop
mode. The STOP LED is lit
continuously.

2 Hold the reset switch in the
OVERALL RESET position;
at the same time, switch the
mode selector from STOP to
RUN and back to STOP.

An OVERALL RESET is
requested. The STOP LED
flashes quickly.

How to Use this Manual

CPU 948 Programming Guide

C79000-H8576-C848-03 0 - 5

Reference tables Specific information you may require at any time is contained in
numbered tables as shown in the following example and can be found
in the list of tables (refer to Chapter 14).

Operation Operand Function

A

O

I 0.0 to 127.7
......

AND logic operation with scan for signal state "1"

OR logic operation with scan for signal state "1"

of an input in the PII
........

Examples Examples, some of which cover several pages, are highlighted by a gray
frame. When the examples cover more than one page this is clearly
indicated.

Table 3-2 Binary logic operations

Example 1: Calling and assigning parameters to a function block in the
methods of representation STL and LAD/CSF in a program block

Method of representation STL

......

How to Use this Manual

CPU 948 Programming Guide

0 - 6 C79000-H8576-C848-03

Contents

1 Introduction. 1-3

1.1 Area of Application for the S5-155U with the CPU 948 . 1-4

1.2 Typical Mode of Operation of a CPU . 1-6

1.3 The Programs in a CPU . 1-8

1.4 Which Operands are available to the User Program?. 1-12

1.5 How much Memory is available for the User Program? . 1-15

1.6 How to Tackle Programming. 1-16

1.7 Programming Tools . 1-19

1.8 What is New with the CPU 948? . 1-20

1.8.1 CPU 948, Version A01. 1-20
1.8.2 CPU 948, Version A02 . 1-23
1.8.3 CPU 948, Version A03 and higher . 1-23

1.9 Converting User Programs of the CPU 928B for the CPU 948. 1-24

2 User Program . 2-3

2.1 STEP 5 Programming Language . 2-4

2.1.1 The LAD, CSF, STL Methods of Representation . 2-4
2.1.2 Structured Programming . 2-5
2.1.3 STEP 5 Operations . 2-6
2.1.4 Number Representation . 2-8
2.1.5 STEP 5 Blocks and Storing them in Memory. 2-12

2.2 Program, Organization and Sequence Blocks . 2-16

2.2.1 Organization Blocks as User Interfaces. 2-18
2.2.2 Organization Blocks for Special Functions. 2-22

2.3 Function Blocks . 2-23

2.3.1 Structure of Function Blocks . 2-24

Contents

CPU 948 Programming Guide

C79000-J8576-C848-03 i

2.3.2 Programming Function Blocks . 2-26
2.3.3 Calling Function Blocks and Assigning Parameters to them . 2-28
2.3.4 Special Function Blocks. 2-33

2.4 Data Blocks . 2-35

2.4.1 Creating Data Blocks . 2-37
2.4.2 Opening Data Blocks . 2-38
2.4.3 Special Data Blocks . 2-41

3 Program Execution. 3-3

3.1 Principle of Program Execution. 3-4

3.2 Program Organization . 3-5

3.3 Storing Program and Data Blocks . 3-10

3.4 Processing the User Program. 3-11

3.4.1 Definition of Terms used in Program Execution. 3-12

3.5 STEP 5 Operations with Examples . 3-15

3.5.1 Basic Operations. 3-19
3.5.2 Programming Examples in the STL, LAD and CSF Methods of Representation 3-34
3.5.3 Supplementary Operations . 3-49
3.5.4 Executive Operations . 3-59
3.5.5 Semaphore Operations . 3-75

4 Operating Statuses and Program Execution Levels . 4-3

4.1 Introduction and Overview . 4-4

4.2 Program Execution Levels . 4-7

4.3 STOP Mode . 4-12

4.3.1 SOFT STOP . 4-12
4.3.2 HARD STOP . 4-16
4.3.3 OVERALL RESET . 4-17

4.4 START-UP Mode . 4-19

4.4.1 MANUAL and AUTOMATIC COLD RESTART . 4-20
4.4.2 MANUAL and AUTOMATIC WARM RESTART. 4-21
4.4.3 Comparison between COLD RESTART and WARM RESTART . 4-24
4.4.4 RETENTIVE COLD RESTART . 4-25
4.4.5 Comparison of COLD RESTART and RETENTIVE COLD RESTART 4-26
4.4.6 User Interfaces for Start-Up. 4-27
4.4.7 Extended AUTOMATIC WARM RESTART with the CPU 948 (HOT RESTART). 4-30
4.4.8 Interruptions during START-UP . 4-31

4.5 RUN Mode . 4-33

4.5.1 Cyclic Program Execution . 4-34
4.5.2 Specifying Time and Interrupt-Driven Program Execution . 4-36
4.5.3 Time-Controlled Program Execution. 4-37
4.5.4 Interrupt-Driven Program Execution . 4-45

CPU 948 Programming Guide

ii C79000-J8576-C848-03

5 Interrupt and Error Diagnostics . 5-3

5.1 Frequent Errors in the User Program . 5-4

5.2 Error Information . 5-5

5.3 Procedure for Error Analysis . 5-8

5.4 Control Bits and Interrupt Stack . 5-9

5.4.1 Control Bits . 5-10
5.4.2 ISTACK Content . 5-14
5.4.3 Example of Error Diagnosis using the ISTACK. 5-19

5.5 Error Handling Using Organization Blocks . 5-20

5.6 Causes of Error and Reactions of the CPU. 5-23

5.6.1 OB 19: Calling a Logic Block That Is Not Loaded (KB) . 5-24
5.6.2 OB 19: Calling a Data Block That Is Not Loaded (KDB) . 5-24
5.6.3 OB 23/24, OB 28/29:Timeout Error (QVZ) . 5-25
5.6.4 OB 25: Addressing Error (ADF) . 5-26
5.6.5 OB 26: Cycle Time Exceeded Error (ZYK) . 5-27
5.6.6 OB 27: (Substitution Error SUF). 5-28
5.6.7 OB 30: Parity Error and Timeout Error in the User Memory (PARE) . 5-28
5.6.8 OB 32: Load and Transfer Error (TRAF) . 5-29
5.6.9 OB 33: Collision of Timed Interrupts Error (WEFES/WEFEH) . 5-30
5.6.10 OB 34: Error with G DB/GX DX (FEDBX) . 5-32
5.6.11 OB 35: Communication Errors . 5-32
5.6.12 OB 36: Error in Self-test . 5-33

5.7 Self-Test . 5-34

5.7.1 Overview . 5-34
5.7.2 Description of the Test Functions . 5-35
5.7.3 Settings . 5-37
5.7.4 Error Handling . 5-38

6 Integrated Special Functions. 6-3

6.1 Introduction . 6-4

6.2 OB 121: Set/Read System Time . 6-7

6.3 OB 122: "Disable Interrupts" On/Off . 6-11

6.4 OB 124: Delete STEP 5 Blocks. 6-13

6.5 OB 125: Generate STEP 5 Blocks. 6-16

6.6 OB 126: Define, Transfer Process Images . 6-19

6.7 OB 129: Battery State . 6-24

6.8 OB 131: Delete ACCUs 1, 2, 3 and 4 . 6-25

6.9 OB 132/133: Roll-Up ACCU/Roll-Down ACCU. 6-27

6.10 OB 141: "Disable Single Cyclic Timed Interrupts" On/Off . 6-29

6.11 OB 142: "Delay All Interrupts" On/Off . 6-32

CPU 948 Programming Guide

C79000-J8576-C848-03 iii

6.12 OB 143: "Delay Single Cyclic Timed Interrupts" On/Off . 6-35

6.13 OB 150: Set/Read System Time . 6-38

6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt . 6-43

6.15 OB 153: Set/Read Time for Delayed Interrupt. 6-50

6.16 OB 180: Variable Data Block Access . 6-53

6.17 OB 181: Test Data Blocks (DB/DX) . 6-57

6.18 OB 182: Copy Data Area. 6-59

6.19 OB 202 to 205: Multiprocessor Communication . 6-62

6.20 OB 222: Restart Cycle Monitoring Time . 6-63

6.21 OB 223: Compare Start-Up Modes . 6-64

6.22 OB 254/255: Copy/Duplicate Data Blocks . 6-65

7 Extended Data Block DX 0 . 7-3

7.1 Application . 7-4

7.2 Structure of DX 0. 7-5

7.2.1 Example of Input in DX 0 . 7-7

7.3 Parameters for DX 0 . 7-8

7.4 Examples of Parameter Assignment . 7-12

7.4.1 STEP 5 Programming . 7-12
7.4.2 Parameter Assignment using the PG Screen Form . 7-14

8 Memory Assignment and Memory Organization. 8-3

8.1 Structure of the Memory Area . 8-4

8.2 Memory Assignment in the CPU 948 . 8-5

8.2.1 Memory Assignment for the System RAM . 8-6
8.2.2 Memory Assignment for the Peripherals . 8-8

8.3 User Memory Organization in the CPU 948. 8-10

8.3.1 Block Headers in User Memory . 8-12
8.3.2 Block Address List in Data Block DB 0 . 8-13
8.3.3 RI/RJ Area . 8-14
8.3.4 RS/RT Area. 8-15
8.3.5 Bit Assignment of the System Data Words . 8-18
8.3.6 Addressable System Data Area . 8-42

CPU 948 Programming Guide

iv C79000-J8576-C848-03

9 Memory Access Using Absolute Addresses . 9-3

9.1 Introduction . 9-4

9.2 Memory Access via Address in ACCU 1 . 9-8

9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly 9-9
9.2.2 Examples of Access to DW > 255 . 9-15
9.2.3 LDI/TDI: Loading to or Transferring from a 32-Bit Memory Area Indirectly 9-17

9.3 Transferring Memory Blocks. 9-19

9.4 Operations with the Base Address Register (BR Register) . 9-22

9.4.1 Operations for Transfer between Registers . 9-23
9.4.2 Accessing the Local Memory . 9-24
9.4.3 Accessing the Global Memory . 9-25
9.4.4 Accessing the Dual-Port RAM Memory . 9-29

10 Multiprocessor Mode and Communication in the S5-155U . 10-3

10.1 Multiprocessor Mode . 10-4

10.1.1 When to use the Multiprocessor Mode . 10-4
10.1.2 What Communications Mechanisms are Available? . 10-4
10.1.3 Exchanging Data via IPC Flags. 10-5
10.1.4 Exchanging Data via Handling Blocks . 10-8
10.1.5 What needs to be Programmed for the Multiprocessor Mode? . 10-9
10.1.6 How to Create Data Block DB 1. 10-9
10.1.7 Starting up in the Multiprocessor Mode . 10-13
10.1.8 Test Mode . 10-14

10.2 Multiprocessor Communication. 10-15

10.2.1 Introduction . 10-15
10.2.2 How the Transmitter and Receiver are Identified . 10-16
10.2.3 Why Data is Buffered . 10-17
10.2.4 How the Buffer is Processed and Managed . 10-18
10.2.5 System Start-Up . 10-21
10.2.6 Calling Communication OBs. 10-22
10.2.7 How to Assign Parameters to Communication OBs. 10-23
10.2.8 How to Evaluate the Output Parameters . 10-24

10.3 Runtimes of the Communication OBs. 10-31

10.4 INITIALIZE Function (OB 200) . 10-33

10.4.1 Function . 10-33
10.4.2 Call Parameters. 10-35
10.4.3 Input Parameters. 10-35
10.4.4 Output Parameters . 10-38

10.5 SEND Function (OB 202) . 10-40

10.5.1 Function . 10-40
10.5.2 Call Parameters. 10-40
10.5.3 Input Parameters. 10-40
10.5.4 Output Parameters . 10-42

CPU 948 Programming Guide

C79000-J8576-C848-03 v

10.6 SEND TEST Function (OB 203) . 10-45

10.6.1 Function . 10-45
10.6.2 Call Parameters. 10-45
10.6.3 Input Parameters. 10-45
10.6.4 Output Parameters . 10-45

10.7 RECEIVE Function (OB 204) . 10-47

10.7.1 Function . 10-47
10.7.2 Call Parameters. 10-47
10.7.3 Input Parameters. 10-47
10.7.4 Output Parameters . 10-48

10.8 RECEIVE TEST Function (OB 205) . 10-51

10.8.1 Function . 10-51
10.8.2 Call Parameters. 10-51
10.8.3 Input Parameters. 10-51
10.8.4 Output Parameters . 10-51

10.9 Applications . 10-53

10.9.1 Calling the Special Function OB using Function Blocks . 10-53
10.9.2 Transferring Data Blocks . 10-60
10.9.3 Extending the IPCFlag Area . 10-66

11 PG Interfaces and Functions . 11-3

11.1 Overview . 11-4

11.2 PG Functions . 11-5

11.2.1 Info . 11-6
11.2.2 Installation . 11-7
11.2.3 Program Test. 11-8

11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface. 11-16

11.4 Parallel Operation of Two Serial PG Interfaces . 11-17

11.4.1 Installation . 11-19
11.4.2 Operation . 11-19
11.4.3 Sequence in Certain Operating Situations. 11-21

11.5 PG Functions via the S5 Bus. 11-26

11.5.1 Application . 11-26
11.5.2 How the PG Functions Work via the S5 Bus . 11-28
11.5.3 Installation and Getting Started . 11-30
11.5.4 Condition Codes Indicating Problems. 11-34

CPU 948 Programming Guide

vi C79000-J8576-C848-03

12 Appendix . 12-3

Appendix 1: Jumper Settings for System Interrupts. 12 - 4

Appendix 2: Inserting and Removing the PG Submodule. 12 - 5

Appendix 3: Technical Data of the CPU 948, CPU 946/947 and CPU 928B. 12 - 7

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1 12 - 10
Byte IDs in ACCU-1-LL . 12 - 10
Word IDs in ACCU-1-L. 12 - 12

13 Further Reading . 13 - 3

14 Indexes . 14 - 1

List of Abbreviations . 14 - 3

List of Key Words . 14 - 5

List of Tables and Figures . 14 - 11

List of Tables . 14 - 11
List of Figures . 14 - 17

CPU 948 Programming Guide

C79000-J8576-C848-03 vii

Contents of Chapter 1

1.1 Area of Application for the S5-155U with the CPU 948 . 1 - 4

1.2 Typical Mode of Operation of a CPU . 1 - 6

1.3 The Programs in a CPU . 1 - 8

System program . 1 - 8
User program . 1 - 10

1.4 Which Operands are available to the User Program? . 1 - 12

1.5 How much Memory is available for the User Program? . 1 - 15

1.6 How to Tackle Programming? . 1 - 16

1.7 Programming Tools. 1 - 19

1.8 What is New with the CPU 948?. 1 - 20

1.8.1 CPU 948, Version A01 . 1 - 20
1.8.2 CPU 948, Version A02 . 1 - 23
1.8.3 CPU 948, Version A03 and Higher . 1 - 23

1.9 Converting User Programs of the CPU 928B for the CPU 948 1 - 24

1Introduction

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 1

1Introduction

Aims of the manual This manual is intended to provide specialized information about
programming the CPU 948 for users who already have basic
knowledge of programming PLCs and want to use the CPU 948 in the
S5-155U programmable controller. If you do not yet have this basic
knowledge, we strongly advise you read the documentation
introducing the programming language STEP 5 /3/ or take part in a
course at our training center. SIEMENS provides comprehensive
training for SIMATIC S5. For more detailed information, contact your
local SIEMENS office.

Contents of Chapter 1 Chapter 1 explains how to use the manual and deals with the areas of
application of the S5-155U programmable controller with the
CPU 948 and its structure.
The chapter explains the typical mode of operation of a CPU and the
structure of the CPU program.
You will also find a few suggestions about how to tackle
programming and will learn some of the features of the CPU 948
which are important for programming.
If you have already worked with the CPU 946/947 and would like to
know the differences between these modules and the CPU 948, refer
to Section 1.8.

Chapter 1 also informs you about differences between versions A01
and A02 of the CPU 948 and explains points you should remember
when converting "928B" programs for the CPU 948.

1

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 3

1.1 Area of Application for the S5-155U with the CPU 948

SIMATIC S5 family The S5-155U programmable controller belongs to the family of
SIMATIC S5 programmable controllers. With the CPU 948, it is the
most powerful multiprocessor unit for process automation (open and
closed loop control, signalling, monitoring, logging).
Owing to its modularity and high performance, it can be used for
medium to extremely large control systems as well as for complex
automation tasks at the plant and process supervision level.

Suitability The S5-155U with the CPU 948 is particularly suitable for the
following:

•• Tasks requiring fast bit and word-oriented processing and fast reaction
times, i.e. with extremely fast open and closed loop controls.
Examples of this are fast processes in mechanical engineering
(bottling plant, packing machines or similar systems) and in the
automobile industry.

•• Tasks requiring an extremely high storage capacity and fast access
times, e.g. in the automobile industry, process and plant
engineering.

•• Tasks requiring fast communication with other CPUs installed in
the PLC and operating in the multiprocessor mode and with CP
modules (e.g. when connected to bus systems, host computers, for
visualization, operation and monitoring).

•• Complex tasks which can be handled efficiently and clearly using
the high level languages C and SCL.

Area of Application for the S5-155U with the CPU 948

CPU 948 Programming Guide
1 - 4 C79000-D8576-C848-03

Example of application Fig. 1-1 illustrates the use of the S5-155U programmable controller in
a cement works.

Crusher,

Test stat ion,

Limestone

store

Raw mil l

Raw meal

s i los

Coal mil l

Dryer

S5-155US5-155U S5-155U S5-155U S5-155U S5-155U S5-155U

Heat

exchanger

Rotary

ki ln

Telephone

system

Central

control room

Clinker cooler

Cl inker transport

Dust col lector

Cement mil ls

Distr ibut ion

System management Data base/

logging
Quarry,

Raw meal s i lo,

Crusher,

Raw mil l

Coal mil l ,

Ki ln

Cement

mil ls ,

Dispatch

Service system

Process data control

Control room
SINEC H1 bus

Process

data

edi t ing

PG 770

PG 770

PG 770 PG 770 PG 770 PG 770

Operation and monitor ing (COROS)

Fig. 1-1 Example of application of the S5-155U with the CPU 948

1

Area of Application for the S5-155U with the CPU 948

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 5

1.2 Typical Mode of Operation of a CPU

Mode of operation of a CPU The following modes of operation are possible in a CPU:

Cyclic processing This is the main part of all activities in the CPU. As the name already
says, the same operations are repeated in an endless cycle.

Cyclic processing can be divided into three main phases, as follows:

Phase Sequence

1
All the input modules assigned to the
CPU are scanned by the system
program and the values read in are
stored in the process image of the
inputs (PII).

2
The values contained in the PII are
processed by the user program and the
values to be output are entered in the
process image of the outputs (PIQ).

3
The values contained in the process
image of the outputs are output by the
system program to the output modules
assigned to the CPU.

Cyclic processing Interrupt-driven processingTime-controlled processing

1. 2. 3.

Read in process image
of the inputs

Output process image
of the outputs

&

&

= 1

I 1.5

I 1.6

I 1.4

I 1.3 Q 3.1

Evaluate input signals,
set output signals

Input I 1.3

Input I 1.4

Input I 1.5

Output Q 3.1

Output Q 2.0

Output Q 4.7

CPU Process

Typical Mode of Operation of a CPU

CPU 948 Programming Guide
1 - 6 C79000-D8576-C848-03

Time-controlled processing In addition to the cyclic processing, time-controlled processing is also
available for processes requiring control signals at constant intervals,
e.g. non-time critical monitoring functions performed every second.

Interrupt-driven processing If the reaction to a particular process signal must be particularly fast, this
should be handled with interrupt-driven processing. With, for example,
a system interrupt, triggered via an interrupt generating module, you
can activate a special processing section within your program.

Processing according to
priority

The types of processing listed above are handled by the CPU
according to their priority .

Since a fast reaction is required to a time or interrupt event, the CPU
interrupts cyclic processing to handle a time or interrupt event. Cyclic
processing therefore has the lowest priority.

Whether or not the time-controlled processing is more important than
the interrupt controlled processing depends, among other things, on
the particular task. For this reason, the priority of time and
interrupt-driven processing on the CPU 948 can be selected.

1

Typical Mode of Operation of a CPU

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 7

1.3 The Programs in a CPU

The program existing on every CPU is divided into the following:

•• the system program

and

•• the user program.

System program The system program organizes all the functions and sequences of the
CPU which do not involve a specific control task (refer to Fig. 1-2).

Update process image
of the inputs

Output process image
of the outputs

System

program

Call

user

processing

(inter-

faces)

Execute start-up

Handle errors
Communication with
the PG

Manage memory

Fig. 1-2 Tasks of the system program

The Programs in a CPU

CPU 948 Programming Guide
1 - 8 C79000-D8576-C848-03

Tasks The tasks include the following: 1)

•• cold and warm restart,

•• updating the process image of the inputs and outputting the
process image of the outputs,

•• calling the cyclic, time-controlled and interrupt-driven programs,

•• detection and handling of errors,

•• memory management,

•• communication with the programmer (PG).

User interfaces As the user, you can influence the reaction of the CPU to particular
situations and errors via special interfaces to the system program.

Storing the system program After switching on the power supply to the PLC (POWER UP) the
system program is read from the EPROM to the internal operating
system RAM.

System program defaults The following chapters, except for Chapter 7, describe the default
system reaction to process events or errors. Depending on the
defaults, the CPU changes to the stop mode if an operation code error
occurs and the error organization block is not loaded.

Modifying the defaults You can modify the system response by assigning parameters for the
data block DX 0.
Chapter 7 describes the system response following modification.

1) When operating with several CPUs (multiprocessing) further tasks are involved.

1

The Programs in a CPU

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 9

User program

Tasks The user program contains all the functions required for processing a
specific control task. In general terms, these functions can be
assigned to the interface provided by the system program for the
various types of processing, as follows:

Type of processing Task

Cold and warm restart To provide the conditions under which
the other processing functions can start
from a defined status following a cold or
warm restart of the control system (e.g.
assigning specific values to signals).

Cyclic processing Constantly repeated signal processing
(e.g. logic operations on binary signals,
reading in and analyzing analog values,
specifying binary signals for output,
outputting analog values).

Time-controlled processing Special, time-dependent processing with
the following time conditions:

- faster than the average cycle,
- at a time interval greater than the
 average cycle time,
- at a specified point in time.

Interrupt-driven processing Special, fast reactions to certain process
signals.

Error reaction Handling problems within the normal
sequence of the program.

The Programs in a CPU

CPU 948 Programming Guide
1 - 10 C79000-D8576-C848-03

Structure

Storing the user program After programming the user program, you must load it in the user
memory of the CPU 948 (directly from the PG) or via a memory card
whose contents are copied to the user memory by an OVERALL
RESET of the CPU.

Interfaces to the
system program

Organization blocks are available as interfaces to the system program
for the special types of processing.

User memory

Code blocks

Data blocks

Organization
blocks

OB

DB

DX

PB FB/FX SB

FB 8

SEGMENT 1
NAME :TRANS

0005 :L IB 3
0006 :T FW 200
0007 :C DB 5
0008 :DO FW 200
0009 :L DW 0
000A :T QW 6
000B :BE

1: KH = 0101;
2: KF = +120;
3: KS = xy;
4: KY = 4.5;
5: KG =
6: KM =
7:

1: KH = FFFF;
2: KH = FFFF;
3: KH = FFFF;
4: KH = FFFF;
5: KH = FFFF;
6: KH = FFFF;
7:

STEP 5
operations

static or dynamic data
(bits, bytes, words, double words)

static or dynamic data
(bits, bytes, words, double words)

STEP 5
operations

STEP 5
operations

STEP 5
operations

Program
blocks

Function
blocks

Sequence
blocks

&

&

= 1

I 1.5

I 1.6

I 1.4

I 1.3 Q 3.1

= 1
F 50.1

F 50.2

F 50.3 Q 5.3

F 1.7

I 2.6 S

R QI 1.3

User program

Fig. 1-3 Structure of a STEP 5 user program

1

The Programs in a CPU

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 11

1.4 Which Operands are available to the User Program?

The CPU 948 provides the following operand areas for programming:

•• process image and I/Os

•• flags (F flags and S flags)

•• timers/counters

•• data blocks

Process image of the inputs
and outputs PII/PIQ

Characteristics Size

The user program can access the following data types
in the process image extremely quickly:

- single bits,
- bytes,
- words,
- double words

128 bytes
each for
inputs and
outputs

I/O area (P area)

Characteristics Size

The user program can access the I/O modules directly
via the S5 bus.

The following data types are possible:
- bytes,
- words.

256 bytes
each for
inputs and
outputs

Extended I/O area (O area)

Characteristics Size

The user program can access the I/O modules directly
via the S5 bus.

The following data types are possible:
- bytes,
- words.

256 bytes
each for
inputs and
outputs

Which Operands are available to the User Program?

CPU 948 Programming Guide
1 - 12 C79000-D8576-C848-03

F flags

Characteristics Size

The flag area is a memory area which the user
program can access extremely quickly with certain
operations.
The flag area should be used ideally for working data
required often.

The following data types can be accessed:
- single bits,
- bytes,
- words,
- double words.

Single flag bytes can be used as interprocessor
communication flags (IPC flags) to exchange data
between the CPUs in the multiprocessor mode (refer
to Chapter 10). IPC flags are updated by the system
program at the end of the cycle via a buffer in the
coordinator or CP/IP.

2048 bits

S flags (extended flag area)

Characteristics Size

The CPU 948 also contains an additional flag area, the
S flag area. The user program can also access this area
extremely quickly as with the F flags.

S flags cannot however by used as actual operands
with function block calls nor as IPC flags for data
exchange between the CPUs. The bit test operations of
the CPU 948 can also not be used with the S flags.

These flags can only be used with the PG system
software "S5-DOS" from version 3.0 upwards or
"S5-DOS/MT" from version 1.0 upwards.

32 768 bits

1

Which Operands are available to the User Program?

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 13

Timers (T)

Characteristics Size

The user program loads timer cells with a time value
between 10 ms and 9990 s and by means of a start
operation, decrements the timer from this value at the
preselected intervals until it reaches the value zero.

256 timer
cells

Counters (C)

Characteristics Size

The user program loads counter cells with a start value
(max. 999) and then increments or decrements them.

256
counters

Data words in the current data
block

Characteristics Size

A data block contains constants and/or variables in the
byte, word or double word format. With STEP 5
operations, you can always access the "current" data
block (refer to Section 2.4.2).
The following data types can be accessed:

- single bits,
- bytes,
- words,
- double words.

256
words

1)

1) In data blocks with a length greater than 256 words, you can only access data
words with the numbers > 255 with operations for absolute memory access
(refer to Chapter 9).

Which Operands are available to the User Program?

CPU 948 Programming Guide
1 - 14 C79000-D8576-C848-03

1.5 How much Memory is available for the User Program?

For storing logic and data blocks, the CPU 948 only has the user
memory in the internal RAM.

The CPU 948 is available with two versions of the user memory:

•• Version 1: with 640 Kbytes,

•• Version 2: with 1,664 Kbytes.

1

How much Memory is available for the User Program?

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 15

1.6 How to Tackle Programming

If you are an experienced user, you have probably found the most
suitable method for creating programs for yourself and you can skip
this section.

Less experienced readers will find tips for designing, programming,
testing and starting up your STEP 5 program.

Implementation stages The implementation of the STEP 5 control program can be divided
into three stages:

Stage Activity

1 Determining the technological task

2 Designing the program

3 Creating, testing and starting the program

Recursive procedure In practice, you will recognize that certain steps must be repeated
(recursive procedure), e.g. when you realize that more signals are
required to improve the handling of the task.

Stage 1 Determining the technological task:

Stage Activity

1 Create a general block diagram outlining the control
tasks of your process.

2 Create a list of the input and output signals required
for the task.

3 Improve the block diagram by assigning the signals
and any particular time conditions and/or counter
statuses to the individual blocks.

How to Tackle Programming

CPU 948 Programming Guide
1 - 16 C79000-D8576-C848-03

Stage 2 Designing the program

Stage Activity

1 Based on the improved block diagram, decide on the
types of processing required of your program (cyclic
processing, time-controlled processing etc.) and select
the OBs required for this.

2 Divide the types of processing into technological
and/or functional units.

3 Check whether the units can be assigned to a program
or function block and select the blocks you require
(PB x, FB y etc.)

4 Find out which timers, counters and data or results
memory you require.

5 Specify the tasks for each of the proposed logic blocks
and the data for flags and data blocks which may be
required. Create flow diagrams for the logic blocks.

Notes on the scope of
cyclic processing

When deciding on the types of processing, keep the following
conditions in mind:

•• The cycle must run through quickly enough. The process statuses
must not change more quickly than the CPU can react. Otherwise
the process can get out of control.

•• The maximum reaction time should be taken as twice the cycle
time.
The cycle time is determined by the cyclic processing of the
system program and the type and scope of the user program. It is
often not constant, since the cyclic user program may be
interrupted when time and interrupt-driven program sections are
called.

1

How to Tackle Programming

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 17

Stage 3 Creating, testing and starting up the program:

Stage Activity

1 Decide on the type of representation for the logic
blocks (LAD, CSF or STL, refer to Chapter 2).
Remember that function blocks can only be created in
the STL method of representation.

2 Program all logic and data blocks (please refer to your
STEP 5 manual).

3 Start up the blocks one after the other (you may have
to program a different OB for each individual step, to
call the logic blocks):
1a: load the block(s)
1b: test the block(s)

(For more detailed information please refer to your
STEP 5 manual and Chapter 11).

4 When you are certain that all the logic blocks run
correctly and all the data can be correctly calculated
and stored, you can start up your whole program.

Note on test strategies When you actually start up your program for the first time in genuine
process operation, i.e. with real input and more importantly output
signals, is a decision that must be left up to yourself or to a team of
experts.
The more complex the process, the greater the risk and therefore the
greater the care required when starting up.

How to Tackle Programming

CPU 948 Programming Guide
1 - 18 C79000-D8576-C848-03

1.7 Programming Tools

 Suitable PGs The following programmers are available for creating your user
program, PG 685, PG 710, PG 730, PG 750 and PG 770. You can
check on the performance and characteristics of these devices in the
catalog ST 59 /9/.

Note
If you wish to use the full range of performance of the CPU 948
in your automation software, (particularly the DX 0 screen, the
"Output ISTACK" screen, the display with the "memory
configuration" function and the PG functions via the backplane
bus) you require the PG system software "STEP 5/ST" from
version 6.3 upwards or "STEP 5/MT" from version 6.0 upwards
plus the "Delta diskette CPU 948" and a PG 7xx.

Suitable software You can create user programs for SIMATIC S5 programmable
controllers as follows:

•• In the STEP 5 programming language,

Here you require the STEP 5 programming package along with the
system software STEP 5/ST or STEP 5/MT (description, refer to
/3/ in Further Reading),

or

•• In a higher programming language:

If you are familiar with programming in higher programming
languages, you can also formulate your STEP 5 program for the
CPU 948 as follows:

- SCL (refer to /12/ in Further Reading, the SCL compiler is
contained in the PG software "S5-DOS/MT" from version 6
upwards.)
or

- C with S5 C compiler (refer to /13/ in Further Reading).

You can also create programs for sequence control systems in a
graphic representation using the GRAPH 5 programming package
(description, refer to /4/ in Further Reading).

Depending on the task, you can also incorporate "off-the-peg"
standard function blocks in your user program. The performance and
characteristics of these blocks are described in the catalog ST 57 /11/.

1

Programming Tools

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 19

1.8 What is New with the CPU 948?

1.8.1
CPU 948, Version A01 Compared with the CPU 946/947, the CPU 948 version A01 has new

characteristics and functions and significant improvements in
performance.

Faster processing The CPU 948 is between three and five times faster than the CPU
946/947. The exact execution times can be found in your Pocket
Guide /1/.

Larger user memory

CPU 948
only RAM (integrated)

CPU 946/947
RAM or EPROM cartridges

640 Kbytes or 1664 Kbytes in
internal RAM integrated in the
CPU 948, for logic and data
blocks.

Max. 896 Kbytes, of which 128
Kbytes fixed as RAM plus
additional 6 RAM or EPROM
cartridges, each with 128 Kbytes
in 355 memory modules.

Memory Card

CPU 948 CPU 946/947

SIMATIC Memory Card (Flash
EPROM), 256 Kbytes to
2 Mbytes;
the memory card is programmed
on the PG and its contents loaded
in the user memory (internal
RAM) following an OVERALL
RESET.

SIMATIC memory cartridges
RAM or EPROM, max. 128
Kbytes;
data blocks can be copied to the
DB RAM from EPROM
(OB 254/255).

What is New with the CPU 948?

CPU 948 Programming Guide
1 - 20 C79000-D8576-C848-03

Interruptability at block or
operation boundaries

With a CPU 948, there is no longer a distinction between 150/155U
modes. This means the following changes compared with the CPU
946/947:

CPU 948 CPU 946/947

- Processing system interrupts:
possible with interrupts at the
operation or block boundaries

- Multiprocessor mode:
interrupts possible at the
operation or block boundaries.

- Processing systems interrupts:
only possible with interrupts
at operation boundaries.

- Multiprocessor mode:
only possible with interrupts
at operation boundaries.

Expansion of
time-controlled program
processing

Apart from the familiar cyclic timed interrupts at fixed intervals, the
following new interrupts are also processed:

•• delayed interrupt (OB 6),

•• clock-controlled interrupt (OB 9).

Both interrupts are only possible when "process interrupts via IB 0 =
off" is set in DX 0.

Expansion of PG
communication

•• Second PG serial interface via plug-in PG submodule.

•• PG functions via SINEC H1 and parallel backplane bus.

New special functions •• Delete ACCU 1 to ACCU 4 (OB 131)
Roll-up ACCU (OB 132)
Roll-down ACCU (OB 133)

•• Enable/disable "block single timed interrupts" (OB 141)
Enable/disable "delay all interrupts" (OB 142)
Enable/disable "delay single timed interrupts" (OB 143)

•• Read/set system time, compatible with CPU 928B (OB 150),

•• Assign parameters for clock-controlled interrupt (OB 9), (OB 151)

•• Assign parameters for delayed interrupt (OB 6), (OB 153)

•• Restart cycle monitoring time (OB 222)

1

What is New with the CPU 948?

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 21

Self test functions

WHAT IS TESTED? WHEN?

The user memory In OVERALL RESET

The BASP signal
(disable command output)

In STOP

The hardware clock In COLD RESTART

The cycle time monitoring In START-UP

The address lines Cyclically in RUN

The code of the system program
(checksum)

Cyclically in RUN

The code of the STEP 5 logic
blocks in the user memory
(checksum)

Cyclically in RUN

The test functions can be activated individually, they are performed in
"time slices".

OB 0

CPU 948 CPU 946/947

With the PG functions,
BSTACK, ISTACK and DIR,
only the operating system
organization block OB 0 is
displayed.

With the PG functions,
BSTACK, ISTACK and DIR, all
the operating system
organization blocks > OB 40 are
displayed.

New HDBs for the CPU 948 "New" handling blocks (HDBs) are required for the CPU 948. The
HDBs of the CPU 946/947 cannot be used in the CPU 948.

The HDBs for the CPU 948 are those for the S5-135U (CPU 922,
CPU 928, CPU 928B), and can be obtained under the following order
numbers:

6ES5 842-xCB01 ("HDBs for the CPU 922, 928, 928B and CPU 948")

where:
x = 8 stands for the operating system S5-DOS (PCP/M)
x = 7 stands for the operating system MS-DOS, S5/DOS-MT.

What is New with the CPU 948?

CPU 948 Programming Guide
1 - 22 C79000-D8576-C848-03

1.8.2
CPU 948, Version
A02

The CPU 948, version A02, provides you with new features and
functions compared with the CPU 948, version A01:

Communication via the
second serial interface

As with the CPU 928B, the following communications options are
available via the second serial interface:

•• RK 512,

•• data transmission with procedure 3964/3964R,

•• open drivers,

•• SINEC L1.

For more detailed information, see the communications manual
(Further Reading /14/).

Software protection You can protect your user program from read and write access using a
password (see Chapter 8, RS 120).

New special function OBs The following special function OBs are available (see Chapter 6):

•• OB 129: Battery state

•• OB 181: Test data blocks DB/DX

•• OB 182: Copy data areas

1.8.3
CPU 948, Version A03
and Higher

Special function OB 180: Variable data block access.

1

What is New with the CPU 948?

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 23

1.9 Converting User Programs of the CPU 928B for the CPU 948

The following section informs you about the points you should
remember when you convert user programs written for the CPU 928B
for use on the CPU 948.

Operations In the following operations, note the differences in the execution and
handling (among other things the different memory utilization).

Operations CPU 928B CPU 948

IA/RA (disable/enable
interrupts)

All process interrupts are disabled or
enabled

Only the process interrupts via input
byte IB 0 are disabled or enabled.
Instead of these operations, use the
special function OBs OB 122 or
OB 142.

LIR/TIR 16 bit long addresses are used. 20 bit long addresses are used.
Adaptation is necessary.

Block transfer opera-
tion TNB

16 bit long addresses are used. The operation does not exist.
Use TNW for block transfer from the
8-bit to the 8-bit area.

Block transfer opera-
tion TNW

- 16 bit long addresses are used.

- Block transfers from the 8-bit to the
8-bit area and vice versa are
possible.

- 20 bit long addresses are used.
Adaptation is necessary.

- only block transfers from the
8-bit to the 8-bit area and from the
16-bit to the 16-bit areas possible
with TNW.
- for the block transfer from

the 8-bit to the 16-bit area use
the operation TXB ,

- for the block transfer from
the 16-bit to the 8-bit area use
the operation TXW.

(TXB and TXW do not exist on
a CPU 928B)

All operations with the
BR register

The BR register is 20 bits wide. The BR register is 32 bits wide.
Adaptation is necessary.

Converting User Programs of the CPU 928B for the CPU 948

CPU 948 Programming Guide
1 - 24 C79000-D8576-C848-03

Timer processing

CPU 928B CPU 948

The timers are updated during
start-up.

The timers are only updated in
the RUN mode
(Reason: compatibility with
CPU 946/947)

FB 0 as cycle block

CPU 928B CPU 948

If no cycle block OB 1 exists, the
system program calls FB 0
cyclically, provided it is loaded.

Only OB 1 can be used for cyclic
processing. If you have
programmed FB 0, create an
OB 1 in which FB 0 is called.

Default priorities

CPU 928B CPU 948

Process interrupts have higher
priority than timed interrupts.

Timed interrupts have priority
over process interrupts via IB 0
or system interrupts. You can
change the priority with the
parameters in DX 0.

Data block DB 0
(block address list)

CPU 928B CPU 948

The block address list contains
the direct start addresses of the
blocks.

The block address list contains
the segment addresses of the
blocks. To obtain the start
address of a block, its segment
address must be shifted 4 bits to
the left.

1

Converting User Programs of the CPU 928B for the CPU 948

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 25

Data block DX 0 You must create a new DX 0 data block (see Chapter 7), since the
DX 0 for the CPU 928B has a different structure and settings.

Using the RT area With the CPU 928B, the RT area is not used by the system program,
with the CPU 948 it is used to some extent by the handling blocks.
You can only use the RT area for your user program when you do not
use any standard FBs and any PG functions via SINEC H1 and the S5
bus.

Organization blocks The number and function of the error and special function OBs are not
the same on the CPU 928B and CPU 948:

Error OBs The following error OBs of the CPU 948 respond differently from
their namesakes on the CPU 928B:

OB Function Error IDs

OB 19
OB 26
OB 27

Same as on
CPU 928

Different from
CPU 928B

OB 28
OB 29
OB 30
OB 31

Function different
from that on
CPU 928B

 –

Special function OBs

OB Note

OB 110
OB 152

OB 160 to 163
OB 170

OB 190 to 193
OB 216 to 218

OB 220 and 221
OB 224

OB 226 to 228
OB 240 to 242

OB 250 and 251

These OBs do not exist on the CPU 948

OB 111
OB 112
OB 113
OB 120
OB 121
OB 122
OB 123

On the CPU 948, the OB is replaced by :
OB 131
OB 132
OB 133
OB 122
OB 141
OB 142
OB 143

OB 122 Parameter assignment is different from that of the
CPU 928B OB 122
(reason: compatibility with CPU 946/947).

Converting User Programs of the CPU 928B for the CPU 948

CPU 948 Programming Guide
1 - 26 C79000-D8576-C848-03

OB Note

OB 180 In contrast to the CPU 928B, the access window of
the CPU 948 can only be shifted by a multiple of
16.

OB 200
OB 202 to 205
(multiprocessor
communication)

In contrast to the CPU 928B, these CPU 948 OBs
change the content of ACCU 4.

R64 controller software The R64 controller software cannot be run on the CPU 948.

Standard FBs Generally, the standard function blocks used on the CPU 928B (e.g.
for IPs) must be replaced by those for the CPU 948. The HDBs are an
exception these can be taken from the CPU 928B (see Section 1.8.1).

1

Converting User Programs of the CPU 928B for the CPU 948

CPU 948 Programming Guide
C79000-D8576-C848-03 1 - 27

Contents of Chapter 2

2.1 STEP 5 Programming Language . 2 - 4

2.1.1 The LAD, CSF, STL Methods of Representation . 2 - 4
2.1.2 Structured Programming. 2 - 5
2.1.3 STEP 5 Operations . 2 - 6
2.1.4 Number Representation . 2 - 8
2.1.5 STEP 5 Blocks and Storing them in Memory . 2 - 12

2.2 Program, Organization and Sequence Blocks . 2 - 16

2.2.1 Organization Blocks as User Interfaces . 2 - 18
2.2.2 Organization Blocks for Special Functions . 2 - 22

2.3 Function Blocks . 2 - 23

2.3.1 Structure of Function Blocks . 2 - 24
2.3.2 Programming Function Blocks. 2 - 26
2.3.3 Calling Function Blocks and Assigning Parameters to them . 2 - 28
2.3.4 Special Function Blocks . 2 - 33

2.4 Data Blocks. 2 - 35

2.4.1 Creating Data Blocks . 2 - 37
2.4.2 Opening Data Blocks . 2 - 38
2.4.3 Special Data Blocks . 2 - 41

2User Program

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 1

2User Program

The following chapter explains the components that make up a
STEP 5 user program for the CPU 948 and how it can be structured.

2

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 3

2.1 STEP 5 Programming Language

With the STEP 5 programming language, you convert automation
tasks into programs that run on SIMATIC S5 programmable
controllers. You can program simple binary functions, complex
digital functions and arithmetic operations including floating
point arithmetic using STEP 5.

Types of operation The operations of the STEP 5 programming language are divided into
the following groups:
Basic operations

•• you can use these operations in all logic blocks

•• methods of representation: ladder diagram (LAD), control system
flowchart (CSF), statement list (STL).

Supplementary operations and system operations:

•• can only be used in function blocks

•• only statement list (STL) method of representation

•• system operations: only experienced STEP 5 programmers should
use system operations

2.1.1
The LAD, CSF, STL
Methods of Representation

When programming in STEP 5, you can choose between the three
methods of representation ladder diagram (LAD), control system
flowchart (CSF) and statement list (STL) for each individual logic block.
You can choose the method of representation that best suits your
particular application.
The machine code MC5 that the programmers (PGs) generate is the
same for all three methods of representation.
If you follow certain rules when programming in STEP 5 (see /3/), the
programmer can translate your user program from one method of
representation into any other.

Graphic representation or
list of statements

While the ladder diagram (LAD) and control system flowchart (CSF)
methods of representation represent your STEP 5 program
graphically, statement list (STL) represents STEP 5 operations
individually as mnemonic abbreviations.

STEP 5 Programming Language

CPU 948 Programming Guide
2 - 4 C79000-B8576-C848-03

Graphic representation of
sequential controls

GRAPH 5 /4/ is a programming language for graphic representation of
sequential controls. It is at a higher level than the LAD, CSF, STL
methods of representation. A program written in GRAPH 5 as a
graphic representation is automatically converted to a STEP 5
program by the PG.

2.1.2
Structured Programming Using STEP 5, you can structure your program by dividing it into

self-contained program sections (blocks). This division of your
program clarifies the essential program structures making it easy to
recognize the system parts that are related within the software.

Ladder diagram Statement list Control system flowchart

Programming with
graphic symbols
like a circuit diagram

Programming with
graphic symbols

IEC 117-15
DIN 40700
DIN 40719
DIN 19239

DIN 19239 DIN 19239

STL CSFLAD

A
AN
A
ON
O
=

&

> = 1

I
I
I
I
I
Q

Programming with
mnemonic abbreviations
of function designations

complies with complies with complies with

Fig. 2-1 Methods of representation in the STEP 5 programming language

2

STEP 5 Programming Language

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 5

Structured programming offers you the following advantages:
•• simple and clear creation of programs, even large ones

•• standardization of program parts

•• simple program organization

•• easy program changes

•• simple, section by section program test

•• simple system start-up

What is a block? A block is a part of the user program that is distinguished by its
function, structure or application. You can differentiate between
blocks that contain statements (code) i.e. organization blocks,
program blocks, function blocks or sequence blocks, and blocks that
contain data (data blocks).

2.1.3
STEP 5 Operations A STEP 5 operation is the smallest independent unit of the user program.

It is the work specification for the CPU. A STEP 5 operation consists of
an operation and an operand as shown in the following example:

Example

Operation code

Operation Operand

Parameter

:O F 54.1

(what is to be done?) (with what is the
operation to be done?)

STEP 5 Programming Language

CPU 948 Programming Guide
2 - 6 C79000-B8576-C848-03

Absolute and symbolic
operands

You can enter the operand absolutely or symbolically (using an
assignment list) as shown in the following example:
Absolute representation: :A I 1.4

Symbolic representation: :A -Motor1
For more information on absolute and symbolic programming, refer to
your STEP 5 manual.

Application of STEP 5
operations

The STEP 5 operation set enables you to do the following:

•• set or reset and combine binary values logically

•• load and transfer values

•• compare values and process them arithmetically

•• specify timer and counter values

•• convert number representations

•• call blocks and execute jumps within a block

and

•• influence program execution

Result of logic operation RLO The central bit for controlling the program is the result of logic
operation RLO. This is obtained as a result of binary logic operations
and is influenced by some operations.
Section 3.5 describes the whole STEP 5 operation set and explains how
the RLO is obtained. This section also includes programming examples
for individual STEP 5 operations.

2

STEP 5 Programming Language

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 7

2.1.4
Number Representation To allow the CPU to logically combine, modify or compare numerical

values, these values must be located in the accumulators (working
registers of the CPU) as binary numbers.
Depending on the operations to be carried out, the following number
representations are permitted in STEP 5:
Binary numbers: 16-bit fixed point numbers

32-bit fixed point numbers

32-bit floating point numbers (with a 24-bit
mantissa)

Decimal numbers: BCD-coded numbers (sign and 3 digits)

Numerical input on the PG When you use a programmer to input or display number values, you
set the data format on the programmer (e.g. KF or fixed point) in
which you intend to enter or display the values. The programmer
converts the internal representation into the form you have requested.

Permitted operations You can carry out all arithmetic operations with the 16-bit fixed
point numbers and floating point numbers, including comparison,
addition, subtraction, multiplication and division.

Note
Do not use BCD-coded numbers for arithmetical operations, since
this leads to incorrect results.

Use 32-bit fixed point numbers to execute comparison operations.
These are also necessary as an intermediate level when converting
numbers in BCD code to floating point numbers. With the operations
+D and -D they can also be used for addition and subtraction.
The STEP 5 programming language also has conversion operations that
enable you to convert numbers directly to the most important of the other
numerical representations.

STEP 5 Programming Language

CPU 948 Programming Guide
2 - 8 C79000-B8576-C848-03

16-bit and 32-bit fixed
point numbers

Fixed point numbers are whole binary numbers with a sign.

Coding of fixed point numbers Fixed point numbers are 16 bit (= 1 word) or 32 bit (= 2 words) in
binary representation. Bit 15 or bit 31 contains the sign.
•• ’0’ = positive number

•• ’1’ = negative number
The two’s complement representation is used for negative numbers.

PG input Input of 16-bit fixed point number data format at the PG:KF

Input of 32-bit fixed point number data format at the PG:DH

Permitted numerical range 16-bit fixed point number
-32768 to +32767 (16 bits)

32-bit fixed point number
-2147483648 to +2147483647 (32 bits)
 (8000 0000H to 7FFF FFFFH)

Using fixed point numbers Use fixed point numbers for simple calculations and for comparing
number values. Since fixed point numbers are always whole numbers,
remember that the result of dividing two fixed point numbers is also a
fixed point number without decimal places.

Floating point numbers Floating point numbers are positive and negative fractions. They
always occupy a double word (32 bits). A floating point number is
represented as an exponential number. The mantissa is 24 bits long
and the exponent is 8 bits long.
In the CPU 948, the default mantissa is 24 bits long (bits 0 to 23) for
adding, subtracting, multiplying and dividing.
The exponent indicates the order of magnitude of the floating point
number. The sign of the exponent tells you whether the value of the
floating point number is greater or less than 0.1.

2

STEP 5 Programming Language

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 9

Using floating point numbers Use floating point numbers for solving extensive calculations,
especially for multiplication and division or when you are working
with very large or very small numbers!

Accuracy The mantissa indicates the accuracy of the floating point number as
follows:
•• Accuracy with a 24-bit mantissa:

2-24 = 0.000000059604 (corresponds to 7 decimal places)
If the sign of the mantissa is "0" the number is positive; if the sign is
"1" it is a negative number in its two’s complement representation.
The floating point value ’0’ is represented as the binary value
80000000H (32 bits, see below).

Coding floating point numbers Coding a floating point number:

 31 30 24 23 22 0

V 26 20 V 2-1 2-23

Exponent Mantissa

Specification of the data format for floating point numbers at the
PG: KG

Permissible numerical range ± 0.1469368 x 10-38 to ± 0.1701412 x 1039

Input/output on PG a) in a logic block:

You want to load the number N = 12.34567 as a floating point
number.

Input:

:LKG1234567+2

STEP 5 Programming Language

CPU 948 Programming Guide
2 - 10 C79000-B8576-C848-03

b) in a data block:

You want to define the number N = - 0.005 as a floating point
constant.

Input:

6: KG = - 5 - 2

Numbers in BCD code Decimal numbers are represented as numbers in BCD code. With their
sign and three digits, they occupy 16 bits (1 word) in an accumulator
as shown in the following example:
 15 12 11 8 7 4 3 0

V V V V hundreds tens ones

The individual digits are positive 4-bit binary numbers between 0000 and
1001 (0 and 9 decimal).
The left bits are reserved for the sign as follows:
Sign for a positive number: 0000
Sign for a negative number: 1111

Permissible numerical range -999 to +999

PG display after you enter the line:

:L KG + 1234567 + 02

Mantissa with sign Exponent (base 10)
with sign

Value of the number input: +0.1234567 x 10+2 = 12.34567

PG display after you enter the line:

6: KG =- 5000000 - 02

Mantissa with sign Exponent (base 10)
with sign

Value of the number input : - 0.5 x 10-2 = 0.005

2

STEP 5 Programming Language

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 11

2.1.5
STEP 5 Blocks and Storing
them in Memory

Identification A block is identified as follows:
•• the block type (OB, PB, SB, FB, FX, DB, DX)

and

•• the block number (number between 0 and 255).

Block types The STEP 5 programming language differentiates between the
following block types:

Organization blocks (OB) Organization blocks are the interface between the system program and
the user program. They can be divided into two groups as follows:

With OB 1 to OB 39, you can control program execution, the restart
procedure of the CPU and the reaction in the event of an error. You
program these blocks yourself according to your automation task.
These OBs are called by the system program.

OBs 40 to 100 are blocks belonging to the operating system. You
must not call these blocks.

OBs 121 to 255 contain special functions of the system program. You
can call these blocks, if required, in your user program.

Program blocks (PB) You require program blocks to structure your program. They contain
program parts divided according to technological and functional
criteria. Program blocks represent the heart of the user program.

Sequence blocks (SB) Sequence blocks were originally special program blocks for step by
step processing of sequencers. In the meantime, however, sequencers
can be programmed with GRAPH 5/4/. Sequence blocks have
therefore lost their original significance in STEP 5.
Sequence blocks now represent an extension of the program blocks
and are used as program blocks.

STEP 5 Programming Language

CPU 948 Programming Guide
2 - 12 C79000-B8576-C848-03

Function blocks (FB/FX) You use function blocks to program frequently recurring and/or
complex functions (e.g. digital functions, sequence control systems,
closed loop controls and signalling functions).

A function block can be called several times by higher order blocks
and supplied with new operands (assigned parameters) at each call.
Using block type FX doubles the maximum number of possible function
blocks.

Data blocks (DB/DX) Data blocks contain the (fixed or variable) data with which the user
program works. This type of block contains no STEP 5 statements and
has a distinctly different function from the other blocks. Using block
type DX doubles the number of possible data blocks.

Formal structure
of the blocks

All blocks consist of the following two parts:

•• a block header

and

•• a block body

Block header The block header is always 5 words long and contains information for
block management in the PG and data for the system program.

Block body Depending on the block type, the block body contains the following:
•• STEP-5 operations (in OB, PB, SB, FB, FX),

•• variable or constant data (in DB, DX)

and

•• a formal operand list (in FB, FX).

2

STEP 5 Programming Language

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 13

Block preheader The programmer also generates a block preheader (DV, DXV, FV,
FXV) for block types DB, DX, FB and FX. These block preheaders
contain information about the data format (for DB and DX) or the
jump labels (for FB and FX). Only the PG can evaluate this
information. Consequently the block preheaders are not transferred to
the CPU memory. You cannot influence the contents of the block
header directly.

Maximum length A STEP-5 block can occupy a maximum of 32 767 words in the
program memory of the CPU (1 word corresponds to 16 bits).

Available blocks

You can program the following block types:

Data blocks DB 0, DB 1, DB 2, DX 0, DX 1 and DX 2 contain
parameters. These are reserved for specific functions and you cannot use
them as normal data blocks.
Data block DX 2 is reserved for the 2nd serial interface and you should
not use it.

OB 1 to 39

FB 0 to 255
 total 512

FX 0 to 255

PB 0 to 255

SB 0 to 255

DB 2 to 255
 total 508

DX 3 to 255

STEP 5 Programming Language

CPU 948 Programming Guide
2 - 14 C79000-B8576-C848-03

Block storage The programmer stores all programmed blocks in the program
memory in the order in which they are transferred (Fig. 2-2). With the
PG function "transfer data blocks A" the logic blocks are transferred
first followed by the data blocks.

The start addresses of all stored blocks are placed in an address list in
data block DB 0.

Correcting and
deleting blocks

When you correct blocks, the old block is declared invalid in the
memory and a new block is entered.
Similarly, when blocks are deleted, they are not really deleted, instead
they are declared invalid. The space they occupy is, however, not
released and is not available for blocks loaded later.

Note
You can use the COMPRESS MEMORY online function to make
space for new blocks. This function optimizes the utilization of
the memory by deleting blocks marked as invalid and shifting
valid blocks together.

Locat ion of blocks
in the user memory

Address 0

FB1

OB1

SB10

DB1

PB1

PB2

Fig. 2-2 Example of block storage in the user memory

2

STEP 5 Programming Language

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 15

2.2 Program, Organization and Sequence Blocks

Program blocks (PBs), organization blocks (OBs) and sequence
blocks (SBs) are the same with respect to programming and calling.
You can program all three types in the LAD, CSF and STL methods
of representation.

Programming When programming organization, program and sequence blocks,
proceed as follows:

Step Action

1 First indicate the type of block and then the number of the
block that you want to program.

The following numbers are available for the type of
block listed:

- program blocks 0 to 255
- sequence blocks 0 to 255
- organization blocks 1 to 39

2 Enter your program in the STEP 5 programming language.

When programming PBs, OBs and SBs, you can only
use the STEP 5 basic operations!

A STEP 5 block should always be a self-contained
program section.
Logic operations must always be completed
within a block.

3 Complete your program input with the block end
operation "BE".

Block calls With the exception of OB 1 to OB 39 you must call the blocks to
process them. Use the special STEP 5 block call operations to call the
blocks.
You can program block calls inside an organization, program,
function or sequence block. They can be compared with jumps to a
subroutine. Each jump causes a block change. The return address
within the calling block is buffered by the system.

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
2 - 16 C79000-B8576-C848-03

Block calls can be unconditional or conditional as follows:
Unconditional call The "JU" statement belongs to the unconditional operations. It has no

effect on the RLO. The RLO is carried along with the jump to the new
block. Within the new block, it can be evaluated but no longer
combined logically.

The addressed block is processed regardless of the previous result of
logic operation (RLO - see Section 3.4).

Example: JU PB 100

Conditional call The JC statement belongs to the conditional operations. The addressed
block is processed only if the previous RLO = 1. If the RLO = 0, the
jump is not executed.

Example: JC PB 100

Note
After the conditional jump operation is executed, the RLO is set
to "1" regardless of whether or not the jump to the block is
executed.

PB 1 PB 5 PB 10

PB 6

BE

BE

BE

BE

A A

O

I 1.0 I 2.0

I 3.0

JU PB 5
O I 5.3

A I 1.5
JC PB 6
A I 3.2

JC PB 10
O F 1.5

Fig. 2-3 Block calls that enable processing of a program block

2

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 17

Effect of the BE statement After the "BE" statement (block end), the CPU continues the user
program in the block in which the block call was programmed.
Program execution continues at the STEP 5 statement following the
block call.
The "BE" statement is executed regardless of the RLO. After "BE",
the RLO can no longer be combined logically. However, the RLO or
arithmetic result occurring directly before execution of the BE
operation is transferred to the block where the call originated and can
be evaluated there. When program execution returns from the block
that has been called, the contents of ACCU 1, ACCU 2, ACCU 3 and
ACCU 4, the condition codes CC 0 and CC 1 and the RLO are not
changed. (Refer to Section 3.5 for more detailed information about the
ACCUs, CC0/CC1 and RLO).

2.2.1
Organization Blocks as
User Interfaces

Organization blocks form the interfaces between the system program
and the user program. Organization blocks OB 1 to OB 39 belong to
your user program just as program blocks. By programming these
OBs, you can influence the behavior of the CPU during start-up,
program execution and in the event of an error. The organization
blocks are effective as soon as they are loaded in the PLC memory.
This is also possible while the PLC is in the run mode.
Once the system program has called a specific organization block, the
user program it contains is executed.

Note
You can program blocks OB 1 to OB 39 as user interfaces and
they are called automatically by the system program as a reaction
to certain events.

For test purposes, you can also call these organization blocks
from the user program (JC/JU OB xxx). It is, however, not
possible to trigger a COLD RESTART, e.g. by calling OB 20.

The following table provides you with an overview of the user
interfaces (OBs).

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
2 - 18 C79000-B8576-C848-03

Organization blocks for controlling program execution

Block Function and call criterion

OB 1 Organization of cyclic program execution; first call after a start-up, then cyclic call.

OB 2
OB 3
OB 4
OB 5
OB 6
OB 7
OB 8
OB 9

With DX-0 setting "Process interrupt servicing via input byte
IB 0 =on":
(interruptability at block boundaries, can be set in DX 0)

Call with signal state change in input byte IB 0 in bit:
I 0.0
I 0.1
I 0.2
I 0.3
I 0.4
I 0.5
I 0.6
I 0.7

OB 2
OB 3
OB 4
OB 5

OB 6
OB 9

With DX-0 setting "Process interrupt servicing via input byte
IB 0 = off":
 (interruptability at operation or block boundaries, can be set in DX 0)

Call via interrupt lines of the S5 bus:
System interrupt INT X (INT A, B, C or D, depends on slot)
System interrupt INT E
System interrupt INT F
System interrupt INT G

Delayed interrupt
Clock-controlled interrupt

OB 10
OB 11
OB 12
OB 13
OB 14
OB 15
OB 16
OB 17
OB 18

Organization of time-controlled program execution (timed interrupt) with
selectable basic clock rate (default T = 100 ms) and
clock distributor (default corresponds to 150U) in data block DX 0;
Calls as follows:

Default setting 150U clock distributor 2n clock distributor

0.1 s
0.2 s
0.5 s
1.0 s
2.0 s
5.0 s

10.0 s
20.0 s
50.0 s

T * 1
T * 2
T * 5
T * 10
T * 20
T * 50
T * 100
T * 200
T * 500

T * 1
T * 2
T * 4
T * 8
T * 16
T * 32
T * 64
T * 128
T * 256

Table 2-1 Overview of the organization blocks of the CPU 948 for program execution

2

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 19

Organization blocks to control the start-up procedure

Block Function and call criterion

OB 20 Call on request for COLD RESTART (manual and automatic)

OB 21 Call on request for MANUAL WARM RESTART/COLD RESTART WITH
MEMORY

OB 22 Call on request for AUTOMATIC WARM RESTART/COLD RESTART
WITH MEMORY

Organization blocks to control the start-up procedure

Block Function and call criterion

OB 38 Organization of the start-up procedure for communication in the
"soft stop" mode.

OB 39 Organization of the cyclic program for communication in the
"soft stop" mode.

Organization blocks for reaction to device or program errors 1)

Block Function and call criterion

OB 19 Runtime error (LZF): called block not loaded (PB, SB, FB, FX)
or attempt to open a data block that is not loaded (DB, DX)

OB 23 Timeout (QVZ) in user program (during direct access to I/O modules)

OB 24 Timeout (QVZ) when updating the process image and transferring
interprocessor communication flags.

OB 25 Addressing error (ADF)

OB 26 Cycle time exceeded (ZYK)

Table 2-4 continued:

OB 27 Substitution error (SUF)

Table 2-2 Overview of the organization blocks of the CPU 948 for start-up

Table 2-3 Organization blocks of the CPU 948 for a SOFT STOP

Table 2-4 Overview of the organization blocks of the CPU 948 for error handling

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
2 - 20 C79000-B8576-C848-03

Organization blocks for reaction to device or program errors 1)

Block Function and call criterion

OB 28 Timeout input byte IB 0
(process interrupts)

OB 29 Timeout distributed I/Os, extended address volume

OB 30 Timeout and parity error (PARE) accessing the user memory

(OB 31) (set cycle monitoring time) 2)

OB 32 Load and transfer error accessing data blocks (TRAF)

OB 33 Collision of timed interrupts (WEFES/WEFEH)

OB 34 Error setting up a data block (G DB/GX DX)

OB 36 Error in self test

1) If the OB is not programmed, the CPU changes to the stop mode in the event of an error. EXCEPTION: if OB 19
(logic block not loaded), OB 23 or OB 24, OB 29 (timeout) or OB 33 (collision of timed interrupts) do not exist,
there is no reaction!

2) OB 31 only exists in the CPU 948 for the sake of compatibility.
To set the cycle monitoring time, you should use data block DX0 (refer to Chapter 7)
OB 31 is called once during the start-up, if loaded. You can also use it to set the cycle monitoring time by programming
the following STEP 5 operations in it:

:L KF +nnn
:BE

nnn is a decimal number. The cycle monitoring time is obtained from "nnn * 10 ms".

Operating system organization blocks of the CPU 948

Block Function

OB 0 Internal block belonging to operating system

2

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
C79000-B8576-C848-03 2 - 21

2.2.2
Organization Blocks for
Special Functions

The following organization blocks contain special functions of the
system program. You cannot program these blocks, but simply call
them (this applies to all OBs with numbers between 121 and 255!).
They do not contain a STEP 5 program. Special function OBs can be
called in all logic blocks.

Integrated organization blocks with special functions

Block: Block function:

OB 121 Set/read time of day (compatible with CPU 946/947)

OB 122 "Disable interrupts" on/off

OB 124 Delete STEP 5 blocks

OB 125 Generate STEP 5 blocks

OB 126 Define/transfer process images

OB 129 Battery state

OB 131 Delete ACCU 1 to ACCU 4

OB 132 Roll up ACCU

OB 133 Roll down ACCU

OB 141 Enable/disable "disable individual timed interrupts"

OB 142 Enable/disable "delay all interrupts"

OB 143 Enable/disable "delay single timed interrupts"

OB 150 Set/read system time (compatible with CPU 928B)

OB 151 Set/read clock-controlled interrupt time

OB 153 Set/read time for delayed interrupt

OB 180 Variable data block access

OB181 Test data blocks (DB/DX)

OB 182 Copy data area

OB 200, 202 to 205 Functions for multiprocessor communication

OB 222 Restart cycle monitoring time

OB 223 Compare start-up types of CPUs in multiprocessor mode

OB 254, 255 Copy/duplicate DB and DX data blocks from memory card to user memory

These special functions are described in detail in Chapter 6.

Table 2-5 Overview of the organization blocks of the CPU 948 for special functions

Program, Organization and Sequence Blocks

CPU 948 Programming Guide
2 - 22 C79000-B8576-C848-03

2.3 Function Blocks

Function blocks (FB/FX) are also parts of the user program just like
program blocks. FX function blocks have the same structure as FB
function blocks and are programmed in the same way.
You use function blocks to implement frequently recurring or very
complex functions. In the user program, each function block represents a
complex complete function. You can obtain function blocks as follows:

•• as a software product from SIEMENS (standard function blocks
on diskette - see /11/); with these function blocks you can generate
user programs for fast and simple open loop control, signalling,
closed loop control and logging;

or

•• you can program function blocks yourself.

Compared with organization, program and sequence blocks, function
blocks have the following four essential differences:

OB, PB, SB FB/FX

1. Range of operations

only basic operations - basic operations,
- supplementary operations
- system operations

2. Method of representation

programming and call
in STL, LAD, CSF

programming only in AWL

3. Name

name environment not
possible
(only number)

in addition to the number
a name with max. 8 chars. can
be assigned

4. Operands

none formal operands (block
parameters).
When the block is called
formal operands are assigned
actual operands

2

Function Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 23

2.3.1
Structure of Function Blocks The block header (five words) of a function block has the same

structure as the headers of the other STEP 5 block types.

The block body on the other hand, has a different structure from the
bodies of the other block types. The block body contains the function
to be executed in the form of a statement list in the STEP 5
programming language. Between the block header and the STEP 5
statements, the function block needs additional memory space for its
name and for a list of formal operands. Since this list contains no
statements for the CPU, it is skipped with an unconditional jump that
the programmer generates automatically. This jump statement is not
displayed when the function block is displayed on the PG!

When a function block is called, only the block body is processed.

Absolute or symbolic
operands

You can enter operands in a function block in absolute form
(e.g. F 2.5) or symbolically (e.g. MOTOR1). You must store the
assignment of the symbolic operands in an assignment list before you
enter the operands in a function block (see /3/).

Fig. 2-4 shows the structure of a function block in the memory of a
programmable controller.

JU

Name of the FB/FX

Formal operand 1

Formal operand 2

Formal operand n

5 words

1 word

4 words

3 words

Block
header

Block
body

BE

3 words

Skip formal
operand
l ist

1st STEP 5 user operat ion

3 words

List of
formal
operands

STEP 5
user
program

Fig. 2-4 Structure of a function block (FB/FX)

Function Blocks

CPU 948 Programming Guide

2 - 24 C79000-B8576-C848-03

The memory contains all the information that the programmer needs
to represent the function block graphically when it is called and to
check the operands during parameter assignment and programming of
the function block. The programmer rejects incorrect input.

When handling function blocks, distinguish between the following
procedures:

•• programming FB/FX

and

•• calling FB/FX and then assigning actual values to the parameters.

Distinction: "programming"
– "calling and assigning
parameters"

When programming, you specify the function of the block. You must
decide which input operands the function requires and which output
results it should transfer to the calling program. You define the input
operands and output results as formal operands. These function as
tokens.

When a block is called by a higher order block (OB, PB, SB, FB, FX),
the formal operands (block parameters) are replaced by actual operands;
i.e. parameters are assigned to the function block.

How to program

IF... THEN...

You want to program a function
block "directly", i.e. without
formal operands.

Program it as you would a
program or sequence block.

You want to use formal operands
in a function block.

Proceed as explained on the
following pages.
Make sure you keep to the
required order:
First program the FB/FX with the
formal operands and keep it on
the PG (offline) or in the CPU
memory (online)
Then program the block(s) to be
called with the actual operands.

2

Function Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 25

2.3.2
Programming
Function Blocks

You can program a function block only in the "statement list"
method of representation. When entering a function block at a
programmer, perform the following steps:

Step Action

1 Enter the block type (FB/FX) and the number of the
function block.

Number your function blocks in descending order
starting with FB 255, so that they do not collide with
the standard function blocks. The standard function
blocks are numbered from FB 1 to FB 199.

2 Enter the name of the function block.

The name can have a maximum of eight characters
and must start with a letter.

3 If the function block is to process formal operands:
Enter the formal operands you require in the block as
block parameters.

Enter the following information for each formal
operand:

- the name of the block parameter (maximum
 4 characters),

- the type of block parameter and the data type of
the block parameter (if applicable)

You can define a maximum of 40 formal operands.

4 Enter your STEP 5 program in the form of a statement
list (STL). The formal operands are preceded by an
equality sign (e.g. A = X1). They can also be referenced
more than once at various positions in the function block.

5 Terminate your program input with the block end
operation "BE".

Function Blocks

CPU 948 Programming Guide

2 - 26 C79000-B8576-C848-03

Note
If you change the order or the number of formal operands in the
formal operand list, you must also update all STEP 5 statements
in the function block that reference a formal operand and also
the block parameter list in the calling block!

Program or change function blocks only on diskette or hard disk
and then transfer them to your CPU!

Formal operands The following parameter and data types are permitted as the formal
operands of a function block (also known as block parameters):

Parameter type Data type

I = input parameter
Q = output parameter

BI/BY/W/D

D = data KM/KH/KY/KS/KF/
KT/KC/KG

B = block operation
T = timer
C = counter

none
(no type can be specified)

I, D, B, T or C are parameters that are indicated to the left of the
function symbol in graphic representation.
Parameters labelled with Q are indicated on the right of the function
symbol.

The data type indicates whether you are working with bits, bytes,
words or double words for I and Q parameters and which data format
applies to D parameters (e.g. bit pattern or hexadecimal pattern).

Table 2-5 Permitted formal operands for function blocks

2

Function Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 27

2.3.3
Calling Function Blocks
and Assigning Parameters
to them

You can call every function block as often as you want anywhere in
your STEP 5 program. You can call function blocks in a statement list
or in one of the graphic methods of representation (CSF or LAD).

To call a function block and assign parameters to it, perform the
following steps:

Step Action Reaction on PG

1 Make sure that the called function block exists either
in the PG memory (offline) or in the CPU memory
(online).

none

2 Enter the call statement for the function block in the
block where the call is to originate.

You can program a function block call in an
organization, program or sequence block or
in another function block.

After you enter the call statement
(e.g. JU FB200), the name of the
relevant function block and the formal
operand list appear automatically.

3 Assign the actual operand relevant to this call to each
of the formal operands, i.e. you assign parameters to
the function block.

These actual operands can be different for
separate calls (e.g. inputs and outputs for the
first call of FB 200, flags for the second call).
Using the formal operand list, you assign the
required actual operands for each function
block call.

none

Unconditional/conditional call

Unconditional call Conditional call

"JU FBn" for FB function blocks or
"DOU FXn" for FX extended function blocks:

the referenced function block is processed
regardless of the previous result of logic
operation (RLO).

"JC FBn" for FB function blocks or
"DOC FXn" for FX extended function blocks:

the referenced function block is only
processed when the result of logic operation
RLO = 1. If RLO = 0 the block call is not
executed. Regardless of whether the block call
is executed or not, the RLO is alsways set to "1".

After the unconditional or conditional call, the RLO can no longer be combined logically. However, it is
carried over to the called function block with the jump and can be evaluated there.

Function Blocks

CPU 948 Programming Guide

2 - 28 C79000-B8576-C848-03

Permitted actual operands Which operands can be assigned as actual operands is shown in the
following table.

Parameter
type

Data type Actual operands permitted

I, Q BI for an operand
with bit address

BY for an operand
with byte address

W for an operand
with word address

D for an operand
with double word address

I n.m input
Q n.m output
F n.m flag

IB n input byte
QB n output byte
FY n flag byte
DL n data byte left
DR n data byte right
PY n peripheral byte
OY n byte from extended periphery

IW n input word
QW n output word
FW n flag word
DW n data word
PW n peripheral word
OW n word from extended periphery

ID n input double word
QD n output double word
FD n flag double word
DD n data double word

D KM for a binary pattern (16 bits)

KY for two absolute numbers,
one byte each, each in the
range from 0 to 255

KH for a hexadecimal pattern
with a maximum of four
digits

KS for two alphanumeric
characters

KT for timer value (BCD-
coded) units .0 to .3 and
values 0 to 999

KC for a counter value
0 to 999

Constants

Table 2-6 continued:

Table 2-6 Permitted actual operands for function blocks

2

Function Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 29

Parameter
type

Data type Actual operands permitted

D
(Cont.)

KF for a fixed point number
-32768 to +32767

KG for a floating point
number1)

Constants

B Data type designation not possible DB n Data block; the operation
C DB n is executed

FB n Function block (permitted
only without parameters)
called unconditionally (JU . .n)

OB n Organization block called
unconditionally (JU . .n)

PB n Program blocks - called
unconditionally (JU . .n)

SB n Sequence blocks - called
unconditionally (JU . .n)

T Data type designation not possible T 0 to 255 Timer

C Data type designation not possible Z 0 to 255 Counter

1) ±0.1469368 x 10-38 to ±0.1701412 x 1039

Note
S flags are not permitted as actual operands for function blocks.

After the jump to a function block, the actual operands from the block
then called are used in the function block program instead of the
formal operands.
This feature of programmable function blocks allow them to be used
for a wide variety of purposes in your user program.

When the program returns from the called function block, the list of
actual operands in the calling block is skipped by a jump operation
activated implicitly by STEP 5 in MC-5 code.

Function Blocks

CPU 948 Programming Guide

2 - 30 C79000-B8576-C848-03

Examples

Example 1: the following (complete) example is intended to further clarify
the programming and calling of a function block and the assign-
ment of parameters to it. You yourself can easily try
out the example.

Programming the function block FB 202:

FB 202

SEGMENT 1

NAME EXAMPLE
DECL : INP1 I/Q/D/B/T/C: I BI/BY/W/D: BI
DECL : INP2 I/Q/D/B/T/C: I BI/BY/W/D: BI
DECL : OUT1 I/Q/D/B/T/C: Q BI/BY/W/D: BI

:A= INP1
:A= INP2
:== OUT1

:
: BE

Function block FB 202 is called and has parameters assigned
to it in program block PB 25:

STL method of representation CSF/LAD method of representation

PB 25
SEGMENT 1

: JU FB 202 FB 202
NAME : EXAMPLE EXAMPLE
INP1 : I 13.5 I 13.5 INP1 OUT1 Q 23.0
INP2 : F 17.7 F 17.7 INP2 :BE
OUT1 : Q 23.0

: BE

The following operations are executed after the jump to FB 202

Formal
operand
list

STEP 5

state-

ments

Formal
operands

Parameter
type

Data
type

Formal
operands

Actual
operands

2

Function Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 31

Example 2: calling a function block and assigning parameters to it with
the STL and CSF/LAD methods of representation in a program block.

STL method of representation

PB 25
SEGMENT 1

:
: C DB 5
:
: JU FB 201

NAME : REQUEST
DATA : DW 1
RST : I 3.5
SET : F 2.5
MTIM : T 2
TIME : KT 010.1
TRAN : DW 2
BEC : Q 2.3
LOOP : Q 6.0

: BE

CSF/LAD method of representation

PB 25
SEGMENT 1

 FB 201

REQUEST

DW 1 DATA TRAN DW 2
I 3.5 RST BEC Q 2.3
F 2.5 SET LOOP Q 6.0
T 2 MTIM :BE

KT 010.1 TIME

Formal
operands

Actual
operands

Function Blocks

CPU 948 Programming Guide

2 - 32 C79000-B8576-C848-03

2.3.4
Special Function Blocks Apart from the function blocks that you program yourself, you can

order standard function blocks as a finished software product. These
contain standard functions for general use (e.g. signalling functions
and sequence control).
Standard function blocks are assigned numbers FB 1 to FB 199.

If you order standard function blocks, remember the special
instructions in the accompanying description (i.e. areas assigned and
conventions etc.).

The standard function blocks for the S5-155U are listed in catalog
ST 57 /11/.

Example

Floating point root extractor RAD:GP FB 6

The function block RAD:GP extracts the root of a floating point number
(8-bit exponent and 24-bit mantissa). It forms the square root. The
result is also a floating point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded up or
down.

If applicable, for the rest of the processing, the function block sets the
"radicand negative" identifier.

Numerical range:

Radicand - 0.1469368 Exp. -38 to +0.1701412 Exp. +39

Root +0.3833434 Exp. -19 to +0.1304384 Exp. +20

Function: Y = √A
Y = SQRT; A = RADI

Calling the function block FB 6:

In the example, the root is extracted from a floating point number that is
located in DD5 of DB 17 with an 8-bit exponent and a 24-bit mantissa. The
result, another 32-bit floating point number, is written to DD 10. Prior to
this, the appropriate data block must be opened. The parameter VZ (parameter
type: Q, data type: BI) indicates the sign of the radicand: VZ = 1 for a
negative radicand.

2

Function Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 33

"Floating point root extractor" continued:

STL method of representation LAD method of representation

Seg- : C DB 17
ment : SEGMENT 2
1 :***

: JU FB 6 FB 6
Seg- NAME : RAD : GP RAD
ment RADI : DD 5 DD 5 RADI VZ F 15.0
2 VZ : F 15.0 SQRT DD 10
 *) SQRT : DD 10 :BE

DD= data double word

 *) Must be located in separate segments, since the operation "C DB 17" in
segment 1 cannot be converted to LAD/CSF.

Function Blocks

CPU 948 Programming Guide

2 - 34 C79000-B8576-C848-03

2.4 Data Blocks

Data blocks (DB) or extended data blocks (DX) are used to store the
fixed or variable data with which the user program works. No STEP 5
operations are processed in data blocks.

The data of a data block includes the following:

•• various bit patterns (e.g. for status of a controlled process)

•• numbers (hexadecimal, binary, decimal) for timer values or arith-
metic results

•• alphanumeric characters, e.g. for message texts.

Structure of a data block A data block (DB/DX) consists of the following parts:

•• block preheader (DV, DXV),

•• block header

•• block body.

Block preheader The block preheader is created automatically on the hard or floppy
disk of the PG and not transferred to the CPU. It contains the data
formats of the data words entered in the block body. You have no
influence over the creation of the block preheader.

Note
When you transfer a data block from the PLC to diskette or hard
disk, the corresponding block preheader can be deleted. For this
reason, you must never modify a data block with different data
formats in the PLC and then transfer it back to diskette, otherwise
all the data words in the DB are automatically assigned the data
format you selected in the presets screen form.

2

Data Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 35

Block header The block header occupies five words in the memory and contains
the following:

•• the block identifier

•• the programmer identifier

•• the block type and the block number

•• the library number

•• the block length (including the length of the block header).

Block body The block body contains the data words with which the user program
works. These data words are in ascending order in the block body,
starting with data word DW 0. Each data word occupies one word
(16 bits) in the memory.

Maximum length A data block can occupy a total of maximum 32 767 words (including
header) in the CPU memory. When you use your programmer to enter
and transfer data blocks, remember the size of your CPU memory!

Data Blocks

CPU 948 Programming Guide

2 - 36 C79000-B8576-C848-03

2.4.1
Creating Data Blocks To create a data block, perform the following steps:

Step Action

1 Enter the block type (DB/DX) and data block number (2
or 3 to 255).

2 Enter individual data words in the data format you
require.

(Do not complete your input of the data words with a
BE statement!)

Note
Data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved for
specific functions and you cannot use them freely for other
functions (see Section 2.4.3)!

Type Data format Examples

KM Bit pattern 00100110 00111111

KH Hexadecimal 263F

KY 2 Bytes 038,063

KF Fixed point number +09791

KG Floating point number +1356123+12

KS Character ?!ABCD123-+.,%

KT Timer value 055.2

KC Counter value 234

Table 2-7 Data formats permitted in a data block

2

Data Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 37

2.4.2
Opening Data Blocks You can only open a data block (DB/DX) unconditionally. This is

possible within an organization, program, sequence or function block.
You can open a specific data block more than once in a program.

To open a data block, perform the following steps:

IF... THEN...

You want to open a DB data block Type in the STEP 5 operation
"C DB.."

You want to open a DX data
block

Type in the STEP 5 operation
"CX DX."

Validity of a data block After you open a data block, all statements that follow with the
operand area ’D’ refer to the opened data block.

The opened data block also remains valid when the program is
continued in a different block following a block call.

If a second data block is opened in this new block, the second data
block is only valid in the newly called block from the point at which it
is called. After program execution returns to the calling block, the old
data block is once again valid.

Access You can access the data stored in the opened data block during
program execution using binary logic operations, set/reset
operations, load or transfer operations (refer to Chapter 3 for more
detailed information).

With a binary operation, the addressed data word bit is used to form
the RLO. The content of the data word is not changed.

With a set/reset operation, the addressed data word bit is assigned the
value of the RLO. The content of the data word may be changed.

A load operation transfers the contents of the referenced data word
into ACCU 1. The contents of a data word are not changed.

A transfer operation transfers data from ACCU 1 to the referenced
data word. The old contents of the data word are overwritten.

Data Blocks

CPU 948 Programming Guide

2 - 38 C79000-B8576-C848-03

Note
Before accessing a data word, you must open the data block you
require in your program. This is the only way that the CPU can
find the correct data word.
The referenced data word must be contained in the opened block,
otherwise the system program detects a load or transfer error.

With load and transfer operations, you can only access data word
numbers up to 255!

An opened data block remains valid until one of the following
events occur:

a) a second data block is opened

or

b) the block, in which the data block was
opened, is completed with ’BE’, ’BEC’
or ’BEU’.

Examples

Example 1: transferring data words

You want to transfer the contents of data word
DW 1 from data block DB 10 to data word DW 1 of
data block DB 20.

Enter the following statements:

:C DB 10 (open DB 10)
:L DW 1 (load the contents of DW 1 into
: ACCU 1)
:C DB 20 (open DB 20)
:T DW 1 (transfer the contents of ACCU 1 to
: DW 1)
:

2

Data Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 39

Example 2: range of validity of data blocks
(Fig. 2-5)

Data block DB 10 is opened in program block PB 7 (C DB 10). During the
subsequent program execution, the data of this data block are processed.

After the call (JU PB 20) program block PB 20 is processed. Data block
DB 10, however, remains valid. The data area only changes when data block
DB 11 (C DB 11) is opened.
Data block DB 11 now remains valid until the end of program block PB 20
(BE).

After the jump back to program block PB 7, data block DB 10 is once again
valid.

Data Blocks

CPU 948 Programming Guide

2 - 40 C79000-B8576-C848-03

2.4.3
Special Data Blocks On the CPU 948 data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are

reserved for special functions. They are managed by the system
program and you cannot use them freely for other functions.

DB 0

•• Data block DB 0 (see Section 8.3.2)

Data block DB 0 contains the address list with the start addresses
of all blocks that are located in the data block RAM of the CPU.
The system program generates this address list during initialization
(following each POWER UP or OVERALL RESET) and it is up-
dated automatically when you use a programmer to change data
blocks or generate a new data block.

DB 1 •• Data block DB 1 (see Section 10.1.6)

Data block DB 1 contains the list of digital inputs/outputs (P periphe-
ral with relative byte addresses from 0 to 127) and the interprocessor
communication (IPC) flag inputs and outputs that are assigned to the
CPU. If applicable, the block may also contain a timer field length.

DB 1 can have parameters assigned and be loaded as follows:
to reduce the cycle time in single processor operation, since
only the inputs, outputs or timers entered in DB1 are updated.

PB 7

C DB 11

BE

PB 20

C DB 10

JU PB 20

BE

Range of val idi ty of DB 10

Range of val idi ty of DB 11

Fig. 2-5 Range of validity of an opened data block

2

Data Blocks

CPU 948 Programming Guide

C79000-B8576-C848-03 2 - 41

DB 1 must be assigned parameters and loaded as follows:
a) for multiprocessing
b) when IPC flags exist with CPs

DX 0 •• Data block DX 0 (see Chapter 7)

If you assign parameters to data block DX 0 and load it, you can chan-
ge the defaults of certain system program functions (e.g. the start-up
procedure) and adapt the performance of the system program to your
particular application.

DX 1 •• Data block DX 1

Reserved.

DX 2 •• Data block DX 2

Reserved for the second serial interface.

Data Blocks

CPU 948 Programming Guide

2 - 42 C79000-B8576-C848-03

Contents of Chapter 3

3.1 Principle of Program Execution . 3 - 4

3.2 Program Organization. 3 - 5

3.3 Storing Program and Data Blocks . 3 - 10

3.4 Processing the User Program . 3 - 11

3.4.1 Definition of Terms used in Program Execution . 3 - 12

3.5 STEP 5 Operations with Examples . 3 - 15

3.5.1 Basic Operations . 3 - 19
Binary logic operations . 3 - 19
Set/reset operations . 3 - 20
Load and transfer operations. 3 - 21
Timer and counter operations . 3 - 26
Arithmetic operations . 3 - 31
Comparison operations . 3 - 32
Block operations . 3 - 32
NOP/display/stop operations. 3 - 33

3.5.2 Programming Examples in the STL, LAD and CSF Methods of Representation 3 - 34
3.5.3 Supplementary Operations . 3 - 49

Binary logic operations . 3 - 50
Digital logic operations. 3 - 50
Bit test operations . 5 - 51
Set/reset operations . 3 - 52
Timer and counter operations . 3 - 53
Load and transfer operations. 3 - 55
Arithmetic operations . 3 - 57

3Program Execution

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 1

3.5.4 Executive Operations . 3 - 59
Jump operations. 3 - 59
Shift operations . 3 - 61
Conversion operations. 3 - 63
Decrement/increment . 3 - 66
Processing operations . 3 - 66
I/O operations . 3 - 72
Other operations . 3 - 72

3.5.5 Semaphore Operations . 3 - 75

CPU 948 Programming Guide

3 - 2 C79000-B8576-C848-03

3Program Execution

This chapter is intended for readers who do not yet have any great
experience in using the programming language. The chapter therefore
deals with the basics of STEP 5 programming and explains in detail
(with examples) the STEP 5 operations for the CPU 948.

Experienced readers who require more information about a specific
STEP 5 operation listed in the Pocket Guide can refer to the reference
section in 3.5.

3

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 3

3.1 Principle of Program Execution

You can process your STEP 5 user program in various ways.

Cyclic program execution is most common with programmable
controllers (PLCs). The system program runs through a program loop
(the cycle, refer to Section 3.4) and calls organization block OB 1
cyclically in each loop (refer to Fig. 3-1).

Cal l OB1 BE

Cal l PB 20

BE

PB 20

OB 1

Update inter-
processor comm.
f lag outputs

image outputs
(PIQ)

Update process

Tr igger cycle t ime

Update inter-
processor comm.
f lag inputs

image inputs
(PI I)

Update process

from start -up

System program User program

Fig. 3-1 Principle of cyclic program execution

Principle of Program Execution

CPU 948 Programming Guide

3 - 4 C79000-B8576-C848-03

3.2 Program Organization

Program organization allows you to specify which conditions affect the
processing of your blocks and the order in which they are processed.
Organize your program by programming organization blocks with
conditional or unconditional calls for the blocks you require.

You can call additional program, function and sequence blocks in any
combination in the program of individual organization, program,
function and sequence blocks. You can call these one after another or
nested in one another.

For maximum efficiency, you should organize your program to
emphasise the most important program structures and in such a way
that you can clearly recognize parts of the controlled system which are
related in the software.

Figs. 3-2 and 3-3 are examples of a program structure.

3

Program Organization

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 5

PB ‘B‘

OB 1 PB ’A’ FB

FB

Go to in i t ia l
s tate

Stop to the system
EMERGENCY
OFF

PB ‘D‘

Message output

FB

Message output
v ia standard
per iphera ls

FB

Message output
v ia standard
per iphera ls

DX
Message
texts

PB ‘C‘

Indiv idual
contro l level

FB

Group
in i t ia l izat ion

DB

Inter face f lags
of the indiv idual
contro l
e lementsFX

Indiv idual
in i t ia l izat ion

FX

Indiv idual
in i t ia l izat ion

Sequence
contro l

Contro l of
sequence
cascade

FB SB

Sequence
step

SB

Sequence
step

JU PB ’A’

JU PB ‘B‘

JU PB ‘C‘

JU PB ‘D‘

BE

Operat ing mode
program

Fig. 3-2 Example of the organization of the user program according to the program structure

Program Organization

CPU 948 Programming Guide

3 - 6 C79000-B8576-C848-03

OB 1

JU PB ‘X‘

JU PB ‘Y‘

BE

Control led
system part ‘Z‘

PB ‘X‘

Contro l led
system part ‘X‘

FB

Indiv idual contro l

FB

Closed loop contro l

FX

Signal l ing

Control led
system part ‘Y‘

PB ‘Y‘ FB

Sequence control

FX

Signal l ing

FB

Closed loop control

FB

Ari thmet ic
JU PB ‘Z‘

FB

Data logging output

FB ‘Z‘

Fig. 3-3 Example of the organization of the user program according to the structure of the controlled system

3

Program Organization

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 7

Nesting blocks Fig. 3-4 shows the principle of nested block calls.

Block addresses A block start address specifies the location of a block in the user
memory. For logic blocks, this is the address of the memory location
containing the first STEP 5 operation (with FB and FX, the JU
operation via the formal operand list); with data blocks, it is the
address of the first data word.

To enable the CPU to locate the called block in the memory, the start
addresses of all valid blocks are entered in the block address list in
data block DB 0. DB 0 is managed by the system program, you cannot
call it yourself.

The CPU stores a return address every time a new block is called. After
the new block has been processed, this return address enables the program
to find the block from which the call originated. The return address is the
address of the memory location containing the next STEP 5 statement
after the block call. The CPU also stores the start address and length of
the data block valid at this location.

OB 1

BE

PB 20

BE

PB 5

C
C

DB 20
DB 30

BE

JU PB 5
F 200.5

*)

JU
JU

PB 20
FB 30O F 1.5 *)

NAME: KURV
A I 55.0 *)

*) Operat ion to which the program returns

A

1st STEP 5 op. 1st STEP 5 op.

Fig. 3-4 Nested logic block calls

Program Organization

CPU 948 Programming Guide

3 - 8 C79000-B8576-C848-03

Nesting depth You can only nest 40 blocks within one another. If more than 40
blocks are called, the CPU signals an error and goes to the stop mode.

Example of nesting depth

You can determine the nesting depth of your program as follows:

- Add all the organization blocks you have programmed
(in the example: 4 OBs).

- Add the nesting depth of the individual organization blocks
(in the example: 2 + 2 + 1 + 0 = 5).

- Add the two amounts together to obtain the program nesting depth
(in the example: 4 + 5 = nesting depth 9). It must not exceed a value of
40.

OB 25

Nesting depth

1 2 3 4 5 6 7 8 9

OB 1 PB 1 FB 1

OB 13 PB 131 FB 131

OB 2 FB 21

Program
processing
level

Fig. 3-5 Example of block nesting depth

3

Program Organization

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 9

3.3 Storing Program and Data Blocks

On the CPU 948, the user program runs solely in the internal RAM.
The user program including data blocks must, therefore, be loaded in
the CPU 948 user memory.

How do I load programs and
data blocks in the internal
RAM?

You can use the following methods:

•• You can load the individual logic and data blocks in the RAM
using your PG.

•• You can program a memory card (flash EPROM!) with your
complete program including data blocks on the PG and then insert
the card in the receptacle on the CPU.
If you do an overall reset on the CPU (refer to Chapter 4) the
complete contents of the memory card are loaded "1:1" in the
internal RAM.

•• You loaded your program in the internal RAM with the PG or
from the memory card with an OVERALL RESET. You can then
load additional blocks with the PG or replace existing blocks.

Note
You can only program the memory card on the PG. Use the PG
software from version 6 upwards. When programming, the PG must
be in the mode "WORD FIELD" (refer to the STEP 5 manual /3/).

Caution
If you have changed or added blocks using the PG after loading
your program from the memory card, these changes are reversed
by the next OVERALL RESET , since the memory is
overwritten again with the contents of the memory card.

Storing Program and Data Blocks

CPU 948 Programming Guide

3 - 10 C79000-B8576-C848-03

3.4 Processing the User Program

The complete software on the CPU (consisting of the system program
and the STEP 5 user program) has the following tasks:

•• CPU START-UP

•• Controlling an automation process by continuously repeating
operations (CYCLE).

•• Controlling an automation process by reacting to events occurring
sporadically or at certain times (interrupts) and reacting to errors.

For all three tasks, you can select special parts of your program to run
on the CPU by programming user interfaces (organization blocks
OB 1 to OB 35 - refer to Section 2.2.3).

START-UP Before the CPU can start cyclic program execution, an initialization
must be performed to establish a defined initial status for cyclic
program execution and, for example, to specify a time base for the
execution of certain functions. The way in which this initialization is
performed depends on the event that led to a START-UP and on
settings that you can make on your CPU. For more detailed
information, refer to Chapter 4.

You can influence the START-UP procedure of your CPU by
programming organization blocks OB 20, OB 21 and OB 22 or by
assigning parameters in DX 0 (refer to Chapter 7).

CYCLE Following the START-UP, the system program goes over to cyclic
processing. It is responsible for background functions required for the
automation tasks (refer to Fig. 3-1 at the beginning of this section).
After the system functions have been executed at the beginning of a
CYCLE, the system program calls organization block OB 1 or
function block FB 0 as the cyclic user program. You program the
STEP 5 operations for cyclic processing in this block.

3

Processing the User Program

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 11

Reactions to interrupts
and errors

To allow you to specify the reactions to interrupts or errors, special
organization blocks (OB 2 to OB 18 for interrupt servicing, OB 19
and OB 23 to OB 34 for reactions to errors) are available on the
CPU 948. You can store an appropriate STEP 5 program in these blocks.

When interrupts or errors are to be processed, the system program
activates the corresponding organization block during cyclic
processing. This means that the cyclic processing is interrupted to
service an interrupt or to react to an error. The nesting of the
organization blocks has a fixed priority (for further information, refer
to Chapters 4 and 5).

In addition to the organization blocks, you can also influence the
reaction of the CPU to interrupt servicing by assigning parameters in
data block DX 0.

Organization blocks OB 1 to OB 39 can be called by the system
program as soon as they are loaded in the program memory (also
during operation).
If the OBs are not loaded, there is either no reaction from the CPU or
(in the event of errors) it goes to the stop mode (refer also to Section
5.4).

You can also load data block DX 0 into the program memory during
operation like the organization blocks. It is, however, only effective
after the next COLD RESTART. If DX 0 is not loaded, the standard
settings apply (refer to Chapter 7).

3.4.1
Definition of Terms used in
Program Execution

Cycle time The cycle begins when the cycle monitoring time is triggered and ends
with the next trigger. The time that the CPU requires to execute the
program between two triggers is called the cycle time. The cycle time
consists of the runtime of the system program and the runtime of the
user program.

The cycle time therefore includes the following:

•• the time required to process the cyclic program (system and user
program),

•• the time required to process interrupts (e.g. time-controlled
interrupt),

•• the time required to process interruptions (errors).

Processing the User Program

CPU 948 Programming Guide

3 - 12 C79000-B8576-C848-03

Cycle time monitoring The CPU monitors the cycle time in case it exceeds a maximum value.
The standard setting for this maximum value is 200 ms. You can set the
cycle time monitoring yourself or restart it during user program execution
(refer to DX 0/Chapter 7 and special function OB OB 222/Section 6.16).

Process input and output
image (PII and PIQ)

The process image of the inputs and outputs is a memory area in the
internal RAM.
Before cyclic execution of the user program begins, the system
program reads the signal states of the input peripheral modules and
transfers them to the process input image. The user program evaluates
the signal states in the process input image and then sets the
appropriate signal states for the outputs in the process output image.
After the user program has been processed, the system program
transfers the signal states of the process output image to the output
peripheral modules.

Buffering the I/O signals in the process image of the inputs and
outputs avoids a change in a bit within a program cycle from causing
the corresponding output to "flutter".

The process image is therefore a memory area whose contents are
output to the peripherals and read in from the peripherals once per
cycle.

Note
The process image only exists for input and output bytes of the "P"
peripherals with byte addresses from 0 to 127!
Apart from the process image integrated in the system, you can use
OB 126 to define and transfer further process images (refer to
Section 6.6)

Interprocessor communication
(IPC) flags

IPC flags exchange data between individual CPUs (multiprocessing) or
between the CPU and some communication processors.

The system program reads the input IPC flags of the CPU before cyclic
execution of the user program begins. After the STEP 5 program is
processed, the system program transfers the output IPC flags to the
coordinator or to the communications processors.

You define the input and output IPC flags when you create data block
DB 1 (refer to Section 10.1.6).

3

Processing the User Program

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 13

Interrupt events Cyclic program execution can be interrupted by the following:

•• time-controlled program execution (delayed interrupt, cyclic timed
interrupts, clock-controlled interrupts),

•• interrupt-driven program execution (process interrupt, system
interrupt).

The cyclic program can be interrupted or even aborted completely by
the following:

•• a device hardware fault or program error

•• operator intervention (using the PC stop function, or setting the
mode selector to "stop", multiprocessor stop MP-STP),

•• a stop operation

Processing the User Program

CPU 948 Programming Guide

3 - 14 C79000-B8576-C848-03

3.5 STEP 5 Operations with Examples

A STEP 5 operation consists of the operation and an operand. The
operation specifies what the CPU is to do (operation). The operand
specifies with what an operation is to be executed.

STEP 5 operations can be divided into the following groups:

•• basic operations (can be used in all logic blocks),

•• supplementary operations,

•• executive operations (can only be used in FB/FX function blocks),

•• semaphore operations (can only be used in FB/FX function blocks).

Accumulators as working
registers

The CPU 948 has four accumulators, ACCU 1 to ACCU 4. Most
STEP 5 operations use two 32-bit registers (ACCU 1 and ACCU 2) as
the source of operands and the destination for results.

The STEP 5 operation to be carried out affects the accumulators, e.g.:

•• ACCU 1 is always the destination in load operations. A load
operation shifts the old contents of ACCU 1 to ACCU 2 (stack
lift). Accumulators 3 and 4 are not changed by any load operations.

1) analogous for ACCU 2 to ACCU 4

ACCU-1-H

High byte Low byte High byte Low byteACCU 1
 1)

High word Low word

 31 24 23 16 15 8 7 0

ACCU-1-HL ACCU-1-LH ACCU-1-LL

ACCU-1-L

ACCU-1-HH

3

STEP 5 Operations with Examples

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 15

•• Arithmetic operations combine the contents of ACCU 1 with those
of ACCU 2, write the result to ACCU 1 and transfer the contents
of ACCU 3 to ACCU 2 and the contents of ACCU 4 to ACCU 3
(stack drop). In 16-bit fixed point arithmetic, only the low word or
ACCU 3 is transferred to the low word of ACCU 2 and the low
word of ACCU 4 to the low word of ACCU 3.

•• When a constant is added (ADD BF/KF/DH) to the contents of
ACCU 1, the accumulators 2, 3 and 4 are not changed.

Condition codes STEP 5 operations either set or evaluate condition codes. The condition
codes are written to a condition code byte. Two groups of condition codes
can be distinguished: condition codes of digital operations (word
condition codes - bits 4 to 7 in the condition code byte) and condition
codes from binary and executive operations (bit condition codes - bits 0 to
3 in the condition code byte). You can see how the various condition
codes are influenced or evaluated by STEP 5 operations be referring to
the operation list /1/.

You can display the condition code byte on a programmer using the
"STATUS" online function (refer to Section 11.2.3). The byte has the
following structure:

Word condition codes Bit condition codes

CC 1 CC 0 OV OS OR STA RLO ERAB
Bit 7 6 5 4 3 2 1 0

Bit condition codes •• ERAB First bit scan

A logic operation sequence containing binary operations always
begins with the first bit scan, following which a new RLO is
formed. The bit condition code ERAB = 1 is then set. While the
remaining logic operations in the sequence are being performed,
ERAB remains set to 1 and the RLO cannot be changed by these
logic operations.

The active sequence of logic operations is terminated by a binary
set/reset operation (e.g. S Q 5.0). The set/reset operation sets
ERAB to 0; the RLO can be evaluated (e.g. by RLO-dependent
operations) but can no longer be combined logically. The next
binary logic operation following a binary set/reset operation is
once again a first bit scan.

STEP 5 Operations with Examples

CPU 948 Programming Guide

3 - 16 C79000-B8576-C848-03

Example of ERAB

Other bit condition codes •• RLO Result of logic operation

This is the result of bit logic operations. It is the truth statement for
comparison operations (refer to operations list, binary logic
operations or comparison operations).

•• STA Status

For bit operations, this indicates the logical status of the bit just
scanned or set. The status is updated in binary logic operations -
except for A(, O(,), O and for set/reset operations.

•• OR Or

Internal CPU bit for handling "AND before OR" logic operations.

Word condition codes •• OV Overflow

This indicates whether the permissible number range was exceeded
during the arithmetic operation just completed.

•• OS Stored overflow

The overflow bit is stored. It can be used in several arithmetic
operations to indicate whether an overflow occurred at any point
during the operations.

:A I 1.0 ERAB is set to ’1’,
: the new RLO is formed by
: an AND operation
:O I 6.3 The RLO is influenced by
: an OR operation
:AN I 2.1 The RLO is influenced by
: an AND NOT operation.
:S Q 2.4 ERAB is set to ’0’,
: the sequence is now complete
:JC FB 150 The function block is called
: dependent on the RLO.
:
:

3

STEP 5 Operations with Examples

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 17

•• CC 1 and CC 0

These are the result condition codes that you can interpret from the
following table:

Note
To evaluate the condition codes directly, comparison and jump
operations are available (refer to Sections 3.5.1 and 3.5.3).

Word
condition codes

Arith-
metical

operations

Digital
logic

operations

Com-
parison

operations

Shift
operations

For
SED,
SEE

Jump
operations
executed

CC 1 CC 0

0 0 Result
= 0

Result
= 0

ACCU 2
=

ACCU 1

Shifted
bit
= 0

Semaphore
is
set

JZ

0 1 Result
< 0 –

ACCU 2
<

ACCU 1
– –

JM
JN

1 0 Result
> 0

Result
≠ 0

ACCU 2
>

ACCU 1

Shifted
bit
= 1

Semaphore
is
set
or

enabled

JP
JN

1 1 Division
by 0 – – – – –

Note
When a change of level takes place, e.g. servicing a timed interrupt,
all accumulators and the bit and word condition codes (RLO etc.) are
saved and loaded again when the interrupted level is resumed.

Table 3-1 Result condition codes of STEP 5 operations

STEP 5 Operations with Examples

CPU 948 Programming Guide

3 - 18 C79000-B8576-C848-03

3.5.1
Basic Operations You can use the basic operations in all logic blocks and all methods of

representation (STL, LAD, CSF).

Binary logic operations

Operation Operand Function

A

O

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
S 0.0 to 4095.7
D 0.0 to 255.15
T 0 to 255
C 0 to 255

AND logic operation after scanning for signal state "1"

OR logic operation after scanning for signal state "1"

of an input in the PII
of an output in the PIQ
of a flag bit
of an S flag bit
of a data word bit
of a timer
of a counter

AN

ON

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
S 0.0 to 4095.7
D 0.0 to 255.15
T 0 to 255
C 0 to 255

AND logic operation after scanning for signal state "0"

OR logic operation after scanning for signal state "0"

of an input in the PII
of an output in the PIQ
of a flag bit
of an S flag bit
of a data word bit
of a timer
of a counter

O – Combine AND operations through logic OR

O
U(
O(
)

– ANDing of expressions in parentheses
ORing of expressions in parentheses
Close parenthesis (to complete the bracketed expression)

Maximum of 8 levels are permitted, i.e. 7 opened brackets

RLO formation The binary logic operations generate the result of logic operation
(RLO).
At the beginning of a logic sequence, the RLO only depends on the
signal state scanned (first scan) and not on the type of logic operation
(O = OR, A = AND).

Table 3-2 Binary logic operations 3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 19

Within a sequence of logic operations, the RLO is formed from the type
of operation, previous RLO and the scanned signal state. A sequence of
logic operations is completed by an operation (e.g. set/reset operations)
which retains the RLO (ERAB = 0). Following this, the RLO can be
evaluated but cannot be further combined.

Example

Set/reset operations

Operation Operand Function

S
R

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
S 0.0 to 4095.7
D 0.0 to 255.15

Set if RLO = 1
Reset if RLO = 1

an input in the PII
an output in the PIQ
a flag
an S flag
a bit in the data word

=

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
S 0.0 to 4095.7
D 0.0 to 255.15

The RLO is assigned to

an input in the PII
an output in the PIQ
a flag
an S flag
a bit in the data word

Program Status RLO ERAB

:
= Q 0.0
A I 1.0
A I 1.1
A I 1.2
= Q 0.1

0
1
1
0
0

0
1
1
0
0

0 RLO retained
1 first bit scan
1
1
0 RLO retained, end of

the logic operations
sequence

Table 3-3 Set/reset operations

Basic Operations

CPU 948 Programming Guide

3 - 20 C79000-B8576-C848-03

Load and transfer
operations

Operation Operand Function

L
T

IB 0 to 127
IW 0 to 126
ID 0 to 124

QB 0 to 127
QW 0 to 126
QD 0 to 124

FB 0 to 255
FW 0 to 254
FD 0 to 252

SY 0 to 4095
SW 0 to 4094
SD 0 to 4092

DR 0 to 255

DL 0 to 255

DW 0 to 255
DD 0 to 254

PY 0 to 127

PY 128 to 255

PW 0 to 126

PW 128 to 254

OY 0 to 255

OW 0 to 254

Load
Transfer

an input byte from/to the PII
an input word from/to the PII
an input double word from/to the PII

an output byte from/to the PIQ
an output word from/to the PIQ
an output double word from/to the PIQ

a flag byte
a flag word
a flag double word

an S flag byte
an S flag word
an S flag double word

the right byte of a data word from/to DB,DX

the left byte of a data word from/to DB,DX

a data word from/to DB, DX
a data double word from/to DB, DX

 a peripheral byte of the digital inputs/outputs (P area)

a peripheral byte of the analog or digital inputs/outputs
(P area)

a peripheral word of the digital inputs/outputs (P area)

a peripheral word of the analog or digital inputs/outputs
(P area)

a byte of the extended I/O area (O area)

a word of the extended I/O area (O area)

Table 3-4 Load and transfer operations/part 1

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 21

Operation Operand Function

L

KB 0 to 255
KS 2 ASCII

characters

KF -32768 to
+32767

KG 1)

KH 0 to FFFF
DH 0 to

FFFF FFFF
KM 16-bit pattern
KY 0 to 255 for

each byte

KT 0.0 to 999.3
KC 0 to 999

T 0 to 255
C 0 to 255

Load

a constant, 1 byte
a constant, 2 ASCII characters

a constant as fixed point number

a constant as floating point number
a constant as hexadecimal number
a double word constant as a hexadecimal number

a constant as bit pattern
a constant, 2 bytes

a constant timer value (in BCD)
a constant counter value

a timer, binary coded
a counter, binary coded

LC

T 0 to 255
C 0 to 255

Load

a timer
a counter

in BCD

1) ±0,1469368 x 10-38 to ±0,1701412 x 1039

Load operations Load operations write the addressed value into ACCU 1. The
former contents of ACCU 1 are saved in ACCU 2 (stack lift).

Transfer operations Transfer operations write the contents of ACCU 1 to the addressed
memory location.

Table 3-5 Load and transfer operations/part 2

Basic Operations

CPU 948 Programming Guide

3 - 22 C79000-B8576-C848-03

Examples of load and
transfer operations

Example 1:

Fig. 3-6 illustrates loading/transferring a byte, word or double word
from/to a memory area organized in bytes (PII, PIQ, flags, I/O).

:L IB i load byte i of the PII into ACCU-1-LL
:L IW j load bytes j and j+1 of the PII into ACCU-1-L
:L FD k load flag bytes k to k+3 in ACCU 1

ACCU 1

ACCU 1

ACCU 1

j
j + 1

i

k
k + 1
k + 2
k + 3

31 23 15 7 0

31 23 15 7 0

31 23 15 7 0
k+1 k+2 k+3

0 0 j j+1

0 0 0 i

7 0

Addresses
in
ascending
order

k

1) 1)

1) 1) 1)

L IB i
T IB i

T IW j
L IW j

T FD k
L FD k

1) only wi th load operat ions

Fig. 3-6 Load and transfer operations in a byte-oriented memory area

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 23

Note
Load operations do not affect the condition codes.
Transfer operations clear the OS bit.

When a byte or word is loaded the extra bits are cleared
in ACCU 1.

Example 2:

Fig. 3-7 illustrates the loading/transfer of a byte, word or double word
from/into a memory area organized in words .

:L DR i load the right byte of data word i into ACCU-1-LL
:L DL j load the left byte of data word j into ACCU-1-LL
:L DW k load data word k into ACCU-1-L
:L DD l load data words l and l+1 into ACCU 1

l
l + 1

k

31 23 15 7 0

31 23 15 7 0

31 15 0

31 15 0

ACCU 1

ACCU 1

ACCU 1

ACCU 1

15 0

l l+1

k

j

0 0 0 i

0 0 0

1) 1) 1)

0

1) 1) 1)

1)

left byte

D a t a w o r d j

L DR i
T DR i

L DL j
T DL j

L DW k
T DW k

L DD l
T DD l

right byte

D a t a w o r d i
Addresses
in
ascending
order

1)only wi th load operat ions

Fig. 3-7 Load and transfer operations in a word-oriented memory area

Basic Operations

CPU 948 Programming Guide

3 - 24 C79000-B8576-C848-03

Addressing I/Os You can use load and transfer operations to address the I/O peripherals
as follows:

•• directly using the following operations:

L../T.. ..PY, ..PW, ..OY, ..OW

or

•• using the process image with the following operations:

L../T.. ..IB, ..IW, ..ID, .QB, ..QW, ..QD

and with logic and set/reset operations

Note
If you use the transfer operations T PY 0 to 127 and T PW 0 to
126, the process output image is updated at the same time.
Exception: command output is disabled by the STEP 5 operation
BAS (refer to Section 3.5.4).

Note the following points about I/O peripherals:

•• A process input/output image exists for 128 input and 128 output
bytes of the P peripherals with byte addresses from 0 to 127.

•• No process image exists for the entire area of the O peripherals and
the P peripherals with relative byte addresses from 128 to 256.
(For more information on address space allocation see
Section 8.2.2).

•• I/O modules with addresses of the O peripherals can only be plug-
ged into expansion units (not in the central controller).

•• In one expansion unit, you can use either only P peripherals or
only O peripherals.

Caution
If you use relative addresses of the O peripherals in an expansion
unit, you can no longer use these addresses for I/O modules in the
central controller (this would result in double addressing).

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 25

Timer and Counter
operations

To load a timer using a start operation or a counter using a set
operation, you must first load the value in ACCU 1.

The following load operations are preferable:

For timers: L KT, L IW, L QW, L FW, L DW, L SW.
For counters: L KC, L IW, L QW, L FW, L DW, L SW.

Starting a timer with the selected timer value requires an RLO signal
change.

A counter is set or started with the selected counter value when a
positive-going RLO signal edge is detected.

The following table indicates the signal edge change with
corresponding arrows.

Operation Operand RLO
1)

Function

SP
SE
SD
SS
SF
R

T 0 to 255
T 0 to 255
T 0 to 255
T 0 to 255
T 0 to 255
T 0 to 255

↑
↑
↑
↑
↓
1

Start a timer as a pulse
Start a timer as extended pulse
Start a timer as ON delay
Start a timer as stored ON delay
Start a timer as OFF delay
Reset a timer

S
R
CU
CD

C 0 to 255
C 0 to 255
C 0 to 255
C 0 to 255

↑
1
↑
↑

Set a counter (BCD number from 0 to 999)
Reset a counter
Count up
Count down

1) positive-going edge (↑): signal change from ’0’ to ’1’
negative-going edge (↓): signal change from ’1’ to ’0’

When executing the timer or counter operations SP T, SE T, SD T, SS T,
SF T and S C the value in ACCU 1 is transferred to the timer or
counter (as with the transfer operation) and the appropriate operation
is started.

Table 3-6 Timer and counter operations

Basic Operations

CPU 948 Programming Guide

3 - 26 C79000-B8576-C848-03

Timer value With the operation L KT, you can load a timer value directly into
ACCU 1 or indirectly from a flag or data word. The value must have
the following structure (with L KT, you specify the time base after the
period in the operand as shown below):

Example

Note
The start of each timer is liable to an inaccuracy of 1 time base!
When using timers, you should therefore select the smallest
possible time base (time base < timer value):

Example:
time value 4s not : 1 s x 4 inaccuracy: 1 s

but: 0.01 s x 400 inaccuracy: 0.01 s

You want to set a time of 127 sec.:

Bit assignment:

Timer value 127

0 11 10 0 0 0 0 0 0x x 1 1 1

1 722

Irrelevant

Time base 1 sec

Bit no.

Timer value 0 ... 999 in BCD

012345678910111215 14 13

210 100101

These bits are irrelevant
(i.e. they are ignored when
the timer is started)

Time base specified in BCD: 0: 0.01 sec
1: 0.1 sec
2: 1 sec
3: 10 sec

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 27

Counter value With the operation L KC, you can load a counter value directly in
ACCU 1 or indirectly from a flag or a data word. The value must have the
following structure:

Example

In the timer or counter itself, the value is in binary code. If you want to
scan the timer or counter, you can load the actual timer or counter
value into ACCU 1 directly or in BCD code.

Counter value 127

0 11 10 0 0 0 0 0x x x x 1 1

1 72

Irrelevant

Bit no.

Counter value 0 ... 999
specified in BCD

012345678910111215 14 13

10 2 100101

These bits are irrelevant,
(i.e. they are ignored when
the counter is set)

You want to specify a counter value of 127:

Bit assignment:

Basic Operations

CPU 948 Programming Guide

3 - 28 C79000-B8576-C848-03

Further examples of timer
and counter values

Loading timer values directly:

"L T 10": Loads the binary timer value of timer T 10
directly into ACCU 1

The time base is not loaded.

Loading counter values directly:

"L C 10": Loads the binary counter value of counter C 10
directly into ACCU 1

Counter value

Counter C 10

ACCU 19 0’0’

9 0

9 0

9 0

Timer value

Timer T 10

ACCU 1’0’

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 29

If you load values in BCD, status bits 14 and 15 of the timer or 12 to
15 of the counter are not loaded. They have the value 0 in ACCU 1.
The value in the ACCU can now be processed further.

Timer value

Timer T 10

ACCU 1

10 2 100101

9 01213

1213 0347811’0’

Time base Timer value

Time base

Binary BCD

Counter value

Counter C 10

ACCU 1

10 2 100101

Counter value in BCD

Binary BCD

9 0

0347811’0’

Loading timer values in BCD code:

"LC T 10": Loads the timer value and time base of
timer T 10 into ACCU 1 in BCD

The time base is also loaded.

Loading counter values in BCD code:

"LC C 10": Loads the counter value of counter C 10
into ACCU 1 in BCD

Basic Operations

CPU 948 Programming Guide

3 - 30 C79000-B8576-C848-03

Arithmetic operations

Operation Operand Function

+ F
- F
x F
: F

+ G
- G
x G
: G

– Add two fixed point numbers (16 bits)
Subtract one fixed point number from another (16 bits)
Multiply two fixed point numbers (16 bits)
Divide one fixed point number by another (16 bits):

quotient in ACCU-1-L, remainder in ACCU-1-H

Add two floating point numbers (32 bits)
Subtract one floating point number from another (32 bits)
Multiply two floating point numbers (32 bits)
Divide one floating point number by another (32 bits)

Arithmetic operations logically combine the contents of ACCU 1 and
ACCU 2 (e.g. ACCU 2 - ACCU 1). The result is then contained in
ACCU 1. An arithmetic operation changes the arithmetic registers as
follows (in fixed point operations only the low word):

Note
Within the supplementary operations, there are operations for
subtraction and addition of double word fixed point numbers.

Table 3-7 Arithmetic operations

 ACCU 1 ACCU 2 ACCU 3 ACCU 4

before: <ACCU 1> <ACCU 2> <ACCU 3> <ACCU 4>

after: <result> <ACCU 3> <ACCU 4> <ACCU 4>

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 31

Comparison operations

Operation Operand Function

! =
>< F
> D
> = G
<
<=

– Compare for equal to
Compare for not equal to
Compare for greater than
Compare for greater than or equal to
Compare for less than
Compare for less than or equal to

...F: compare two fixed point numbers (16 bits)

...D: compare two fixed point numbers (32 bits)

...G: compare two floating point numbers (32 bits)

Block operations

Operation Operand Function

J U
J C

OB 1 to 39 1)

OB 121 to 255
PB 0 to 255
FB 0 to 255
SB 0 to 255

Jump unconditionally
Jump conditionally (only when RLO = 1)

to an organization block
to a system program special function
to a program block
to an FB function block
to a sequence block

D O U
D O C

FX 0 to 255

Jump unconditionally
Jump conditionally (only when RLO = 1)

to an FX function block

B E
B E C
B E U

– Block end
Block end, conditional (only when RLO = 1)
Block end, unconditional

C
C X

DB 2 to 255
DX 3 to 255

Call a DB data block
Call a DX data block

G
GX

DB 2 to 255
DX 3 to 255

Generate data block DB
Generate data block DX

(ACCU 1 must contain the number of data words
 – maximum 4091 – that the new block is to have)

1) only for test purposes!

Table 3-8 Comparison operations

Table 3-9 Block operations

Basic Operations

CPU 948 Programming Guide

3 - 32 C79000-B8576-C848-03

G DB/GX DX Generating a data block

The operation G DBx generates a DB data block with the number x
(2 ≤ x ≤ 255) in the user memory of the CPU. The content of the data
block is not assigned the value 0, i.e. the data words can have any
contents.
Before programming this statement, you must store the number of data
words that the new DB is to have in ACCU-1-L. The operation
"G DB" or "GX DX" creates the block header. A data block generated
in this way (without block header) can occupy a maximum of 4091
words. You can generate longer data blocks using OB 125 (refer to
Section 6.5).

If the data block already exists, the length of the DB is not permitted
or there is not enough space in the DB-RAM, the system program
calls OB 34. If this is not loaded, the CPU goes to the stop mode.

The GX DXx operation generates a DX data block in the DB-RAM
and is otherwise the same as G DBx.

NOP/display/stop operations

Operation Operand Function

N O P 0
N O P 1

– No operation
No operation

B L D 0 to 255

130
131/131/133
255

Display generation operation for the PG:
the CPU handles the operation like a no operation

Create blank line with carriage return
Switch over between STL, CSF, LAD

S T P – At end of cycle or at end of OB 1, CPU changes to soft STOP.

Note
Since the operation STP is only effective at the end of the cycle,
there is no ISTACK entry. The cause of the stoppage is then
difficult to find afterwards.
To make diagnosis easier, you should set an identifier before
calling the STP operation, e.g. a special bit pattern in a diagnostic
DB or use the STEP 5 operation STS (refer to Section 3.5.4).

Table 3-10 NOP/display/stop operations

3

Basic Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 33

3.5.2
Programming Examples in
the STL, LAD and CSF
Methods of Representation

Logic operations

I 1.7

I 1.3

I 1.1

Q 3.5

Logical/circuit diagram
STEP 5 representation

Ladder Control system

A I 1.1

A

A

I 1.3

I 1.7

= Q3.5

I 1.1 I 1.3 I 1.7 Q 3.5
I 1.1 1.3 1.7

Q 3.5

&

Output Q 3.5 is "1" when all inputs are "1" simultaneously

I 1.1

I 1.3

I 1.7 Q 3.5

&

Statement
list

AND operation

diagram flowchart

Output Q 3.5 is "0" if any of the inputs has signal state "0"

The number of scans and the sequence of the logic
statements are optional

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 34 C79000-B8576-C848-03

Logic operations
(continued)

O I 1.2

O

O

I 1.7

I 1.5

= Q3.2

I 1.2

I 1.7

I 1.5

Q 3.2

state "0" simultaneously

Output Q 3.2 is "1" when at least one of the inputs is "1"

I 1.5I 1.7I 1.2

Q 3.2

I 1.2 1.7 1.5

Q 3.2

I 1.2

I 1.7

I 1.5 Q 3.2

1

1

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

OR operation

diagram flowchart

Output Q 3.2 is "0" when all inputs have the signal state

The number of scans and sequence of programming is optional

I 1.5 I 1.6

I 1.4

Q 3.1

Q 3.1 is "1" when at least one AND condition is satisfied

I 1.1

I 1.7

Q 3.1

&

I 1.6

I 1.5

Q 3.1

I 1.3

I 1.4

I 1.5 I 1.6

Q 3.1

&

I 1.4 I 1.3

&

A I 1.5

A

A

I 1.6

I 1.3

= Q3.1

O

A I 1.4

I 1.3
I 1.1

I 1.7

&

1

1

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

AND-before-OR operation

diagram flowchart

Q 3.1 is "0" when no AND condition is satisfied

3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 35

Logic operations
(continued)

I 6.0

I 6.3

I 6.2

Q 2.1

Output Q 2.1 is "1" when input I 6.0 or input I 6.1 and one
of the inputs I 6.2 or I 6.3 has signal state "1"

Output Q 2.1 is "0" when input I 6.0 has signal state "0"
and the AND condition is not satisfied

I 6.1

&

I 6.0 I 6.1 I 6.2 I 6.3

Q 2.1

I 6.0 I 6.2 I 6.3

I 6.1

Q 2.1

A I 6.0

O

O I 6.2

= Q2.1

A I 6.1

O I 6.3

)

I 6.0

I 6.1

I 6.2

I 6.3

Q 2.1

&
1

1

1

1

A (

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

OR-before-AND operation /1st example

diagram flowchart

OR-before-AND operation

I 1.4 I 2..0

I 1.5

Q 3.0

Output Q 3.0 is "1" when both OR conditions are satisifed

I 1.4

I 1.5

Q 3.0

I 2.1
I 2.0

I 2.1

I 1.4 I 1.5

Q 3.0

I 2.0 I 2.1

&

I 2..0

I 1.4

Q3.0

I 2.1

I 1.5

O I 1.4

O

O

I 1.5

I 2.1

= Q3.0

)

O I 2.0

)

&

1

1 1

A (

1

A (

Logical/circuit diagram
STEP 5 representation

Ladder diagram Control systemStatement
list

/2nd example

flowchart

Output Q 3.0 is "0" when at least one OR condition is not satisfied

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 36 C79000-B8576-C848-03

Logic operations
(continued)

Set/reset operations

I 1.5 Q 3.0I 1.5 I 1.6

Q 3.0

&
I 1.6

I 1.5

Q 3.0

A I 1.5

AN I 1.6

= Q3.0

I 1.6 I 1.5

I 1.6 Q 3.0

&

Output Q 3.0 is "1" only when input I 1.5 has signal state "1"

state "0" (normally closed contact activated)
(normally open contact activated) and input I 1.6 has signal

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Scan for signal state "0"

diagram flowchart

I 1.4 I 2.7

I 2.7

Q 3.5

I 1.4

Q 3.5

I 2.7 Q3.5

I 1.4

S

R Q

A I 2.7

I 1.4

Q 3.5

S

R

Q 3.5

A
I 2.7

I 1.4

Q3.5

R

S

Q R S

1 1

1 0

Signal state "1" at input I 2.7 sets the flip-flop
(signal state "1" at output Q 3.5).
If the signal state at input I 2.7 changes to "0", the
state of output Q 3.5 is retained (i.e. the signal is latched).

If the signal state at input I 1.4 changes to "0", the
state of Q 3.5 is retained.

Signal state "1" at input I 1.4 resets the flip-flop
(signal state "0" at output Q 3.5).

When the set signal (input I 2.7) and the reset signal
(input I 1.4) are applied at the same time, the scan
operation programmed last (in this case AI 1.4)
remains in effect for the rest of the program (reset priority).

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

RS flip-flop for a latching signal output

diagram flowchart

3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 37

Set/reset operations
(continued)

I 1.3 I 2.6

I 2.6

F1.7

I 1.3

F 1.7

I 2.6 F 1.7

I 1.3

S

R Q

A I 2.6

 I 1.3

F 1.7

S

R

F 1.7

A

I 2.6

I 1.3

F 1.7

S

R S

1 1

1 0

Signal state "1" at input I 2.6 sets the flip-flop.

If the signal state at input I 1.3 changes to "0", the
signal state of the flag is retained.

When the set signal (input I 2.6) and the reset signal
(input I 1.3) are applied at the same time, the scan
operation last programmed (in this case AI 1.3) remains
in effect for the rest of the program (reset priority).

Signal state "1" at input I 1.3 resets the flip-flop.

If the signal state at input I 2.6 changes to "0", the
signal state of the flag is retained, i.e. the signal is latched.

R Q

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

RS flip-flop with flags

flowchartdiagram

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 38 C79000-B8576-C848-03

Set/reset operations
(continued)

On each leading edge of the signal at input I 1.7,
the AND condition (AI 1.7 and AN F 4.0) is satisfied;
the RLO is "1". This sets flags F 4.0 (edge flag) and
F 2.0 (pulse flag).

Flag F 2.0 is reset.

In the next processing cycle, the AND condition
AI 1.7 and AN F 4.0 is not satisfied, since flag F 4.0
has already been set.

Flag F 2.0 therefore only remains "1" for one program
run.

I 1.7

F 4.0

F 2.0

I 1.7

F2.0

F4.0

I 1.7

F2.0

A

AN

=

A

S

AN

R

I 1.7

F 4.0

F 2.0

F 2.0

F 4.0

I 1.7

F 4.0

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Simulation of a momentary contact relay (one shot)

diagram flowchart

I 1.7

F 2.0

I 1.7

F 4.0

F 2.0

F 4.0

S

R Q

&F 2.0I 1.7 F 4.0

S

R Q

F 4.0F 2.0

I 1.7

I 1.0

I 1.0

A I 1.0

Q3.0

I 1.0

M1.0
M1.1

F 2.0
Q 3.0

AN F 1.0
= F 1.1

F 1.1A
F 1.0S
I 1.0AN
F 1.0R

A F 1.1
A Q3.0
= F 2.0
A F 1.1
AN Q3.0

Q 3.0S
AN F 2.0

A F 2.0
R Q 3.0

The binary scaler (output Q 3.2) changes its state

to 1 (leading edge). Therefore, only half the input
frequency appears at the output of the memory cell.

each time input I 1.0 changes its signal state from 0

F1.1 Q3.0 F 2.0

S

R Q

F1.1

I1.0

F1.0

I1.0 F1.0 F1.1

S

R Q

F1.1 Q3.0 F2.0 Q3.0

F2.0

0

&

I1.0

F1.0

&
F1.1

F1.1

I1.0

S
F1.0

R Q

F1.1

Q3.0
F2.0

F2.0

Q3.0

S

R Q

F1.1

Q3.0

&
F2.0

Q 3.0

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Binary scaler (binary divider)

diagram flowchart

3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 39

Timer operations

Subsequent scans with an RLO of "1" do not affect the

If the RLO is "0", the timer is reset (cleared).

timer.

KT 10.2:

the time base:
0 = 0.1sec 2 = 1sec

The timer is loaded with the specified value (10).
The number to the right of the decimal point indicates

BI and DE are digital outputs of the timer. The time at
output BI is in binary code. The time at DE is in BCD code
with time base.

I 3.0

Q4.0

T

as the timer is running.

Q4.0

The timer is started during the first scan if the RLO is "1".

I 3.0

T 1

R S
10s

1

I 3.0

T 1

Q4.0

I 3.0

Q

10.2

T1

BI

Q4.0

QW0

DE QW2

I 3.0

Q

10.2

T1

1

TV BI

Q4.0

QW0

DE QW2

R

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Pulse timer

=

SP T 1
L KT 10.2
A I 3.0

AN I 3.0
R T 1
L T 1
T QW 0
LC T 1
T QW 2
A T 1
= Q 4.0

1

TV

R

diagram flowchart

The scan AT or OT produces the signal "1" as long

3 = 10 sec1 = 0.1 sec

KT KT

I 3.0

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 40 C79000-B8576-C848-03

Timer operations (continued)

The timer is started during the first scan if the RLO is
"1".

A I 3.1
L IW 15
SE T 2

T 2A
Q 4.1=

I 3.1

Q

IW15

T2

1

TW BI

Q4.1

DE

I 3.1

Q

IW15

T2

1

TW BI

Q4.1

DE

R

Q4.1

V

R

V

Q4.1

I 3.1

T 2

R S

1

T2

I 3.1

T 2

(IB 15) (IB 16)An RLO of "0" does not affect the timer.

The scan AT or OT produces a signal "1" as long as
the timer is running.

IW 15:
Set the timer with the value of the operand I, Q, F or
D in BCD code (in this example, input word 15).

I 3.1

Q4.1
T T

Timer valueTime
base

5 43 0 7 4 3 0

01010 110 2

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Extended pulse timer

=

diagram flowchart 3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 41

Timer operations (continued)

The timer is started during the first scan if the RLO
is "1". An RLO of "1" during subsequent scans does

Q

KT9.2

T3

TW BI

Q4.2

DE

I 3.5

Q

KT9.2

T3

TV

Q4.2

DE

R
Q4.2

R

I 3.5

T 3

R S

I 3.5

T 3

9s 0

Q4.2

BI

T O T O

When the RLO is "0", the timer is reset (cleared).

not affect the timer.

KT 9.2:

The timer is loaded with the specified value (9). The
number to the right of the decimal point indicates

0 = 0.1sec 2 = 10 sec

I 3.5
Q4.2

T

The scan AT or OT produces the signal "1" when the
timer has elapsed and the RLO is still applied to the
input.

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

ON-delay timer

I
KT
T
I
T
T
Q

3.5
9.2
3
3.5
3
3
4.2

A
L
SD
AN
R
A
=

I 3.5

I 3.5

=

diagram flowchart

the time base:

3 = 10 sec1 = 0.1 sec

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 42 C79000-B8576-C848-03

Timer operations (continued)

T S

TV BI

DE

R Q

I 3.3

Q 4.3

I 3.2 I 3.3

Q 4.3 T4

Q 4.3

R S

20s 0

I 3.3

T4

I 3.2 I 3.2

T S

BI

DE

R Q

I 3.3

I 3.2

T4 T4

I 3.3

Q 4.3

T Ttimer has elapsed. The signal state does not change

to "0" until the R T operation resets the timer.

The timer is started during the first scan if the RLO is "1".

An RLO of "0" does not affect the timer.

T4

= Q 4.3

A I 3.3

L KT 20.2

SS T 4

A I 3.2

R T 4

A T 4

 E

The scan AT or OT produces the signal "1" when the

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Stored ON-delay timer

20.2 TV

Q 4.3
=

20.2

diagram flowchart

I 3.4

Q 4.4

I 3.4

Q 4.4 T5

Q 4.4

R S

0 1 I 3.4T5

O T

TVBI

DE

R Q

O T

BI

DE

R Q

I 3.4

T5 T5

T5

A I

= Q

3.4

L KT 10.1

SF T 5

A T 5

4.3

I 3.4

Q 4.4

T TT

The scan AT or OT produces signal state "1" if
the timer is running

When the RLO is "1", the timer is reset (cleared).

When the RLO at the start input changes from "1" to
"0", the timer is started. It runs for the length of time
programmed.

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

OFF-delay timer

10.1 TV 10.1

Q 4.4
=

diagram flowchart

or the RLO at the input is "1".

3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 43

Counter operations

When the result of logic operation changes at the start input
(I 4.1) from "0" to "1", the counter is loaded with the specified

is incorporated in the counter word.
BI and DE are digital outputs of the counter cell. The
value at BI is in binary code and the value at DE is in
BCD.

I 4.1

R S

CQ

CI

+

binary
16 bits

KC 150

KC 150

CD

BI

DE

R Q

C1

CU

S

CV

I 4.1

CD

BI

DE

R Q

C1

CU

S

CV

value (150).

Logical/circuit operation
STEP 5 representation

Ladder Control systemStatement
list

Set counter

I 4.1

I 4.0

I 4.0

A
CU
A
L
S

I
C
I
KC
C

4.0
1
4.1
150
1

diagram flowchart

The flag necessary for edge evaluation of the set input

KC 150

I 4.2

R S CI

binary
16 bits

CU

BI

DE

R Q

C2

CD

S

CV

An RLO of "1" (I 4.2) resets the counter to zero.

Q 2.4

Q 2.4CQ
I 4.2

CU

BI

DE

R Q

C2

CD

S

CV
Q 2.4=0 /

An RLO of "0" does not affect the counter.

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Reset counter

A
CD
A
R
A
=

I

C
I
C
C
Q

4.0
2
4.2
2
2
2.4

I 4.2

I 4.0

I 4.0

=

diagram flowchart

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 44 C79000-B8576-C848-03

Counter operations
(continued)

I 4.1

R S

CQ

CI

+

binary
16 bits

CD

BI

DE

R Q

C1

CU

S

CV

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an
up/down counter.

The value of the addressed counter is incremented
by "1" to a maximum value of 999. The function CU
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before CU. The
flags necessary for edge evaluation of the counter
inputs are incorporated in the counter word.

I 4.1

A I 4.1

CU C 1
CD

DU

DE

R Q

C1

CU

S

CV

I 4.1

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Count up

diagram flowchart

3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 45

Counter operations
(continued)

I 4.0

R S CI

-

binary
16 bits

CU

BI

DE

R Q

C1

CD

S

CV

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an
up/down counter.

The value of the addressed counter is decremented
by 1 to a maximum counter value of 0. The function
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before the CD.
The flags necessary for edge evaluation of the
counter inputs are incorporated in the counter word.

I 4.0

A I 4.0

CD C 1
CU

BI

DE

R Q

C1

CD

S

CV

I 4.0

CQ

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Count down

diagram flowchart

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 46 C79000-B8576-C848-03

Comparison operations

V1

V2

! =
F

Q

Q 3.0

L I B19

L IB20

! = F

= Q 3.0

IB19

IB20 Q 3.0

IB19

IB20

C1

C2

! =
F

Q

not equal to ACCU-2-L.

in the list of operations.
ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.
In a 32-bit fixed point comparison (! = D) and floating point
comparison (! = G) the entire contents of ACCU 1 and
ACCU 2 (32 bits) are compared with each other.
During the comparison, the numerical representation of the
operands is taken into account, i.e. the contents of ACCU-1-L

The first operand is compared with the second operand
by the comparison operation. The RLO of the comparison
is binary.

Q 3.0

=

V1 V2

=

IB19 IB20

The condition codes CC1 and CC0 are set as described

RLO = "0": comparison is not satisfied, when ACCU-1-L is

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Compare for equal to

RLO = "1": comparison is satisfied if ACCU-1-L = ACCU-2-L

diagram flowchart

and ACCU-2-L are interpreted here as a fixed point number.

3

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 47

Comparison operations
(continued)

Q 3.1

L I B21

L DW3

> < F

= Q 3.1

IB21

DW3

V1

V2

> <
F

Q Q 3.1

IB21

DW3

V1

V2

> <
F

Q

RLO = "0": comparison is not satisfied if ACCU-1-L
equals ACCU-2-L.
The condition codes CC1 and CC0 are set as described
at the beginning of Section 3.5.
ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

This information also applies to comparison operations for
"greater than", "greater than or equal to", "less than" and
"less than or equal to" (see the operations list). During the

The first operand is compared with the second operand
by the comparison operation.
The RLO of the comparison is binary.

Q 3.1

V1 V2

IB21 DW3

=/
=/

ACCU-2-H and ACCU-1-H are involved in a 32-bit fixed
point comparison and floating point comparison.

RLO = "1": comparison is satisfied if ACCU-1-L is not
equal to ACCU-2-L.

Logical/circuit diagram
STEP 5 representation

Ladder Control systemStatement
list

Compare for not equal to

diagram flowchart

comparison, the numerical representation of the operands
is taken into account, i.e. the contents of ACCU-1-L and
ACCU-2-L are interpreted here as a fixed point number.

Programming Examples in the STL, LAD and CSF Methods of Representation

CPU 948 Programming Guide

3 - 48 C79000-B8576-C848-03

3.5.3
Supplementary Operations You can use the supplementary operations set on the programmer only

in function blocks (FB and FX). This means that the total operations
set for function blocks consists of the basic operations and the
supplementary operations.

The system operations also belong to the supplementary functions.
You can use the system operations, for example to overwrite the
memory at optional locations or to change the contents of the working
registers of the CPU. System operations can only be programmed if
they have been enabled in the presets menu of the programmer (no
longer necessary from S5-DOS Version 2.0 upwards).

If you intend to use system operations, you should be familiar with
Chapter 9 "Memory access".

Caution
Only experienced system programmers should use the system
operations and then only with extreme caution.

You can only write operations in function blocks in STL. You cannot
program function blocks in graphic form (LAD and CSF methods of
representation).
This section describes the supplementary operations and covers possible
combinations of substitution operations with actual operands.

System operations System operations are marked in the first column of the
tables with S

3

 Supplementary Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 49

Binary logic operations

Operation Operand Function

A =

AN =

O =

ON =

AND operation, scan a formal operand for signal state ’1’

AND operation, scan a formal operand for signal state ’0’

OR operation, scan a formal operand for signal state ’1’

OR operation, scan a formal operand for signal state ’0’

Insert formal operand

Inputs, outputs, data and flags addressed in binary (parameter
types: I, Q; data type BI) and timers and counters (parameter
type: T, C) are permitted as actual operands.

Digital logic operations

Operation Operand Function

AW

OW

XOW

AND operation on the contents of ACCU-1-L and ACCU-2-L

OR operation on the contents of ACCU-1-L and ACCU-2-L

Exklusive OR operation on the contents of ACCU-1-L and
ACCU-2-L

ACCUs 2, 3 and 4 are not affected, however, the condition codes
CC 1 and CC 0 are affected (see word condition codes).

Table 3-11 Binary logic operations with formal operands

Table 3-12 Digital logic operations

Supplementary Operations

CPU 948 Programming Guide

3 - 50 C79000-B8576-C848-03

Bit test operations

Operation Operand Function

TB

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
D 0.0 to 255.15
T 0.0 to 255.15
Z 0.0 to 255.15
RI 0.0 to 255.15
RJ 0.0 to 255.15
RS 0.0 to 255.15
RT 0.0 to 255.15

Scan for signal state "1"

of an input (PII)
of an output (PIQ)
of a flag
of a data word bit
of a timer word bit
of a counter word bit
of a bit in RI area
of a bit in RJ area
of a bit in RS area
of a bit in RT area

TBN

I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
D 0.0 to 255.15
T 0.0 to 255.15
C 0.0 to 255.15
RI 0.0 to 255.15
RJ 0.0 to 255.15
RS 0.0 to 255.15
RT 0.0 to 255.15

Scan for signal state "0"

of an input (PII)
of an output (PIQ)
of a flag
of a data word bit
of a timer word bit
of a counter word bit
of a bit in RI area
of a bit in RJ area
of a bit in RS area
of a bit in RT area

The bit test operations scan the state of the bit and indicate it via the
RLO.

Table 3-13 Bit test operations

3

 Supplementary Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 51

Set/reset operations

Operation Operand Function

S =

RB =

RD=

= =

Set a formal operand (binary)

Reset a formal operand (binary)

Reset a formal operand (digital)
for timers and counters

Assign the value of the RLO to a
formal operand

Insert formal operand

Inputs, outputs and F flags addressed in binary
(parameter type: I, Q; data type BI) are permitted
as actual operands.

Operation Operand Function

SU
I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
D 0.0 to 255.15
T 0.0 to 255.15
C 0.0 to 255.15
RI 0.0 to 255.15
RJ 0.0 to 255.15
RS 60.0 to 63.15
RT 0.0 to 255.15

Unconditional setting
of an input (PII)
of an output (PIQ)
of a flag
of a data word bit
of a timer word bit
of a counter word bit
of a bit in RI area
of a bit in RJ area
of a bit in RS area
of a bit in RT area

RU
I 0.0 to 127.7
Q 0.0 to 127.7
F 0.0 to 255.7
D 0.0 to 255.15
T 0.0 to 255.15
C 0.0 to 255.15
RI 0.0 to 255.15
RJ 0.0 to 255.15
RS 60.0 to 63.15
RT 0.0 to 255.15

Unconditional resetting
of an input (PII)
of an output (PIQ)
of a flag
of a data word bit
of a timer word bit
of a counter word bit
of a bit in RI area
of a bit in RJ area
of a bit in RS area
of a bit in RT area

Table 3-14 Set/reset operations with formal operands

Table 3-15 Set and reset operations

Supplementary Operations

CPU 948 Programming Guide

3 - 52 C79000-B8576-C848-03

Timer and counter
operations

Operation Operand Function

SP =

SD =

SEC =

SSU =

SFD =

FR =

Start timer specified by the formal operand as a pulse with the
value stored in ACCU-1-L (parameter type T).

Start timer specified by the formal operand as ON delay with the
value stored in ACCU-1-L (parameter type T).

Start timer specified by the formal operand as extended pulse
with the value stored in ACCU-1-L or set counter specified
as formal operand with the counter value stored in ACCU-1-L
(parameter type: T, C).

Start timer specified by the formal operand as stored
ON delay with the value stored in ACCU-1-L or
increment a counter specified as formal operand
(parameter type: T, C).

Start timer specified by the formal operand as stored
OFF delay with the value stored in ACCU-1-L or
decrement a counter specified as formal operand
(parameter type: D, C).

Enable formal operand (timer/counter) for cold
restart (see FR T or FR R); (parameter type: T, C).

Insert formal operand

FR T 0 to 255

C 0 to 255

Enable timer for cold restart:
The operation is only executed on the leading edge
of the RLO (change from 0 to 1). The timer is
restarted if the RLO is 1 at the time of the start
operation. (See timing diagram below the table).

Enable a counter for setting or resetting:
The operation is executed only on the leading edge
of the RLO (change from 0 to 1). The counter is only
started if the RLO = 1 at the time of the start operation.

tt

RLO
for SP T

RLO
for FR T

Scan
with A T

Table 3-16 Timer and counter operations with formal operands

3

 Supplementary Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 53

Examples

Function block call Program in the
function block

Program executed

a)

:JU FB 203
NAME :EXAMPLE1
ANNA : I 10.3
BERT : T 17
JOHN : Q 18.4

:A =ANNA
:L KT 010.2
:SSU =BERT
:U =BERT
:= =JOHN

:A I 10.3
:L KT 010.2
:SS T 17
:U T 17
:= Q 18.4

b)

:JU FB 204
NAME :EXAMPLE2
MAXI : I 10.5
IRMA : I 10.6
EVA : I 10.7
DORA : C 15
EMMA : F 58.3

:A =MAXI
:SSU =DORA
:A =IRMA
:SFD =DORA
:A =EVA
:L KC 100
:SEC =DORA
:AN =DORA
:= =EMMA

:A I 10.5
:CU C 15
:A I 10.6
:CD C 15
:A I 10.7
:L KC 100
:S C 15
:AN C 15
:= F 58.3

c)

:JU FB 205
NAME :EXAMPLE3
BILL : I 10.4
JACK : T 18
EGON : IW 20
YOGI : F 100.7

:A =BILL
:L =EGON
:SEC =JACK
:A =JACK
:= =YOGI

:A I 10.4
:L IW 20
:SE T 18
:A T 18
:= F 100.7

Supplementary Operations

CPU 948 Programming Guide

3 - 54 C79000-B8576-C848-03

Load and transfer
operations

Operation Operand Function

L =

LCD =

LW =

LWD =

T =

Load a formal operand:
The value of the operand specified as a formal
operand is loaded into the ACCU (parameter
type: I, T, C, Q; data type: BY, W, D).

Load a formal operand in BCD code:
The value of the timer or counter specified as a formal operand is
loaded into the ACCU in BCD code (parameter type: T, C).

Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU
(parameter type: D; data type: KF, KH, KM, KY, KS, KT, KC).

Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU
(parameter type: D; data type: KG).

Transfer to a formal operand:
The contents of the accumulator are transferred to
the operand specified as a formal operand (parameter
type: I, Q; data type: BY, W, D).

Insert formal operand

Actual operands permitted include those of the corresponding basic
operations except for S flags. For the "LW=" operation, permissible
data types include a binary pattern (KM) or a hexadecimal pattern
(KH), two absolute numbers of 1 byte each (KY), a character (KS), a
fixed point number (KF), a timer value (KT) and a counter value
(KC). For "LWD=" permissible data is a floating point number.

Table 3-17 Load and transfer operations with formal operands

3

 Supplementary Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 55

Operation Operand Function

L RI 0 to 255

RJ 0 to 255

Load a word from the interface data area
into ACCU 1 (RI area)

Load a word from the extended interface area
into ACCU 1 (RJ area)

L RS 0 to 255

RT 0 to 255

Load a word from the system data area
into ACCU 1 (RS area)

Load a word from the extended system data
area into ACCU 1 (RT area)

T RI 0 to 255

RJ 0 to 255

Transfer the contents of ACCU 1 to a
word in the interface data area (RI area)

Transfer the contents of ACCU 1 to a word
in the extended interface data area (RJ area)

T RS 60 to 63

RT 0 to 255

Transfer the contents of ACCU 1 to a
word in the system data area (RS area)

Transfer the contents of ACCU 1 to a word
in the extended system data area (RT area)

In contrast to the RI, RJ and RT areas, you can only use words RS 60 to
RS 63 of the RS area. Refer to Section 8.3.4 "RS/RT Area".

You can use the RT area in its complete length (RT 0 to RT 255)
providing you do not use any standard function blocks.

Table 3-18 Load and transfer operations with special operands

Supplementary Operations

CPU 948 Programming Guide

3 - 56 C79000-B8576-C848-03

Arithmetic operations

Operation Operand Function

ENT – This causes a stack lift into ACCUs 3 and 4:

<ACCU 4> := <ACCU 3>

<ACCU 3> := <ACCU 2>

<ACCU 2> := <ACCU 2>

<ACCU 1> := <ACCU 1>

ACCUs 1 and 2 are not changed. The old contents
of ACCU 4 are lost.

Example

ACCU 1 ACCU 2 ACCU 3 ACCU 4

L KF +30 d30 ca

L KF +3 d3 c30

a
Contents of the ACCUs
before the sequence of
ar i thmetic operat ions

b c d

x F c12 c30

+ F c42 cc

L KF +4 c4 303

ENT 3 30 30 c

c7 cc

L KF +6 c6 c42

: F

Table 3-19 Arithmetic operation ENT

The following fraction must be calculated: (30 + 3 * 4) / 6 = 7

3

 Supplementary Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 57

Operation Operand Function

S ADD BN -128 to
+127

Add a byte constant (fixed point) to ACCU-1-L (includes
sign change)/the condition code in CC 0, CC 1, OV and
OS are not affected! – ACCU-1-H and ACCUs 2 to 4
remain unchanged.

S ADD KF -32 768 to
+32 767

Add a fixed point constant (word) to ACCU-1-L/ the
condition codes in CC 0, CC 1, OV and OS are not
affected! – ACCU-1-H and ACCUs 2 to 4 remain unchanged.

S ADD 1) DH 0000 0000
to
FFFF FFFF

Add a double word fixed point constant to ACCU 1/the
condition codes in CC 0, CC 1, OV and OS are not affected! –
ACCUs 2 to 4 remain unchanged.

S +D 1) Add two double word fixed point constants
(ACCU 2 + ACCU 1)/the result can be evaluated
in CC 0/CC 1. 2)

S -D 1) Subtract two double word fixed point constants
(ACCU 2 - ACCU 1)/the result can be evaluated in CC 0/CC 1. 2)

S TAK Swap the contents of ACCU 1 and ACCU 2

1) Programming is dependent on the PG type and the release of the PG system software.

2) For changes in ACCU 2 and ACCU 3: see Section 3.5.1 "Basic Operations/Arithmetic Operations".

Table 3-20 Supplementary arithmetic operations

Supplementary Operations

CPU 948 Programming Guide

3 - 58 C79000-B8576-C848-03

3.5.4
Executive Operations The executive operations also include system operations.

Caution
System operations should only be used with great care and then
only by experienced programmers familiar with the system.

System operations are indicated in the table by

Jump operations When you use the supplementary jump operations, you indicate the
jump destination for unconditional jumps symbolically. The symbolic
parameter of the jump operation is identical to the symbolic address of
the destination statement. When programming, remember that the
absolute jump distance should not exceed ± 127 words and a STEP 5
statement can consist of more than one word. You can only execute
these jumps within a block; jumps over segment boundaries are not
permitted ("segment" = structural element in PBs, SBs, FBs, FXs and
OBs; see PG description).

Note
The jump statement and jump destination (symbolic address) must
be in the same segment. A symbolic address can only be used
once per segment.
Exception: this does not apply to the JUR jump for which you
specify an absolute jump distance as the parameter.

Operation Operand Function

JU =

JC =

JZ =

addr

(addr =symbolic
address with
maximum
4 characters)

Jump unconditionally:
The jump is executed regardless of conditions

Jump conditionally:
the conditional jump is executed only if the RLO is 1.
If the RLO is 0, the statement is not executed and the RLO
is set to 1.

Jump if result is ’0’ :
the jump is executed only if CC 1 is 0 and CC 0 is 0.
The RLO is not changed.

S

Table 3-21 Jump operations

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 59

Operation Operand Function

Table 3-21 continued:

JN =

JP =

JM =

JO =

JOS =

addr

(addr = symbolic
address with
maximum
4 characters)

Jump if result is not 0 :
the jump is executed only if CC1
is not equal to CC0.
The RLO is not changed.

Jump if result > ’0’ :
the jump is only executed if CC 1 = 1
and CC 0 = O. The RLO is not changed.

Jump if result < ’0’:
the jump is only executed if CC 1 = 0 and CC 0 = 1.
The RLO is not changed.

Jump on overflow:
the jump is executed when the OV condition code is 1. If
there is no overflow (OV is 0), the jump is not executed. The
RLO is not changed.
An overflow occurs when an arithmetic operation exceeds the
permissible range for a given numerical representation.

Jump when the OS (stored overflow) condition code is set:
the jump is executed when the condition code OS is 1. If
there is no overflow (OS is 0), the jump is not executed. The
RLO is not changed.
An overflow occurs when an arithmetic operation exceeds the
permissible range for a given numerical representation.

S JUR -32 768 to
+32 767

Relative jump within the user memory or within a function
block (e.g. to arrive in a different segment). The operation is
always executed regardless of conditions.
The operand is the number of words difference between the
address of the jump destination - the current destination. The
jump is executed either to a higher (positive operand) or
lower (negative operand) address than the current operation.

Caution
If you use JUR incorrectly, undefined statuses can occur in the
system. It should only be used by extremely experienced
programmers with detailed knowledge of the system.

Executive Operations

CPU 948 Programming Guide

3 - 60 C79000-B8576-C848-03

Shift operations

Operation Operand Function (operation with ACCU 1)

SLW

SRW

SLD

SSW

SSD

RLD

RRD

0 to 15

0 to 15

0 to 32

0 to 15

0 to 32

0 to 32

0 to 32

Shift a word to the left (vacant positions
to the right are padded with zeros)

Shift a word to the right (vacant position
to the left are padded with zeros)

Shift a double word to the left (vacant positions
to the right are padded with zeros)

Shift a word with sign to the right (vacant positions
to the left are padded with the sign - bit 15)

Shift a double word with sign to the right (vacant
positions to the left are padded with the sign - bit 31)

Rotate to the left

Rotate to the right

Only ACCU 1 is involved in the execution of shift operations. The
parameter part of these operations specifies the number of positions by
which the accumulator contents should be shifted or rotated. For the
SLW, SRW and SSW operations, only the low word of ACCU 1 is
involved in the shift operations. For SLD, SSD, RLD and RRD
operations, the entire contents of ACCU 1 (32 bits) are involved.

Shift operations are executed regardless of conditions.

You can use jump operations to scan the value of the last bits shifted
out using CC 1/CC 0.

Shift: last
bit shifted

CC 1 CC 0 Jump operation

0 0 0 JZ=

1 1 0 JN=
JP=

Table 3-22 Shift operations

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 61

Examples

1. You want to shift the contents of data word DW 52 four bits to the left
and write them to data word DW 53.

STEP 5 program: Contents of the data words:

:L DW 52 KH = 14AF
:SLW 4
:T DW 53 KH = 4AF0

2. You want to read the input double word ID 0, and shift the contents of
ACCU 1 so that the bit positions of the input double word shown in bold
face are retained and the remaining bit positions are set to defined
values (0H or 0FH).

STEP 5 program: Contents of ACCU 1 (hexadecimal)

ACCU-1-H: ACCU-1-L:

:L ID 0 2 348 ABCD
:SLW 4 2348 BCD0
:SRW 4 2348 0BCD
:SLD 4 3480 BCD0
:SSW 4 3480 FBCD
:SSD 4 0348 0FBC
:RLD 4 3480 FBC0

:RRD 4 0 348 0FBC

3. Application: Multiplication by the 3rd power, e.g. new value = old
value x 8

:L FW 10
:SLW 3

:T FW 10 Caution: do not exceed the
 positive area limit!

4. Application: Division by the 2nd power, e.g. new value = old value : 4

:C DB 5
:L DW 0
:SRW 2
:T DW 0

Executive Operations

CPU 948 Programming Guide

3 - 62 C79000-B8576-C848-03

Conversion operations

Operation Function

CFW

CSW

CSD

DEF

DUF

DED

DUD

FDG

GFD

Form the 1’s complement of ACCU-1-L (16 bits)

Form the 2’s complement of ACCU-1-L (16 bits)

Form the 2’s complement of ACCU 1 (32 bits)

Convert a fixed point number (16 bits) from BCD to binary

Convert a fixed point number (16 bits) from binary to BCD

Convert a double word (32 bits) from BCD to binary

Convert a double word (32 bits) from binary to BCD

Convert a fixed point number (32 bits) to a floating point number (32 bits)

Convert a floating point number to a fixed point number (32 bits)

DEF The value in ACCU-1-L (bits 0 to 15) is interpreted as a BCD number.
After the conversion, ACCU-1-L contains a 16-bit fixed point
number.

DUF The value in ACCU-1-L (bits 0 to 15) is interpreted as a 16-bit fixed point
number. After the conversion, ACCU-1-L contains a BCD number.

15 14 0

S 2 14 2 0

DUF ↓ DEF ↑15 0

S S S S 10 2 10 1 10 0

S (sign): 0 = positive
1 = negative

Table 3-23 Conversion operations

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 63

DED The value in ACCU 1 (bits 0 to 31) is interpreted as a BCD number. After
the conversion, ACCU 1 contains a 32-bit fixed point number.

DUD The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed
point number. After the conversion, ACCU 1 contains a BCD number.

31 30 0

S 2 30 2 0

DUD ↓ DED ↑
31 0

S S S S 10 6 10 5 10 4 10 3 10 2 10 1 10 0

S (sign): 0 = positive
1 = negative

FDG The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed
point number. After the conversion, ACCU 1 contains a floating point
number (exponent and mantissa).

GFD The value in ACCU 1 (bits 0 to 31) is interpreted as a floating point
number. After the conversion, ACCU 1 contains a 32-bit fixed point
number.

31 30 0

S 2 30 2 0

FDG ↓ GFD ↑

31 30 24 23 0

S 2 6 2 0 S 2 -1 2 -23

Exponent Mantissa

The conversion is made by multiplying the (binary) mantissa by the value
of the (binary) exponent by shifting the mantissa value to more significant
bits past an imaginary decimal point by the value of the exponent (base
2). After the multiplication, remnants of the original mantissa remain to
the right of the imaginary decimal point. These bit places are cut off from
the whole result.

Executive Operations

CPU 948 Programming Guide

3 - 64 C79000-B8576-C848-03

This conversion algorithm produces the following result classes:

•• Floating point numbers ≥ 0 or ≤ -1 result in the next lower
number.

•• Floating point numbers < 0 and > -1 result in the value ’0’.

Conversion examples

Examples of CFW, CSW

Floating point number 32-bit fixed point number
 GFD

+5,7 → 5

-2,3 → -3

-0,6 → 0
+0,9 → 0

1. You want the contents of data word DW 64
inverted bit for bit (reversed) and stored in
data word DW 78.

STEP 5 program: Assignment of the data words:

:L DW 64 KM = 0011111001011011
:CFW
:T DW 78 KM = 1100000110100100

2. The contents of data word DW 207 are
interpreted as a fixed point number and stored
in data word 51 with a reversed sign.

STEP 5 program: Assignment of the data words:

:L DW 207 KF = +51
:CSW
:T DW 51 KF = -51

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 65

Decrement/
increment

Operation Operand Function

D

I

1 to 255

1 to 255

Decrement the low byte (bits 0 to 7) of ACCU-1-L
by the value of the operand 1)

Increment the low byte (bits 0 to 7) of ACCU-1-L
by the value of the operand 1)

1) The contents of the low byte of ACCU-1-L are decremented or incremented by the number specified as the
operand without a carry. The operation is executed regardless of conditions.

Example

Processing operations

Operation Operand Function

DO

DO =

DW 0 to 255

FW 0 to 254

Process data word:
the following operation is combined with
the parameter specified in the address data
word and executed.

Process flag word:
the following operation is combined with
the parameter specified in the addressed
F flag and executed.

Process formal operand (parameter type B):
Only C DB, JU PB, JU OB, JU FB, JU SB
can be substituted.

Insert formal operand

STEP 5 program: Assignment of the data words:

:L DW 7 KH = 1010
:I 16
:T DW 8 KH = 1020
:D 33
:T DW 9 KH = 10FF

Table 3-24 Decrement/increment operation

Table 3-25 Processing operations

Executive Operations

CPU 948 Programming Guide

3 - 66 C79000-B8576-C848-03

Operation Operand Function

Table 3-25 continued:

S BI 1) Indirect processing of a formal operand:
execute an operation whose operation code is
stored in a formal operand. The number of the
formal operand must be stored in ACCU 1.

B RS 60 to 63 1) Execute an operation whose operation code
is stored in the system data area (RS = free
system data: RS 60 to 63). In 2-word operations
the 2nd word must be loaded in RS n + 1.

1) The value in the formal operand or system data is interpreted as the operation code of a STEP 5
operation and is then executed.

Note
Only the following operations can be combined with DO DW, or
DO FW, DI or DO RS:

- A.. , AN.. , O.. , ON.. , S.. , R.. , =..
with areas I, Q, F, S,

- FR T, R T, SF T, SD T, SP T, SS T, SE T,

- FR C, R C, S C, CD C, CU C,

- L.., T.. with areas P, O, I, Q, F, S, D, RI, RJ, RS, RT,

- L T, L C,

- LC T, LC C,

- JU=, JC=, JZ=, JN=, JP=, JM=, JO=,

- SLW, SRW,

- D, I, SED, SEE,

- C DB, JU.. , JC.., G DB, GX DX, CX DX, DOC FX, DOU FX.

The PG does not check the legality of the combinations!

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 67

Examples of DO operations

DO DW/DO FW Operand substitution

Using the statements "DO DW" and "DO FW" you can access data with a
substitution, e.g. in a program loop. The substituted access consists of the
statement DO DW/DO FW followed immediately by one of the STEP 5
operations listed above.
"Substituted" means that the operand for the operation is not programmed
as a static value but is fixed during the course of the STEP 5 program.

Select the operand type from the range permitted for the operation when
you write your program, e.g. PB for the operation "JU PB nn":

You must first load the operand value (nn in the example) in a data word
or F flag word (parameter word) before the substituted access with
DO DW/DO FW.

1. Principle of substitution:

:L KF +120
:T FW 14 load FW with the value "KF +120"
:DO FW 14
:L IB 0

before the operation "L IB" is executed, the
operand value ’0’ is replaced by the value ’120’;

Operation executed: L IB 120

2. Data word as index register:

The contents of data words DW 20 to DW 100 are set to signal state ’0’. The
index register for the parameter of the data words is DW 1.

:L KF +20 supply the index register
:T DW 1

M001 :L KF +0 reset
:DO DW 1
:T DW 0
:L DW 1 increment the index register
:L KF +1
:+F
:T DW 1
:L KF +100
:<=F
:JC =M001 jump if the index is within the range
... remaining STEP 5 program

 Continued on next page

Executive Operations

CPU 948 Programming Guide

3 - 68 C79000-B8576-C848-03

Operand substitution with binary operations

For operand substitutions with binary operations you can use the
following operand types: inputs, outputs, F flags, S flags, timers and
counters.
In this substitution, the structure of the F flag word or data word
(parameter word) depends on the operation you are using.

Parameter word for inputs and outputs

Bit no. 15 11 10 8 7 6 0

no significance Bit address
from 0 to 7

0 Byte address from 0 to 127

Examples of operand substitution continued:

3. Jump distributor for subroutine techniques:

:DO FW 5
:JU =M001 Contents of flag word FW 5:

+ :JU =M002
Jump :JU =M003 jump distance

distance :JU =M004 (maximum ± 127)
:JU =M005
: .
: .

M001 : .
: .
:BEU

M002 : . Advantage:
: . all program sections are
:BEU contained in one block.

M003 : .
: .
:BEU

4. Jump distributor for block calls:

:DO FW 10 Contents of flag word FW 10:
:JU PB 0 PB 0

 PB 1 Block no. x
 PB 2
 PB 3
 .
 .
 PB x

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 69

Parameter word for F flags

Bit no. 15 11 10 8 7 0

no significance Bit address
from 0 to 7

Byte address from 0 to 255

Parameter word for S flags

Bit no. 15 14 12 11 0

0 Bit address
from 0 to 7

Byte address from 0 to 4095

Parameter word for timers and counters

Bit no. 15 8 7 0

no significance Number of timer or
counter cell from 0 to 255

Principle of the substitution
with a binary operation

15 8 7 011 10

0 DW 27

DO DW

A I 0.0

27

304

A I 4.30

statement executed

Executive Operations

CPU 948 Programming Guide

3 - 70 C79000-B8576-C848-03

Example of DI operation

In function block FB 1, STEP 5 operations are executed whose operation
codes were transferred
by a calling block as formal operands FW 10, FW 12 and FW 14.

Which of the operation codes is executed is written by the calling block

as a consecutive number in flag word FW 16.
The result of the executed operation is then entered in ACCU 1 and is
transferred to flag word FW 18.

FB 1

NAME :TEST

DECL :FW10 I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH
DECL :FW12 I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH
DECL :FW14 I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KH

:L FW 16 cons. number of formal operand
: with required operation code

:DI transferred operation code is executed
:T FW 16 result from ACCU 1
:BE

FB 2

:
:L KF +1
:T FW 16 cons. no. of formal operand with operation code
:JU =AUFR
:
:

AUFR :
:JU FB 1 call FB TEST

NAME :TEST
FW10 : KH 4A5A op. code "L IB 90", formal operand 1
FW12 : KH xxxx other operation code, formal operand 2
FW14 : KH yyyy other operation code, formal operand 3

:T FW 18 ACCU 1 → FW 18
:BE

FW 10 4A5AH

:L IB 90

0001H

0001H

List of actual operands in FB 2 Principle of sequence in FB 1

xxxxH
yyyyH

Operation executed with "DI"

(cons. no. of actual operand)

FW 12

FW 14

FW 16

ACCU 1

:L FW 16

:DI

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 71

I/O operations

Operation Operand Function

IA

RA

IAE

RAE

BAS

BAF

Disable process interrupt servicing (via IB 0) (not for system
interrupts!)

Enable process interrupt servicing (via IB 0) (not for system
interrupts!)

Disable addressing error

Enable addressing error

Disable command output: PIQ is no longer influenced by the
operations
S Q, R Q, = Q, T PY and T PW.

Enable command output

"Enable/disable process interrupts" can, for example, be used when
process interrupt driven processing is to be suppressed during
time-controlled processing. In the program section between the IA and
RA statements, no process interrupt driven processing is possible.
Note the special function OB 122 "disable interrupts", Section 6.3.

Other operations

Operation Operand Function

S STS

STW

SIM

LIM

Stop command leading directly to a soft STOP.

Stop command leading directly to a hard STOP.
(state can only be exited with POWER DOWN/UP).

Set interrupt mask (UAMW) (32 bits): before calling the
operation, the bit pattern for the mask must be loaded in ACCU 1
(32 bits)

Read interrupt mask: bit pattern of the interrupt mask (32 bits) is
loaded in ACCU 1

Table 3-26 I/O operations

Table 3-27 Other operations

Executive Operations

CPU 948 Programming Guide

3 - 72 C79000-B8576-C848-03

SIM/LIM – set/read interrupt
condition code mask (UAMW)

The interrupt mask "masks" interrupts in the interrupt condition code
word until the end of the cycle, i.e. all interrupts remain pending, but
the program is not interrupted by them.

Bit in the interrupt condition code mask = 0: interrupt disabled
Bit in the interrupt condition code mask = 1: interrupt enabled

Meaning of the bits in UAMW-H or ACCU-1-H:

15 8 7 0

INTX INTE INTF INTG WEFE WA PA BULE PEU HALT ES AV INTAS TAU DARY KZU

Meaning of the bits in UAMW-L or ACCU-1-L:

15 8 7 0

– KB KDB STS TLAF SUF STUEB STUEU NAU ZA QVZ ADF PARE ZYK STOP HOLD

Abbrev. Meaning

High word

INTX

INTE
INTF
INTG
WEFE
WA
PA
BULE
PEU
HALT
ES
AV
INTAS
TAU
DARY
KZU

S5 bus/system interrupt A, B, C or D (slot-
dependent)
S5 bus/system interrupt E
S5 bus/system interrupt F
S5 bus/system interrupt G
Collision of timed interrupts
Timed interrupt
Process interrupt
Bus lock error
I/Os not ready
Stop instruction from coordinator COR
Single step mode
Address comparison active
Interrupt from SPU processor
Clock failure of SPU processor
Continuous ready (access to faulty memory)
Bracket counter overflow

Table 3-28 Meaning of the abbreviations in UAMW

3

 Executive Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 73

Abbrev. Meaning

Table 3-28 continued:

Low word

KB
KDB
STS
TLAF
SUF
STUEB
STUEU
NAU
ZA

QVZ
ADF
PARE
ZYK
STOP
HOLD

No block
No data block
Soft stop
Transfer/load error
Substitution error
BSTACK overflow
ISTACK overflow
Power failure
Timed interrupt (delayed interrupt, clock-controlled
interrupt
Timeout
Addressing error
Parity error
Cycle time error
Mode selector switched to STOP
DMA request from SPU processor

Executive Operations

CPU 948 Programming Guide

3 - 74 C79000-B8576-C848-03

3.5.5
Semaphore Operations If two or more CPUs in one programmable controller (see Chapter 10)

require access to the same global memory area (peripherals, CPs, IPs),
there is a danger that one CPU will overwrite the data of another CPU
or that one CPU could read invalid intermediate data statuses of
another CPU and misinterpret them. You must therefore coordinate
CPU accesses to the common memory areas.

You can coordinate the individual CPUs using the SED and SEE
operations.
You can, for example, program the following coordination between two
CPUs: a CPU involved in multiprocessing can only access the common
memory area after it has successfully set a declared semaphore (SES). A
semaphore xx can only be set by a single CPU. If a CPU fails to set (i.e.
disable) the semaphore, it cannot access the memory area. In the same
way, a CPU can no longer access the memory once it has released the
semaphore again (SEE).

SED/SEE disable/enable
semaphore

(non-system operations)

Operation Operand Function

SED

SEE

0 to 31

0 to 31

Disable (set) a semaphore

Enable (release) a semaphore

evaluation of the result of the operation via
 CC 0/CC 1

Note
The SED xx and SEE xx operations must be programmed in all
CPUs that require synchronized access to a common global
memory area.

Standard FBs, handling blocks and blocks for multiprocessor
communication manage the coordination internally. If you use
these blocks, you do not need to program the operations SEE xx
and SED xx.

Table 3-29 Disable/enable semaphore

3

 Semaphore Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 75

Effect of SED/SEE The CPU that executes the operation SED xx (disable semaphore)
accesses a specific byte in the coordinator (provided that no other
CPU has access to that byte already). Once a CPU has reserved access,
the other CPUs can no longer access the memory area protected by the
semaphore (numbers 0 to 31). The area is therefore disabled for all
other CPUs.
Make sure that the coordination functions correctly, all CPUs
requiring access to the same area of global memory must use the same
semaphore.

The SEE xx (enable semaphore) operation resets the byte on the
coordinator. The protected memory area is then once again accessible
to the other CPUs. A semaphore can only be enabled by the CPU that
disabled it.

Use of SED/SEE Fig. 3-8 illustrates the basic sequence of coordinated access using a
semaphore.

START

Operat ion
successful?

Disable semaphore

Access to sema-
phore protected
global memory

Enable semaphore:

No

Yes

End

SED

SEE

Fig. 3-8 Coordination of access to the global memory

Semaphore Operations

CPU 948 Programming Guide

3 - 76 C79000-B8576-C848-03

Before disabling or enabling a particular semaphore, the SED and SEE
operations scan the status of the semaphore. The condition codes CC 0
and CC 1 are affected as follows:

CC 1 CC 0 Evaluation Significance

0 0 JZ Semaphore was disabled by
another CPU and cannot be
disabled/enabled.

1 0 JN, JP Semaphore was disabled/
enabled.

Note
The scanning of a particular semaphore (= read procedure) and
the disabling or enabling of the semaphore (=write procedure) are
one unit. No other CPU can access the semaphore during these
procedures!

When using semaphores, remember the following points:

•• A semaphore is a global variable, i.e. the semaphore with number
16 exists only once in the entire system, even if your controller is
using three CPUs.

•• All CPUs that require coordinated access to a common memory area
must use the SED and SEE operations.

•• All participating CPUs must execute the same start-up type. Du-
ring a COLD RESTART, all the semaphores are cleared. During a
manual or automatic warm restart, the semaphores are retained.

•• Start-up in multiprocessor operation must be synchronized. For
this reason, no test operation is allowed.

3

 Semaphore Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 77

Application example for
semaphores

Tasks:

Four CPUs are plugged into an S5-155U. They output status messages to a
status signalling device via a common memory area of the O peripherals
(OW 6). A CPU must output each status message for 10 seconds. Only after a
10 second output can a new message be output from the same CPU or a
different CPU overwrite the first message. The use of peripheral word OW 6
(extended I/O area, no process image) is controlled by a semaphore. Only the
CPU that was able to reserve this area for itself by disabling the assigned
semaphore can write this message to OW 6. The semaphore remains disabled for
10 seconds at a time (TIMER T 10). The CPU re-enables the semaphore only
after this timer has elapsed. After the semaphore has been re-enabled, the
other CPUs can access the reserved area. The new message can then be written
to OW 6.

Implementation:

The following program can run in all four CPUs, each with a different
message. The blocks shown below are loaded.

5 flags are used as follows:

F 10.0 = 1: a message was requested or is being processed

F 10.1 = 1: the semaphore was disabled successfully

F 10.2 = 1: the timer was started

F 10.3 = 1: the message was transmitted

F 10.4 = 1: the semaphore was re-enabled

 Continued on next page

FB 1:
MAIN PROGRAM

FB 10:
REPORT

FB 100:
DISABLE SEMAPHORE

FB 110:
OUTPUT REPORT

FB 101:
ENABLE SEMAPHORE

Semaphore Operations

CPU 948 Programming Guide

3 - 78 C79000-B8576-C848-03

Semaphore application example continued:

FB 1

:A F 10.0
:JC =M001 If no message is active,
:
:AN I 0.0
:BEC
:
:L KH 2222 generate message and
:T FW 12
:AN F 10.0
:S F 10.0 set "MESSAGE" flag.
:

M001 :JU FB10 Call "REPORT" FB
NAME :REPORT

:
:BE

FB 10

NAME :REPORT

:AN F 10.1 If no semaphore is disabled,
:JC FB 100 call "disable semaphore" FB.

NAME :SEMADIS
:
:A F 10.1 If the semaphore is disabled
:AN F 10.2 and the timer has not started,
:S F 10.2
:L KT010.2 start the timer.
:SE T 10
:
:A F 10.2 If the timer has started
:AN F 10.3 and no message is being transmitted,
:JC FB 110 call "output message" FB.

NAME :MSGOUT
:
:A F 10.2 If the timer has started
:AN F 10.4 and the semaphore is not enabled
:AN T 10 and the timer has elapsed,
:JC FB 101 call "enable semaphore" FB.

NAME :SEMAENAB
:
:AN F 10.4 If the semaphore is enabled,
:BEC
:
:L KH0000
:T FY10 reset all flags.
:BE

 Continued on next page

3

 Semaphore Operations

CPU 948 Programming Guide

C79000-B8576-C848-03 3 - 79

Semaphore application example continued:

FB 100

NAME :SEMADIS

:SED 10 Disable semaphore no. 10
:JZ =M001
:AN F 10.1 If the semaphore is disabled successfully,
:S F 10.1 set "SEMAPHORE-DISABLED" flag.

M001 :BE

FB 110

NAME: MSGOUT

:L FW12 Transmit a message
:T OW 6 to the peripherals
:AN F 10.3
:S F 10.3 Set "TRANSFER MESSAGE"
: flag
:BE

FB 101

NAME :SEMAENAB

:SEE 10 Enable semaphore no. 10
:JZ =M001
:AN F 10.4
:S F 10.4 Set "SEMAPHORE ENABLED"
: flag

M001 :BE

Semaphore Operations

CPU 948 Programming Guide

3 - 80 C79000-B8576-C848-03

Contents of Chapter 4

4.1 Introduction and Overview. 4 - 4

4.2 Program Execution Levels . 4 - 7

4.3 STOP Mode. 4 - 12

4.3.1 SOFT STOP . 4 - 12
4.3.2 HARD STOP . 4 - 16
4.3.3 OVERALL RESET. 4 - 17

4.4 START-UP Mode . 4 - 19

4.4.1 MANUAL and AUTOMATIC COLD RESTART. 4 - 20
4.4.2 MANUAL and AUTOMATIC WARM RESTART . 4 - 21
4.4.3 Comparison between COLD RESTART and WARM RESTART. 4 - 24
4.4.4 RETENTIVE COLD RESTART . 4 - 25
4.4.5 Comparison of COLD RESTART and RETENTIVE COLD RESTART. 4 - 26
4.4.6 User Interfaces for Start-Up . 4 - 27
4.4.7 Extended AUTOMATIC WARM RESTART with the CPU 948 (HOT RESTART) . . . 4 - 30
4.4.8 Interruptions during START-UP . 4 - 31

4.5 RUN Mode . 4 - 33

4.5.1 Cyclic Program Execution . 4 - 34
4.5.2 Specifying Time and Interrupt-Driven Program Execution . 4 - 36
4.5.3 Time-Controlled Program Execution . 4 - 37

Delayed interrupt . 4 - 38
Clock-controlled interrupt . 4 - 39
Cyclic timed interrupts . 4 - 41

4Operating Statuses and Program
Execution Levels

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 1

4.5.4 Interrupt-Driven Program Execution . 4 - 45
PROCESS INTERRUPTS via input byte IB 0 . 4 - 45
INTERRUPTS via signal lines of the S5 bus . 4 - 47
Disabling interrupt-driven processing. 4 - 49
Reaction time . 4 - 50
Program execution levels and flags . 4 - 50

CPU 948 Programming Guide

4 - 2 C79000-B8576-C854-03

4Operating Statuses and Program
Execution Levels

This chapter provides an overview of the operating statuses and
program execution levels of the CPU 948. It informs you in detail
about various types of start-up and the organization blocks associated
with them, in which you can program your own sequences for various
situations when restarting.

You will also learn the characteristics of the program execution modes
"cyclic processing", "time-controlled processing" and
"interrupt-driven processing" and will see which blocks are available
for your user program.

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 3

4.1 Introduction and Overview

With the CPU 948, there are four operating statuses, as follows:

•• START-UP mode

•• RUN mode

•• SOFT STOP mode

•• HARD STOP mode

In the START-UP and RUN modes, certain events can occur to which the
system program must react. In many situations, an organization block
(one from OB 1 to OB 35) is called as the user interface for the specific
event.

The modes are displayed by LEDs on the front panel of the CPU.
Some of the modes must be activated using the operating elements on
the front panel of the CPU. The position of the LEDs and operating
elements can be seen in Fig. 4-1.

S
IE

M
E

N
S

6E
S

5
94

8-
3U

A
11

RUN

STOP

RUN

STOP

SYS FAULT

RESET
RÜCKSETZEN

URLÖSCHEN
OVERALL
RESET

QVZ
ADF
ZYK

BASP

INIT

SI1

SI2

Receptacle for

S5-155U CPU948

memory card

Mode selector

LED (green)
LED (red)
LED (red)

Reset switch

Error display LEDs (red)
Error display LED (red)
Interface error LEDs (red)

Order number and version

Interface SI1
PG interface, 15-pin

Lever

Securing bolt

SI1 SI2

Second serial interface SI2
Receptacle for interface submodule

Fig. 4-1 Front panel of the CPU 948 with display and operating elements

Introduction and Overview

CPU 948 Programming Guide

4 - 4 C79000-B8576-C854-03

Display of the modes by
(LEDs)

Various LEDs on the front panel of the CPU indicate its current mode.
The following table shows the relationship between the STOP and
RUN LEDs and the corresponding mode.
These displays are supplemented by further LEDs (BASP, ADF,
QVZ, ZYK, INIT).

LED
"RUN"

LED
"STOP"

LED
"SYSFAULT"

Mode

Off Off Off The CPU is in the START-UP mode or the PG function
"program test" is active.

On Off Off The CPU is in the RUN mode.

Off On Off The CPU is in the SOFT STOP mode.
The "STOP" LED is lit permanently after switching off the
power supply when the mode selector is switched to "STOP"
and no error occurred during initialization. This status is also
achieved by a multiprocessor STOP (MP-STP) or a stop
command using the switch or the PG function.
A start-up is possible.

Off Slow
flashing

Off The CPU is in the SOFT STOP mode.
An error has occurred in the RUN mode, but no appropriate
error handling has been programmed (exceptions: refer to
Chapter 5).
Further causes may be the following: program stop statement
and the PG function "end program test".

Off Fast
flashing

Off The CPU is in the SOFT STOP mode.
An OVERALL RESET was triggered by the operator or by
the CPU itself.

Off Off On The CPU is in the HARD STOP mode.
No program execution is taking place.
You can only exit this status by switching off the power
supply and switching it on again.
Causes can be the following: the STEP 5 operation STW,
timeout or parity error in the operating system area, ISTACK
overflow or serious system error.

Table 4-1 Meaning of the LEDs "RUN" , "STOP" and "SYSFAULT"

4

Introduction and Overview

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 5

Signalling and error LEDs

"BASP" LED This indicates whether the S5 bus signal BASP (disable command
output) is active:
in the single processor mode, BASP is deactivated by the CPU when it
enters the status RUN and activated at the transition to the STOP
mode. During START-UP and in the STOP mode and in the
remainder of the cycle following WARM RESTART, BASP is set to
active.
In the multiprocessor mode, the BASP display is identical to that in
the single processor mode as long as the switch on the coordinator is
in the RUN position. If the switch is in the "test mode" position, the
CPU does not activate BASP and the BASP LED is not lit.

Note
If BASP is active, all the digital outputs are blocked.

"QVZ" LED Timeout of an I/O module (for more detailed information refer to
Section 5.6).

"ADF" LED Addressing error; the user program has accessed an address in the
process image for which there is no module inserted in the I/Os.

"ZYK" LED Cycle time exceeded.

"INIT" LED During initialization following POWER UP and with system errors,
this LED is lit constantly.

Introduction and Overview

CPU 948 Programming Guide

4 - 6 C79000-B8576-C854-03

4.2 Program Execution Levels

Fig. 4-2 provides you with an overview of the program processing
levels in the various modes. The explanations of the abbreviations are
on the following page.

Error levelsProgram execution levelsStatus

SOFT
STOP

START-UP

RUN

KDB
FEDBX

KB
PARE
QVZ
ADF
TRAF
SUF
ZYK

WEFES/WEFEH

FEDBX
KDB
KB

PARE
QVZ
ADF
TRAF
SUF

COMMUNICATION

Cyclic processing
of communication

COMMUNICATION START-UP

Preparing for
communication

START-UP

WARM RESTART
COLD RESTART

PROCESS INTERRUPTS/INTERRUPTS

Interrupt-driven
program execution

CYCLE

Cyclic program
execution

TIMED INTERRUPTS

Time-controlled
program execution

FEDBX
KDB
KB

PARE
QVZ
ADF
TRAF
SUF

ZYK

Fig. 4-2 Program execution levels

4

Program Execution Levels

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 7

Level Meaning Priority

Error levels

WEFES/WEFEH
ZYK
SUF
TRAF
ADF
QVZ
PARE
KB
KDB
FEDBX

Collision of timed interrupts
Cycle error
Substitution error
Transfer/load error
Addressing error
Timeout
Parity error
Called code block does not exist
Called data block does not exist
Error generating a data block, DB or DX

Each error handling
routine has the highest
priority. If an error
occurs, the
corresponding error
level is nested in
immediately.

Program execution levels in SOFT STOP

COMMUNICATION START-UP
COMMUNICATION

Preparation (start-up) for communication
Cyclic processing of communication

–

Program processing levels in START-UP

COLD RESTART

WARM RESTART

Defined start of the user program

Continuation of the user program at the
point of interruption

–

Program execution levels in RUN

TIMED INTERRUPTS
PROCESS INTERRUPTS
CYCLE

Time-controlled program execution
Interrupt-driven program execution
Cyclic program execution

Ascending 1)

priority
(default)

1) The default can be changed by selecting parameters for DX 0 (refer to Chapter 7).

Processing via the system
program

A specific system program is responsible for each level.

Interrupt stack (ISTACK) If an interrupt occurs, the system program sets up an information field
in the ISTACK for each level, to allow it to continue in the interrupted
level after servicing the interrupt.

Table 4-2 Program execution levels

Program Execution Levels

CPU 948 Programming Guide

4 - 8 C79000-B8576-C854-03

Nesting other levels When an event occurs, which requires higher priority processing, the
current level is interrupted by the system program and the higher
priority level is activated.

This occurs in the following situations:

•• at error levels: always at operation boundaries,

•• all other levels: at block or operation boundaries
(depending on the setting in DX 0
refer to Chapter 7)

Note
A maximum of 5 error organization blocks can be nested. If 5
error levels are activated simultaneously, this causes an ISTACK
overflow and the CPU changes to the HARD STOP.

A specific program execution level is assigned to one or a group of
organization blocks which are called by the system program after an
event. If, for example, OB 9 is called to process a time-controlled
interrupt, the program execution level TIMED INTERRUPTS is
activated.

After the system program calls an organization block, the CPU
executes the STEP 5 statements is contains. The current register
record is saved in the ISTACK and a new register record is set up
(register: ACCU 1 to 4, block stack pointer, block address register,
data block start address, data block length, step address counter, base
address register and the interrupt condition code words ICMK and
ICRW).
If "normal" program execution is interrupted by the occurrence of an
event, following the execution of the OB, the CPU continues the
program execution at the point of interruption (including all the blocks
nested there) as long as no stop is programmed in the OB.

4

Program Execution Levels

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 9

Sub-levels The TIMED INTERRUPTS level contains several sub-levels to which
a specific program (OB) is assigned. Within the TIMED
INTERRUPTS level, the sub-levels have their own priority (refer to
the following table).

TIMED INTERRUPTS level

Sub-level Priority

Delayed interrupt
cyclic timed interrupt, shortest period
...
...
cyclic timed interrupt, longest period
time-driven interrupt

ascending
priority
(default)

Examples

Example of
"Execution by the system program":

At the CYCLE program execution level, the system program updates the
process image of the inputs and outputs, triggers the cycle monitoring time
and calls the PG interface management (system checkpoint).

Program Execution Levels

CPU 948 Programming Guide

4 - 10 C79000-B8576-C854-03

Example of

"Interrupting a basic level with interruptability at block
boundaries":

A timed interrupt occurs while a process interrupt is being serviced.
Since the timed interrupt has a higher priority, the servicing of the
PROCESS INTERRUPT is interrupted at the next block boundary and the
TIMED INTERRUPT level nested in. If an addressing error now occurs
while servicing the timed interrrupt, the timed interrupt servicing is
interrupted immediately at the next operation boundary to nest in the
ADF level.

Example of

"Interrupt stack":

CYCLE START-UP

CYCLE

SUF SUF

ADFADF

ADF

STOP

SUF

CYCLE

Depth 3

Depth 4

Depth 2

Depth 1

ISTACK = Image of the
interrupted levels

Stop switch WARM RESTART

Fig. 4-3 Principle of changing level and the ISTACK

4

Program Execution Levels

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 11

4.3 STOP Mode

The CPU 948 has two different STOP modes, the "hard" STOP and
the "soft" STOP (= CPU capable of communication).

4.3.1
SOFT STOP The SOFT STOP mode has the following features:

The CPU can communicate: the system program calls organization
block OB 38 once after POWER UP (COMMUNICATION
START-UP level in SOFT STOP) and then calls OB 39
(COMMUNICATION level in SOFT STOP).

Initialization of
communication
(OB 38)

To initialize communication, the system program calls OB 38 as the
user interface.

OB 38 is only called after POWER UP . The call is not
dependent on the type of start-up (AUTOMATIC COLD
/AUTOMATIC WARM RESTART) set in data block DX 0.

Start-up monitoring of
OB 38

The time required for the execution of OB 38 is not monitored by the
system program. You can, however, abort execution by changing the
mode selector to STOP.

If an error occurs in OB 38, its execution is aborted and OB 39 is
called if it exists.

Cyclic communication
(OB 39)

If the cyclic program is interrupted causing a change to the SOFT
STOP mode, OB 39 is called as the user interface.

If the interruption of the cyclic program means that a handling block
(communication) is not completely executed, it is possible and
permitted to re-call the same block or the same block type in OB 39
(e.g. SEND).

STOP Mode

CPU 948 Programming Guide

4 - 12 C79000-B8576-C854-03

Monitoring the execution
time of OB 39

The execution time of OB 39 is monitored by the system program. If
execution takes longer than 2.55 seconds (fixed value), the system
program detects a cycle time error; it then calls the error OB, OB 26,
and then processes OB 39 again from the beginning. If a cycle time
error occurs again, an ISTACK depth > 5 causes an ISTACK overflow
(reaction: see following paragraph).

Reaction to an
error in OB 39

If an error occurs in OB 39 or in a handling block called in OB 39
(e.g. QVZ), the system program calls the appropriate error
organization block. After this has been executed, the program
processing is continued in OB 39. If the error OB does not exist,
OB 39 is executed again from the beginning. (Exception: with QVZ,
KB and errors in the self test there is no reaction).
If further errors occur, an ISTACK depth > 5 causes an ISTACK
overflow:
the system program aborts program execution (OB 39 is no longer
called), the CPU however remains in the SOFT STOP mode.

Data are not reset If cyclic execution has already taken place in the RUN mode, the
values of counters, timers, flags and the process image are retained
during the transition to the stop mode.

Real-time clock The real-time clock continues to run. It is updated in the RS area at
10 ms intervals.

BASP signal The BASP (disable output command) signal is active. This disables all
the digital outputs (exception: in the test in multiprocessor operation
and with the PG function "force outputs", BASP is not active - refer to
Section 10.1.8).

ISTACK If a user program was processed prior to the stop mode, information is
entered in the interrupt stack (ISTACK) providing information about
the cause of the interruption.

Timer processing in OB 38/39 While OB 38/39 is being executed, the processing of timers and
counters is stopped. If necessary, timer information must be
processed from system data area RS 96 to RS 99 or with OB 121
or OB 150.

4

STOP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 13

OB 38/OB 39 call Figures 4-4 and 4-5 illustrate the principle of the OB 38 and OB 39
calls.

OB 38OB 38

OB 39

OB 22

RUN

OB 39

Communication
start-up

Communication
start-up

Initial status: RUN Initial status: SOFT STOP

POWER DOWN/POWER UPPOWER DOWN/POWER UP

Communication
processed once

AUTOMATIC
WARM RESTART

Cyclic processing
of communication

Fig. 4-4 Program execution after POWER UP

OB 1

OB 39

Interruption e.g.
by STS operation

Cyclic processing
of communication

Fig. 4-5 Program execution after a cycle interruption

STOP Mode

CPU 948 Programming Guide

4 - 14 C79000-B8576-C854-03

LED displays The SOFT STOP status can be recognized by the LEDs on the front
panel of the CPU as follows:

LED Status

RUN off

STOP on (continuous or flashing light)

SYSFAULT off

BASP on (except in test mode with multiprocessor mode
or with PG function "force outputs")

The STOP LED signals the possible causes of the current stop status,
as follows:

STOP LED lit continuously The SOFT STOP mode was triggered by the following:

in single processor operation:
- by changing the mode selector

from RUN to STOP,
- by the PG function PLC STOP,
- by a device fault (PEU),
- following an OVERALL RESET.

in multiprocessor operation:
- by changing the mode selector on the COR to STOP,
- a different CPU has changed to the STOP mode due to a problem

(each CPU not causing the error has a constantly lit LED) or by the
 STOP switch,

- PG function PLC STOP
- PG function "program test end" on a different CPU

STOP LED flashes slowly
(approx. once every 2 sec)

The SOFT STOP was triggered by the following:

- STP or STS statement in the user program,
- operator error (DB 1/DX 0 error, selection of an illegal start-up

mode etc.),
- BSTACK overflow (STUEB) or bracket counter overflow (KZU),
- programming errors or device faults; the following LEDs provide

further information:
- "ADF" LED
- "QVZ" LED
- "ZYK" LED

- by the PG function "program test end" on this CPU.

4

STOP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 15

Exiting the SOFT STOP status

The SOFT STOP status can be exited as follows:

a) by selecting a restart (refer to Section 4.4),

b) by an OVERALL RESET followed by a COLD RESTART.

4.3.2
HARD STOP If the system program can no longer be executed properly, the CPU

changes to the HARD STOP mode to ensure a safe mode in this
situation.

A HARD STOP can be caused by the following:

•• stop operation (STW) for the system program

•• ISTACK overflow (STUEU),

•• timeout (QVZ) or parity error (PARE) in the system
RAM/EPROM,

•• error in system program

Note
The CPU is stopped. You can only exit the HARD STOP mode
by switching the power off and then on again!

LED displays The HARD STOP status can be recognized by the following LEDs on
the front panel of the CPU:

LED Status

RUN off

STOP off

SYSFAULT on

BASP on

STOP Mode

CPU 948 Programming Guide

4 - 16 C79000-B8576-C854-03

4.3.3
OVERALL RESET With an OVERALL RESET the whole user memory and operand

areas (flags, process images etc.) are deleted.

Requesting an
OVERALL RESET

Before an OVERALL RESET can be performed, it must be requested.
An OVERALL RESET is requested when the STOP LED flashes
quickly.

Request by the system
program

Each time you switch on the power, the CPU runs through an
initialization routine. If an error is detected during the initialization
(back-up voltage failure during POWER OFF), the system program
requires an OVERALL RESET.

The cause of the problem must be eliminated (e.g. replacing the
battery) following which an overall reset of the CPU is necessary.

An OVERALL RESET is also requested if a CPU or system error
occurs. You can recognize this error because the request occurs again
following the OVERALL RESET. In this case, contact your local
Siemens representative.

Operator request With the steps outlined in the table, you can also request an
OVERALL RESET (the operating elements are on the front panel of
the CPU - Fig. 4-1):

Step Action Result

1 Change the mode selector
switch from RUN to STOP.

The CPU is in the STOP
mode. The STOP LED is lit
continuously.

2 Hold the reset switch in the
OVERALL RESET position;
at the same time, change the
mode selector from STOP to
RUN and then back to STOP.

An OVERALL RESET is
requested. The STOP LED
flashes quickly.

Note
If you do not want to execute the OVERALL RESET you
requested, carry out a MANUAL COLD RESTART or
MANUAL WARM RESTART.

4

STOP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 17

Performing an
OVERALL RESET

Regardless of whether you or the system program requested the
OVERALL RESET, you perform the OVERALL RESET as follows
(initial status: STOP LED flashing quickly):

OVERALL RESET using
control elements on the CPU

Action Result

Hold the reset switch in the
OVERALL RESET position. At
the same time, change the mode
selector from STOP to RUN and
back to STOP again (refer to
Fig. 4-1).

An OVERALL RESET is
performed. The STOP LED is lit
continuously.

OVERALL RESET from the
PG

Action Result

Activate the PG function "delete
blocks".

An OVERALL RESET is
performed. The STOP LED is lit
continuously.

Note
In contrast to the CPU 946/947, you can also initiate an
OVERALL RESET on the CPU 948 in the RUN mode. In this
case, the CPU automatically changes to the STOP mode and the
OVERALL RESET is then performed.

During the OVERALL RESET, all the LEDs are unlit apart from
the INIT and BASP LEDs.

Once the OVERALL RESET is completed, the only permitted
start-up mode is then a COLD RESTART.

Loading the memory card
and calling OB 39

After performing the OVERALL RESET, the memory card is loaded
(provided it is plugged in) following which OB 39 is called.

STOP Mode

CPU 948 Programming Guide

4 - 18 C79000-B8576-C854-03

4.4 START-UP Mode

The START-UP mode has the following features:

Mode change START-UP is the transition from the STOP mode to the RUN mode.

Start-up types The CPU 948 has the following start-up modes:

- COLD RESTART (manual or automatic)
- WARM RESTART (manual or automatic)
(You can select the type of start-up with operating elements and by
assigning parameters in DX 0)

COLD RESTART The cyclic user program is processed from the beginning.

The system program calls OB 20 as the user interface.

WARM RESTART The execution of the cyclic user program is continued from the point
at which it was interrupted.

The system program calls the following OBs as the user interface:

- OB 21 for a MANUAL WARM RESTART,
- OB 22 for an AUTOMATIC WARM RESTART.

No time monitoring of the
start-up OBs

The execution time of the start-up organization blocks is not
monitored. You can call other blocks within these OBs. Make sure
you avoid endless loops!

Counters, timers, flags,
process images

The values of counters, timers, flags and process images are handled
differently in the various start-up types (refer to Section 4.4.3).

BASP The BASP signal (disable output command) is active. This disables all
the digital outputs (exception: in the test mode in multiprocessor
operation, the BASP is not activated - refer to Section 10.1.8).

Interrupts The interrupts (normal interrupts, process interrupts, timed interrupts)
are disabled.

Start-up in the multiprocessor
mode

Starting up in the multiprocessor mode is described in Section 10.1.7.

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 19

4.4.1
MANUAL and
AUTOMATIC
COLD RESTART

When is a COLD RESTART
permitted?

A COLD RESTART is always permitted provided the system is not
requesting an OVERALL RESET.

When is a COLD RESTART
necessary?

A COLD RESTART is necessary after the following:

- OVERALL RESET,
- loading the user memory with the user program while the CPU

is in the stop mode
- ISTACK/BSTACK overflow,
- COLD RESTART aborted (by POWER OFF or changing the

mode selector to "STOP"),
- stop after PG function "program test end"

MANUAL COLD RESTART You can trigger a MANUAL COLD RESTART as follows:

•• Using the operating elements of the CPU:

Hold the reset switch in the RESET position; at the same time change
the mode selector from STOP to RUN (refer to Fig. 4-1).

•• From the PG:

Select the PG function PLC START/COLD RESTART.

AUTOMATIC COLD
RESTART

An AUTOMATIC COLD RESTART is triggered as follows:

At POWER UP, when

- the default "AUTOMATIC WARM RESTART after POWER UP"
in DX 0 has been changed to "AUTOMATIC COLD RESTART
after POWER UP",

- the mode selector on all CPUs and on the coordinator must remain
set to RUN
and
the CPU was not in the STOP mode when the power was switched off.

Note
If the CPU was in the STOP mode when the power was switched
off (for example, following an addressing error), an
AUTOMATIC COLD RESTART is not permitted. The STOP
mode can only be exited in this case with a MANUAL COLD
RESTART.

START-UP Mode

CPU 948 Programming Guide

4 - 20 C79000-B8576-C854-03

Aborting a cold restart You can abort an active COLD RESTART only by changing the mode
selector to STOP or by switching off the power. If you abort a COLD
RESTART you must repeat it.

4.4.2
MANUAL and
AUTOMATIC
WARM RESTART

When is a WARM RESTART
possible and permitted?

A MANUAL WARM RESTART is only possible after stoppages
caused by the following:

•• the mode selector was changed from the RUN position to the
STOP position,

•• a stoppage in multiprocessor operation caused by the HALT signal
from the coordinator,

•• POWER OFF, with the appropriate setting in data block DX 0,

•• PG function PLC STOP.

Note
If the stoppage was caused by an event other than those listed
above, then no warm restart is possible. The system program
will only permit a COLD RESTART.

A MANUAL or AUTOMATIC WARM RESTART is only
permitted when

•• the user program was not modified during the stop mode

and

•• a COLD RESTART is not necessary for other reasons (refer to
Section 4.4.1).

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 21

MANUAL WARM RESTART You trigger a MANUAL WARM RESTART as follows:

•• using the control elements of the CPU:

initial state: the reset switch is in the mid setting

change the mode selector from STOP to RUN (refer to Fig. 4-1)

•• from the PG:

select the PG function PLC START/WARM RESTART.

AUTOMATIC WARM
RESTART

An AUTOMATIC WARM RESTART is triggered as follows:

With POWER UP, when

- the default "AUTOMATIC WARM RESTART after POWER UP"
is set in data block DX 0 or DX 0 does not exist,

- the mode selector on all CPUs and on the coordinator remain
unchanged and set to RUN
and
the CPU was not in the STOP mode when the power was switched
off,

- no further errors have occurred during the initialization nor before
the power was switched off,

- no COLD RESTART is required due to the reasons listed above.

Following power failure or switching the power off in the RUN mode
followed by the return of power/POWER UP, the CPU runs through
an initialization routine and then automatically performs a WARM
RESTART.

If there is a power failure on an expansion unit, (PEU signal), the CPU
changes to the STOP mode. It remains in this mode until the PEU
signal is switched inactive and then performs an AUTOMATIC
WARM RESTART or an AUTOMATIC COLD RESTART.

START-UP Mode

CPU 948 Programming Guide

4 - 22 C79000-B8576-C854-03

Note
With a WARM RESTART note the following special situation:

The CPU is currently processing an error OB (e.g. due to an
addressing error ADF) and then changes to the STOP mode
owing to POWER OFF, HALT, stop switch or PG-STP.
Following this, a MANUAL or AUTOMATIC WARM
RESTART is executed.

Reaction of the CPU:

- Before OB 21/22 is called, the interrupted processing of the error
OB is completed.

- If the error OB does not lead to a stop operation, then following
the processing of the remainder of the error OB, a WARM
RESTART is executed.

- If the error OB sets the CPU to the stop mode, then only a
COLD RESTART is possible.

Aborting a
WARM RESTART

You can only abort a WARM RESTART after it has started by
changing the mode selector to STOP or by POWER OFF. If you abort
the warm restart in this way, both a COLD RESTART or WARM
RESTART is then possible.

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 23

4.4.3
Comparison between
COLD RESTART and
WARM RESTART

The following table contains a comparison of the start-up types
COLD RESTART and WARM RESTART..

COLD RESTART WARM RESTART

Manual
triggering:

Mode selector from position STOP to RUN
and reset switch set to RESET position
or
PG function PLC START (COLD
RESTART)

Mode selector from position STOP to
position RUN
or
PG function PLC START (WARM
RESTART)

Automatic
triggering:

Switching on the power supply, when
"AUTOMATIC COLD RESTART after
POWER UP" is entered in DX 0

Switching on the power supply when the
default is entered in DX 0 or no DX 0 exists

System
program
activities:

Set up block address list in DB 0

Delete process image of the inputs

Delete process image of the outputs

Block address list retained in DB 0

Process image of the inputs retained

Process image of the outputs retained

Delete flags, timers and counters

Delete digital/analog I/Os
(each 2 x 128 bytes)

Delete IPC flags (256 bytes)

Delete delayed interrupts and timed jobs

Delete ISTACK/BSTACK

Delete semaphore

Flags, timers and counters retained

IPC flags retained

Delete delayed interrupts,
timed jobs retained

ISTACK/BSTACK retained

Semaphore retained

If DB 1 exists:
write the digital I/Os entered in it into
the PI lists

If DB 1 does not exist:
enter the modules which actually exist
(only digital I/O) into the PI lists
IPC flags are ignored

No entries made from DB 1

Table 4-3 Characteristics of COLD RESTART and WARM RESTART

START-UP Mode

CPU 948 Programming Guide

4 - 24 C79000-B8576-C854-03

COLD RESTART WARM RESTART

Table 4-3 continued:

System
program
activities
(continued):

Set system parameters according to the
settings in DX 0

DX 0 not evaluated

Call user interface OB 20
(if it exists) 1)

Call user interface OB 21/22
(if they exist) 1)

Synchronize start-up in multiprocessor
operation

Synchronize start-up in multiprocessor
operation

Transition to the cycle:

- switch BASP inactive,
- call OB 1

Transition to the cycle:
- BASP remains active
- delete process image of the outputs
- process remaining cycle
- switch BASP inactive
- call OB 1

1) Following POWER UP, the user interfaces are called in the following order during the START-UP:
OB 38, OB 39, OB 20/OB 22.

4.4.4
RETENTIVE COLD
RESTART

If the parameter for a "cold restart with memory" is stored in the
loaded DX 0 block, the system program goes through a RETENTIVE
COLD RESTART instead of a WARM RESTART. How this differs
from a "normal" COLD RESTART can be seen in the following
section.

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 25

4.4.5
Comparison of
COLD RESTART and
RETENTIVE COLD
RESTART

The following table shows the differences between a COLD
RESTART and RETENTIVE COLD RESTART.

COLD RESTART RETENTIVE COLD RESTART

Manual
triggering:

Mode selector from position STOP to
position RUN and reset switch set to
RESET
or
PG function PLC START (COLD
RESTART)

Mode selector from position STOP to
position RUN
or
PG function PLC START (WARM
RESTART)

Automatic
triggering:

Switching on the power supply, when
AUTOMATIC COLD RESTART after
POWER UP is entered in DX 0

Switching on the power supply when
AUTOMATIC WARM RESTART after
POWER UP and COLD RESTART WITH
MEMORY is entered in DX 0

System
program
activities:

Set up block address in DB 0

Delete process image of the inputs

Delete process image of the outputs

Delete delayed interrupts and timed jobs

Delete flags, timers and counters

Delete digital/analog I/Os
(each 2 x 128 bytes)

Block address list retained in DB 0

Process image of the inputs retained

Process image of the outputs retained

Delete delayed interrupts and timer jobs

Flags, timers and counters retained

Delete digital I/O (128 bytes)
Analog I/Os retained (128 bytes)

Delete IPC flags (256 bytes)

Delete ISTACK/BSTACK

Delete semaphore

IPC flags retained

Delete ISTACK/BSTACK

Semaphore retained

If DB 1 exists:
enter the digital I/Os and IPC flags it
contains in the PI lists

If DB 1 does not exist:
enter the existing modules (only digital
I/Os) in the PI lists
IPC flags are ignored

No entries from DB 1

Table 4-4 Differences between a cold restart and a RETENTIVE COLD RESTART

START-UP Mode

CPU 948 Programming Guide

4 - 26 C79000-B8576-C854-03

COLD RESTART RETENTIVE COLD RESTART

System
program
activities
(continued)

Table 4-4 continued:

Set system parameters according to default
in DX 0

No evaluation of DX 0

Call user interface OB 20
(if it exists) 1)

Call user interface OB 21/22
(if it exists) 1)

Synchronize start-up in multiprocessor
operation

Synchronize start-up in multiprocessor
operation

Transition to the cycle:

- switch BASP inactive
- call OB 1

Transition to the cycle:

- switch BASP inactive
- call OB 1

1) After POWER ON, the user interfaces are called in the following order during START-UP:
OB 38, OB 39, OB 20/OB 22.

4.4.6
User Interfaces for Start-Up The organization blocks OB 20, OB 21 and OB 22 serve as user

interfaces for the various types of start-up. You can store your STEP 5
program for the type of start-up in these blocks.

OB 20 When the CPU executes a MANUAL or AUTOMATIC COLD
RESTART, the system program calls OB 20 once. In OB 20, you can
store a STEP 5 program which is responsible for preliminary steps for
a cold restart of cyclic processing prior to the execution of the cyclic
program.

You can, for example:

•• set flags

•• start timers (the start is executed by the system program when it en-
ters the RUN mode)

•• set default values for data to be output to I/O modules

•• synchronize CPs.

After processing OB 20, the cyclic program begins by calling OB 1.
If OB 20 is not loaded, the CPU begins the cyclic program
execution immediately after the COLD RESTART is completed
(following the system activities).

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 27

OB 21 If the CPU performs a MANUAL COLD RESTART or RETENTIVE
MANUAL COLD RESTART, the system program calls OB 21 once.
Here, you can store a STEP 5 program which executes preliminary
steps for a warm restart of the cyclic program.

MANUAL WARM RESTART With a MANUAL WARM RESTART, the cyclic program is
continued with the next statement following the point at which it was
interrupted after processing OB 21, the sequence is as follows:

•• The BASP signal (disable command output) remains active during
the processing of the remaining cycle and is only switched inactive
at the beginning of the next (complete) cycle.

•• The process image of the outputs is reset at the end of the
remaining cycle.

•• If OB 21 is not loaded, the CPU begins again at the point at which
the program was interrupted on completion of the MANUAL
WARM RESTART and the system activities.

MANUAL RETENTIVE COLD
RESTART

If the parameter "COLD RESTART WITH MEMORY" is entered in
the data block DX 0, after processing OB 21, the system program then
goes through a COLD RESTART (the CPU resumes program
execution with the first STEP 5 statement in OB 1). The signal states
of the flags, IPC flags, semaphore and the block address list (DB 0)
are retained.

START-UP Mode

CPU 948 Programming Guide

4 - 28 C79000-B8576-C854-03

OB 22 When the CPU executes an AUTOMATIC WARM RESTART or
AUTOMATIC RETENTIVE COLD RESTART, the system program
calls OB 22 once. Here, you can store a STEP 5 program which
executes preliminary steps (generally following a power failure) for a
warm restart of cyclic program execution.

AUTOMATIC WARM
RESTART

Following POWER UP, the CPU executes the system activities listed
in Section 4.4.4 for a warm restart and attempts to resume the program
at the point at which it was interrupted.

OB 22 is called first.

After executing OB 22, the interrupted program execution is resumed
with the next statement following the point at which the program was
interrupted.

Following a power failure and the return of power:

•• The BASP signal (disable command output) remains active during
the remaining cycle and is only switched inactive at the beginning
of the first complete cycle.

•• The process image of the outputs is reset at the end of the
remaining cycle.

•• If OB 22 is not loaded, the CPU resumes program processing
immediately at the point of interruption at the end of the
AUTOMATIC WARM RESTART.

AUTOMATIC RETENTIVE
COLD RESTART

If the parameter "COLD RESTART WITH MEMORY" is entered in
the data block DX 0, after processing OB 22, the system program then
goes through a COLD RESTART (the CPU resumes program
execution with the first STEP 5 statement in OB 1). The signal states
of the flags, IPC flags, semaphore and the block address list (DB 0)
are retained.

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 29

4.4.7
Extended AUTOMATIC
WARM RESTART with the
CPU 948 (HOT RESTART)

The "HOT RESTART" mode specified in the IEC 1131 standard, part
1 is also possible in the CPU 948. The "HOT RESTART" is a warm
restart controlled by a battery-backed clock (according to IEC 1131).
The clock monitors the time between switching off and switching on
the power supply for the CPU. Whether or not a warm restart is then
permitted depends on the time elapsed.

The automatic "HOT RESTART" of the CPU 948 is not supported
directly by the system program, which means that you must program
this yourself.

The basic functions available are the AUTOMATIC WARM
RESTART (OB 22) and the real time clock which although internal is
backed up by an external battery.

A "HOT RESTART" is programmed as shown below:

Mode Activity/block

RUN Save time (time of day and date) regularly from the external clock in defined memory
cells (e.g. in data words):

- at the end of the cycle in OB 1

or

- time-controlled by timed interrupts (e.g. OB 10), if higher accuracy is necessary

AUTO-
MATIC
WARM
RESTART

OB 22

Calculate down time:
Tdown = first time value after return of power - last time value saved before power failure

IF ... THEN...

Down time > default maximum value Stop warm restart
(STP operation)

or

execute modified warm restart

Down time ≤ default maximum value Continue warm restart

START-UP Mode

CPU 948 Programming Guide

4 - 30 C79000-B8576-C854-03

4.4.8
Interruptions during
START-UP

A start-up program can be interrupted by the following:

•• power failure in the central controller (NAU) or in the expansion
unit (PEU),

•• stop switch, stop command, HALT or PG-STP

or

•• program errors or device faults (refer to Section 5.5).

Basic rules for an interrupted
START-UP

The following basic rules apply to the start-up response of the
CPU 948:

If the START-UP is interrupted, the subsequent START-UP is
always restarted from the beginning.

The last selected type of start-up is selected.
Example: 1. POWER DOWN (NAU) in the cycle

2. Switch set to STOP
3. POWER UP
4. Switch set to RUN
Reaction: the CPU executes a MANUAL WARM
RESTART

An interrupted COLD RESTART cannot be continued with a
WARM RESTART, but must be repeated.

Following an interrupted WARM RESTART, both a COLD
RESTART and a new WARM RESTART are possible.

4

START-UP Mode

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 31

Response of the CPU on the
return of power after power
failure or PEU signal

If the start-up execution is interrupted by a power failure or the PEU
signal, the response of the CPU when power returns depends on the
set and interrupted mode. The following table provides an overview.

Mode set in DX 0 Interrupted mode Interrupted
start-up OB

Reaction of the CPU

AUTOMATIC
COLD RESTART

MANUAL
COLD RESTART

OB 20 Depending on the prior events, an
AUTOMATIC COLD RESTART is
executed (OB 20 is called and
processed from the beginning).

No "remaining start-up" is
processed, (OB 20 or OB 21 is not
resumed).

MANUAL
WARM RESTART

OB 21

AUTOMATIC
COLD RESTART

OB 20

AUTOMATIC
WARM RESTART

MANUAL
COLD RESTART

OB 20 STOP

MANUAL
WARM RESTART

OB 21 An AUTOMATIC WARM RESTART
is executed (OB 22 is called and
processed from the beginning);
no "remaining start-up" is processed
(OB 21 or OB 22 is not resumed).

AUTOMATIC
WARM RESTART

OB 22

START-UP Mode

CPU 948 Programming Guide

4 - 32 C79000-B8576-C854-03

4.5 RUN Mode

When the CPU has executed a START-UP (and only then) it changes
to the RUN mode. This mode is characterized by the following
features:

Execution of the user program The user program in OB 1 is executed cyclically and additional
interrupt-driven program sections can be nested in it.

Timers, counters, process
image

All the timers and counters started in the program continue to run, the
process image is updated cyclically.

BASP The BASP signal (disable command output) is switched inactive. This
enables all the digital outputs.

IPC flags The IPC flags (if programmed in DB 1) are updated cyclically.

In the RUN mode, the following program execution levels exist:

CYCLE The user program in OB 1 is processed cyclically.

PROCESS INTERRUPTS/
INTERRUPTS

The execution of the user program is interrupt-driven (4 interrupt
levels or 1 process interrupt level with 8 sub-levels).

TIMED INTERRUPTS The user program is processed time-controlled (9 cyclic timed
interrupts, 1 delayed interrupt, 1 clock-controlled interrupt).

The execution levels differ from each other as follows:

•• they are triggered by different events

•• there are one or more organization blocks serving as user
interfaces for each level of program execution.

All the processing levels in a CPU 948 can be programmed
simultaneously. The levels are called by the system program according
to the events that occur and the preset priority (refer to Section 4.2).

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 33

4.5.1
Cyclic Program Execution With programmable controllers, cyclic program execution (program

execution level CYCLE) is the main mode.

Triggering If the CPU has completed the start-up program without errors, it then
begins cyclic program execution.

Principle The principle of cyclic program execution (system activities):

From start -up

Tr igger cycle monitor ing t ime

Update IPC input f lags

Supply process image of the
inputs (PII)

Cal l cycl ic user program (OB1)

User program

other program

execut ion levels

including nest ing in of

Output process image of the
outputs (PIQ)

Update IPC output f lags

System act iv i t ies e.g.
loading or delet ing blocks
compressing blocks . . .

Fig. 4-6 Cyclic program execution

CPU 948 Programming Guide

4 - 34 C79000-B8576-C854-03

User interface OB 1 During cyclic program execution, organization block OB 1 is called
regularly as the user interface. The STEP 5 user program in OB 1 is
processed from the beginning with the block calls you have
programmed. After the system activities, the CPU starts again from
the beginning with the first STEP 5 statement in OB 1.

In OB 1, you program the calls for program, function and sequence
blocks to be executed within the cyclic program.

Interrupt points Cyclic program execution can be interrupted by the following:

•• time-controlled program execution at block or operation
boundaries,

•• process interrupt-driven program execution via input byte IB 0 at
block boundaries,

•• interrupt-driven program execution (interrupts INT A/B/C/D, E, F,
G) at block or operation boundaries..

You specify the type of interrupt (at block or operation boundaries) in
data block DX 0 (refer to Chapter 7).

Cyclic program execution can be interrupted or aborted regardless of
the parameter setting in DX 0 as follows:

•• when a device fault or program error occurs (at operation
boundaries,

•• by operator intervention:
- stop switch, HALT (at operation boundaries),
- PG function (at checkpoints - refer to Chapter 11),

•• by the stop command STS (at operation boundaries),

•• by a power failure on the central controller or in the expansion unit
(at operation boundaries).

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 35

4.5.2
Specifying Time and
Interrupt-Driven Program
Execution

With time and interrupt-driven program execution, various types are
available which can at present only be used as alternatives (i.e. not
mixed). You decide which of the types of processing you want to use
by setting the parameter in data block DX 0 (refer to Chapter 7).

"Process interrupts via IB 0" The execution mode "process interrupts via IB 0" has the following
features:

•• only possible in single processor operation,

•• the nesting of higher priority program levels is only possible at
block boundaries,

•• the delayed interrupt (processed by OB 6) cannot be used,

•• the time-controlled interrupt (processing by OB 9) cannot be used.

"System interrupts" mode The "system interrupts" mode is characterized by the following
features:

•• single or multiprocessor mode possible,

•• higher priority program levels are nested at block or command
boundaries,

•• delayed interrupts are processed by OB 6,

•• time-controlled interrupts are processed by OB 9.

Interrupting time and
interrupt-driven program
execution

Time and interrupt-driven program execution can be interrupted or
aborted regardless of the parameter setting in DX 0 as follows:

•• when a device fault or program error occurs (at operation
boundaries,

•• by operator intervention:
- stop switch, HALT (at operation boundaries),
- PG function (at checkpoints - refer to Chapter 11),

•• by the stop command STS (at operation boundaries),

•• by a power failure on the central controller or in the expansion unit
(at operation boundaries).

CPU 948 Programming Guide

4 - 36 C79000-B8576-C854-03

4.5.3
Time-Controlled Program
Execution

This type of program execution includes the delayed interrupt, the
time-controlled interrupt and cyclic timed interrupts.

All these interrupts are time-controlled.

Time-controlled program execution uses the TIMED INTERRUPTS
level.

Delayed interrupts Triggered once after a selected delay time in the millisecond range.
Organization block OB 6 is called with this interrupt.

Clock-controlled interrupt Triggered at a selected interval or once at an absolute point in time.
Organization block OB 9 is called with this interrupt.

Cyclic timed interrupt Triggered at 9 different intervals. Each timed interrupt is assigned an
organization block (OB 10 to OB 18). This involves fixed cycles, i.e.
the interval between two program stops is fixed.

Priorities Within time-controlled program execution, the following priorities are
set:

Delayed interrupt OB 6
cyclic timed int., period 1
cyclic timed int., period 2
cyclic timed int., period 3
cyclic timed int., period 4
cyclic timed int., period 5
cyclic timed int., period 6
cyclic timed int., period 7
cyclic timed int., period 8
cyclic timed int., period 9
time-controlled interrupt

OB 6
OB 10, shortest period
OB 11
OB 12
OB 13 ascending
OB 14 priority
OB 15
OB 16
OB 17
OB 18, longest period
OB 9

Note
Time-controlled interrupt servicing in OB 6 and in OB 9 is only
possible when the parameter "process interrupts via IB 0 = off" is
set in DX 0. With the default setting in DX 0 ("process interrupts
via IB 0 = on") the corresponding process interrupts of IB 0 are
processed using OB 6 and OB 9 (refer to Section 4.5.4).

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 37

Delayed interrupt With the delayed interrupt of the CPU 948, small time intervals with a
resolution of 1 ms can be set. Once the selected time has elapsed, the
system program calls OB 6 once.

Resolution The delayed interrupt is generated by calling the special function
organization block OB 153 (refer to Section 6.14). As soon as the
delay time assigned with OB 153 has elapsed, the system program
interrupts the current program execution and calls OB 6 (program
execution level TIMED INTERRUPTS). Following this, program
execution is resumed at the point at which it was interrupted.

The use of the delayed interrupt is, however, only possible when
"process interrupts via IB 0 = off" is set in the data block DX 0.

User interface
OB 6

OB 6 is called as the user interface for a delayed interrupt. In OB 6, you
write a STEP 5 program to be executed in this situation. If OB 6 is not
loaded, program execution is not interrupted.

Interruptions With the default setting, the TIMED INTERRUPTS level has the
highest priority of the basic levels (can be modified by changing the
parameter assignment in DX 0).

In timed-controlled program execution, the servicing of the delayed
interrupt has highest priority.

Owing to the distribution of priorities, the processing of the delayed
interrupt cannot be interrupted by any other user program.

Special features •• A delayed interrupt is only processed in the RUN mode. Delayed
interrupts owing in the STOP mode, during power down or
START-UP are discarded.

•• A generated delayed alarm (= OB 153 call was processed) is not
retained in the transition to the STOP mode and during POWER
OFF.

CPU 948 Programming Guide

4 - 38 C79000-B8576-C854-03

•• If you generate a new delayed interrupt, i.e. call OB 153 with
new parameters, a previously set delayed interrupt is cancelled.
A delayed interrupt currently being processed is continued. This
means that only one delayed interrupt is valid at any one time.

•• If a delayed interrupt occurs without the previous one being
completely processed, the new interrupt is discarded. Delayed
interrupts are not checked for collisions!

•• Note the special functions OB 122 and OB 142 with which you
can disable or delay the servicing of delayed interrupts.

Clock-controlled interrupt The CPU 948 has a battery-backed clock (central back-up via the
power supply of the central controller), which you can set and read out
using the STEP 5 program. This clock allows time-controlled
execution of a program section.

While the delayed interrupt is used for fast events, time-controlled
interrupts are particularly suitable for processing events which occur
once or which occur at longer intervals, e.g. hourly, daily or monthly.
Once the point in time is reached, the system program calls OB 9.

Triggering A clock-controlled interrupt (timed job) is generated by calling the
special function organization block OB 151 (refer to Section 6.13).
Once the time set in OB 151 is reached (a time, a date) the timed job is
executed. The system program interrupts the current program
execution and calls OB 9 (program execution level TIMED
INTERRUPTS). Following this, program execution is resumed at the
point at which it was interrupted.

To use the clock-controlled interrupt, "process interrupts via IB 0 =
off" must be set in data block DX 0.

User interface OB 9 For a clock-controlled interrupt, OB 9 is called as the user interface. In
OB 9, you write a STEP 5 program to be processed when the OB is
called. If OB 9 is not loaded, program execution is not interrupted.

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 39

Interruptions Owing to the default, the TIMED INTERRUPTS layer has the highest
priority of the basic layers (can be modified in DX 0).

In time-controlled program execution, the execution of
clock-controlled interrupts has the lowest priority. This can therefore
be interrupted by the processing of a delayed interrupt or a cyclic
timed interrupt.

Special features •• A clock-controlled interrupt is only processed in the RUN mode.
Clock-controlled interrupts occurring in the STOP mode, when
there is a power failure or during START-UP are discarded.

•• Once a clock-controlled interrupt has been generated (= OB 151
call has been processed) it is retained in a WARM RESTART and
following POWER DOWN/POWER UP; it is, however, deleted
during a COLD RESTART.

•• If you generate a new clock-controlled interrupt, i.e. call
OB 151 with new time values, a previously set clock-controlled
interrupt is cancelled. A clock-controlled interrupt currently
being processed is continued. This means that only one
clock-controlled interrupt is valid at any one time.

•• If a time-controlled interrupt occurs without the previous one
being completely processed, the clock time-controlled interrupt is
discarded. Clock-controlled interrupts are not checked for
collisions!

•• Note the special functions OB 122 and OB 142 with which you
can disable or delay the servicing of clock-controlled interrupts.

CPU 948 Programming Guide

4 - 40 C79000-B8576-C854-03

Cyclic timed interrupts On the CPU 948, you can process 9 different time-controlled
programs, each being called at a different cyclic interval.

Triggering The basic clock pulse for timed interrupt processing is set to 100 ms.
Using a special parameter in data block DX 0, you can adjust this in
steps of 10 ms (basic clock pulse = yy * 10 ms where: 01H ≤ yy ≤
FFH).

You can base the setting of the clock pulse on the shortest time
required by your application for cyclic processing.

Time interval Cyclic timed interrupts are processed at fixed intervals with 9 possible
intervals (periods). Each interval is assigned to a specific organization
block. You can select between two sets of intervals. You select the
sets of intervals using a special parameter in data block DX 0.
the following table illustrates the two sets of intervals with the
assignment of the different intervals to organization blocks.

Interval set 1
(default)

Interval set 2 OB called

1x basic clock pulse
2 x basic clock pulse
5 x basic clock pulse
10 x basic clock pulse
20 x basic clock pulse
50 x basic clock pulse
100 x basic clock pulse
200 x basic clock pulse
500 x basic clock pulse

1 x basic clock pulse
2 x basic clock pulse
4 x basic clock pulse
8 x basic clock pulse
16 x basic clock pulse
32 x basic clock pulse
64 x basic clock pulse
128 x basic clock pulse
256 x basic clock pulse

OB 10
OB 11
OB 12
OB 13
OB 14
OB 15
OB 16
OB 17
OB 18

Note
The first TIMED INTERRUPT OB call following the start-up
takes place within the time assigned to the OB.

If, for example, the interrupt time "500 s" is set for OB 18 (basic
clock pulse setting in DX 0 = 1 s and time base = 1), then the first
OB 18 call takes place after approximately 20 s following a
COLD RESTART. All further calls are then at intervals of 500 s.

Table 4-5 Sets of intervals and intervals of the TIMED INTERRUPTS

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 41

User interfaces
OB 10 to OB 18

When a timed interrupt occurs, the corresponding organization block
is called as the user interface at the next block boundary (or operation
boundary).

For example, you would program the routine to be inserted in cyclic
program execution every 100 ms in OB 10 (default).

The timed interrupt is only processed if the assigned organization
block is loaded. If none of the organization blocks OB 10 to OB 18
are loaded, there is no time-controlled program execution and the
cyclic program is not interrupted.

You can disable the execution of timed interrupts by setting a
parameter in data block DX 0, e.g. for testing your program.

Interruptions As default, the TIMED INTERRUPTS level has the highest priority of
the basic levels (can be modified in DX 0).

Owing to the distribution of priority within time-controlled program
execution, the following interruptions in the processing of a cyclic
timed interrupt are possible:

•• the processing of a cyclic timed interrupt can be interrupted by the
processing of a delayed interrupt

•• organization blocks with shorter time bases have higher priority
and can interrupt organization blocks with longer time bases (e.g.
OB 12 can interrupt OB 17).

Note
With the three shortest time bases (OB 10 to 12) multiple
processing without interruption is possible. If, for example, while
OB 10 is being processed, a further timed interrupt for OB 10
occurs, the currently active processing of OB 10 is first
completed. Following this, OB 10 is called immediately again. If,
however, there are more than three timed interrupts pending for
one of the time bases, a collision of timed interrupts error occurs.

CPU 948 Programming Guide

4 - 42 C79000-B8576-C854-03

Collision of timed interrupts In the CPU 948 there are two different types of collisions of timed
interrupts:

Type of error/cause ISTACK ID Reaction of the CPU

Timed interrupt queue overflow:
- there are more than three

timed interrupts pending for one of
the three shortest time bases (OB 10
to 12),

- one of the other OBs (OB 13 to 18)
is called again before it has been
completely processed.

In the "ISTACK output" of
the programmer, the error ID
WEFES is marked in the
control bits.

The system program calls
OB 33 as the user interface. If
this is not loaded, the CPU
changes to the stop mode.

If the program can be interrupted at
block boundaries, the timed processing
is blocked by the run time of a block in
the cyclic user program; the run time of
the block is longer than the basic clock
rate set in DX 0.

In the "ISTACK output" on
the programmer, the error ID
WEFEH is marked in the
control bits.

The system program calls
OB 33 as the user interface. If
this is not loaded, the system
program continues program
execution.

Error reaction
OB 33

In OB 33, you can program the required reaction to the interrupt
collisions listed above. When OB 33 is called, the system program
enters a collision ID in ACCU-1-L (bit nos. 0 to 9). You can see the
meaning of these bits (bit = ’1’) in the following table.

Bit number Meaning

0

1

2

Queue overflow in timed interrupt period 1 (more than three timed interrupts are
pending for OB 10).
Queue overflow in timed interrupt period 2 (more than three timed interrupts are
pending for OB 11).
Queue overflow in timed interrupt period 3 (more than three timed interrupts are
pending for OB 12).

3

4

Queue overflow in timed interrupt period 4 (OB 13 has been called again before the
prior call was completely executed).
Queue overflow in timed interrupt period 5 (OB 14 has been called again before the
prior call was completely executed).

Table 4-6 Timed interrupt collision IDs: meaning of the bits in ACCU-1-L

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 43

Bit number Meaning

5

6

7

8

Queue overflow in timed interrupt period 6 (OB 15 has been called again before the
prior call was completely executed).
Queue overflow in timed interrupt period 7 (OB 16 has been called again before the
prior call was completely executed).
Queue overflow in timed interrupt period 8 (OB 17 has been called again before the
prior call was completely executed).
Queue overflow in timed interrupt period 9 (OB 18 has been called again before the
prior call was completely executed).

9 Timed interrupt clock pulse masked for too long.

After processing OB 33, the program is resumed at the interrupted
timed interrupt OB.

Note
If "interruptability at block boundaries" is set, following a collision
of timed interrupts, the SAC does not point to the block at whose
boundary the collision of timed interrupts took place (BE
statement) but rather to the block which called the block that
caused the error (the return address). You can set the following
parameters in data block DX 0 (refer to Chapter 7) for
time-controlled program execution:
- setting the basic clock rate
- setting the clock distributor,
- setting priorities relative to interrupt-driven program execution,
- enabling/disabling timed interrupt processing.

CPU 948 Programming Guide

4 - 44 C79000-B8576-C854-03

4.5.4
Interrupt-Driven Program
Execution

Depending on the selected mode, two different types of interrupt-driven
program execution are possible with the CPU 948:

•• PROCESS INTERRUPTS
via input byte IB 0 (max. 8 interrupts),

•• INTERRUPTS
via signal lines of the S5 bus (max. 4 interrupts).

PROCESS INTERRUPTS via
input byte IB 0

To service process interrupts, the default "process interrupts via IB 0 =
on" must not be changed in the data block DX 0.

Program execution controlled by process interrupts means that a signal
change in the input byte IB 0 causes the current program execution to
be interrupted and a special program section to be executed.

Note
If you enable "servicing process interrupts via IB 0" you cannot
use the delayed interrupt, the time-controlled interrupt and the
system interrupt.

Triggering The signal state change of a bit in input byte IB 0 triggers the process
interrupt.

User interfaces
OB 2 to OB 9

If a process interrupt occurs, one of the OBs listed in the following
table is called as the user interface.

Signal state change in IB 0 with bit OB called

I 0.0
I 0.1
I 0.2
I 0.3
I 0.4
I 0.5
I 0.6
I 0.7

OB 2
OB 3
OB 4
OB 5
OB 6
OB 7
OB 8
OB 9

Table 4-7 User interfaces for process interrupts

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 45

In the organization blocks OB 2 to OB 9, you program the part of your
STEP 5 program to be executed when one of the process interrupts
occurs indicated by a bit in input byte IB 0.
If the corresponding OB is not loaded, program execution is not
interrupted. No interrupt-driven program processing takes place.

Note
If the I/O module no longer acknowledges when the CPU accesses
IB 0, the system program recognizes a timeout and calls the user
interface OB 28. If OB 28 is not loaded, the CPU changes to the
stop mode.

Priority of process interrupts The default setting means that PROCESS INTERRUPTS have a lower
priority than the TIMED INTERRUPTS level.
A parameter in data block DX 0 allows you to change the default so
that the PROCESS INTERRUPTS level has a higher priority than the
TIMED INTERRUPTS level.

The following priorities are set for process interrupt processing:

I 0.0
I 0.1
I 0.2
I 0.3
I 0.4
I 0.5
I 0.6
I 0.7

OB 2
OB 3
OB 4 ascending
OB 5 priority
OB 6
OB 7
OB 8
OB 9

With process interrupts, no nested execution is possible. When a
process interrupt OB has been completely processed and there are
further process interrupts pending, the system program calls the OB
with the next lower priority and processes it.
The PROCESS INTERRUPTS level is only exited when each signal
change in input byte IB 0 has been dealt with and the corresponding
OB completely processed.

Note
Process interrupt-driven program execution cannot be interrupted
by further process interrupt-driven program execution.

CPU 948 Programming Guide

4 - 46 C79000-B8576-C854-03

INTERRUPTS via signal
lines of the S5 bus

Interrupt-driven program execution means that an S5 bus signal from
an I/O module with interrupt capability (e.g. digital inputs, IPs, CPs)
causes the CPU to interrupt program execution and to process a
specific section of program.

Note
If you want to use interrupt-driven program execution via S5 bus
signal lines on your CPU, you must set "process interrupts via IB 0
= off" in DX 0 and activate the individual interrupts by means of
DX 0 parameters. The interrupts must also be enabled with
jumpers on the module (refer to the Appendix and /2/). In contrast
to the CPU 946/947, you can set "interrupt at block boundaries" or
"interrupt at operation boundaries" as the mode in DX 0.

Jumper settings for system
interrupts

For interrupt-driven program execution with the CPU 948, there are
four system interrupts available to you:

- INT A/B/C/D (dependent on the slot in the CPU, see the System
Manual (Further Reading /2/)),

- INT E
- INT F

and
- INT G.

The interrupts you want to use must be enabled with the supplied
jumpers. The jumper plug is located on the basic board above the
receptacle for the memory card. The exact position can be seen in the
following figure.

INTF
INTG

INTE
INTA/B/C/D

Fig. 4-7 Position of the jumper plug for setting interrupts

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 47

Triggering The active state of an interrupt line on the S5 bus triggers the
interrupt. The interrupt signal is level-triggered (low level). To
acknowledge the interrupt, please refer to the operating instructions
for the module which triggers the interrupt.

User interfaces
OB 2 to OB 5

If an interrupt occurs, one of the OBs listed in the following table is
called as the user interface.

Interrupt triggered by OB called

Interrupt signal X
(A, B, C or D, slot-dependent)
Interrupt signal E
Interrupt signal F
Interrupt signal G

OB 2

OB 3
OB 4
OB 5

If, for example, the interrupt signal ’F’ occurs, the system program
calls OB 4.

If the relevant OB is not loaded, program execution is not interrupted.
There is no interrupt-driven program execution.

Priority of process interrupts The default setting means that PROCESS INTERRUPTS have a lower
priority than the TIMED INTERRUPTS level.
A parameter in data block DX 0 allows you to change the default so
that the process interrupts level has a higher priority than the TIMED
INTERRUPTS level.

Within interrupt servicing, the priorities of the individual interrupts
are specified as follows:

•• If there are several interrupts pending, the corresponding
organization blocks are called according to the order of priority
you specify in DX 0 (single priority).

You can specify priority levels 1 to 5 for the four interrupts.

Table 4-8 User interfaces for interrupts

CPU 948 Programming Guide

4 - 48 C79000-B8576-C854-03

When an interrupt OB has been completely executed and there are
further interrupts pending, the system program calls and processes the
OB with the next lowest priority.
The INTERRUPTS processing level is only exited when every active
signal state (low level) of an interrupt line on the S5 bus has been dealt
with and the corresponding OB has been completely processed.

Note
Interrupt-driven program execution cannot be interrupted by the
same interrupt occurring again.

Disabling interrupt-driven
processing

An interrupt-driven program is called at a block or STEP 5 operation
boundary in the cyclic program. This interrupt can cause problems when
a cyclic section of program must be processed within a certain time (e.g.
to achieve a certain reaction time) or when a series of operations must not
be interrupted (e.g. when reading or writing interdependent values).

If a program section must not be interrupted by interrupt-driven
processing, the following strategies are possible:

Interrupts at block boundaries •• Program this program section so that it does not contain a block
change. Program sections that do not contain a block change can
then not be interrupted.

•• Use OB 122 with which you can disable the processing of process
interrupts for a specific program section. Remember, however, that
the timed interrupts are also disabled (refer to Section 6.3).

•• Program the STEP 5 operation ’IA’ (disable process interrupts).
With the operation ’RA’ (enable process interrupts) you can enable
interrupt processing again.

Between these two operations, no process interrupt-driven
program execution is permitted. The program section between
these two operations cannot be interrupted.

•• ’IA’ and ’RA’ are only possible in function blocks (extended
operation set - refer to Section 3.5.4) and only apply to process
interrupts via IB 0.

Note
If a process interrupt is disabled using OB 22 or delayed using
OB 142, the RA operation is not effective.

4

CPU 948 Programming Guide

C79000-B8576-C854-03 4 - 49

Interrupts at operation
boundaries

•• Program the section that must not be interrupted in an interrupt OB
and assign the highest priority to it.

•• Use the special function OB 122. With this, you can disable
interrupts and timed interrupts (refer to Section 6.3).

•• Using the operation LIM and SIM (system operations - refer to
Section 3.5.4) read or set the 32-bit interrupt mask.

Interrupt servicing can be disabled completely or separately for
individual interrupts in data block DX 0. This is, however, only
possible following a COLD RESTART (refer to Chapter 7), since
DX 0 is only evaluated in a COLD RESTART.

Reaction time The time required to react to a process interrupt/interrupt request
corresponds to the processing time of a block (for interrupts at block
boundaries) or a STEP 5 operation (for interrupts at operation
boundaries). If, however, at the time the cyclic program is interrupted
there are higher priority timed interrupts pending, the interrupt-driven
program is only executed when all the pending timed interrupts have
been completely processed.

The maximum reaction time between the occurrence and execution of
a process interrupt/hardware interrupt is increased in this case by the
processing time of the higher priority timed interrupts.

Program execution levels
and flags

If you run your user program not only cyclically but also time and
interrupt-driven, you run the risk of overwriting flags.
This is the case when the same flag areas are accessed at different
program processing levels.

It is therefore advisable to assign flags to individual program
processing levels or at the beginning of time or interrupt-driven
program execution, to "save" the signal states of multiply assigned
flags in a data block and to write the values back at the end of the
interrupt servicing. The same applies for a warm restart.

To avoid double use of flags, you can also use the S flags for most
applications. Special "saving" strategies for flags are then no longer
necessary, providing the S flags are assigned exclusively to individual
program processing levels (there are enough S flags available).

CPU 948 Programming Guide

4 - 50 C79000-B8576-C854-03

Contents of Chapter 5

5.1 Frequent Errors in the User Program. 5 - 4

5.2 Error Information . 5 - 5

5.3 Procedure for Error Analysis . 5 - 8

5.4 Control Bits and Interrupt Stack . 5 - 9

5.4.1 Control Bits. 5 - 10
5.4.2 ISTACK Content. 5 - 14
5.4.3 Example of Error Diagnosis using the ISTACK . 5 - 19

5.5 Error Handling Using Organization Blocks. 5 - 20

5.6 Causes of Error and Reactions of the CPU . 5 - 23

5.6.1 OB 19: Calling a Logic Block That Is Not Loaded (KB). 5 - 24
5.6.2 OB 19: Calling a Data Block That Is Not Loaded (KDB) . 5 - 24
5.6.3 OB 23/24, OB 28/29: Timeout Error (QVZ). 5 - 25
5.6.4 OB 25: Addressing Error (ADF) . 5 - 26
5.6.5 OB 26: Cycle Time Exceeded Error (ZYK) . 5 - 27
5.6.6 OB 27: (Substitution Error SUF) . 5 - 28
5.6.7 OB 30: Parity Error and Timeout Error in the User Memory (PARE). 5 - 28
5.6.8 OB 32: Load and Transfer Error (TRAF) . 5 - 29
5.6.9 OB 33: Collision of Timed Interrupts Error (WEFES/WEFEH) 5 - 30
5.6.10 OB 34: Error with G DB/GX DX (FEDBX). 5 - 32
5.6.11 OB 35: Communication Errors . 5 - 32
5.6.12 OB 36: Error in Self-test . 5 - 33

5.7 Self-Test . 5 - 34

5.7.1 Overview. 5 - 34
5.7.2 Description of the Test Functions. 5 - 35
5.7.3 Settings . 5 - 37
5.7.4 Error Handling . 5 - 38

5Interrupt and
Error Diagnostics

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 1

5Interrupt and
Error Diagnostics

This chapter explains how to avoid errors when planning and
programming your STEP 5 programs.
You will see what help you can get from the system program for
diagnosing and reacting to errors and which blocks you can use to
program reactions to errors.
At the end of the chapter, you will learn how to activate integrated
system functions for a self-test of the CPU 948.

5

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 3

5.1 Frequent Errors in the User Program

The system program can detect effects of errors in the user program,
faulty operation of the CPU, or errors in the system program
processing.

The following list describes errors that occur most frequently during
the start-up of the user program. You can avoid these errors by doing
the following when you write you STEP 5 program.

•• When specifying byte addresses for I/Os, make sure that the
corresponding modules are plugged into the central controller or
the expansion unit.

•• Make sure that you have provided correct parameters for all
operands.

•• Be careful when changing function blocks. Check to see that the
FBs/FXs are assigned the correct operands and that the actual
operands are specified.

•• Make sure that outputs, flags, timers, and counters are not
processed in several locations in the program with operations that
counteract each other.

•• Make sure that timers are scanned only once per cycle (e.g., A T1).

•• Make sure that all data blocks called in the program exist and are long
enough.

•• Check to see if all blocks called are actually in the memory.

•• If required by other blocks (e.g. standard function blocks),
scratchpad flags should be saved by interrupt-driven and
time-controlled programs and loaded again when these program
sections have been completed.

Frequent Errors in the User Program

CPU 948 Programming Guide

5 - 4 C79000-B8576-C854-03

5.2 Error Information

If an error occurs during system start-up or during cyclic processing of
your program, the sources of information described in this section can
help you to find the problem. This includes:

•• LEDs on the front panel of the CPU

•• interrupt stack ISTACK and control bits

•• block stack BSTACK

The following sections explain the ways of evaluating this information
and how to use the information to analyze problems.

LEDs on the front
panel of the CPU

If the CPU goes into the STOP mode when you do not want it to,
check the LEDs on the front panel. They can indicate the cause of the
problem.

LED display Meaning

STOP LED lit continuously The various states of
the STOP LED indicate
specific causes of
interruptions and errors
(see section 4.1).

STOP LED flashes slowly

STOP LED flashes quickly

SYS FAULT LED lit
continuously

ADF LED lit continuously Addressing error

QVZ LED lit continuously Timeout error

ZYK LED lit continuously Cycle time exceeded error

5

Error Information

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 5

PG online function OUTPUT
ISTACK

You can get information about the status of the control bits and the
contents of the interrupt stack (ISTACK) by using die PG online
function OUTPUT ISTACK.

When the CPU goes into the STOP mode, the system program enters all
the information it requires for a warm restart in the ISTACK . This
information includes:

•• contents of registers,

•• contents of accumulators,

•• STEP address counter SAC

and

•• results codes

Depending on where the interruption leading to the STOP occurred,
the displayed information refers to user blocks or blocks of the system
program (OB 0).

These entries are a valuable aid in error diagnosis.

Before the actual ISTACK is output on the programmer, the status of
the control bits is displayed. The control bits mark the current
operating status and specific characteristics of the CPU and the user
program and provide additional information on the cause of an error.

You can call the ISTACK programmer function not only when the
CPU is in the STOP mode, but also when it is in the RESTART or
RUN mode. However, in the RESTART and RUN modes, you can
only display the control bits (i.e., the first page of ISTACK
information).

The meaning of the control bits and structure of the interrupt stack are
described in detail in Section 5.4.

Online function OUTPUT
BSTACK

You can display the contents of the block stack (BSTACK - see
section 3.2 "Nesting blocks") using the PG online function OUTPUT
BSTACK.

The BSTACK contains a listing of all blocks (blocks of the user
program and organization block OB 0 of the system program) called
in sequence and not completely processed when the CPU went into
the STOP mode. Since the BSTACK is filled from the bottom, the top
line of the BSTACK display contains the block that called the block
containing an error.

Error Information

CPU 948 Programming Guide

5 - 6 C79000-B8576-C854-03

In the first line, the information shown below is available:

Information Meaning

BLOCK NO Type and number of the block that called the
faulty block

BLOCK ADDR Absolute start address of the calling block in
the program memory

RETURN ADDR Absolute address of the first STEP 5 operation
of this block in the user memory.

REL ADDR Relative address (= difference "RETURN
ADDR - BLOCK ADDR") of the next
operation to be processed in the calling block.
(You can display relative addresses on a
programmer in the mode "disable input"/key
switch and with S5-DOS from Stage IV
upwards using the function key "addresses").

DB NO Number of the last data block opened in the
calling block

DB ADDR Absolute start address in the program memory
of the last data block opened in the calling
block (address of data word DW 0)

Example

Evaluating the BSTACK function:

BLOCK NO BLOCK ADDR RETURN ADDR REL ADDR DB NO DB ADDR

PB 3
PB 2
PB 1
OB 1
OB 66 1)

OB 63
OB 62
OB 61

00090
00050
00040
00010
E2B10
E0FC0
E0490
E0010

98
51
41
11
E2C40
E12FA
E0CBE
E0273

00008
00001
00001
00001
00130
0033A
0082E
00263

0
0
0
0
0
0
0
0

1) The blocks executed before OB 1 are internal blocks belonging to the system program (the BSTACK is structured
chronologically).

In the example, PB 3 called the faulty block at relative address
"00008 - 1 = 00007".
During the jump to this faulty block, no data block was open.

5

Error Information

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 7

5.3 Procedure for Error Analysis

If the CPU is in an abnormal stop mode, make use of all the
information available to analyze the error, as follows:

Step Action

1 Check the status of the STOP and SYS FAULT
LEDs and the error LEDs on the front panel. These
indicate causes of certain errors and interruptions.

2 Using the PG online function OUTPUT ISTACK,
analyze the status of the control bits and the
content of the ISTACK. This will provide you
with further information about the location of the
error and its cause.

3 Select the PG online function OUTPUT BSTACK:
in the top line of the BSTACK display you will
find information about the block which called the
block causing the error.

4 The system data RS 75 (refer to Section 8.3.4) also
contains further detailed error information.

Procedure for Error Analysis

CPU 948 Programming Guide

5 - 8 C79000-B8576-C854-03

5.4 Control Bits and Interrupt Stack

You can use the online functions PLC INFO and OUTPUT ISTACK to
analyze the following: operating status, characteristics of the CPU,
characteristics of the user program, possible causes of errors and
interruptions.

Note
You can display the control bits in any mode. You can display
the ISTACK only in the STOP mode.

•• The control bits indicate the current and previous operating status
and the cause of the problem.
If several errors occurred, the control bits indicate all of them.

•• The ISTACK indicates the location of the interruption in question
(addresses) with the current condition codes, the accumulator con-
tents, and the cause of the problem.
If several interruptions occurred, a multiple level ISTACK is
constructed as follows (maximum 5 levels):

DEPTH (level) 01 = last cause of interruption

DEPTH (level) 02 = next to last cause of interruption, etc.

When an ISTACK overflow occurs, the CPU goes into the STOP
mode immediately (HARD STOP!). You must then turn the power
off and on again and perform a cold restart.

The meanings of the individual abbreviations in the control bits and in
the ISTACK are described below.

Note
The text on the screen of your programmer depends on the PG
software you are using. It may therefore differ from the display
shown here. The description of the screen information is nevertheless
relevant.

5

Control Bits and Interrupt Stack

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 9

5.4.1
Control Bits When you display the ISTACK on your programmer, the status of the

control bits is indicated on the first page (see Fig. 5-1).

Note
The ISTACK screen form shown in Fig. 5-1 reflects the PG
software STEP 5/ST, Version 6.3 or STEP 5/MT Version 6.0 with
the "Delta diskette CPU 948". In older versions of the PG
software, the abbreviations of the control bits may be different.
The meaning of the control bits, however, is as described in the
following tables.

You can output the control bits in every mode. They mark the current or
previous status of the CPU and provide information on specific features
of the CPU and your STEP 5 program.

The control bits listed under ERROR IDS mark errors that can occur
in the RESTART (e.g., during an initial cold restart) and RUN (e.g.,
during time-controlled program processing) modes. If several errors
occur, all errors are displayed in the control bits.

C O N T R O L B I T S

SYSTEM DESCRIPTION: E0VH GEP BATT EINP MEHRP SYNCR

TEST

STOP CAUSE:

START-UP IDs:

ERROR IDs:

PGSTP

UPROG

X

NEUDF
X

X
AWEG

QVZIN

FE2S

FDX0

X
BSTG BEFG MCG

X

HALT STP STS STOPS BEARBE

USYS UANL AFEL SYSFHL

WIEDF URLDF NEUZU WIEZU URLER

ANEG MSEG

PARIN BSTKF BSTEF UMCG MODUN

SRAMF UAFEHL KDB1 KDX0 FDB1

FMODE FEDBX QVZNIO WEFES DB0UN

Fig. 5-1 Example of the first screen form page "OUTPUT ISTACK": control bits

Control Bits and Interrupt Stack

CPU 948 Programming Guide

5 - 10 C79000-B8576-C854-03

The following tables explain the meaning of the individual bits.

SYSTEM DESCRIPTION

Bit Meaning

E0VH Input byte IB 0 (process interrupts) exists, i.e. the digital
input module addressed with ’0’ was plugged in during
the last cold restart and the module acknowledged.

GEP Programmable controller has a central back-up battery.

BATT Battery failure in the central controller (BAU)

EINP Single processor operation

MEHRP Multiprocessing operation

SYNCR Start-up of the CPUs in multiprocessing operation is
synchronized

TEST Test operation

BSTG DX-0 setting "interrupts at block boundaries"

BEFG DX-0 setting "interrupts at operation boundaries

MCG Memory card inserted

STOP CAUSE (see RS 7)

Bit Meaning

PGSTP STOP mode set from programmer

HALT Multiprocessor STOP mode:
a) Selector switch on the coordinator (COR) is

in the STOP position
or

b) Stop status caused by command STOP operation
from system program when the corresponding
error OB is not loaded and an error occurs

STS STOP mode caused by STEP 5 operation ’STS’ (after
executing an operation)

STOPS STOP mode caused by setting the mode selector to the
STOP position

BEARBE STOP mode after the PROGRAM TEST END
programmer function

Table 5-1 Meaning of the control bits SYSTEM DESCRIPTION

Table 5-2 Meaning of the control bits STOP CAUSE

5

Control Bits and Interrupt Stack

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 11

STOP CAUSE (see RS 7)

Bit Meaning

Table 5-2 continued:

UPROG STOP mode caused by user program

USYS STOP mode caused by system program
(warm restart possible)

UANL STOP mode caused by illegal start-up type

AFEL STOP mode caused by errors in the start-up block

SYSFHL STOP mode caused by system error (may be caused by
user error, e.g. overwriting system RAM with a block
transfer or similar (when a system error is marked, a
four-digit hexadecimal number/error code appears at the
bottom edge of the screen - refer to RS 75 in Chapter 8).

START-UP IDs (see RS 8)

Bit Meaning

NEUDEF COLD RESTART was executed as last start-up type.

WIEDF WARM RESTART was executed as last start-up type.

URLDF Overall reset was executed or is active.

NEUZU COLD RESTART permitted as next start-up type.

WIEZU WARM RESTART permitted as next start-up type.

URLER Overall reset required.

AWEG AUTOMATIC WARM RESTART is preset.

ANEG AUTOMATIC COLD RESTART is preset.

MSEG Manual start is preset.

Table 5-3 Meaning of the control bits START-UP IDS

Control Bits and Interrupt Stack

CPU 948 Programming Guide

5 - 12 C79000-B8576-C854-03

ERROR IDs

Bit Meaning

QVZIN Timeout error in initialization

PARIN Parity error in initialization

BSTKF Wrong block ID

BSTEF Wrong block delimiter

UMCG Illegal memory card inserted

MODUN Content of the memory card too large for the available
internal user memory

FE2S Error on the second interface

SRAMF System RAM error

UAFEHL Error in the interrupt condition code word (UAW)

KDB1 No DB 1 in multiprocessing operation

KDX0 No DX 0 in multiprocessing operation

FDB1 Error in DB 1

FDX0 Error in DX 0

FMODE No IB 0 process interrupts allowed in multiprocessor
mode

FEDBX Error in the STEP 5 operations G DB, GX DX

QVZNIO QVZ test faulty

WEFES Collision of software-driven timed interrupts: queue
overflow

DB0UN DB 0 has been changed since the last COLD
RESTART. Therefore, no WARM RESTART possible.

Table 5-4 Meaning of the control bits ERROR IDS

5

Control Bits and Interrupt Stack

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 13

5.4.2
ISTACK Content If the CPU is in the stop state, you can display the content of the

ISTACK on the screen after the control bit display by pressing the
enter key. When the CPU goes into the STOP mode, the system
program enters all the information it needs in this ISTACK for a warm
restart.

You can use the entries in this ISTACK to see what kind of error
occurred and where it occurred in the program.

If the stop state was caused by a single error, only one level of the
ISTACK information is displayed. With several errors, the
corresponding number of ISTACK levels are output (DEPTH 01,
DEPTH 02, etc.). At all levels, only one error is marked as the
CAUSE OF INTERRUPT.

If several errors have occurred DEPTH 01 marks the error detected
immediately before the change to the stop state.

Fig 5-2 is an example of a PG display of the ISTACK content.

ISTACK

Depth 01

OP-REG:
BLK-STP:
PAGE
NUMBER:
BRACKETS:
ACCU1: 0000 31BA

1205
EDEFF

00FD
KE1 000

ACCU2:

SAC (new):
PB-NO.:
REL-SAC:
SAC (old):
KE2 000 KE3 000

0000 0005

000B3
9

00013
000B2

ACCU3:

DB-ADD:
DB-NO.:
DBL-REG:

ICMK:
KE4 000 KE5 000 KE6 000

0004 0005

00000

09DF3FBF

0000

ACCU4:

BA-ADD:
OB-NO.:
BR-REG:
ICRW:

0004 0005

00108

00000
FFFFFFFF

1

CONDITION CODE:

CAUSE OF INTERR.: KB

NAU

STS

KDB

QVZ

WEFEH

TRAF

OVFL

ADF

PEU

SUF

PARE

HALT

OVFLS

STUEB

ZYK

ODER

STUEU

STOP

ERAB

RLO

CC0

STATUS
X X

X

CC1

Fig. 5-2 Example of a screen page "OUTPUT ISTACK"

Control Bits and Interrupt Stack

CPU 948 Programming Guide

5 - 14 C79000-B8576-C854-03

Explanation of the ISTACK
screen

DEPTH Information level of the ISTACK when more than one error has
occurred:

DEPTH 01 = last cause of stop to occur
DEPTH 02 = next to last cause of stop to occur
......
DEPTH05 = (maximum depth)

Information about the error The following table contains information about the ISTACK IDs with
which the statement in the user program can be found which caused
the CPU to change to the STOP mode.

Information about the error

ISTACK ID Meaning

OP-REG Operation register:
Contains machine code (first word of the
instruction processed last in an interrupted
program processing level.

SAC (new) STEP address counter (new):
Contains the absolute address of the next
operation in the program memory to be
processed. When a warm restart occurs,
the CPU continues the program with this
operation.

DB-ADD Absolute start address (DW 0) in the
program memory of the data block currently
opened (= 0000 if no data block was
opened)

BA-ADD Absolute address in the program memory
for the operation to be processed next in the
block where the last block call was made

BLK-STP Block stack (BSTACK) pointer:
Contains the 20-bit offset address of the
last BSTACK entry (always Exxxx).

PB-NO
(depending on type

PB, OB ...)

Block type and number of the most
recently processed block

Table 5-5 Meaning of the ISTACK IDs for errors

5

Control Bits and Interrupt Stack

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 15

Information about the error

ISTACK ID Meaning

Table 5-5 continued

DB-NO. Number of the data block currently opened

OB-NO.
(depending on type

OB, PB ...)

Block type and number of the last calling
block

REL-SAC Relative STEP address counter:
contains the relative address (related to
the block start address) of the next
operation to be processed in the
last block processed.

DBL-REG Length of the data block currently
opened

BS-REG Content of the base address register prior to
the transition to the stop mode

PAGE
NUMBER

Number of the current dual-port RAM page
selected (dual-port RAM access refers to this
dual-port RAM page, you will find
information about page access in Chapter 9)

SAC (old) STEP address counter (old):
contains the absolute address of the last
operation processed in the program
memory of an interrupted program level;
if an error occurs, SAC (old) indicates the
operation which caused the error.

ICMK Interrupt condition code masking word:
ICMK contains all the causes of interrupts
which have occurred and not yet been
completely processed.

ICRW Interrupt condition code reset word

BRACKETS Number of bracket levels:
"KEx abc" where
x = 1 to 7 levels,
a = ’OR’ (refer to bit codes),
b =’ RLO’ (result of logic operation,

refer to bit codes),
c = 1: ’A(’,
c = 0: ’O(’.

ACCU1 to
ACCU4

Contents of the calculation registers
(accumulators) at the time of the interruption

Control Bits and Interrupt Stack

CPU 948 Programming Guide

5 - 16 C79000-B8576-C854-03

CONDITION CODE see Section 3.5

CAUSE OF INTERR. The following abbreviations (ISTACK IDs) indicate the most important
causes of interruptions.

CAUSE OF INTERR.

ISTACK
 ID

Meaning (called error OB)

KB Called block not loaded (OB 19)

KDB Opened data block not loaded (OB 19)

TRAF Load or transfer error (OB 32)

SUF Substitution error (OB 27):
Processed STEP 5 operation cannot be
substituted

STUEB Block stack overflow:
Nesting depth too great; required action:
COLD RESTART

STUEU Interrupt stack overflow:
Nesting depth too great; required action:
POWER DOWN, POWER UP,
then COLD RESTART

NAU Power failure in the central controller

QVZ Timeout (OB 23/OB 24/OB 28/OB 29)

ADF Addressing error for digital inputs and outputs with
process image (OB 25)

PARE Parity error (OB 30)

ZYK Cycle monitoring time exceeded (OB 26)

STOP STOP mode caused by setting the mode selector to the
STOP position

STS STOP mode caused by STEP 5 operation ’STS’ (after
executing an operation)

Table 5-6 ISTACK IDs CAUSE OF INTERRUPTION

5

Control Bits and Interrupt Stack

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 17

CAUSE OF INTERR.

ISTACK
 ID

Meaning (called error OB)

Table 5-6 continued:

WEFEH Collision of timed interrupts caused by the hardware
clock (OB 33):

timed interrupt clock was masked (ignored)
for too long

PEU I/Os not ready = power failure in expansion unit:
After a statically pending PEU signal is removed
(expansion unit is switched on), the system
program always calls OB 22 (AUTOMATIC
WARM RESTART).

HALT Multiprocessor STOP mode:
a) selector switch on the coordinator (COR) is

in the STOP position
b) another CPU entered the STOP mode in

multiprocessing.

Control Bits and Interrupt Stack

CPU 948 Programming Guide

5 - 18 C79000-B8576-C854-03

5.4.3
Example of Error Diagnosis
using the ISTACK

Fig. 5-3 illustrates the structure of the ISTACK in conjunction with the
interruptions that have occurred.

- The program execution level CYCLE (OB 1) is interrupted by an interrupt.
- Following this, the program processing level interrupt is activated and
 OB 3 called.
- The occurrence of a timed interrupt means that the INTERRUPT level is

 exited and the TIMED INTERRUPT level activated and OB 13 processed.
- An incorrect addressing operation leads to the activaton of the ADF

 level where OB 25 is processed. In the error handling program, the user
 has programmed a stop operation (STS) the CPU aborts program execution.

Before the final transition to the stop mode, a total of four different
program execution levels were interrupted. If you now display the ISTACK on
the PG, you will obtain a four-level ISTACK, at the top the ISTACK with
depth 01, with the ID of the last interrupted program execution level (=
ADF). You can page down through the ISTACK until you reach depth 04,
representing the CYCLE program execution level, which was interrupted first .

STS

ADF

STS

X

X

Depth 04

Program execution levels ISTACK

Depth 03

Depth 02

Depth 01

CYCLE

TIMED INTERRUPTS

INTERRUPT

ADF

OB 1

OB 3

OB 13

OB 25

Fig. 5-3 Example of evaluating the ISTACK

5

Control Bits and Interrupt Stack

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 19

5.5 Error Handling Using Organization Blocks

When the system program detects an error, it calls the appropriate
organization block to handle it. You can determine further operation of
the CPU by programming the appropriate organization block.
Therefore, the CPU can do one of the following:

•• continue normal program processing

•• go into the STOP mode

and/or

•• process a special "error handling program"

For the following causes of error, OBs are available:

Cause of error Organization
block called

Reaction of CPU
if OB is not
programmed

Call of a block that is not loaded (KB) OB 19 none

Attempt to open a data block DB/DX that is not loaded
(KDB)

OB 19 STOP

Timeout in the user program during access to I/O peripherals
(QVZ)

OB 23 none

Timeout during update of the process image table and during
interprocessor communication flag transfer (QVZ)

OB 24 none

Addressing error (ADF) OB 25 STOP 1)

Cycle time exceeded (ZYK) OB 26 STOP

Substitution error (SUF) OB 27 STOP

Timeout by reading input byte IB 0
(process interrupts – QVZ)

OB 28 STOP

Timeout during access to the distributed I/O peripherals (extended
address area — QVZ)

OB 29 none

Parity error and timeout in the user memory (PARE) OB 30 STOP

Table 5-7 The organization blocks called in case of errors

Error Handling Using Organization Blocks

CPU 948 Programming Guide

5 - 20 C79000-B8576-C854-03

Cause of error Organization
block called

Reaction of CPU
if OB is not
programmed

Table 5-7 continued:

Load and transfer error (TRAF) OB 32 STOP

Collision of timed interrupts:
a) queue overflow (control bit WEFES)
b) timed interrupt clock was masked (ignored) for too long

(WEFEH)

OB 33
STOP
none

Error during STEP 5 operation "G DB/GX DX"
(control bit FEDBX)

OB 34 STOP

Error in self-test (refer to Section 5.7) OB 36 none

1) The CPU changes to the STOP mode only if the addressing error is not disabled by the STEP 5 operation "IAE".

Examples of reactions to
organization blocks which are
not loaded

a) No reaction; cyclic program processing is not interrupted.

If a timeout error occurs and neither OB 23 nor OB 25 is loaded, cyclic program processing is not
interrupted according to the table above. The CPU does not react.
If you want the CPU to go into the STOP mode when a timeout error occurs, you must enter a stop
statement (STP for STOP at cycle end) in the appropriate organization block (e.g. OB 23 with QVZ) and
terminate it with the block end statement ’BE’.

Example of OB 23:
: QVZ has occurred
:
:STP Cyclic processing is aborted
:BE CPU changes to the stop mode

b) Reaction : the CPU changes to the STOP mode.

The CPU changes to the STOP mode immediately when a corresponding error (e.g. cycle or
load/transfer error) occurs - if you did not load the appropriate organization blocks.

If, as an exception, you do not want one of these errors to interrupt cyclic program processing
(e.g. while putting the system into operation), a block end statement in the appropriate
organization block is sufficient.

Example of OB 25:
: ADF occurred
:
:BE Cyclic processing is continued, no CPU STOP

5

Error Handling Using Organization Blocks

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 21

Interruptions during
processing of error
organization blocks

After the system program calls the appropriate organization block, the
user program in that block is processed.
If another error occurs while that organization block is being
processed, the program is interrupted at the next operation boundary
and the appropriate organization block is called, just as in cyclic
program processing.

The system program processes organization blocks in the order in
which they are called.

Note
You can nest a maximum of five error organization blocks. With
more than 5 errors, the CPU goes into the HARD STOP mode
because of ISTACK overflow.

Error Handling Using Organization Blocks

CPU 948 Programming Guide

5 - 22 C79000-B8576-C854-03

5.6 Causes of Error and Reactions of the CPU

Specific events can interrupt cyclic, time-controlled, or interrupt-
driven program processing at operation boundaries when the CPU is
in the RUN mode.

During initialization and also in the RESTART mode, interruptions
can stop the start-up program and put the CPU into the STOP mode.
The CPU then changes to the stop mode and calls the organization
block for this particular error. Interruptions during the start-up
program are handled like those in the RUN mode.

The reaction depends on the cause of the interruption:

•• immediate change to the STOP mode, without calling the error OB
(e.g. NAU → hard stop, STUEU → hard stop, PEU → soft stop),

•• before changing to the STOP mode, the system program calls an
error OB which you can program and (depending on the cause of
the error) avoid a change to the stop mode (e.g. QVZ/IB 0 →
OB 28, ADF → OB 25).

If an error occurs, note the entries in the control bits under "Error IDs"
and the entries in the ISTACK under CAUSE OF INTERR.

The following sections explain possible causes of error in greater
detail.

5

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 23

5.6.1
OB 19: Calling a Logic
Block That Is Not Loaded
(KB)

If your program jumps to a block that does not exist, the system
program detects an error. This applies to all logic blocks and also for
conditional and unconditional calls.

When the system program detects the call of a logic block that is
not loaded, it calls OB 19, if this is loaded. In OB 19, you can
specify how the CPU should proceed.

If OB 19 does not exist, the system program continues executing the
interrupted STEP 5 program at the next operation.

5.6.2
OB 19: Calling a Data Block
That Is Not Loaded (KDB)

If you call a data block or an extended data block in your program that
does not exist in the memory or is marked as invalid, the CPU detects
an error and the system program calls OB 19, if this is loaded. If
OB 19 is not loaded, the CPU changes to the STOP mode. A zero is
entered in the DBA and DBL registers.

Note
OB 19 is called both when a logic or data block is not loaded.
You can read system data register RS 75 to determine (via the
STEP 5 program) which type of error occurred. The contents of
RS 75 are as follows:
- for a KB error: 0101H,
- for a KDB error: 0904H.

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

5 - 24 C79000-B8576-C854-03

5.6.3
OB 23/24, OB 28/29:
Timeout Error (QVZ)

A timeout error occurs when an addressable memory area does not
respond to write or read accesses with the ready signal ("RDY")
within a specific time after being addressed. This time is monitored by
the hardware. A defective module or the removal of a module during
operation of the programmable controller can cause a timeout error.

The following timeout errors interrupt the user program, jump to
system program error handling, and call the appropriate blocks if they
are loaded:

OB 23 QVZ with direct I/O access:

Cause of error Reaction to error

Timeout error in the user
program during direct access via
the S5 bus to an IP, COR, or
to a peripheral module (e.g.,
with load and transfer operations
"L/T P..." or "L/T Q...").

If OB 23 is not loaded, the
system program continues the
processing of the user program.

OB 24

Cause of error Reaction to error

Timeout error during update of
the process image input/output
tables or during transfer of
interprocessor communication
flags.

If OB 24 is not loaded, the
system program continues
processing of the user program.

Extension of the execution
time

With calling OB 23 or OB 24 a timeout error increases the execution
time of the STEP 5 operation which caused the timeout when the
program is resumed:
extension = "acknowledgement monitoring time + time of error
handling in the system program + processing time if error OB is
called".

5

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 25

OB 28

Cause of error Reaction to error

Timeout error at input byte IB 0
(process interrupts)

If OB 28 is not loaded, the CPU
changes to the STOP mode.

OB 29

Cause of error Reaction to error

Timeout error of the distributed
peripherals in the following
address areas:

- F 0000H to F EFFFH
- F F200H to F FFFFH

If OB 29 is not loaded, the
system program continues
processing of the user program.

Error address When a timeout error occurs, you can read the error address in the
system data area (see Chapter 8):

RS Contents Address

68 QVZ error address high E F044H

69 QVZ error address low E F045H

5.6.4
OB 25: Addressing
Error (ADF)

An addressing error occurs when a STEP 5 operation references a
process image input or output to which no I/O module was assigned at
the time of the last COLD RESTART (the module is not plugged in, it
is defective, or it is not defined in data block DB 1 of the CPU.

The STEP 5 operation at which the addressing error occurred is
processed completely: For bit operations, the bit in the process image
is scanned and combined logically or set/reset. Load and transfer
operations are also executed. Continued processing can, however,
result in incorrect or unwanted reactions.

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

5 - 26 C79000-B8576-C854-03

When an addressing error occurs, the system program interrupts
further processing of the user program and calls organization block
OB 25. After running the program contained in OB 25, the program is
resumed at the next operation.
If OB 25 is not loaded, the CPU changes to the STOP mode with an
addressing error.

The STEP 5 IAE operation disables addressing error monitoring for
individual program parts or for the entire program. You can enable it
again using the RAE operation (see Section 3.5.4 and List of
Operations).

5.6.5
OB 26: Cycle Time
Exceeded Error (ZYK)

The cycle time is the time between the start of one OB 1 and the next.
It includes the entire duration of cyclic program processing including
interrupts, interrupt servicing and system program activities. The cycle
monitoring time set on the CPU can, for example, be exceeded by
incorrect programming (program loop).

Note
Hardware faults as the cause of cycle time errors are extremely
rare. Normally, the error is in the user program or the programs
and cycle monitoring time are incompatible.

When a cycle time exceeded error (ZYK) occurs, the system program
interrupts the user program and calls OB 26 if this is loaded. The
monitoring time is then restarted (triggered). If the monitoring time is
exceeded again, before OB 26 is completed, the CPU changes to the
stop mode.

If OB 26 is not loaded, the CPU changes to the STOP mode.

The cycle monitoring time is variable (10 to 2550 msec) and is
retriggerable (see above).
You can specify the cycle monitoring time individually by making an
entry in DX 0 (refer to Chapter 7) or by programming OB 31. The default
monitoring time is 200 ms.

In the cyclic program, the cycle monitoring time can be retriggered by
calling the special function OB 222.

5

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 27

5.6.6
OB 27: (Substitution
Error SUF)

If an operation with a formal operand is to be carried out in a function
block, the CPU replaces (substitutes) this formal operand with the
actual operand in the block when the block is called during user
program processing.

If the CPU detects an illegal substitution, it interrupts the user
program and calls OB 27, if this is loaded. If OB 27 is not loaded, the
CPU changes to the STOP mode.

Apart from an illegal substitution, SUF is also indicated in the
following situations:

•• illegal operation code,

•• special situation:
you cannot open data blocks DB 0 and DB 1. The CPU handles the
operations "C DB 0" and "C DB 1" like substitution errors. A zero
is entered in the DBA and DBL registers.

5.6.7
OB 30: Parity Error and
Timeout Error in the User
Memory (PARE)

The user memory is protected by a parity bit. The system program
checks whether the parity bit is correct each time the user memory is
accessed. If the parity bit is incorrectly set, a parity error is indicated.

The system program calls OB 30. If OB 30 is not loaded, the CPU
changes to the STOP mode.

The same reaction takes place if a timeout error occurs in the user
memory.

PARE accessing the
operating system RAM

If a parity error occurs when accessing the operating system RAM, the
system program does not call OB 30, but changes to a HARD STOP.

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

5 - 28 C79000-B8576-C854-03

Error address If a parity error or timeout occurs, the address that caused the error can
be read out of the system data area (refer to Chapter 8):

RS Contents Address

70 PARE error address high E F046H

71 PARE error address low E F047H

5.6.8
OB 32: Load and Transfer
Error (TRAF)

A load and transfer error is indicated in the following situations:

•• When accessing data in data blocks or extended data blocks, the
CPU compares the length of the opened block to the parameter in
the load or transfer operation.
If the specified parameter exceeds the actual data block length, the
CPU does not execute the load or transfer operation. This prevents
data in the memory from being overwritten by mistake during
transfer operations. With load errors, the contents of the
accumulator are retained.

•• A load or transfer error is also detected if a single bit within a
non-existent data word is to be scanned or changed.

•• If no data block has yet been opened (with "C DBn" or
"CX DXn") prior to access to a data word, this also causes a
load/transfer error.

•• Accessing the memory using incorrect absolute addresses via the
BR register or incorrect area boundaries with the "TNW", "TXW"
and "TXB" operations can cause a load or transfer error.

When the system program detects a load or transfer error, it calls
OB 32, if this is loaded. The operation that caused the load or transfer
error is not processed.
If OB 32 is not loaded, the CPU changes to the STOP mode.

5

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 29

5.6.9
OB 33: Collision of Timed
Interrupts Error
(WEFES/WEFEH)

Time-controlled program processing (timed interrupts) is handled by
organization blocks OB 6, OB 9 and OB 10 to OB 18.

The following types of timed errors can occur on the CPU 948:

Queue overflow Cause:

Queue overflow servicing timed interrupts:

•• there are more than three timed interrupts pending for one of the
three shortest periods (OBs 10 to 12)

or

•• one of the other OBs (OBs 13 to 18) has been called before the
first call was completely processed.

Reaction:

The system program calls OB 33 as the user interface, if this is loaded.
You can program the reaction to this state in this OB.

If OB 33 is not loaded, the CPU changes to the STOP mode.

PG display in "OUTPUT ISTACK":

The bit WEFES is marked in the control bits.

Masking the timed interrupt
clock

Cause:

The internal timed interrupt clock is masked (ignored) too long
(applies to interruptions at block boundaries/process interrupts).

This situation is related to the basic clock rate of the internal timed
interrupts and the scan time of a block in the cyclic user program. If
the scan of a cyclic block runs longer than the basic clock rate, a
collision of timed interrupts occurs.

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

5 - 30 C79000-B8576-C854-03

Reaction:

The system program calls OB 33 as user interface, if this is loaded.
Here, you can program the reaction to this state.

If OB 33 is not loaded, the CPU continues processing the program.

PG display with "OUTPUT ISTACK":

The bit WEFEH is marked in the control bits.

When the system program calls OB 33, a code for the collision of
timed interrupts is transferred to ACCU-1-L (see Section 4.5.3).

Note
In the "process interrupt via IB 0" mode and "interruptability at
block boundaries" the step address counter (SAC) does not point
to the block at whose boundary (BE statement) the collision of
timed interrupts took place. It points to the block that called the
block that caused the error (return address).

As long as an error is pending or reoccurs every time the STEP 5
operation in question is processed in each scan, the appropriate
error organization block is always called.

This can increase the cycle time considerably, depending on the
duration of error handling by the system program and of
processing time of the organization block.

5

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 31

5.6.10
OB 34: Error with
G DB/GX DX
(FEDBX) Causes:

•• with the operation G DB/GX DX, an illegal block number was
specified (number of a reserved block, number > 255),

•• with the operation G DB/GX DX, an illegal block length was
specified (> 4091),

•• there is no longer enough space in the user memory for the
operation GDB/GXDX.

Reaction:

The system program calls OB 34 is this is loaded. If OB 34 is not
loaded, the CPU changes to the stop mode.

5.6.11
OB 35: Communication
Errors

If problems occur on the second serial interface with an RK 512
computer link, data transfer with procedure 3964/3964R, data transfer
with an open driver or data transfer with SINEC L1, the system
program calls organization block OB 35 and enters additional
information about the error in ACCU 1.

Reaction if OB 35 is not loaded If you have not programmed OB 35, the system program does not
react and the CPU does not change to the STOP mode.

Error information in ACCU 1 The system program checks whether errors have occurred on the serial
interface every 100 ms. If an error has occurred, the system program
enters error information in ACCU 1.

Error numbers for up to a maximum of three errors can be transferred
when OB 35 is called. If there are more than three errors, this is indicated
by an overflow identifier.

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

5 - 32 C79000-B8576-C854-03

Structure of the error
information in ACCU 1

31 24 23 18 15 8 7 0

ACCU 1 0 0 0 0 F U B 0 Error number 1 Error number 2 Error number 3

F = ’0’, means no error entry
= ’1’, means one or more errors entered

U = ’0’, means no error overflow (maximum three entries)
= ‘1‘, means error overflow (more than three entries)

B = ’0’, means no BREAK on the interface
= ’1’, means BREAK on the interface

BREAK If there is a BREAK on the interface, OB 35 is only called at the
beginning of the BREAK state.

Error number 1 to error
number 3

Here, a maximum of three error numbers for errors detected on the
interface are entered in the order in which they were detected by the
system.

Meaning of the error numbers The meaning of the error numbers and further information about
dealing with interface errors can be found in the communication
manual (Further Reading /14/).

5.6.12
OB 36: Error in Self-test OB 36 is called if one of the self-test routines detects an error when it

is run (for detailed information, refer to Section 5.7).

5

Causes of Error and Reactions of the CPU

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 33

5.7 Self-Test

5.7.1
Overview The CPU 948 contains integrated self-test routines in the system

program.

Activating/deactivating You can activate or deactivate the functions of the self-test using bits
in system data RS 137.

Time slice To reduce the cycle load caused by the self-test in the RUN mode,
only part of the self-test is carried out within a cycle (time slice). The
time available for the self-test can be set in RS 136 (refer to
Section 5.7.3).

What can be tested? The self-test routines can carry out the following tests:

WHAT IS TESTED? WHEN?

The user memory During OVERALL RESET

The BASP signal
(disable command output)

In the STOP mode

The hardware clock During COLD RESTART

The cycle time monitoring During START-UP

The address lines Cyclically in the RUN mode

The code of the system program
(checksum)

Cyclically in the RUN mode

The code of the STEP 5 logic
blocks in the user memory
(checksum)

Cyclically in the RUN mode

Self-Test

CPU 948 Programming Guide

5 - 34 C79000-B8576-C854-03

5.7.2
Description of the Test
Functions

Testing the user memory (During OVERALL RESET, without time slice)

The user memory is tested during an OVERALL RESET. This test
checks the user memory, the byte areas, the flags and process images.

During the test, the whole area (including the byte areas) are written
with a test pattern and then checked to make sure that they match. At
the end of the test, the area is written with zeros.

Note
The user memory test takes time to complete

- CPU 948-1 (640 Kbytes) approx. 5 seconds
- CPU 948-2 (1 664 Kbytes) approx. 22 seconds

Testing the BASP signal (In the STOP mode, without time slice)

This test checks whether a BASP signal is output by the CPU. The test
function runs in the stop loop. The BASP signal is then read cyclically.
If an error is detected, an entry is made in the error buffer. At the next
START-UP, OB 36 (error in self-test) is called, if it exists. If OB 36 is
loaded and contains an STP operation, the START-UP is aborted.
Otherwise, the CPU changes to the cyclic mode.

Testing the hardware clock (During START-UP, however, only in CPU COLD RESTART ;
without time slice)

This test is made before OB 20 is called and takes one second.

The current time is retained; existing timed jobs (clock-controlled
interrupts - OB 9) on the other hand are deleted.

5

Self-Test

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 35

Testing cycle time monitoring (During START-UP, without time slice)

With this function, the cycle time monitoring is checked during the
start-up phase. The cycle monitoring time is set to the minimum value
(20 ms) and then a program loop started until the cycle error occurs.

Testing the address lines (Cyclically in RUN mode, with time slice)

In this test, wire breaks and short circuits on the address lines are
detected by writing test patterns via the lines, reading them back and
comparing them.

Testing the system program
code

(Cyclically in the RUN mode, with time slice)

In the operating code test, the content of the CPU operating system in
the internal RAM is checked (test area D 0000H to E 7FFDH).

The test is made by adding the content of the test area and then
comparing this with the checksum in the EPROM.

Testing the block code of
STEP 5 logic blocks

(Cyclically in the RUN mode, with time slice)

The checksum of each valid STEP 5 logic block is checked.
If a memory card is inserted, the checksum of the logic blocks of the
CPU 948 is created following an OVERALL RESET and after
copying the memory card contents to the internal user memory. Logic
blocks added at a later point in time are also checked.

Note
In the code test of the STEP 5 blocks, an error is detected if one or
more logic blocks were modified dynamically.
It is possible to modify blocks with the PG. If this is the case, the
checksum is created by the system program of the CPU 948.

Self-Test

CPU 948 Programming Guide

5 - 36 C79000-B8576-C854-03

5.7.3
Settings

Calculating and setting the
number of time slices

The processing time for the self-functions is distributed on time slices
which are called once per cycle. The number of time slices can be
selected. This means that you can increase the time required for the
self-test functions per cycle.

Calculating the number First, you must estimate the time you can leave for the self-test within
the cycle: the length of a time slice is approximately 500 µs, i.e. the
self-test requires 500 µs in each cycle.

Once you have estimated how much time is available, you can
calculate the number of time slices each taking approximately 500 µs.

Setting the number You can set the number of time slices in system data word RS 136
(16-bits wide). The default is 1 time slice (minimum value). You can
set up to a maximum of 10 time slices (5 ms required in the cycle).

The number of time slices is derived from the value of system data
word RS 136 as follows:

RS 136 = 0 or 1: 1 time slice
RS 136 = 2: 2 time slices
RS 136 = 3: 3 time slices
etc.

Activating/deactivating the
tests

You can activate the individual tests, e.g. in a start-up block, by setting
the corresponding bits in RS 137 to ’1’ and deactivate the tests by
setting the bits to ’0’.

Note
After an OVERALL RESET on a newly inserted CPU, all the test
functions are switched off.
The next time you make an OVERALL RESET, only the test
functions to be run in the OVERALL RESET are activated. All
other test functions are deactivated.
This means that you can only check the user memory of a newly
inserted CPU by activating the test function in RS 137 following
an OVERALL RESET and then repeating the OVERALL RESET.

5

Self-Test

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 37

Assignment of system data
word RS 137

Test function Bit no.

Check the code of the system program 2

Check the code of the STEP 5 logic blocks in the
user memory

5

Check the address lines 7

Check the clock 10

Check the BASP signal 11

Check the cycle time monitoring 13

Test the user memory 15

The bit numbers not listed in the table are not used.

5.7.4
Error Handling Providing the test function is not running within an OVERALL

RESET, the test function calls error OB 36 (refer to Section 5.6.11) if
an error is detected and transfers the content of RS 137 containing the
bits of the activated test routines to ACCU 1.

All the test routines also enter information about the type of test and
error detected in the system data words RS 75 to RS 78.

For test components which only run in an OVERALL RESET, the
cause of the error is indicated in RS 75. The STOP LED then flashes
quickly, when the tests are completed with an error in an
OVERALL RESET .

Errors detected by the self-test component "BASP signal" in the STOP
mode are also indicated in RS 75. The following START-UP only
leads to cyclic operation if no STP operation is programmed in
OB 36.

Self-Test

CPU 948 Programming Guide

5 - 38 C79000-B8576-C854-03

Error information

Testing the user memory

System data word Error information

RS 75 error no. 640CH testing the word memory
error no. 650CH testing the byte memory

RS 76 test pattern in which the error occurred

RS 77 incorrect address, high

RS 78 incorrect address, low

Testing the BASP signal

System data word Error information

RS 75 error no. 6700H

RS 76 FFFFH

RS 77 FFFFH

RS 78 FFFFH

Testing the hardware clock

System data word Error information

RS 75 error no. 6800H

RS 76 FFFFH

RS 77 FFFFH

RS 78 FFFFH

Testing cycle time monitoring

System data word Error information.

RS 75 error no. 6600H

RS 76 FFFFH

RS 77 FFFFH

RS 78 FFFFH

5

Self-Test

CPU 948 Programming Guide

C79000-B8576-C854-03 5 - 39

Testing the address lines

System data word Error information

RS 75 error no. 630BH

RS 76 FFFFH

RS 77 incorrect address, high

RS 78 incorrect address, low

Testing the system program
code

System data word Error information

RS 75 error no. 610BH

RS 76 FFFFH

RS 77 actual checksum, high

RS 78 actual checksum, low

Testing the block code of
STEP 5 logic blocks

System data word Error information

RS 75 error no. 620AH

RS 76 block type/block no. (IDs from block header)

RS 77 expected checksum

RS 78 actual checksum

Self-Test

CPU 948 Programming Guide

5 - 40 C79000-B8576-C854-03

Contents of Chapter 6

6.1 Introduction. 6 - 4

6.2 OB121: Set/Read System Time . 6 - 8

6.3 OB 122: "Disable Interrupts" On/Off . 6 - 12

6.4 OB 124: Delete STEP 5 Blocks . 6 - 14

6.5 OB 125: Generate STEP 5 Blocks . 6 - 17

6.6 OB 126: Define, Transfer Process Images. 6 - 20

6.7 OB 129: Battery State. 6 - 25

6.8 OB 131: Delete ACCUs 1, 2, 3 and 4 . 6 - 26

6.9 OB 132/133: Roll-Up ACCU/Roll-Down ACCU . 6 - 27

6.10 OB 141: "Disable Single Cyclic Timed Interrupts" On/Off . 6 - 29

6.11 OB 142: "Delay All Interrupts" On/Off . 6 - 32

6.12 OB 143: "Delay Single Cyclic Timed Interrupts" On/Off . 6 - 35

6.13 OB 150: Set/Read System Time. 6 - 38

6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt . 6 - 43

6.15 OB 153: Set/Read Time for Delayed Interrupt . 6 - 50

6.16 Ob 180: Variable Data Block Access . 6 - 53

6Integrated Special Functions

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 1

6.17 OB 181: Test Data Blocks (DB/DX) . 6 - 57

6.18 OB 182: Copy Data Area . 6 - 59

6.19 OB 202 to 205: Multiprocessor Communication . 6 - 62

6.20 OB 222: Restart Cycle Monitoring Time. 6 - 63

6.21 OB 223: Compare Start-up Modes . 6 - 64

6.22 OB 254/255: Copy/Duplicate Data Blocks . 6 - 65

CPU 948 Programming Guide

6 - 2 C79000-B8576-C855-03

6Integrated Special Functions

The following chapter describes the special functions integrated in the
system program, where you can use these functions and how to call
and assign parameters to the special function OBs.
You will also learn how to recognize errors in the execution of a
special function and possible ways of handling them in the program.

6

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 3

6.1 Introduction

The operating system of the CPU 948 provides you with special
functions which you can call if necessary with a conditional (JC OB x)
or an unconditional (JU OB x) block call. Organization blocks OB 100
to 255 are reserved for these special functions.

These functions are known as integrated special functions, since they
are a fixed part of the system program. As user, you can call these
special functions but cannot read or modify the corresponding
program.

The following table provides an overview of the existing special
functions.

Block Function Refer to
section/page

OB 121 Set/read system time (compatible with CPU 946/947) 6.2/6 - 8

OB 122 "Disable interrupts" on/off 6.3/6 - 12

OB 124
OB 125

Delete STEP 5 blocks
Generate STEP 5 blocks

6.4/6 - 14
6.5/6 - 17

OB 126 Define/transfer process images 6.6/6 - 20

OB 129 Battery state 6.7/6 - 25

OB 131 Delete ACCU 1, 2, 3 and 4 6.8/6 - 26

OB 132
OB 133

Roll-up ACCU
Roll-down ACCU

6.9/6- 27
6.9/6- 27

OB 141
OB 142
OB 143

"Disable single cyclic timed interrupts" on/off
"Delay all interrupts" on/off
"Delay single cyclic timed interrupts" on/off

6.10/6 - 29
6.11/6 - 32
6.12/6 - 35

OB 150
OB 151
OB 153

Set/read system time
Set/read time for clock-controlled interrupt
Set/read time for delayed interrupt

6.13/6 - 38
6.14/6 - 43
6.15/6 - 50

OB 181 Test data block 6.16/6 - 53

OB 182 Copy data area 6.17/6 - 55

OB 200, 202
203, 204, 205

Functions for multiprocessor communication 6.18/6 - 58

OB 222 Restart cycle monitoring time 6.19/6 - 59

OB 223 Compare start-up modes in multiprocessor mode 6.20/6 - 60

OB 254, 255 Copy/duplicate DB and DX data blocks 6.21/6 - 61

Table 6-1 Overview of the special functions available with the CPU 948

Introduction

CPU 948 Programming Guide

6 - 4 C79000-B8576-C855-03

Interfaces The following are available as interfaces to the special functions:

Block call •• Conditional/unconditional block call JC .. / JU ..

Parameters •• Parameters for defaults via ACCU 1 and possibly ACCU 2 and/or
memory locations

In the following description of the individual special functions, all
the data required by the CPU to execute the special function
correctly are listed under the term parameters. Before calling the
special function in the STEP 5 program, you must load this data in
the accumulators or in the specified memory locations.

Writing to ACCUs When assigning parameters for the special function organization
blocks, please note the following conventions for writing to the
ACCUs:

ACCU 1: ACCU 1, 32 bits

ACCU-1-L: ACCU 1, low word, 16 bits

ACCU-1-LL: ACCU 1, low word, low byte, 8 bits

ACCU-1-LH: ACCU 1, low word, high-byte, 8 bits

High word Low word

High byte Low byte High byte Low byte

31 24 23 16 15 8 7 0

6

Introduction

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 5

Error handling An error occurring in the execution of the active special function triggers
a special error reaction in the system program.

In terms of this error reaction by the system program, two groups of
special functions can be distinguished.

•• Group 1:

ACCU condition code bits Group 1 includes all the special functions with which IDs are
transferred to ACCU 1 if an error occurs to further explain the
error.

•• Group 2:

RLO ,
CC0/CC1

With some of the special functions, the RLO or the status bits
CC0/CC1 are written to indicate errors for specific special
functions.
If an error occurs when using one of these special functions, the
RLO is set to "1" in most cases. In your STEP 5 program, you can
use a JC operation (conditional jump) to evaluate the RLO for
these special functions and then react to an error.

In some special functions, the results bits CC0 and CC1 are
affected by the processing of a special function. You can scan
these bits in your STEP 5 program using a compare operation and
once again program a reaction to an error.

Which of the error reactions occurs for the individual special function
OBs is explained in the following sections.

Note
Calling a special function OB using the "JU OB 131/132/133" or
"JC OB 131/132/133" operation does not have the same effect as
a "genuine" block change, but functions as a STEP 5 operation
without block operand. No interrupts are nested (with the default
"interrupts at block boundaries").

Introduction

CPU 948 Programming Guide

6 - 6 C79000-B8576-C855-03

6.2 OB 121: Set/Read System Time

Function With OB121 you can set or read the system time (date and time). This
function is compatible with the CPU 946/947.

Parameters 1. Data field

Four words in the word-oriented memory area.
With the "set system time" function the area before the OB121 call
must be loaded with the time values to be set. The system program
checks these values to ensure they are logically correct.
With the "read system time" function, OB121 enters the current time
values in this area.

Structure of the data field

Bit no. 15 12 11 9 8 4 3 0

1st word Sec. x 10 Sec. x 1 10th Sec. 100th Sec.

2ndword Hour x 10 Hour x 1 Min. x 10 Min x 1

3rd word Day x 10 Day x 1 Weekday 0

4th word Year x 10 Year x 1 Month x 10 Month x 1

Note
The structure of the data field corresponds to the structure of
system data RS 96 to RS 99 (current time).

Possible time values:

100th seconds: 0 to 9
10th seconds: 0 to 9

Seconds x 1: 0 to 9
Seconds x 10: 0 to 5

Minutes x 1: 0 to 9
Minutes x 10: 0 to 5

Hours x 1: 0 to 9
Hours x 10:

Bit no.
12 /13: 0 to 1 with 12 hour format

0 to 2 with 24 hour format
Bit no. 14: 0 = AM with 12 hour format

1 = PM " "
0 in 24 hour format

Bit no. 15: 0 = 12 hour format
1 = 24 hour format

6

OB 121: Set/Read System Time

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 7

Weekday: 0 to 6 for Mon to Sun

Days x 1: 0 to 9
Days x 10: 0 to 3

Month x 1: 0 to 9
Month x 10: 0 to 1

Year x 1: 0 to 9
Year x 10: 0 to 9

2. BR register (base address register)

Start address of a data field in an area of memory organized in words,
from which the time values to be set are read or in which the current
time values are to be stored. The BR register must be loaded with the
address before the OB 121 call.

3. ACCU-1-L

Function no.,
Permitted values: 1 = set system time

2 = read system time

Result After correct and error-free processing, the system program enters the
value ’0’ in ACCU-1-L. After the "set" function, the system time is set
to the values contained in the data field; after the "read" function, the
data field contains the current time values.

Possible errors The errors listed in the following table can occur. If one of these errors
does occur, the system program enters the error ID shown in the table
in ACCU-1-L.

ID Meaning

F001H
F00FH
F101H
F102H
F103H
F104H
F105H
F106H
F107H
F108H
F109H

Illegal function no.
Multiple block call
Year specification illegal
Month specification illegal
Day specification illegal
Weekday specification illegal
Hour specification illegal
Minute specification illegal
Seconds specification illegal
100th ...10th seconds illegal
Hour format differs from setting in OB 151

Table 6-2 Error IDs of OB 121 in ACCU-1-L

OB 121: Set/Read System Time

CPU 948 Programming Guide

6 - 8 C79000-B8576-C855-03

Examples

Programming example for "set system time"

FB 13 is programmed for the "set system time" function. The new values are
transferred in data block DB 10 (data word DW 0 to DW 3).

STEP 5 program:

FB13
NAME :CLKWR

:C DB 10 Open DB 10
:L KH 1500 15 seconds (10th .. 100th sec. = 0!)
:T DW 0
:L KH 9555 24 hour mode, 15 hours 55 minutes
:T DW 1
:L KH 1010 the 10th, Tuesday
:T DW 2
:L KH 9308 1993, August
:T DW 3
:MBR EEC00 Load start address of the DB list
: in the BR
:LRW +10 Load the start address of DB 10 in memory
: (paragraph address) in ACCU 1
:SLD 4 Absolute address of DB 10 (DW 0)
:MAB Load content of ACCU 1 into BR register
:L KB 1 Load function no. ’1’ in ACCU-1-L
:JU OB 121 Set system time
:L KB 0
:><F Scan error bits
:JC =ERRO Jump to error handling
:BEU
:

ERRO : Error handling
:
:BE

Data block DB 10 contains the following information when OB 121 is called:

0: KH = 1500;
1: KH = 9555;
2: KH = 1010;
3: KH = 9308;
4:

OB 121 transfers the required time parameters from DB 10 to the system data
area RS 96 to RS 99.

6

OB 121: Set/Read System Time

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 9

Programming example for "read system time"

FB 14 is programmed for the "read system time" function. The current values
should be stored in data block DB 11 (data word DW 0 to DW 3).

STEP 5 program:

FB14
NAME :CLKRD

:MBR EEC00 Load start address of the DB list
: in BR
:LRW +11 Load start address of DB 11 in memory
: (paragraph address) in ACCU 1
:L KB 0
:!=F Check that OB 11 is loaded
:JC =NIVO Jump to error handling
: if DB start address = 0
:TAK
:SLD 4 Absolute address of DB 11 (DW 0)
:MAB Load contents of ACCU 1 into BR register
:L KB 2 Load function no. ’2’ in ACCU-1-L
:JU OB 121 Read system time
:BEU
:

NIVO : Error handling
:
:BE

Data block DB 11 contains the following information after OB 121 is called
(example):

0: KH = 2994; 29 sec., 940 millisec.
1: KH = 9555; 24 hour format, 15 hours, 55 minutes
2: KH = 1010; 10 days, weekday ’1’(Tuesday), 0
3: KH = 9308; 93 years, 8 months
4:

It is Tuesday the 10th of August 1993, 15 hours, 57 minutes, 29 seconds and
940 milliseconds (9 tenths and 4 hundredths of a second).

OB 121: Set/Read System Time

CPU 948 Programming Guide

6 - 10 C79000-B8576-C855-03

6.3 OB 122: "Disable Interrupts" On/Off

A STEP 5 program can be interrupted at block boundaries or operation
boundaries by programs at an execution level with a higher priority.
The program execution levels with higher priority include the
following:

•• TIMED INTERRUPTS

and

•• PROCESS INTERRUPTS.

The time required to run the interrupted programs is expanded by the
run time of the nested programs.

Function Using OB 122, you can prevent interrupt servicing blocks being
nested at one or more consecutive block or operation boundaries.

OB 122 influences the acceptance of interrupts:

•• "Disable interrupts" on means the following:
no interrupts will be registered from now on.

•• "Disable interrupts" off means the following:
all interrupts occurring will be registered from now on and the
corresponding blocks will be nested and executed at the next
operation or block boundary (depending on the mode set in DX 0).

Interrupts that have already been registered, are then no longer
serviced if the mode "interruptability at block boundaries" is set in
DX 0.

Parameters ACCU-1-L

Function no.,
Permitted values: 1 = disable all interrupts

2 = enable all interrupts

6

OB 122: "Disable Interrupts" On/Off

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 11

Result After correct and error-free processing, the system program enters the
value ’0’ in ACCU-1-L.

Note
By calling OB 122, the RLO (undefined) is influenced. The BR
register is not modified.
To disable and enable processing interrupts, you can also use the
STEP 5 operations IA and RA instead of OB 122. The blocking of
interrupts is cleared at the next system checkpoint (refer to
Chapter 11).

Possible errors The errors listed in the following table can occur. If one of these error
does occur, the system program writes the error ID shown in the table
into ACCU-1-L.

ID Meaning

F001H Illegal function number

Example

Table 6-3 Error IDs of OB 122 in ACCU-1-L

Excerpt of a STEP 5 program in which all
interrupts are disabled using OB 122 immediately
before a critical program section following which
they are enabled again:

:L KB 1 Load function ID in ACCU-1-L
:JU OB 122 Disable all interrupts
:)
:)
:)
: } Critical program section
:)
:)
:L KB 2 Load function ID in ACCU-1-L
:JU OB 122 Enable all interrupts
:
:

OB 122: "Disable Interrupts" On/Off

CPU 948 Programming Guide

6 - 12 C79000-B8576-C855-03

6.4 OB 124: Delete STEP 5 Blocks

Function With OB 24, you can delete any STEP 5 blocks (logic and data
blocks) in the user memory. The deleted block is removed from the
address list in DB 0.
The gap in memory resulting from deleting a block is used again when
new blocks are loaded.

Parameters 1. ACCU-1-LH

Block type of the block to be deleted

2. ACCU-1-LL

Block number of the block to be deleted

Permitted block types and numbers:

ACCU-1-LH (block type) ACCU-1-LL (block number)

1 = PB
2 = SB
3 = FB
4 = FX
5 = DB
6 = DX
7 = OB

0 to 255
0 to 255
0 to 255
0 to 255
3 to 255
3 to 255
1 to 39

Result After correct and error-free processing, the system program sets the
RLO to ’0’ and clears the condition codes CC 1 and CC 0.

Note
While the blocks are actually being deleted, user interrupts are
disabled: no interrupts come through.

By calling OB 124, the contents of ACCU 1 to ACCU 4 are
modified. The BR register is retained.

6

OB 124: Delete STEP 5 Blocks

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 13

Possible errors and
warnings

If an error or warning occurs, the system program stops processing
OB 124 and continues program execution at the next STEP 5
operation. It also sets the RLO to ’1’ and writes an ID to ACCU-1-LL
(refer to Table 6-5).

If the function is aborted with a warning, it may be possible to achieve
correct execution of OB 124 by re-calling the special function
(possibly several times).

In the following case, OB 124 is aborted with a warning:

During the last 10 ms OB 124, OB 125, OB 254 or OB 255 has been
called. (Only one call for these special functions is allowed within
10 ms. This avoids multiple calls for the OBs listed above blocking
the interface to the PG so that it can no longer be processed.)

Condition code bits After calling OB 124, you can check whether the special function has
been executed correctly or was aborted with an "error" or "warning"
using the result of logic operation and the condition code bits CC 1
and CC 0. The result can be evaluated with conditional jump
operations.

Results bits

RLO CC 1 CC 0 Meaning Scan

0 0 0 Special function was
processed correctly

JC
JZ

1 1 0 Processing of special
function aborted with
"warning"

JC
JP
JN

1 0 1 Processing of special
function aborted with "error"

JC
JM
JN

Table 6-4 Results bits of OB 124

OB 124: Delete STEP 5 Blocks

CPU 948 Programming Guide

6 - 14 C79000-B8576-C855-03

IDs in ACCU-1-LL In ACCU-1-LL, the system program stores IDs about the processing
result, with which the cause of a warning or error is specified in more
detail.

Bit no. 7 6 5 0

W E Cause of error/warning

The following group bits are fixed:

Bit no. 7 (W) = 1: warning
Bit no. 6 (E) = 1: error

ID Meaning

01H Function was correctly processed

45H
47H
4DH

Error:
Block type not permitted
Block does not exist
Online function COMPRESS MEMORY active

8DH

8EH

Warning:
Conflict with an online function (except for
"compress memory")
10 ms waiting time not elapsed

Example

Table 6-5 Result IDs of OB 124 in ACCU-1-LL

:L KY 6,100 This sequence of operations deletes
:JU OB 124 data block DX 100 in the user
: memory

6

OB 124: Delete STEP 5 Blocks

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 15

6.5 OB 125: Generate STEP 5 Blocks

Function With OB 125, you can generate any STEP 5 blocks (logic and data
blocks) in the user memory. Generating logic blocks should, however,
be left to specialists.

The specified block is set up in the internal RAM with a block header
and block body and entered in DB 0. The block body contains random
data. For this reason, a newly generated block must first be written to
before any useful data can be read out of it.

Parameters 1. ACCU-1-LH

Block type of the block to be generated

2. ACCU-1-LL

Block number of the block to be generated

Permitted block types and numbers

ACCU-1-LH (block type) ACCU-1-LL (block number)

1 = PB
2 = SB
3 = FB
4 = FX
5 = DB
6 = DX
7 = OB

0 to 255
0 to 255
0 to 255
0 to 255
3 to 255
3 to 255
1 to 39

3. ACCU-2-L

Number of words (required block length without block header). The
maximum assignable block length is 32762 data words. At present,
approximately 2 K words can be edited with a PG.

Result After correct and error-free processing, the system program sets the
RLO to ’0’ and clears the condition codes CC 1 and CC 0.

Note
While the blocks are actually being generated, user interrupts are
disabled: no interrupts come through.

By calling OB 125, the contents of ACCU 1 to ACCU 4 are
modified. The BR register is retained.

OB 125: Generate STEP 5 Blocks

CPU 948 Programming Guide

6 - 16 C79000-B8576-C855-03

Possible errors and
warnings

If an error occurs, the system program stops processing OB 125 and
continues program execution at the next STEP 5 operation. It also sets
the RLO to ’1’ and writes an ID to ACCU-1-LL (refer to Table 6-7).

If the function is aborted with a warning, it may be possible to achieve
correct execution of OB 125 by re-calling the special function
(possibly several times).

In the following case, OB 125 is aborted with a warning:

During the last 10 ms OB 124, OB 125, OB 254 or OB 255 has been
called. (Only one call for these special functions is allowed within 10
ms. This avoids multiple calls for the OBs listed above blocking the
interface to the PG so that it can no longer be processed.)

Condition code bits After calling OB 125, you can check whether the special function has
been executed correctly or was aborted with an "error" or "warning"
using the result of logic operation and the condition code bits CC 1
and CC 0. The result can be evaluated with conditional jump
operations.

Result bits

RLO CC 1 CC 0 Meaning Scan

0 0 0 Special function was
processed correctly

JC
JZ

1 1 0 Processing of special
function aborted with
"warning"

JC
JP
JN

1 0 1 Processing of special
function aborted with "error"

JC
JM
JN

Table 6-6 Result bits of OB 125

6

OB 125: Generate STEP 5 Blocks

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 17

IDs in ACCU-1LL In ACCU-1-LL, the system program stores IDs about the processing
result, with which the cause of a warning or error is specified in more
detail.

Bit no. 7 6 5 0

W E Cause of error/warning

The following group bits are fixed:

Bit no. 7 (W) = 1: warning
Bit no. 6 (E) = 1: error

ID Meaning

01H Function correctly processed

42H
43H
44H
45H
4DH

Errors:
Block already exists
Not enough memory
Block length not permitted
Block type not permitted
Online function COMPRESS MEMORY active

8DH

8EH

Warnings:
Conflict with an online function (except for
"compress memory")
10 ms waiting time not yet elapsed

Example

Table 6-7 Result IDs of OB 125 in ACCU-1-LL

:L KF +2000 This sequence of operations
:L KY 5,24 generates DB 24 with a length of
:JU OB 125 2000 data words
: (total length including header:
: 2005 words)

OB 125: Generate STEP 5 Blocks

CPU 948 Programming Guide

6 - 18 C79000-B8576-C855-03

6.6 OB 126: Define, Transfer Process Images

Each time the cycle is run through, the system program updates the
process image of the digital inputs and outputs and IPC flags. The
inputs, outputs and IPC flags included in the process image are stored
in system data block DB 1 (refer to Chapter 10).
With OB 126, you can use additional process images.

Function Using OB 126, you can program up to four further process images in
addition to the process image in DB 1 during a COLD RESTART .
These additional process images can be read in and output with the
STEP 5 program at any program execution level.

Parameters 1. Data field

6 flags with the following structure:

Bit no. 7 0

FY n Function no.

FY n+1 Address list no.

FY n+2 Block type

FY n+3 Block number

FY n+4 Data word no. of the first ID word

FY n+5 in the address list

Parameters of the data field:

Function no. With the function number, you stipulate which job OB 126 is to
perform (refer to the table).

Permitted values: 1 to 5

Function no. Function

1
2
3
4

Read in the process image of the digital inputs
Output the process image of the digital outputs
Read in the process image of the IPC input flags
Output the process image of the IPC output flags

5 Set up system internal address list (analogous to
DB 1)

(only permitted in COLD RESTART OB 20)

6

OB 126: Define, Transfer Process Images

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 19

Address list number Number of the address list for the additionally defined process image;

permitted values: 1 to 4

Block type Type of data block containing the address list;

permitted values: 1 = DB
2 = DX

Block number Number of the data block containing the address list;

permitted values: 3 to 255

DW no. 1st ID word Here, you enter the number of the data word in which the first ID
word of the address list is located (refer to structure of DB 1,
Section 10.1.6).
The following ID words are possible:

KH = DE00 (digital inputs)
KH = DA00 (digital outputs)
KH = CE00 (IPC input flags)
KH = CA00 (IPC output flags)

The parameter occupies 2 flag bytes!

Note
The complete data field only needs to be set up when OB 26 is to
generate the address list during a COLD RESTART (= function
5). To execute functions 1 to 4 it is adequate to simply enter the
address list number alongside the function number in the data
field. The remaining entries are then not needed.

You must structure the data block with which you want to set up
the address list for an additional process image (= function 5)
analogous to DB 1.
You can store the address list information for each of the
additional process images in this data block by adding an end ID
to each field of information as in DB 1.
To set up the address list, you must however call OB 126 for each
additional process image using function "5" singly (only in COLD
RESTART).

2. ACCU-1-L

No. of the flag byte FY n, at which the data field begins

permitted values: 0 to 250

OB 126: Define, Transfer Process Images

CPU 948 Programming Guide

6 - 20 C79000-B8576-C855-03

Result After correct and error-free processing, the system program sets the
RLO to ’0’ and enters a ’1’ in ACCU-1-LL.

Note
When processing OB 126, user interrupts are disabled: no
interrupts come through.

Calling OB 126 changes the contents of ACCU 1 to ACCU 4.
The BR register is retained.

During a WARM RESTART the remaining cycle is processed
with BASP activated. All the digital outputs are disabled. At the
end of the cycle, all outputs (also those in address lists 1 to 4) are
reset.

Possible errors If the special function cannot be executed, the system program
interrupts processing of OB 126 and continues program execution
with the next STEP 5 operation. It also sets the RLO to ’1’ and
writes an ID to ACCU-1-LL (refer to the following table).

Special situation when handling errors:

If OB 126 is to execute function ’5’ (set up system internal address
list), the system program checks the correct structure of the address
list. It also checks whether the inputs and outputs or IPC flags
contained in the address list acknowledge the corresponding modules.
If an incorrect address list has been transferred, the CPU reacts in the
same way as to a DB 1 error. It changes to the soft stop state and the
STOP LED flashes slowly. A DB 1 error is indicated as the cause of
the error.

IDs in ACCU-1-L

ID Meaning

01H
02H
03H
04H

05H

06H
07H

Function correctly processed
Function number illegal
Pointer in ACCU-1-L (flag number) illegal
Block type/number illegal or DB/DX block does not
exist
The first ID word is not located in the specified data
word of the data block (wrong DW number) or the
address list contains an incorrect ID word
Address list number illegal
The call for the function is not permitted at the
current program execution level

Table 6-8 Result IDs of OB 125 in ACCU-1-LL

6

OB 126: Define, Transfer Process Images

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 21

Examples

Creating the address list in DB 5

Using the function keys <input>, <scr form>,
"block: DB 5" program a data block DB 5 on the PG
with the following parameters:

Digital inputs: 1, 2,
Digital outputs: 3,
IPC input flags: 5, 6, 7,
IPC output flags: 20, 22,

If you create DB 5 manually, it must be
structured like a DB 1 (with start ID, ID words
and operand areas, end ID; refer to Section
10.1.6).

Entering the address list in the COLD
RESTART/OB 20:

First, you must set up the data field in the flag
area. This occupies flag bytes FY 20 to FY 25:

:L KB 5 Transfer function no. ’5’
:T FY 20 to FY 20
:L KB 1 Transfer address list no. ’1 ’
:T FY 21 to FY 21
:L KH 0105 Transfer block type DB (’1’) and
:T FW 22 number ’5’ to FY 22 and FY 23
:L KB 3 Trans. DW no. ’3’ (DW 3 in DB 5
:T FW 24 contains 1st ID word) to FY 24 & 25

Once the data field has been correctly set up,
the number of the first flag byte in the data
field must be transferred to ACCU-1-L. Following
this, OB 126 is called which sets up the address
list:

:L KB 20 Data field begins with FY 20
:JU OB 126 Call for address list generation
: poss. evaluation of status bits

Note:

The address lists with numbers 1 to 4 are only
accepted by the CPU using an OB 126 call in OB 20
(COLD RESTART). To do this, OB 126 must be called
with function number ’5’ in OB 20.

OB 126: Define, Transfer Process Images

CPU 948 Programming Guide

6 - 22 C79000-B8576-C855-03

Output the process image of the outputs

The following STEP 5 program sequence can be
located in any program execution level (in OB 1,
in a timed interrupt OB or in a process interrupt
OB etc.) and causes the process image of all
outputs in address list 1 to be output.

:L KB 2 Transfer function no. ’2’
:T FY 50 to FY 50
:L KB 1 Transfer address list no. ’1’
:T FY 51 to FY 51
:L KB 50 Data field begins with FY 50
:JU OB 126 Call for outputting the PIQ
: possibly evaluation of status bits
: ...

6

OB 126: Define, Transfer Process Images

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 23

6.7 OB 129: Battery State

Function With OB 129, you can check the state of the back-up battery with a
STEP 5 program (OB 129 scans the BAU signal). Depending on the
result, you could, for example, set a fault indicator (lamp).

How the BAU signal is
formed

The power supply contains two back-up batteries, a lithium cell (MB
for main battery) and an accumulator (RB for reserve battery). The
BAU signal is formed by ANDing the battery monitoring signals.

Jumper setting in the power
supply

In the power supply of the PLC, there are two jumpers with which the
monitoring of the batteries can be influenced. Jumper MB-NB
determines when the BAU signal is generated (if this jumper is not
inserted, BAU is generated once following POWER UP). Otherwise
the signal is monitored cyclically during operation. The monitoring
signal of the accumulator can be disabled with the jumper MA-NA.
The possible combinations of jumper settings and the resulting battery
monitoring by OB 129 are illustrated in the following table:

Jumper MB-NB Jumper MA-NA Time when BAU signal
generated

BAU signal generated from
monitoring signal of ...

open open after POWER UP lithium cell

open closed after POWER UP lithium cell and accu

closed open cyclic lithium cell

closed closed cyclic lithium cell and accu

Parameters none

Result RLO = ’0’: battery OK

RLO = ’1’: battery run down

OB 129: Battery State

CPU 948 Programming Guide

6 - 24 C79000-B8576-C855-03

Example

6.8 OB 131: Delete ACCUs 1, 2, 3 and 4

Function By calling special function organization block OB 131 once, you can
delete the contents of ACCUs 1 to 4 extremely simply. OB 131
overwrites all four registers with ’0’.

Parameters None

Result The ACCUs 1 to 4 (each 32 bit) are deleted (’0’).

Possible errors None

With the following sequence of operations, you
can check whether or not the battery is OK and if
it is not, you can energize a lamp:

:
:JU OB 129
:JC =BATL RLO = 1 -> battery run down
:
:
:BEU

BATL :SU Q 22.5 switch on warning lamp at
: output byte 22, bit 5
:BE

6

OB 131: Delete ACCUs 1, 2, 3 and 4

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 25

6.9 OB 132/133: Roll-Up ACCU/Roll-Down ACCU

Function OB 132 and OB 133 roll the ACCU contents up or down:

•• OB 132 (roll up) moves the contents of ACCU 4 to ACCU1, the
contents of ACCU 1 to ACCU 2, the contents of ACCU 2 to
ACCU 3 etc.

•• OB 133 (roll down) moves the contents of the ACCUs in the
opposite direction: the contents of ACCU 1 to ACCU 4, ACCU 4
to ACCU 3 etc.

Parameters None

ResultResult Figs. 6-1 and 6-2 show the ACCU contents before and after calling
OB 132 and OB 133.

Note
With the STEP 5 operations ENT (extended operation set) and
TAK (system operation) the ACCU contents can also be shifted
(refer to Section 3.4.3).

Possible errors None

6

OB 132/133: Roll-Up ACCU/Roll-Down ACCU

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 27

ACCU 4

ACCU 2

ACCU 3

ACCU 1

31 0 31 0

<ACCU 4>

<ACCU 2>

<ACCU 3>

<ACCU 1>

<ACCU 4>

<ACCU 2>

<ACCU 3>

<ACCU 1>

OB 132

before after

Shif t Accu contents

Fig. 6-1 Effect of the "roll-up" function

ACCU 4

ACCU 2

ACCU 3

ACCU 1

31 0 31 0

<ACCU 2>

<ACCU 4>

<ACCU 1>

<ACCU 3>

<ACCU 4>

<ACCU 2>

<ACCU 3>

<ACCU 1>

OB 133

before after

Shif t Accu contents

Fig. 6-2 Effect of the "roll-down" function

OB 132/133: Roll-Up ACCU/Roll-Down ACCU

CPU 948 Programming Guide

6 - 28 C79000-B8576-C855-03

6.10 OB 141: "Disable Single Cyclic Timed Interrupts" On/Off

Using OB 141, you can prevent certain cyclic timed interrupt OBs (timed
interrupts at fixed intervals) from being called at one or more
consecutive block or operation boundaries. For example, you can prevent
an OB 10 (period 1) and an OB 11 (period 2) from being called in a
particular program section that must not be interrupted. On the other
hand, all remaining programmed timed interrupts are processed as usual.

Function OB 141 affects the reaction to cyclic timed interrupts.

"Disable single cyclic timed interrupts" on means that none of the
specified cyclic timed interrupts are registered from this point onwards
and the interrupts that were already registered (e.g. those waiting for a
block boundary) are deleted. If a timed interrupt OB (for processing a
timed interrupt with a fixed interval) has already been started, it is
processed completely.

"Disable single cyclic timed interrupts" off means that all cyclic timed
interrupts are registered again and are processed at the next block or
operation boundary (depending on the setting in DX 0).

Parameters 1. Control word

OB 141 records the timed interrupts to be disabled in a system-internal
control word:

Bit no. 15 0

C o n t r o l w o r d

The bits of the control word have the following significance:

Bit no. Interrupt

0 to 2 Reserved, these bits must be ’0’

3 = ’1’
4 = ’1’
5 = ’1’
6 = ’1’
7 = ’1’
8 = ’1’
9 = ’1’
10 = ’1’
11 = ’1’

Cyclic timed interrupts with fixed interval:
period 1 (OB 10)
period 2 (OB 11)
period 3 (OB 12)
period 4 (OB 13)
period 5 (OB 14)
period 6 (OB 15)
period 7 (OB 16)
period 8 (OB 17)
period 9 (OB 18)

12 to 15 Reserved; these bits must be ’0’

As long as a bit is set to ’1’ the corresponding interrupt is disabled.

6

OB 141: "Disable Single Cyclic Timed Interrupts" On/Off

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 29

2. ACCUs

2a) ACCU-2-L

Function no.,
Permitted values: 1, 2 or 3 where:

1: The contents of ACCU 1 are loaded in the
control word.

2: All the bits marked ’1’ in the mask in
ACCU 1 are set to ’1’ in the control word.
The new control word is loaded in ACCU 1

3: All the bits marked ’1’ in the mask in
ACCU 1 are set to ’0’ in the control word.
The new control word is loaded in ACCU 1

2b) ACCU 1

New control word or mask depending on the required function.

Result After correct and error-free processing the system program sets the
RLO to ’0’.
Calling OB 141 has the following results:

Funct. no.
in ACCU-2-L

Contents of ACCU 1

before after

1

2

3

control word

mask

mask

control word

new
control word

new
control word

OB 141: "Disable Single Cyclic Timed Interrupts" On/Off

CPU 948 Programming Guide

6 - 30 C79000-B8576-C855-03

Possible errors If an error occurs, the system program sets the RLO to ’1’.
The errors listed in the following table can occur. If an error occurs,
the system program enters the error ID listed below in ACCU-1-L.

ID Meaning

8D01H
8D02H

illegal function no. in ACCU-2-L 1)

one of the reserved bits in ACCU 1 is ’1’ 1)

1) the incorrect value is located in ACCU-2-L

Scan control word •• The status of the control word can be scanned with the following
program sequence:

1. load function no. ’2’ or ’3’ in ACCU-2-L,

2. load value ’0’ in ACCU 1,

3. call OB 141,

4. read out ACCU 1.

Table 6-9 Error IDs of OB 141 in ACCU-1-L

6

OB 141: "Disable Single Cyclic Timed Interrupts" On/Off

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 31

6.11 OB 142: "Delay All Interrupts" On/Off

A STEP 5 program can be interrupted at block or operation boundaries
by programs with a higher priority. The process interrupts and all
timed interrupts belong to these higher priority program execution
levels. The runtime of the interrupted program is extended by the
runtime of the nested programs. Using OB 142, you can prevent the
nesting of higher priority program execution levels at one or more
consecutive block or operation boundaries (depending on the setting
in DX 0).

Function OB 142 affects the servicing of interrupts:

"Delay interrupts" on means that all interrupts occurring are registered
and pending interrupts remain registered. The registered interrupts are,
however, initially not serviced. The operation or block boundaries for
servicing interrupts are temporarily made ineffective. If an OB for process
interrupt servicing or an OB for timed interrupt servicing has already
started, this is processed completely.

"Delay interrupts" off means that all registered interrupts are processed at
the next block or operation boundary.

Note
The time in which the interrupts are delayed must be shorter than
three times the value of the shortest timed interrupt period. If
this is not the case, a collision of timed interrupts occurs.

Parameters 1. Control word

OB 142 enters the interrupts to be delayed in a system-internal control
word, as follows:

Bit no. 15 0

C o n t r o l w o r d

OB 142: "Delay All Interrupts" On/Off

CPU 948 Programming Guide

6 - 32 C79000-B8576-C855-03

The bits in the control word have the following meaning:

Bit no. Type of interrupt

0 = ’1’ Cyclic timed interrupts, fixed period

1 = ’1’ Clock-controlled interrupt

2 = ’1’ Process interrupts

3 = ’1’ Delayed interrupt

4 to 15 Reserved: these bits must be ’0’

As long as a bit is set to ’1’, the corresponding interrupt is disabled.

2. ACCUs

2a) ACCU-2-L

Function no.,
Permitted values: 1, 2 or 3 where:

1: The contents of ACCU 1 are loaded in the
control word.

2: All the bits marked ’1’ in the mask in
ACCU 1 are set to ’1’ in the control word.
The new control word is loaded in ACCU 1

3: All the bits marked ’1’ in the mask in
ACCU 1 are set to ’0’ in the control word.
The new control word is loaded in ACCU 1

2b) ACCU 1

New control word or mask depending on the required function.

6

OB 142: "Delay All Interrupts" On/Off

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 33

Result After correct and error-free processing the system program sets the
RLO to ’0’.
Calling OB 142 has the following results:

Funct. no.
in ACCU-2-L

Contents of ACCU 1

before after

1

2

3

control word

mask

mask

control word

new
control word

new
control word

Possible errors If an error occurs, the system program sets the RLO to ’1’.
The errors listed in the following table can occur. If an error occurs,
the system program enters the error ID listed below in ACCU-1-L.

ID Meaning

8E01H
8E02H

8EFFH

Illegal function no. in ACCU-2-L 1)

One of the reserved bits (no. 4 to 15) in
ACCU 1 is ’1’ 1)

Incorrect mode (e.g. when the delayed interrupt is to
be disabled and DX 0 contains the parameter
"process interrupts via IB 0 = on")

1) the incorrect value is located in ACCU-2-L

Scan control word The status of the control word can be scanned with the following
program sequence:

1. load function no. ’2’ or ’3’ in ACCU-2-L,

2. load value ’0’ in ACCU 1,

3. call OB 142,

4. read out ACCU 1.

Table 6-10 Error IDs of OB 142 in ACCU-1-L

OB 142: "Delay All Interrupts" On/Off

CPU 948 Programming Guide

6 - 34 C79000-B8576-C855-03

6.12 OB 143: "Delay Single Cyclic Timed Interrupts" On/Off

Using OB 143, you can prevent certain cyclic timed interrupt OBs
(timed interrupt OBs with a fixed period) from being called at one or
more consecutive block or operation boundaries. For example, you
can select a program section which cannot be interrupted by an OB 10
(period 1) and an OB 11 (period 2). On the other hand, all the
remaining programmed timed interrupts are processed as usual.

Function OB 143 affects the processing of cyclic timed interrupts:
"Delay single cyclic timed interrupts" on means that all interrupts are
registered and pending timed interrupts remain registered. The timed
interrupts specified in the control word are, however, not processed
immediately. Temporarily, all the operation and block boundaries for
processing these timed interrupts are made ineffective. If a timed interrupt
OB (for processing a timed interrupt with fixed period) has already
started, it is processed completely.

"Delay single cyclic timed interrupts" off means that all registered
interrupts are serviced at the next block or operation boundary (depending
on the setting in DX 0).

Parameters 1. Control word

OB 143 enters the timed interrupts to be delayed in a system-internal
control word:

Bit no. 15 0

C o n t r o l w o r d

The bits in the control word have the following meaning:

Bit no. Interrupt

0 to 2 Reserved, these bits must be ’0’

3 = ’1’
4 = ’1’
5 = ’1’
6 = ’1’
7 = ’1’
8 = ’1’
9 = ’1’

Cyclic timed interrupts with fixed period
period 1 (OB 10)
period 2 (OB 11)
period 3 (OB 12)
period 4 (OB 13)
period 5 (OB 14)
period 6 (OB 15)
period 7 (OB 16)

10 = ’1’
11 = ’1’

period 8 (OB 17)
period 9 (OB 18)

12 to 15 Reserved, these bits must be ’0’

As long as a bit is set to ’1’, the corresponding interrupt is disabled.

6

OB 143: "Delay Single Cyclic Timed Interrupts" On/Off

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 35

2. ACCUs

2a) ACCU-2-L

Function no.,
Permitted values: 1, 2 or 3 where:

1: The contents of ACCU 1 are loaded in the
control word.

2: All the bits marked ’1’ in the mask in
ACCU 1 are set to ’1’ in the control word.
The new control word is loaded in ACCU 1

3: All the bits marked ’1’ in the mask in
ACCU 1 are set to ’0’ in the control word.
The new control word is loaded in ACCU 1

2b) ACCU 1

New control word or mask depending on the required function.

Result After correct and error-free processing the system program sets the
RLO to ’0’.
Calling OB 143 has the following results:

Funct. no.
in ACCU-2-L

Contents of ACCU 1

before after

1

2

3

control word

mask

mask

control word

new
control word

new
control word

OB 143: "Delay Single Cyclic Timed Interrupts" On/Off

CPU 948 Programming Guide

6 - 36 C79000-B8576-C855-03

Possible errors If an error occurs, the system program sets the RLO to ’1’.
The errors listed in the following table can occur. If an error occurs,
the system program enters the error ID listed below in ACCU-1-L.

ID Meaning

8F01H
8F02H

Illegal function no. in ACCU-2-L 1)

One of the reserved bits in ACCU 1 is ’1’ 1)

1) the incorrect value is located in ACCU-2-L

Scan control word •• The status of the control word can be scanned with the following
program sequence:

1. load function no. ’2’ or ’3’ in ACCU-2-L,

2. load value ’0’ in ACCU 1,

3. call OB 143,

4. read out ACCU 1.

Table 6-11 Error IDs of OB 143 in ACCU-1-L

6

OB 143: "Delay Single Cyclic Timed Interrupts" On/Off

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 37

6.13 OB 150: Set/Read System Time

Features of the
system time

•• The system time is backed up by the battery in the PLC rack. If the
time is set, it therefore remains correct even following a power
failure.

•• The resolution is 10 ms for reading and 1 s for setting.

•• Leap years are taken into account.

•• Hours can be represented either using the 24 hour clock or the 12
hour clock "am" and "pm".

•• The weekday is specified.

•• Input and output is BCD coded.

Function Using OB 150, you can set or read out the date and time of the CPU 948
in your user program. The date and time are known as the "system time".

Note
The system time is started (initially with a default value) after the
CPU is plugged in.

Parameters 1. Data field for the time parameters

When setting the system time, OB 150 reads in the values to be set
from a data field, when reading the time, OB 150 transfers the current
time to the data field. You can set up this data field in a data block or
in one of the two flag areas (F or S flags).

The data field consists of four words.

1a) Format of the data field for setting the system time.

Bit no. 15 12 11 8 7 4 3 0

word 1 Seconds 0

word 2 Format Hours Minutes

word 3 Day of month Weekday 0

word 4 Year Month

OB 150: Set/Read System Time

CPU 948 Programming Guide

6 - 38 C79000-B8576-C855-03

1b) Format of the data field when reading the system time

Bit no. 15 12 11 8 7 4 3 0

word 1 Seconds 1/100 seconds

word 2 Format Hours Minutes

word 3 Day of month Weekday 0

word 4 Year Month

The time parameters have the following meaning, range of values and
representation:

Parameter Permitted range of values Value in

Seconds
1/100 seconds
Minutes
Hours

Weekday
Day of month
1)

Month
Year

0 to 59
0 to 99 (with "set system time" = 0
0 to 59
0 to 23 or 1 to 12, depending on the
"format"
0 to 6 for Mon to Sun
1 to 31
1 to 12
0 to 99

BCD format

Format Format for the hour field with the
following meaning:
Bit 15 = 0: 12 hour format

("am" or "pm"
selected in bit 14)

Bit 15 = 1: 24 hour format
(bit 14 = 0)

Bit 14 = 0: "am"
Bit 14 = 1: "pm"

–

1) After OB 150 is called, the specified value is checked logically for the correct data
taking into account leap years.

Data field in the flag area If you set up the data field in a flag area, you must take into account the
following assignment of the data field words to the flag bytes. ’x’ is the
parameter "number of 1st data field word" which must be written to
ACCU-1-L when OB 150 is called:

Bit no. 15 8 7 0

Data field word 1 Flag byte x Flag byte x+1

Data field word 2 Flag byte x+2 Flag byte x+3

Data field word 3 Flag byte x+4 Flag byte x+5

Data field word 4 Flag byte x+6 Flag byte x+7

6

OB 150: Set/Read System Time

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 39

2. ACCUs

2a) ACCU-2-L

ACCU-2-L contains information about the required function and the
data field used. It must have the following structure:

Bit no. 15 12 11 8 7 4 3 0

Function no. Address area type Data block no.

Parameters in ACCU-2-L

Function no.,
Permitted values: 1 = set system time

2 = read system time

Address area type,
Permitted values: 1 = DB data block

2 = DX data block
3 = F flag area
4 = S flag area

Data block no.,
Permitted values: 3 to 255 (only with address area type ’1’ or ’2’;

with address area type ’3’ or ’4’ irrelevant)

2b) ACCU-1-L

Number of the 1st data field word
Permitted values (depending on the address area type):

DB, DX: 0 to 2039
F flags: 0 to 248

(= no. of flag byte ’x ’)
S flags 0 to 4088

(= no. of flag byte ’x ’)

Result After correct processing of OB 150, the RLO, the condition code bits
OR, ERAB and OS = 0.

Possible errors The errors listed in the following table may occur. If an error occurs,
the system program sets the RLO to ’1’ and stores the error IDs listed
in the table in ACCU 1.

OB 150: Set/Read System Time

CPU 948 Programming Guide

6 - 40 C79000-B8576-C855-03

ID Meaning

9601H
960FH
9611H
9612H
9613H
9614H
9615H
9621H
9622H
9623H
9624H
9625H
9626H
9627H
9628H
9629H

Data block not loaded
Multiple call for the block
Illegal function no.
Address area type illegal
Data block number illegal
"Number of first data field word" illegal
Data block length < 4 words
Year specification in the data field illegal
Month specification in the data field illegal
Day of month specification in the data field illegal
Weekday specification in the data field illegal
Hour specification in the data field illegal
Minute specification in the data field illegal
Second specification in the data field illegal
1/100 seconds in the data field not equal to 0
Hour format not equal to setting in OB 151

Note
If the parameters are incorrectly assigned for the "set system time"
function and if the time has already been set correctly at least
once, the error IDs listed are transferred; the previously set system
time, however, continues to run.

Examples

Table 6-12 Error IDs of OB 150 in ACCU-1-L

" Set system time":

You want to set the system time to the following values:

"Thurs, 24.10.1993, 11:30 hours 0 seconds, 24 hour clock"

The time parameters are stored in data block DB 10 from data word DW 0
onwards.

DB 10
0: KH = 0 0 0 0 left byte = seconds (BCD), right byte = 0

1: KH = 9 1 3 0 91 = Format (=80H) + hour (=11 BCD)
30 = Minutes (BCD)

2: KH = 2 4 3 0 24 = Day of month (BCD)
30 = Weekday (3 = Thursday) + bit 0 to 3 = 0

3: KH = 9 3 1 0 93 = Year (BCD)
10 = Month (BCD)

 Continued on next page

6

OB 150: Set/Read System Time

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 41

" Set system time" (continued)

STEP 5 operations in OB 1 for calling OB 150:

:
:
:L KH 1 1 0 A Values for ACCU-2-L:
: DB no. = 10
: Address area type = 1 for "data field in DB"
: Function no. = 1 for "set"
:L KF +0 ACCU-1-L:
: No. of 1st data field word = 0
:JU OB 150 Call OB 150
:

"Read out system time":

You want the current system time to be written to data block DB 10 from data
word DW 4 onwards. You must therefore call OB 150 with the following
parameters:

:
:
:L KH 2 1 0 A Values for ACCU-2-L:
: DB no. = 10
: Address area type = 1 for "data field in DB"
: Function no. = 2 for "read"
:L KF +4 ACCU-1-L:
: No. of 1st data field word = 4
:JU OB 150 Call OB 150
:C DB 10 Open DB 10
: Evaluate DB 10

After OB 150 is called, the current system time is written to data block DB
10 in the following form ("Thurs, 24.10.93, 11:30 hours 20 seconds, 13/100
of a second, 24 hour clock"):

DW 4: KH = 2 0 1 3 Seconds = 20 (BCD)
1/100 seconds = 13 (BCD)

DW 5: KH = 9 1 3 0 Format = 24 hour (bit 15 = 1, bit 14 = 0),
Hour = 11(BCD), minutes = 30 (BCD)

DW 6: KH = 2 4 3 0 Day of month = 24 (BCD)
Weekday = 3 = Thursday

DW 7: KH = 9 3 1 0 Year = 93 (BCD)
Month = 10 (BCD)

OB 150: Set/Read System Time

CPU 948 Programming Guide

6 - 42 C79000-B8576-C855-03

6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt

Function By calling OB 151 you can do the following:

•• cause the CPU 948 to activate the clock-controlled interrupt ("timed
job" - OB 9, refer to Section 4.5.3) at a selected time:

- every minute
- every hour
- every day
- every week
- every month
- every year
- once,

•• read out the current status of a timed job,

•• cancel a previously generated timed job.

OB 151 can be called in the START-UP and RUN modes. A generated
clock-controlled interrupt is retained when a WARM RESTART
(automatic or manual) is carried out. A COLD RESTART deletes an
existing timed job.

If you generate a new timed job, an existing timed job is automatically
cancelled. This means that only one clock-controlled interrupt can be
active.

Parameters 1. Data field for job parameters

When generating or cancelling a timed job, OB 151 takes the
required job parameters from a data field. When reading out the
current status of the job management, OB 151 transfers the current job
parameters to a data field.

You can set up this data field in a data block or in one of the two flag
areas (F or S flags).

The data field consists of four words and has the following format
when generating and reading out a timed job:

Bit no. 15 12 11 8 7 4 3 0

Word 1 Seconds 0

Word 2 Format Hours Minutes

Word 3 Day of month Weekday Job type

Word 4 Year Month

6

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 43

The parameters have the following meaning, range of values and
representation:

Parameter Permitted range of values Value in

Job type 0 to 7 where:
0: cancel job or

no job active
1: every minute
2: every hour
3: every day
4: every week
5: every month
6: every year
7: once

BCD format

Seconds
1/100 seconds
Minutes
Hours

Weekday
Day of month
1)

Month
Year

0 to59
0
0 to 59
0 to 23 or 1 to 12, depending on the
format
0 to 6 for Mon to Sun
1 to 31
1 to 12
0 to 99

BCD format

Format 2) Format for the hour field with the
following meaning:
Bit 15 = 0: 12 hour clock
Bit 15 = 1: 24 hour clock

(bit 14 = 0)
Bit 14 = 0: "am"
Bit 14 = 1: "pm"

–

1) After calling OB 151, the specified value is checked logically that the date is correct
taking into account leap years.

2) For the meaning of "am" and "pm": refer to OB 150 in the previous section:
"format" must match the form specified when setting the system time with OB 150.

Data field in the flag area If you set up the data field in a flag area, you must take into account
the following assignment of the data field words to the flag bytes. "x"
is the parameter ’number of the 1st data field word’ which must be
written to ACCU-1-L when OB 151 is called.

Bit no. 15 8 7 0

Data field word 1 Flag byte x Flag byte x+1

Data field word 2 Flag byte x+2 Flag byte x+3

Data field word 3 Flag byte x+4 Flag byte x+5

Data field word 4 Flag byte x+6 Flag byte x+7

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

6 - 44 C79000-B8576-C855-03

2. ACCUs

2a) ACCU-2-L

ACCU-2-L contains information about the required function and the
data field used. It must have the following structure:

Bit no. 15 12 11 8 7 4 3 0

Function no. Address area type Data block no.

Parameters in ACCU-2-L

Function no.,
Permitted values: 1 = generate job

2 = read job status

Address area type,
Permitted values: 1 = DB data block

2 = DX data block
3 = F flag area
4 = S flag area

Data block no.,
Permitted values: 3 to 255 (only with address area type ’1’ or ’2’;

with address area type ’3’ or ’4’ irrelevant)

2b) ACCU-1-L

No. of the 1st data field word,
Permitted values (depending on the address area type):

DB, DX: 0 to 2039
F flags: 0 to 248

(= no. of flag byte ’x ’)
S flags 0 to 4088

(= no. of flag byte ’x ’)

Note
There is no point in generating a timed job cyclically (e.g. with an
unconditional OB 151 call with function number ’1’ in OB 1).

Result After correct processing of OB 151, the RLO, the condition code bits
OR, ERAB and OS = 0.

6

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 45

Note
If, when reading out the timed job, the job type is ’0’ and all the
remaining parameters are ’F’ or ’FF’ (hex) in the data field, no
timed job is active.
This status can occur in the following situations:

a) there was a COLD RESTART without a timed job being
 generated

b) when a "one-time" timed job was due

or

c) when you have cancelled a job.

Possible errors The errors listed in the following table can occur. If one of these errors
occurs, the system program sets the RLO to ’1’ and writes the error
IDs listed in the table to ACCU 1.

ID Meaning

9701H
970FH
9710H
9711H
9712H
9713H
9714H
9715H
9721H
9722H
9723H
9724H
9725H
9726H
9727H
9728H
9729H
972AH

Data block not loaded
Multiple call for the block
Wrong mode ("process interrupts via IB 0 = on")
Illegal function no.
Address area type illegal
Data block no. illegal
"Number of the 1st data field word" illegal
Data block length less than 4 words
Year specification in the data field illegal
Month specification in the data field illegal
Day of month specification in the data field illegal
Weekday specification in the data field illegal
Hour specification in the data field illegal
Minute specification in the data field illegal
Second specification in the data field illegal
1/100 seconds in the data field not equal to 0
Hour format not equal to setting in OB121/OB 150
Job type illegal

Note
If incorrect parameters are assigned and a valid timed job was
previously generated, the error IDs listed above are transferred;
the previously generated timed job, however, remains active.

Table 6-13 Error IDs of OB 151 in ACCU-1-L

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

6 - 46 C79000-B8576-C855-03

Points to note with the time
parameters

Regardless of when a clock-controlled interrupt (timed job) is to be
triggered, the individual time parameters must be specified in certain
combinations. Depending on the selected time for the clock-controlled
interrupt, certain parameters must be specified, while others are not
evaluated by the system program.

The following table shows which time parameters must be specified
for which timed job (XXX = must be specified, --- = irrelevant).

Interval Seconds Minu-
tes

Hours Week-
day

Day of
month

Month Year

every minute
every hour
every day
every week
every month
every year
once

XXX
XXX
XXX
XXX
XXX
XXX
XXX

XXX
XXX
XXX
XXX
XXX
XXX

XXX
XXX
XXX
XXX
XXX

XXX

XXX
XXX
XXX

XXX
XXX

XXX

When reading out the time parameters, the irrelevant parameters are
assigned the value FFH.

Special situations •• If the "29th of February" is selected with the job type "every year"
(= 6), this means that OB 9 is only called every leap year.

•• If the value "29", "30" or "31" is selected with the job type "every
month" (= 5), OB 9 is only called in the months which have these
dates.

Table 6-14 Assignment of "timed job - time parameters"

6

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 47

Examples

Various timed jobs (in 24 hour format):
1. "Job at 29th second of every minute"

 (12:44:29, 12:45:29 etc.):

You must specify: Job type = 1 (Function no. in ACCU-2-L = 1)
Seconds = 29

2. "Job every hour at xx:14:15":

You must specify: Job type = 2 (Function no. in ACCU-2-L = 1)
Seconds = 15
Minutes = 14

3. "Job daily at 5:32:47":

You must specify: Job type = 3 (Function no. in ACCU-2-L = 1)
Seconds = 47
Minutes = 32
Format/hour = 85

4. "Job weekly, Tuesdays at 10:50:00":

You must specify: Job type = 4 (Function no. in ACCU-2-L = 1)
Seconds = 00
Minutes = 50
Format/hour = 90
Weekday = 01

5. "Job monthly, on the 14th at 7:30:15":

You must specify: Job type = 5 (Function no. in ACCU-2-L = 1)
Seconds = 15
Minutes = 30
Format/hour = 87
Day of month= 14

6. "Job yearly, on the 1st of May at 00:01:45":

You must specify: Job type = 6 (Function no. in ACCU-2-L = 1)
Seconds = 45
Minutes = 01
Format/hour = 80
Day of month= 01
Month = 05

 Continued on the next page

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

6 - 48 C79000-B8576-C855-03

Various timed jobs (in 24 hour format), continued :
7. "Job once on the 31.12.1999 at 23:55:00":

You must specify: Job type = 7 (Function no. in ACCU-2-L = 1)
Seconds = 00
Minutes = 55
Format/hour = A3
Day of month= 31
Month = 12
Year = 99

8. "Cancel job":

You must specify: Job type = 0 (Function no. in ACCU-2-L = 1)

9. "Read out time job":

You must specify: Function no. in ACCU-2-L = 2

If no job is active, you obtain the following result in the data field:

Data field word 0: FFFF H
Data field word 1: FFFF H
Data field word 2: FFF0 H
Data field word 3: FFFF H

6

OB 151: Set/Read Time for Clock-Controlled Interrupt

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 49

6.15 OB 153: Set/Read Time for Delayed Interrupt

Using OB 153, you can transfer so-called "delay jobs" to the system
program. After a specified delay time "a delayed interrupt" is then
processed (refer to OB 6, Section 4.5.3).

Function By calling OB 153, you can do the following:

•• define and start a delay time,

•• stop an activated delay time (cancel delay job),

•• read how long the delay time still has to run.

A delay job can be activated in the START UP and RUN modes.

Life of a delay job The delayed interrupt triggered by a delay job is only activated by the
system program in the RUN mode (OB 6 call).
Jobs which become due in a mode other than RUN are discarded by
the system program without any message.
A currently active (but not yet due) job is also discarded if the CPU
changes to the STOP mode or if the power is switched off.

Parameters ACCUs

a) ACCU-2-L

ACCU-2-L only needs to be supplied with the function number ’1’
("define delay time") when OB 153 is called, as follows:

Delay time in milliseconds (max. 65535)

Permitted values: 0001H to FFFFH

b) ACCU-1-L

Function no.

Permitted values: 1 = define and start delay time
2 = stop delay time (= cancel job)
3 = read remaining delay time

OB 153: Set/Read Time for Delayed Interrupt

CPU 948 Programming Guide

6 - 50 C79000-B8576-C855-03

Note
If a previously defined delay time is not yet elapsed when a
further delay time is defined, the previously defined time is lost
and the new delay time started.

Result After correct processing of OB 153, the RLO, the condition code bits
OR, ERAB and OS = 0.

When OB 153 is called with the function no. ’2’ or ’3’, ACCU-1-L
contains the remaining time to run in milliseconds.

If no delay job is active when OB 153 is called with function no. ’2’
or ’3’, ACCU-1-L contains the value ’0’.

Possible errors The errors listed in the following table can occur. If one of the errors
occurs, the system program sets the RLO to ’1’ and writes the error
IDs listed in the table to ACCU 1.

ID Meaning

990FH
9910H
9911H
9921H

Multiple call for the block
Wrong mode ("process interrupt via IB 0 = on")
Illegal function number
Delay time illegal

Examples

Table 6-15 Error IDs of OB 153

Define and start delay time:
When an AUTOMATIC WARM RESTART is performed, after 5 seconds a certain
STEP 5 operation sequence must be run through once. To do this, the delay
time is defined and started in start-up organization block OB 22.

The STEP 5 operations in OB 22 for calling OB 153:

:
:
:L KF +5000 Value for ACCU-2-L: 5000 ms
:L KF +1 Value for ACCU-1-L: function no. = 1 for
: "define and start delay time"
:JU OB 153 Call OB 153
:

6

OB 153: Set/Read Time for Delayed Interrupt

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 51

Read out remaining time of a delay job:
STEP 5 operations for calling OB 153:

:
:
:L KF +3 Value for ACCU-1-L: function no. = 3 for
: "read out remaining time"
:JU OB 153 Call OB 153
:
: ACCU-1-L contains the time the delay job still
: has to run.
:

Stop delay time (cancel job)
STEP 5 operations for calling OB 153:

:
:
:L KF +2 Value for ACCU-1-L: function no. = 2 for
: "stop delay time"
:JU OB 153 Call OB 153
:
:

OB 153: Set/Read Time for Delayed Interrupt

CPU 948 Programming Guide

6 - 52 C79000-B8576-C855-03

6.16 OB 180: Variable Data Block Access

Using OB 180 You can use OB 180 when working with data blocks that are longer
than 261 words (incl. 5 words header).
Using OB 180, you can shift an "access window" of 256 data words in
steps of 16 words over a data block (at paragraph addresses). Call
OB 180 each time you want to shift the access window further.

In contrast to the CPU 928B, you cannot shift the access window
continuously but only in steps that are multiples of 16.

Function When you use OB 180, the start address of the current data block is
shifted towards the end of the block by the specified value. This takes
into account that the length of DB still available is reduced (DBA and
DBL registers are loaded in keeping with the shift, see Sections 8.3
and 9.2.1).

Note
Before calling OB 180, a data block (DB or DX) with an adequate
length must already be open.

Parameters ACCU-1-L

Shift number S: Number of data words, by which the data block start
address will be shifted.

Permitted values: 0 ≤ V < DBL, S = n * 16 (16, 32, 48 ...)

Result After you have called OB 180 succesfully:

•• the relative address of DW 0 is shifted by the value contained in
ACCU-1-L (the DBA and DBL registers are updated accordingly),

•• the RLO is cleared (RLO = 0),

•• all other bit and word codes are cleared,

•• the content of ACCU-1-L = 0.

6

OB 180: Variable Data Block Access

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 53

Possible errors The errors listed in the following table can occur. If an error does
occur, the system program sets the RLO to ’1’ and enters the error IDs
listed in the table in ACCU 1. The other bit and word codes are
cleared.
The values of the DBA and DBL remain unchanged.

ID Meaning

B401H
B410H
B411H

No data block is open
The shift number S is not a multiple of 16
a) The shift number is too high; the block end is
 exceeded by the new window position.
b) The shift number is negative.

Setting the access window
back to the start value

Opening the data block again with the operations C DB or C DX
returns the access window to its original position.

Reaction to nesting If the access window is shifted by calling OB 180 in a logic block and
a further logic block is then called, the position of the access window
remains where it is in the called logic block until OB 180 is called
again (the DBA/DBL values do not change).

If, on the other hand, the access window is shifted in a called logic
block by calling OB 180, when program execution returns from the
called block (block end operation), it is returned to the position it
had when the nested logic block was called.

Table 6-16 Error IDs of OB 180

OB 180: Variable Data Block Access

CPU 948 Programming Guide

6 - 54 C79000-B8576-C855-03

Example

You want the data block start address (DBA = 4152H in DB 17, length = 256
DW) to be shifted by 32 data words relative to the end of the block.

:C DB 17 open DB 17
:L KB 32 shift value as constant
:JU OB 180 call OB 180: shift access window

After OB 180 has been called, the data word, for example, at address 4
1543H can no longer be addressed with DW 35 but only with DW 3 etc. (see
Fig. 6-3).

Due to the change made at the same time in the DBL register, error monitoring
is not affected: the operation T DW 223 is permitted, while T DW 224/L DW 224
causes an error.

By calling OB 180 again, the DBA can be increased again (and the DBL
reduced). The operation C DB 17 returns the block to its original settings
(DBA = 4152H, length 256 DW).
If DB 17 had a length of 256 data words for example, you could then no
longer access DW 256 and DW 257 using STEP 5 operations. By shifting the
DBA resgister by 16, data words 256 and 257 can be addressed as "DW 240"
and "DW 241".

 Continued on next page

6

OB 180: Variable Data Block Access

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 55

Example continued:

4 1520H

4 1530H

4 1540H

4 1541H

4 1542H

4 1543H

4 1544H

4 1545H

4 1545H

4 151FH

4 151BH

DW 0

DW 1

DW 2

DW 3

DW 4

DW 5

DW 6

Address DB 17

DBAnew

5 words
block header

DBAold

DBLold

DBLnew

15 0

"32"

"16"

"00"

"33"

"34"

"35"

"36"

"37"

"38"

(4152H)

(4154H)

Fig. 6-3 Shifting the DB start address

OB 180: Variable Data Block Access

CPU 948 Programming Guide

6 - 56 C79000-B8576-C855-03

6.17 OB 181: Test Data Blocks (DB/DX)

With the special function organization block OB 181, you can test
data blocks as follows:

•• whether or not a particular DB or DX data block exists,

•• the address at which the first data word of the data block is stored,

•• how many data words the data block contains.

Using OB 181 The function "test DB/DX" is useful before the operations TNB/TNW,
G DB/GX DX and before calling special function organization blocks
OB 182, OB 254 and OB 255.

Before transferring data words, for example, you can call OB 181 to
check that the destination data block is valid and long enough for the
transfer.

Function OB 181 checks whether a specified data block exists and returns the
characteristic parameters of a data block.

Parameters ACCU-1-L

a) ACCU-1-LL

Block number,
Permitted values: 1 to 255

b) ACCU-1-LH

Block ID,
Permitted values: 1 = DB

2 = DX

6

OB 181: Test Data Blocks (DB/DX)

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 57

Result If the function is executed without any error and if the block exists on
the CPU, the system program transfers the following values:

- ACCU-1-L: Address of the 1st data word (DW 0),
20-bit address,

- ACCU-2-L: Length of the data block in words (without
block header)
Example: ACCU-2-L contains the value’7’:

 The data block consists of data
words DW 0 to DW 6,

- RLO: = 0.

Possible errors The errors listed in the table below can occur. If an error occurs, the
system program sets the RLO to ’1’ and the following condition code
bits as shown in the table. It also enters an error ID in ACCU-1-L.

RLO CC 1 CC 0 ACCU-1-L Meaning Scan

1 0 1 B501H Block does not exist JC
JM
JN

1 1 0 B502H Wrong block number JC
JP
JN

1 1 0 B503H Wrong block ID JC
JP
JN

Table 6-17 Error codes of OB 181 and their scans

OB 181: Test Data Blocks (DB/DX)

CPU 948 Programming Guide

6 - 58 C79000-B8576-C855-03

6.18 OB 182: Copy Data Area

Function OB 182 copies a data area of variable length from one data block to
another. The source and destination blocks can be DBs or DXs. The
start of the area in the source and destination blocks can be freely
selected. OB 182 can copy a maximum of 4091 data words.

Note
The source and destination block can be the same. The data areas of
the source and destination can overlap. Even if they overlap, the
original data of the source area are copied unchanged to the
destination area. The area of the overlap in the source is
overwritten after the copy function. You can use this to shift a data
area within a block.

Parameters 1st data field with parameters for copy function

Before calling OB 182 make a data field available with the parameters
for the copy function. This data field can be set up in a DB or DX data
block or in the F or S flag area.

The data field identifies the source and destination blocks, the start
address of the area in both blocks and the number of data words to be
copied. It consists of five words:

Bit no. 15 8 7 0

1st word Source DB type Source DB no.

2nd word No. of 1st transferred data word in source DB

3rd word Destination DB type Destination DB no.

4th word No. of 1st transferred data word in the destination DB

5th word No. of data words

6

OB 182: Copy Data Area

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 59

The parameters have the following significance and range of values :

Parameter Permitted range of values

Data block type (source and destination) 1 = DB
2 = DX

Data block no. (source and destination) 3 to 255

No. of 1st data word (source and
destination)

0 to 4090

Number of data words 1 to 4091

Data field in flag area If you set up the data field in a flag area, you must take into account the
following assignment of data field words to flag bytes. ’x’ is the
parameter "no. of the 1st data field word" which you must enter in
ACCU-1-L when OB 182 is called:

Bit no. 15 87 0

1st data field word Flag byte x Flag byte x+1

2nd data field word Flag byte x+2 Flag byte x+3

3rd data field word Flag byte x+4 Flag byte x+5

4th data field word Flag byte x+6 Flag byte x+7

5th data field word Flag byte x+8 Flag byte x+9

2. Accumulators

2a) ACCU-2-L

ACCU-2-L contains information about the data field used. It must
have the following structure:

Bit no. 15 8 7 0

Address area type Data block no.

Parameters in ACCU-2-L

Address area type,
Permitted values: 1 = DB data block

2 = DX data block
3 = F flag area
4 = S flag area

Data block no.,
Permitted values: 3 to 255 (only with address area type ’1’ or ’2’;

with address area type ’3’ or ’4’ irrelevant)

OB 182: Copy Data Area

CPU 948 Programming Guide

6 - 60 C79000-B8576-C855-03

2b) ACCU-1-L

Number of the 1st data field word,
possible values (depending on the
address area type:

DB, DX: 0 to 2038
F flags: 0 to 246

(= No. of flag byte ’x ’)
S flags 0 to 4086

(= No. of flag byte ’x ’)

Result After correctly processing OB 182: RLO, condition code bits OR,
ERAB and OS = 0.

Possible errors If an error occurs, OB 19 or OB 31 is called. If OB 19 and OB 31 are
not loaded, the CPU changes to the STOP mode.
In both cases, an error ID is entered in ACCU 1 (see table below).

ACCU-1-L Meaning

B601H
B60FH
B611H
B612H
B613H
B621H
B622H
B623H
B624H

B625H

B626H
B627H
B628H

B629H
B62AH

B62BH
B62CH

Data block not loaded
Multiple block call
Incorrect content in the data field
Address area type illegal
Data block no. illegal
"Number of the 1st data field word" illegal
"Source data block type" illegal
"Source data block no." illegal
"No. of the 1st data word to be transmitted in source
DB" illegal
Length of the source data block in the block header
< 5 words
"Destination data block type" illegal
"Destination data block no." illegal
"No. of 1st data word to written in destination
 DB" illegal
Length of the destination block in block header < 5
words
"Number of data words to be transmitted" illegal
(= 0 or > 4091)
Source data block too short
Destination data block too short

Table 6-18 Error IDs of OB 182 in ACCU-1-L
6

OB 182: Copy Data Area

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 61

6.19 OB 202 to 205: Multiprocessor Communication

A detailed description of these special function organization blocks
can be found in Chapter 10.

The special function organization blocks OB 200 and OB 202 to
OB 205 allow data transfer between the individual CPUs using the
coordinator COR C in multiprocessor operation.

•• OB 200: initialize

This special function organization block sets up the memory in the
COR C coordinator in which the blocks of data to be transferred are
buffered.

•• OB 202: send

This function transfers a block of data to the buffer of the COR C
and specifies how many blocks of data can still be sent.

•• OB 203: send test

The special function OB 203 checks the number of free memory
fields in the buffer of the COR C.

•• OB 204: receive

This function accepts a block of data from the COR C buffer and
indicates how many blocks of data can still be received.

•• OB 205: receive test

The special function organization block OB 205 checks the number
of occupied memory fields in the COR C buffer.

OB 202 to 205: Multiprocessor Communication

CPU 948 Programming Guide

6 - 62 C79000-B8576-C855-03

6.20 OB 222: Restart Cycle Monitoring Time

The special function OB 222 causes the cycle monitoring time to be
restarted, i.e. the timer for monitoring is started from the beginning.
By calling this special function, the maximum permitted cycle time for
the current cycle is extended by the value selected at the time of the
call.

Parameters none

Possible errors none

6

OB 222: Restart Cycle Monitoring Time

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 63

6.21 OB 223: Compare Start-Up Modes

Function By calling OB 223, you can check whether the start-up modes of all
CPUs involved in multiprocessor operation are the same and able to
execute a programmed reaction to errors.

Parameters none

Result After calling OB 223, the system program sets the RLO to ’0’ and
writes the value 01H to ACCU-1-LL when the start-up modes are the
same.

Possible errors •• Start-up modes are not the same

•• Other errors, refer to condition code bits

Condition code bits If an error occurs, the system program sets the RLO to ’1’ and
transfers an error ID to ACCU-1-LL.

ID Meaning

01H
02H
03H
04H

Start-up modes the same
Internal system error
Start-up modes not the same
Single processor mode, comparison of start-up
modes not possible

Table 6-19 Results IDs of OB 223 in ACCU-1-LL

OB 223: Compare Start-Up Modes

CPU 948 Programming Guide

6 - 64 C79000-B8576-C855-03

6.22 OB 254/255: Copy/Duplicate Data Blocks

With the special functions OB 254/255, you copy individual data
blocks from a memory card to the user memory or duplicate individual
data blocks within the user memory.
The special function OB 254 and OB 255 work identically, with
OB 254 exclusively for DX data blocks and OB 255 for DB data
blocks.

Note
During the copying or duplication, the user interrupts are blocked.
No timed interrupts or process interrupts are accepted.

Application Copying data blocks from the memory card or duplicating data blocks
in the user memory and assigning a new block number.

Copying

Conditions By using the "copy" function of the two special function OBs
(OB 254 or OB 255 call), remember the following conditions:

•• The memory card must be plugged in before the OVERALL
RESET and must not be removed afterwards

•• The destination data block must not yet exist

•• The online function "compress memory" must not be active

Function A data block is copied from the memory card to the user memory and
retains its original block number. The start address is entered in the
address list in DB 0.

6

OB 254/255: Copy/Duplicate Data Blocks

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 65

Parameters 1. ACCU-1-LL

Number of the block to be copied.

The following block numbers are possible:

Block type Block number

DB (OB 255)
DX (OB 254)

3 to 255
3 to 255

2. ACCU-1-LH

ACCU-1-LH must be zero.

Duplicating

Function A data block is duplicated within the user memory and it is assigned a
different block number. The start address of the new data block is
entered in the address list in DB 0. The start address of the old block is
retained, i.e. the original data block remains valid.

The start address is entered in DB 0 only after the transfer is
completed and all the IDs are correctly entered in the block header.
The duplicated block is therefore only declared valid or existent by the
system program after it has been completely transferred.

Parameters 1. ACCU-1-LL

Number of the block to be duplicated (source).

2. ACCU-1-LH

Number of the new block (destination).

The following block numbers are possible:

Block type Block number

DB (OB 255)
DX (OB 254)

3 to 255
3 to 255

OB 254/255: Copy/Duplicate Data Blocks

CPU 948 Programming Guide

6 - 66 C79000-B8576-C855-03

Result following copying
and duplicating

After the function has been executed correctly and error-free, the
system program sets the RLO to ’0’ and clears the condition code bits
CC 1 and CC 0.

Calling OB 254/255 changes the contents of ACCU 1 to ACCU 4.
The BR register is retained.

Possible errors and
warnings when copying and
duplicating

If an error or warning occurs, the system program stops processing
OB 254/255 and continues program execution at the next STEP 5
operation. It also sets the RLO to ’1’ and writes an ID to ACCU-1-LL
(refer to Table 6-18).

If the function is aborted due to a warning, it may be possible to run
OB 254/255 correctly by calling the special function again (if
necessary, repeated several times).

In the following situation, OB 254/255 is aborted with a warning:

an OB 124, OB 125, OB 254 or OB 255 has been called during the
last 10 ms. (During a period of 10 ms, however, only one special
function OB call is permitted. This prevents multiple calls for the OBs
listed above preventing the interface to the PG from being processed.)

Condition code bits
following copying and
duplicating

After OB 254/255 is called, you can see whether the special function
has been carried out correctly or whether it was stopped by an "error"
or "warning" based on the result of logic operation and the condition
code bits CC 1 and CC 0. The result can be evaluated by conditional
jump operations.

Result codes

RLO CC 1 CC 0 Meaning Scan

0 0 0 Special function correctly
processed

JB
JZ

1 1 0 Special function aborted
with "warning"

JB
JP
JN

1 0 1 Special function aborted
with "error"

JB
JM
JN

Table 6-20 Result codes for OB 254/255

6

OB 254/255: Copy/Duplicate Data Blocks

CPU 948 Programming Guide

C79000-B8576-C855-03 6 - 67

IDs in ACCU-1-LL The system program sets IDs in ACCU-1-LL which specify the causes
of a warning or error in more detail.

Bit no. 7 6 5 0

W E Cause of error/warning

The following group codes apply:

Bit no. 7 (W) = 1:warning
Bit no. 6 (E) = 1:error

ID Meaning

01H Function correctly executed

41H
43H
48H
4AH
4BH
4CH

4DH
4EH

Error:
Block header on memory card invalid
Not enough memory space
Source data block does not exist
Block number or type illegal/source DB
Block number or type illegal/destination DB
Destination data block already exists in the user
memory
Online function COMPRESS MEMORY active
No memory card plugged in

8DH

8EH

Warnings:
Conflict with an online function except "compress
memory"
10 ms waiting time not yet elapsed

Examples

Table 6-21 Result IDs for OB 254/255 in ACCU-1-LL

1. "Copy" :

:L KY 0,120 This sequence of operations copies
:JU OB 254 the data block DX 120 from the
: memory card to the user memory
:

2. "Duplicate":

:L KY 80,85 This sequence of operations
:JU OB 255 duplicates data block DB 85; the
: new data block has the number 80.
: The contents of DB 80 and DB 85
: are identical.
:

OB 254/255: Copy/Duplicate Data Blocks

CPU 948 Programming Guide

6 - 68 C79000-B8576-C855-03

Contents of Chapter 7

7.1 Application . 7 - 4

7.2 Structure of DX 0 . 7 - 5

7.2.1 Example of Input in DX 0 . 7 - 7

7.3 Parameters for DX 0 . 7 - 8

7.4 Examples of Parameter Assignment. 7 - 12

7.4.1 STEP 5 Programming . 7 - 12
7.4.2 Parameter Assignment using the PG Screen Form . 7 - 14

7Extended Data Block DX 0

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 1

7Extended Data Block DX 0

The following chapter explains how to use the data block DX 0 and
how it is structured. You will find information about the meaning of
the various DX 0 parameters and will learn how to create and how to
assign parameters for a DX 0 data block based on examples.

7

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 3

7.1 Application

You can adapt certain system program functions to meet your own
requirements by selecting alternative defaults in DX 0 compared to the
standard defaults (marked in the parameter table by "D").

The defaults of the system program (D) are automatically set during
each COLD RESTART and DX 0 is then evaluated. If you have not
assigned parameters in DX 0 and loaded it, the defaults remain valid;
otherwise the defaults you have selected in DX 0 become the valid
settings.

You can make settings in DX 0 by programming the values just as in
any normal data block (refer to Section 7.2 to 7.4.1) or using the PG
system software S5-DOS from Version 3.0 onwards, you can enter the
values as parameters in a special screen form on your PG (refer to
Section 7.4.2).
You can make use of the full range of functions of the DX 0 screen
form if the PG software STEP 5/ST, Version 6.3 or STEP 5/MT,
Version 6.0 plus the corresponding "Delta diskette CPU 948" is
installed on your PG.

Note
The settings or modifications made in DX 0 only become effective
following a COLD RESTART.
If a modified DX 0 is read during a COLD RESTART, the
unmodified parameter assignments are retained.

Differences compared with
the CPU 946/947

Compared with DX 0 parameter assignment for the CPU 946/947,
there are various differences when assigning DX 0 parameters for the
CPU 948, as follows:

•• Modes:
There is no longer a 150U/155U mode, instead of this, there is
now "interruptability at block boundaries " and
"interruptability at operation boundaries".

•• Processing system interrupts:
With the CPU 948, you can now also combine "process interrupts
via IB 0 = off" (= system interrupt processing) with
"interruptability at block boundaries ".
This means that multiprocessor operation is now also possible in
the "interruptability at block boundaries" mode.

•• Additional timed interrupts:
If you switch off the mode "process interrupts via IB 0", the
additional timed interrupts the delayed interrupt (OB 6) and the
clock-controlled interrupt (OB 9) are available.

Application

CPU 948 Programming Guide

7 - 4 C79000-B8576-C855-03

7.2 Structure of DX 0

DX 0 consists of three parts:

•• the start ID for DX 0 (DW 0, 1 and 2) ,

•• several fields of different lengths (depending on the number of
parameters)

and

•• the end ID.

Start ID ASCII characters MASKX0 in DW 0 to DW 2

Field A field in DX 0 consists of one to n data words. These contain the
following:

•• the field ID,

•• the field length

and

•• the field parameters.

Field ID The field ID specifies the meaning of the parameters following it.
Each field is assigned to a specific system program section or to a
specific system function (e.g. the field ID "04" identifies the parameter
field for cyclic program execution).

Field length The field length specifies how many data words are occupied by the
parameters.

Parameters The possible parameters are listed in Section 7.3. The specified
numerical values are in hexadecimal format (KH).

End ID This indicates the end of DX 0 with EEEEH in the last data word.

7

Structure of DX 0

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 5

Formal structure

1
B
0

4
4
3

D
3
8

4
5
5

Field ID 1 Field length 1

Field ID 2

Field ID n Field length n

Field length 2

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

ASCII
chars:

Fie ld 1

Field 2

Field n

End ID

15 8 7 0Bit no.

0
1
2

3

DW

DW m E E E E

Parameter

M A
S K
X 0

Fig. 7-1 Structure of DX 0

Structure of DX 0

CPU 948 Programming Guide

7 - 6 C79000-B8576-C855-03

7.2.1
Example of Input in DX 0

When assigning parameters for DX 0, note the following points:

•• Unnecessary fields do not need to be specified.

•• Maintain the order of the fields (e.g. specify the field with ID ’02’
before the field with ID ’05’).

•• A specific field must only occur once in DX 0.

•• The number of parameters must correspond to the field length
specified at the beginning of the field.

•• Maintain the order of parameters. Unnecessary parameters towards
the beginning of the field must be assigned the default to ensure
that the parameter order is maintained.

•• Close DX 0 after entering the last field with the end identifier
"KH=EEEE".

Start ID DW 0: KH = 4D41
DW 1: KH = 534B
DW 2: KH = 5830

Field ID/length DW 3: KH = 0101
Parameters (occupies 1 DW) DW 4: KH = 1001

Field ID/length DW 5: KH = 0402
Parameters (occupies 2 DW) DW 6: KH = 1000

DW 7: KH = 0040

End ID DW10: KH = EEEE

Field 1

Field 2

7

Structure of DX 0

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 7

7.3 Parameters for DX 0

Field ID/length Parameters
1st/2nd word

Meaning 1)

Modes

01xx 2) 1000

1001

D Interrupts at block boundaries 3)

(CPU 946/947: 150U mode)
Interrupts at operation boundaries 4)

(CPU 946/947: 155U mode)

Start-up program execution

02xx 1000
1001
1002

D AUTOMATIC WARM RESTART after POWER UP
AUTOMATIC COLD RESTART after POWER UP
MANUAL COLD/WARM RESTART after POWER UP

2000
2001

D Synchronization of START-UP in the multiprocessor mode
No synchronization of START-UP in the multiprocessor
mode

BB00 00yy 5) Number of timers to be updated yy: 6)

Permitted values: 00H to FFH
D yy = FF (timer T 0 to T 255)

4000
4001

D Restart type = WARM RESTART
Restart type = RETENTIVE COLD RESTART

Cyclic program execution

04xx 1000 00yy Setting the cycle monitoring time: 7)

Cycle monitoring time = (yy * 10 ms)
Permitted values: 01H to FFH

D yy = 14H (200 ms)

4000

4001

D Updating of the process image and IPC flags without
semaphore protection
Updating the process image and IPC flags with semaphore
protection (in the field, refer to Section 10.1.3)

Interrupt servicing: timed interrupts

05xx 1000 000c
1001 0000

D Timed interrupt servicing "on"
Timed interrupt servicing "off"
c = level priority, permitted values: 1 to 5

D c = 1 (highest level priority)

Table 7-1 DX 0 parameters and their meaning

Parameters for DX 0

CPU 948 Programming Guide

7 - 8 C79000-B8576-C855-03

Field ID/length Parameters
1st/2nd word

Meaning 1)

Table 7-1 continued:

05xx Interrupt servicing: timed interrupts (cont.)

2000 00yy Basic clock rate for timed interrupt servicing:
Basic clock rate = (yy * 10 ms)
Permitted values: 01H to FFH

D yy = 0A (100 ms)

3000
3001

D Clock rate distribution according to interval 1 (1, 2, 5, 10)
Clock rate distribution according to interval 2 (2n)
(Refer to Section 4.5.2)

Interrupt servicing: process interrupts via S5 bus/system interrupts

4000 000c
4001 0002

System interrupt X "on"
D System interrupt X "off"

c = level priority,
Permitted values: 1 to 5
X = A, B, C or D

V c = 2 (level priority 2)

(The servicing of system
interrupts can also be
combined with
"interruptability at block
boundaries" with the
CPU 948.)

5000 000c
5001 0002

System interrupt E "on"
D System interrupt E "off"

6000 000c
6001 0002

System interrupt F "on"
D System interrupt F "off"

7000 000c
7001 0002

System interrupt G "on"
D System interrupt G "off"

8000 000c
8001 0000

D Process interrupts via IB 0 "off"
Process interrupts via IB 0 "on"
c = level priority, permitted values 1 to 2

D c = 2 (level priority 2)
When "process interrupts via IB 0 = on":
- only single processor mode,
- only "interruptability at block boundaries".

EEEE End ID

1) D = default with DX 0 not loaded or not present.

2) xx = field length (number of data words occupied by the parameters).

3) With the CPU 948, can also be combined with a system interrupt.

4) Must not be combined with process interrupts via IB 0.

5) When specifying the field length, the value "2" must be taken into account for parameters occupying two data words.

6) For updating the timers, please read the explanation on the following page.

7) Set cycle monitoring time with OB 31 or DX 0: If the cycle monitoring time is set both with OB 31 and with DX 0, the system
program uses the setting made in OB 31 since it has already evaluated DX 0. For this reason, you should only use one of these
possibilities. We recommend setting the cycle monitoring time using DX 0.

7

Parameters for DX 0

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 9

Updating the timers •• As standard, the timers T 0 to T 255 are updated.

•• If you enter the value "0" in DX 0, no timers are updated, even if
they are included in the program. There is then also no error
message output.

•• Updating is as follows:

Entry ’0’ ’1’ ’2’ ’3’ ’4’

Updating none T0 to
 T1

T0 to
 T2

T0 to
 T3

T0 to
 T4

....

Level priorities You can specify different priorities for the program execution levels.
This is achieved either using the default or by specifying DX 0
parameters.

Priorities when "process interrupts via IB 0 = on" is selected
(PROCESS INTERRUPTS level)

These priorities have the following default values in DX 0:

•• timed interrupts: level priority 1 (higher priority)

•• Process interrupts
via input byte IB 0: level priority 2 (lower priority)

You can swap over the priorities in DX 0.

Priorities when "process interrupts via IB 0 = off" is selected
(= processing of system interrupts level INTERRUPTS)

In this mode, the following default priorities are set:

•• timed interrupts: level priority 1 (higher priority)

•• system interrupts:level priority 2 (lower priority)

Parameters for DX 0

CPU 948 Programming Guide

7 - 10 C79000-B8576-C855-03

You can modify these priorities for the following program execution
levels individually in DX 0, by specifying the priority value from ’1’
to ’5’ (the value ’1’ means highest priority):

•• timed interrupts

•• system interrupt INT X (X = A, B, C or D),

•• system interrupt INT E,

•• system interrupt INT F,

•• system interrupt INT G.

Example

Assignment of priorities for interrupt servicing
"system interrupts":

System interrupt INT A/B/C/D
level priority 1

Timed interrupts level priority 2 descending

System interrupt INT E level priority 3 priority

System interrupt INT F level priority 4

System interrupt INT G level priority 5

7

Parameters for DX 0

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 11

7.4 Examples of Parameter Assignment

7.4.1
STEP 5 Programming

Example A:

You want to use three CPUs in the multiprocessor mode: CPU A, B and C. CPU
A and B work closely with each other, often exchange data and execute a
complicated start-up program.

CPU C executes a short, time-critical program largely independent of A and
B.

As standard, all CPUs operating in the multiprocessor mode start cyclic
program execution together, i.e. the CPUs wait for each other until they
have all completed their start-up and then change to cyclic program
execution together.

Since CPU C executes its program independently of the other CPUs and has a
very short start-up program , there is no need to synchronize its start-up
with the others. By assigning parameters in DX 0, CPU C can start its
cyclic program immediately after completing the start-up without waiting
for CPU A and B.

The parameter for synchronizing the CPUs in the multiprocessor mode is the
second parameter in the first field. To maintain the order of the
parameters, the first parameter for the start up must have the default
value (AUTOMATIC WARM RESTART after POWER UP).

Program DX 0 for CPU C as follows:

DX 0 Start ID "MASKX0" DW 0: KH = 4D41
DW 1: KH = 534B
DW 2: KH = 5830

1st field ID/length DW 3: KH = 0202
Parameter 1 DW 4: KH = 1000
Parameter 2 DW 4: KH = 2001
End ID DW 5: KH = EEEE

Once you have loaded this DX 0 in the program memory, it becomes effective
at the next COLD RESTART. Since CPU C runs through a very short start-up
program and does not wait for A and B, its green RUN LED lights up
immediately following start-up. The BASP signal (disable command output)
is, however, only deactivated when all three CPUs have completed their
start-up. This means that CPU C cannot access the digital I/Os.

Examples of Parameter Assignment

CPU 948 Programming Guide

7 - 12 C79000-B8576-C855-03

Example B:

The parameter assignment for DX 0 shown below achieves the following:

- the mode "interrupts at operation boundaries" is set,

- the timer updating is switched off,

- the cycle time is set to 2.5 seconds,

- the level priority of timed interrupts is set to ’2’

 and

- the system interrupt INT E is activated with level priority ’1’.

DX 0 Start ID "MASKX0" DW 0: KH = 4D41
DW 1: KH = 534B
DW 2: KH = 5830

1st field ID/length DW 3: KH = 0101
Parameters DW 4: KH = 1001
2nd field ID/length DW 5 KH = 0202
Parameters 1) DW 6: KH = BB00

DW 7: KH = 0000
3rd field ID/length DW 8 KH = 0402
Parameters 1) DW 9: KH = 1000

DW10: KH = 00FA
4th field ID/length DW11: KH = 0504
Parameters 1) DW12: KH = 1000

DW13: KH = 0002
Parameters 1) DW14: KH = 5000

DW15: KH = 0001
End ID DW16: KH = EEEE

This parameter assignment in DX 0 has the following effects on program
execution:

Program execution is interrupted by higher priority levels at operation
boundaries instead of at block boundaries.

The runtime of the system program is slightly reduced since no timers are
updated.

A cycle error is only recognized when the runtime of the user program and
the system program together exceeds 2.5 seconds.

No process interrupts from input byte IB 0 are processed, but rather system
interrupt INT E. Owing to its higher priority, this interrupts timed
interrupt servicing, the processing of the delayed interrupt and the
processing of a timed job.

1) Under "field length", specify the number of data words occupied by a
parameter!

7

Examples of Parameter Assignment

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 13

7.4.2
Parameter Assignment
using the PG Screen Form

With the PG system software, screen forms are available for assigning
parameters in DX 0 for the CPU 948. The PG software automatically
generates data block DX 0 according to the default parameters (values
in bold face)and parameters you have specified. To assign parameters
to DX 0, two screen forms are required.

How to select and complete the PG screen forms is explained in your
STEP 5 manual.

Structure of the screen forms Two screen forms are required for completing parameter assignment
to DX 0:

The first screen form (Fig. 7-2) contains the parameter groups

- Interruptability,
- Restart after power up,
- Warm restart procedure,
- Number of timer cells,
- Cycle time monitoring,
- Synchronize multiprocessor restart,
- Block transfer of the IPC flags.

DX 0 - param. ass. (S5-155U CPU 948)

Restart after power up:

Interruptability:

(1 = warm restart

(1 = warm restart

2 = cold restart

2 = cold restart with memory)

(0...256)

DX 0

1)

1)

for "interruptability at operation boundaries"

for "interruptability at block boundaries"

Mode 155U

Mode 150U

with older PG-software versions the following is displayed:

(1...255)

3 = manual start)

Warm restart procedure:

Number of timer cells:

Cycle time monitoring (x 10 ms):

Synchronize multiprocessor restart:

Block transfer of the IPC flags:

F1 F2 F3 F4 F5 F6
ContinueSelect

F7 F8

1

at block bounds.

1

256

20

YES

NO

Fig. 7-2 PG screen form for assigning parameters to DX 0 / Part 1

Examples of Parameter Assignment

CPU 948 Programming Guide

7 - 14 C79000-B8576-C855-03

If you move on to the second screen form (Fig. 7-3) you will find the
following parameters:

- Time interrupts,
- Hardware process interrupts,
- Process interrupts input byte 0.

Using the screen forms The following flow chart explains how to complete the screen forms
and fields, how to save the parameters and load a generated DX 0 data
block.

DX 0 - parameter assignment (S5-155U CPU 948) DX 0

YES

YES 1

2
2

2
2

2

NO
NO

NO
NO

Process interrupts:

Process interrupts input byte 0 (only with interruptability at block boundaries)

Hardware process interrupts:

System interrupt G:

System interrupt F:

System interrupt E:
System interrupt A/B:

Time interrupts:

Time interrupt servicing:

Priority:

Priority:

Priority:

Priority:

Priority:

Priority:

(1 . . . 255)

2)

2) CPU 948: System interrupts can be serviced with "interruptability at
block boundaries" or "interruptability at operation boundaries"

1)

1)
The delayed interrupt and clock-controlled interrupt must, if necessary, be activated extra
by switching off process interrupts (interrupt servicing on)

(1 = factor 1, 2, 5, 10

2 = factor 1, 2, 4, 8)

Basic clock (x 10 ms):

Clock pulse processing: 1

10

F
1

F
2

F
3

F
4

F
5

F
6 ContinueSelect

F
7

F
8

Fig. 7-3 PG screen form for assigning parameters to DX 0 / Part 2

7

Examples of Parameter Assignment

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 15

Flow chart for completing the
DX 0 screen forms

Example

NO YES

Repeat the following procedure until you have made all the necessary
changes in the form:

Position the cursor on the parameter field. The display field F3
at the bottom of the screen indicates whether or not you can select
from different alternatives (SELECT displayed) or change the
parameter value (INPUT displayed).

Are there parameters to be changed in the 2nd screen form?

Are there parameters to be changed in the 1st screen form?

NO YES

Press F6 (CONTINUE); the second screen form is displayed.

Change parameters as explained above for screen 1.

Now press the enter key. The PG software accepts all the parameter
settings from the two screens and generates data block DX 0.

DX 0 is stored on the PG. You can load it on the PLC with the PG’s
TRANSFER function.

- Select the input field:

- SELECT:
Press F3 until the alternative you require is displayed.

- INPUT:
Press F3 once; the cursor jumps to the start
of the field. You can now overwrite the field
with a permissible numerical value.

You want to assign parameters in DX 0 to achieve the following system
program response (different from the defaults):

- mode "interrupts at operation boundaries",

- no timer updating,

- cycle monitoring time = 2.5 seconds,

- level priority for timed interrupts = 2

- system interrupt INT E with priority = 1 .

Continued on the next page

Examples of Parameter Assignment

CPU 948 Programming Guide

7 - 16 C79000-B8576-C855-03

Continuation of the example

Complete the screen form as follows to obtain this response:

First DX 0 screen form:

•• For the MODE parameter, select "interruptability at operation boundaries"
with function key F3.

•• For the parameter NUMBER OF TIMER CELLS first press function key F3 and
then type in the number 0 (= no timer).

•• For the CYCLE MONITORING parameter, first press function key F3 and then
type in the number 250 (= 2.5 seconds).

•• Press function key F6 (CONTINUE). The second DX 0 screen form is
displayed.

Second DX 0 screen form:

•• For the TIMED INTERRUPT/PRIORITY parameter, select the value ’2’ with
function key F3.

•• For the SYSTEM INTERRUPT E parameter, select the setting ’yes’ with
function key F3.

•• For the SYSTEM INTERRUPT E/PRIORITY parameter, select the value ’1’ with
function key F3.

•• For the PROCESS INTERRUPTS parameter, select the setting ’no’ with
function key F3.

•• Press the enter key to confirm your input. Data block DX 0 is then
generated by the system software.

7

Examples of Parameter Assignment

CPU 948 Programming Guide

C79000-B8576-C855-03 7 - 17

Contents of Chapter 8

8.1 Structure of the Memory Area . 8 - 4

8.2 Memory Assignment in the CPU 948 . 8 - 5

8.2.1 Memory Assignment for the System RAM . 8 - 6
8.2.2 Memory Assignment for the Peripherals . 8 - 8

8.3 User Memory Organization in the CPU 948 . 8 - 10

8.3.1 Block Headers in User Memory. 8 - 12
8.3.2 Block Address List in Data Block DB 0 . 8 - 13
8.3.3 RI/RJ Area. 8 - 14
8.3.4 RS/RT Area . 8 - 15
8.3.5 Bit Assignment of the System Data Words . 8 - 18

System data RS 0 . 8 - 18
System data RS 1 . 8 - 19
System data RS 5 . 8 - 20
System data RS 7 . 8 - 21
System data RS 8 . 8 - 22
System data words RS 16 to RS 47 . 8 - 23
System data RS 50 . 8 - 24
System data words RS 68 to RS 71 . 8 - 24
System data words RS 75 to RS 78 . 8 - 25
System data words RS 96 to RS 99 . 8 - 32
System data RS 120 . 8 - 35
System data words RS 136 to RS 137 . 8 - 40
System data RS 139 . 8 - 41
System data RS 253 . 8 - 41

8.3.6 Addressable System Data Area . 8 - 42

8Memory Assignment and
Memory Organization

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 1

8Memory Assignment and
Memory Organization

You can use this chapter as a reference section to check on the
organization of the CPU 948 memory. The chapter also includes
important information contained in some of the system data words.

8

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 3

8.1 Structure of the Memory Area

The memory of the CPU 948 is essentially divided into the following
areas:

Memory area Data width Location

User memory for: OBs, FBs, FXs, PBs, SBs, DBs, DXs 16 bits

CPU

internal

Serial communications interface area: RI, RJ
System area: RS, RT
Timers: T
Counters: C
Flags: F
Flags: S
Process image (PI) inputs/
outputs: PII, PIQ

16 bits
16 bits
16 bits
16 bits
8 bits
8 bits 1)

8 bits

Peripheral area,
divided into:

"P" peripherals
"O" peripherals
Interprocessor communication flags
Coordinator (COR) (semaphore, ...)
Dual-port RAM pages (CP, IP, COR 923C)
Distributed peripherals
Hardware registers

8 bits
8 bits
8 bits
8 bits
8/16 bits
8 bits
8/16 bits

On the

S5 bus

1) S flags occupy 8 bits in the 16-bit area. The high byte is undefined.

The next section lists the addresses of the memory areas shown.

Note
When using STEP 5, you should not access a memory register
within an operand area (e.g., flags) directly via the absolute
address of the memory register. This can result in undesirable
operating statuses. Access it only relative to the base address of its
operand area.

Direct access to the areas I, Q and F result in ’FFH’ in the high
byte and the data in the low byte. For direct access to S flags, the
high byte is undefined!

Table 8-1 Structure of the memory area

Structure of the Memory Area

CPU 948 Programming Guide

8 - 4 C79000-B8576-C856-03

8.2 Memory Assignment in the CPU 948

With the CPU 948, there are two possible user memories (RAM)
available:

•• the CPU 948-1 with 640 Kbytes of user memory

•• the CPU 948-2 with 1664 Kbytes of user memory.

Fig. 8-1 illustrates the distribution of the address area of the CPU 948
and the location of the user memory versions.

Peripheral Area (S5 bus)

System RAM

The last 20 words of the user RAM cannot be used.

640 Kbyte User RAM

(CPU 948-1)

1664 Kbyte User RAM
(CPU 948-2)

Bit no.:

Address:
0 0000H

1 0000H

2 0000H

3 0000H

4 0000H

5 0000H

6 0000H

7 0000H

8 0000H

9 0000H

A 0000H

B 0000H

C 0000H

D 0000H

E 0000H

F 0000H

F FFFFH

15 0

1)

1)

1)

Fig. 8-1 Memory assignment in CPU 948/overview

8

Memory Assignment in the CPU 948

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 5

8.2.1
Memory Assignment for the
System RAM

Bit no.:
Address:

D 0000H
E 9FFFH

E A000H

E AFFFH

E B000H

E DEAFH

E DEB1H

E DF6FH

E DF7CH

E DFA1H

E E1F0H

E E1FBH

E E200H

E E400H

E E600H

E E800H

E EA00H

E EC00H

E EE00H

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

DB 0 header

DB 0
(contains the paragraph
addresses of all blocks,
i. e. address bit no. 4
to address bit no. 19)

Address list OB 0 to OB 255

Address list PB 0 to PB 255

Address list SB 0 to SB 255

Address list FB 0 to FB 255

Address list FX 0 to FX 255

Address list DB 0 to DB 255

Address list DX 0 to DX 255

ISTACK entry - 1

ISTACK (16 entries)

BSTACK (60 entries)

S flags

System program and system data

System program data

15 8 7 0

Fig. 8-2 Memory assignment for the system RAM/Part 1

Memory Assignment in the CPU 948

CPU 948 Programming Guide

8 - 6 C79000-B8576-C856-03

Bit no.:

Address:
E F000H

E F200H

E F400H

E F600H

E F800H

E FA00H

E FC00H

E FD00H

E FE00H

E FE80H

E FF00H

E FFFFH

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

PII

PIQ

Flags

Counters (256)

Timers (256)

RT Area (Extended System Data, 256 Words)

RJ Area (Extended Serial Comm. Interface, 256 Words)

RI Area (Serial Comm. Interface, 256 Words)

RS Area (System Data, 256 Words)

15 8 7 0

Fig. 8-3 Memory assignment of the system RAM/Part 2

8

Memory Assignment in the CPU 948

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 7

8.2.2
Memory Assignment for the
Peripherals

Bit no.:
Address:

F 0000H

F D000H

F F000H

F F080H

F F100H

F F200H

F F300H

F F400H

F F800H

F FC00H

HW Registers
F FE00H

F FFFFH

reserved

Data Transfer Area for CPs

Additional Data Area for CPs

Distributed Peripherals
Extended Address Set
with IM 304, IM 307 and
IM 308 Interface Module

(Dual-Port RAM Pages)
1 Kbytes or words

1 Kbytes or words
(Extended Dual-Port RAM Pages)

(with PI, 128 I/128 Q)
Digital Peripherals

P area

O area

(without PI, 128 I/128 Q)

Analog Peripherals

Extended Peripherals

IPCs in

Semaphores (32)
in COR

COR and/or CP

(only in Expansion Unit)

Unassigned Peripheral Address Space (52K Words)

15 8 7 0

Fig. 8-4 Address areas for peripherals (8 bits) on the S5 bus

Memory Assignment in the CPU 948

CPU 948 Programming Guide

8 - 8 C79000-B8576-C856-03

Address Areas for
Peripherals and
Programming Them

Using STEP 5 operations, you can access peripherals either directly or
via the process image (PI). Note that a process image exists only for
input and output bytes of the "P" peripherals with byte addresses from
0 to 127!

Note
Using the interface modules IM 304, IM 307 and IM 308, you can
access distributed address areas using your program. This allows
access to two new address areas similar to the O area. In contrast
to the O area, however, access to these areas is only possible
using absolute addressing or using FB 196 of the "basic
functions" software package (refer to Catalog ST59).

Area
(absolute address)

Referenced with Parameter

"P" peripherals with process image

L IB / T IB 0 to 127
L IW / T IW 0 to 126
L ID / T ID 0 to 124
A I / AN I / O I / ON I 0.0 to 127.7
S I / R I / = I

L QB / T QB 0 to 127
L QW / T QW 0 to 126
L QD / T QD 0 to 124
A Q / AN Q / O Q / ON Q 0.0 to 127.7
S Q / R Q / = Q

When the operation is processed, only the process
image is changed. The new status of the process
image of the outputs is only output to the I/Os at
the end of the cycle.

"P" peripherals

L PY / T PY 0 to 127
L PW / T PW 0 to 126

L PY / T PY 128 to 255
L PW / T PW 128 to 254

The inputs and outputs are addressed directly in
bytes or words.

"O" peripherals

L OY / T OY 0 to 255
L OW / T OW 0 to 254

The inputs and outputs are addressed directly in
bytes or words.

PII
(Process image
input)

PIQ
(Process image
output)

Digital peripherals
Inputs/
outputs

Digital or analog
peripherals
Inputs/outputs

Extended peripherals

Inputs/outputs

E FE00

E FEFF

E FE80

E FE7F

F F000

F F07F

F F080

F F0FF

F F100

F F1FF

8

Memory Assignment in the CPU 948

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 9

8.3 User Memory Organization in the CPU 948

Depending on the version of the CPU 948 used, the user memory
occupies the memory area from 0 0000H to C FFFFH. When you
load the individual blocks of your program, they are stored in the
memory in random order (with addresses in ascending order).

Block management When you correct a block, the old block in the memory is declared
invalid (i.e., the start ID is overwritten) and a new block is entered in
the memory and the address list. This also applies when you delete
blocks. The blocks are not really deleted in the memory but simply
declared invalid. Gaps created by deleting are managed as available
memory locations and are used again when you load new blocks.

Compressing memory The online COMPRESS MEMORY PG function pushes all valid
blocks in the memory together. When you activate the COMPRESS
MEMORY while the CPU is in the STOP mode, all blocks that are not
directly next to each other are shifted. However, when you activate
this function while the CPU is in the RUN mode, long data and
extended data blocks (i.e., longer than 512 data words) are not shifted
because of data length consistency. Compressing produces large
available memory areas which you can use for loading new blocks.

If the online COMPRESS MEMORY PG function is interrupted (e.g.,
when the power is turned off), compressing is terminated and does not
resume automatically when power is turned on.

Location of blocks in the
user memory

In the CPU 948, blocks are stored so that data word DW 0 or the first
STEP 5 statement of each block is located at a paragraph address.
Paragraph addresses are at 16-word boundaries. Therefore, all blocks
begin in the memory at the address xxxxBH (bit no. 0 to 3 = BH) and
all block bodies at the address yyyy0H (bit no. 0 to 3 = 0H). The gaps
that result between blocks are filled in by invalid data blocks, so that
all blocks continue to exist in consecutive order.

Filler blocks These invalid data blocks are known as "filler blocks". They are
treated in the same way as the other blocks by the memory
management and have the following structure:

Start ID: 7070H ;
Block type/block number: 01FBH ;DB 251 invalid
Programmer ID: 00FFH ;irrelevant
Library number: FFFFH ;irrelevant
Block length: 00XXH ;length 5 to 20 words
Data: FFFFH ;according

: ;to
: ;length;
FFFFH ;can be left out entirely

User Memory Organization in the CPU 948

CPU 948 Programming Guide

8 - 10 C79000-B8576-C856-03

Example

You can calculate the length of a filler block by finding the difference
between the end address of the last block stored and the address before
the next paragraph address.

Difference Calculation for length of filler block (including
header)

0 to 5 Add 10 to the difference

6 No filler block is inserted

7 to 10 Add 10 to the difference

11 to 15 Subtract 6 from the difference

Bit no. Bit no.
Block List in DB 0 Memory

Header 1

Header 2

Header n

Body 1

Filler Block

xxxx0H

xxxx0H

Ascending
Addresses

xxxx0H

Body 2

Body n

= Paragraph addresses (16 word boundary)

Start Block 1

Start Block n

15 150 0

P

P

P

P

x

x

x

x

x

x

x

x

x

x

x

Fig. 8-5 Example: Location of blocks in memory

8

User Memory Organization in the CPU 948

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 11

8.3.1
Block Headers in
User Memory

Each block in the memory begins with a header that is five words
long. The block header is divided as follows:

1st word: Block start ID: 7070H

2nd word: High byte = Block type

Low byte = Block number
The low byte of the second header word contains the
block number (0 to 255). It is coded as a hexadecimal
number: 00 to FFH.

3rd word: The high byte of the third word contains the IDs for
the programmer. The low byte contains part of the
library number.

4th word: The fourth word contains the rest of the library number.

5th word: The fifth word (low and high bytes) contains the length of
the block, including the block header. The length is
indicated in words.

01H Data block DB
02H Sequence block SB

Program block PB
Funct ion block FX
Funct ion block FB
Data block DX
Organizat ion block OB

04H
05H
08H
0CH
10H

0 0
address l is t in DB 0.

address l is t in DB 0.
0 1

The block is inval id; i t is not entered in the

The block in the RAM is val id; i t is entered in the

Bit no. 15 14 13 12 11 10 9 8

User Memory Organization in the CPU 948

CPU 948 Programming Guide

8 - 12 C79000-B8576-C856-03

8.3.2
Block Address List in
Data Block DB 0

Data block DB 0 is located in the system RAM of the CPU (beginning
at address E E200H). It contains a list with the start addresses of all
blocks in the user memory of the CPU. The system program generates
(COLD RESTART) or checks (WARM RESTART) this list after
power up; it updates it automatically when you use a programmer to
enter or change blocks.

Address list start addresses DB 0 has a separate, reserved address list of 256 words in each type of
block. Blocks that are not loaded or have been deleted have the start
address ’0’.
The start addresses of each block address list are specified (see Section
8.2.1).

Block start addresses The block start addresses in the address lists always point to the first
word after the block header:

•• with data blocks, to data word DW 0

•• with logic blocks, to the first STEP 5 statement (in FBs to the ’JU’
operation before the name and the parameter list).

Since each block is located at a paragraph address (16 word
boundary), each address list entry in DB 0 is restricted to one word
with bits number 4 to 19 of the address.

Location of block
addresses in DB 0

n = E E400H (start address of the PB address list)

Address PB 0

Address PB 1

Address PB 2

Address PB 178

Address PB 179

If ’0 ’ is entered as
the address, the
block is not
loaded.

DB0

n

n+1

n+2

n+178

n+179

15 0

Fig. 8-6 Block addresses in DB 0

8

User Memory Organization in the CPU 948

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 13

Example of how to obtain a
block address

8.3.3
RI/RJ Area The RI area is an area that is 256 words long in the internal system

RAM of the CPU. RI occupies addresses E F400H to E F4FFH.

The RJ area is an area that is 256 words long in the internal system
RAM of the CPU. RJ occupies addresses E F600H to E F6FFH.

You can use the entire RI area (RI 0 to RI 255) and the entire RJ area
(RJ 0 to RJ 255) for your own purposes.

The RI/RJ area is only filled with zeros following OVERALL RESET.

The block start addresses of the program blocks
are located in DB 0 and begin at address E E400H.
The start address of PB 22 can therefore be read
out by accessing memory at address E E416H
(= start address of the PB + 16H).

User Memory Organization in the CPU 948

CPU 948 Programming Guide

8 - 14 C79000-B8576-C856-03

8.3.4
RS/RT Area The RS and RT areas contain information for the system programmer and

system internal data.

The RS area is an area that is 256 words long in the internal system
RAM of the CPU. RS occupies addresses E F000H to E F0FFH.

Caution
You should only write to system data words RS 60 to RS 63:

All other system data should only be read:

Writing to the system data area can affect the functional capability
of your programmable controller and connected programmers:
serious disturbances can occur which may put both people and
machines in danger.

The RT area is an area that is 256 words long in the internal system
RAM of the CPU. RT occupies addresses E F200H to E F2FFH.

You can use the whole RT area (RT 0 to RT 255) for your own
purposes if

1. you do not use standard FBs

and

2. you do not use PG functions via SINEC H1 and the parallel S5 bus.

Only an overall reset can clear the RS/RT areas.

8

RS/RT Area

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 15

Using the online function SYSTEM PARAMETERS, you can obtain
the information contained in some of the system data (about the
internal structure of the CPU, the software release, the CPU identifier
etc.)

Assignment of the RS area

RS Name Address

0 Input byte IB 0 image table
(external process interrupts)

E F000H

1 External process interrupts in the
processing queue (IB 0)

E F001H

2 to 4 System program

5 Current cycle time E F005H

6 System program

7 STOP mode ID (ISTACK) E F007H

8 Start/restart IDs (ISTACK) E F008H

9 to15 System program

16 Error area: output bytes 0 to 15 E F010H

17 to 23 Error area: output bytes 16 to 127
E F011H

to
E F017H

24 to 31 Error area: input bytes 0 to 127
E F018H

to
E F01FH

32 to 47 Error area: interprocessor
communication flag bytes 0 to 255

E F020H
to

E F02FH

48 to 49 System program

50 PAFE byte for "backplane bus functions" E F032H

51 to 59 System program

60 to 63 Available to user
E F03CH

to
E F03FH

64 to 67 System program

68 to 71 Error address with QVZ and PARE errors
E F044H

to
E F047H

72 to 74 System program

Table 8-2 Assignment of the RS area

RS/RT Area

CPU 948 Programming Guide

8 - 16 C79000-B8576-C856-03

RS Name Address

Table 8-2 continued:

75 System message, function number E F04BH

76 System message, parameter1 E F04CH

77 System message, parameter 2 E F04DH

78 System message, parameter 3 E F04EH

79 to 95 System program

96 Current time of day (seconds) E F060H

97 Current time of day (hours) E F061H

98 Current time of day (days) E F062H

99 Current time of day (year/month) E F063H

100 to 119 System program

120 Software protection/password E F078H

121 to 135 System program

136 to 137 Locations for self-test function
E F088H

to
E F089H

138 System program

139 Cycle time used after retriggering E F08BH

140 to 252 System program

253 free for distributed periphery E F0FDH

254 to 255 System program

As a supplement to the listing above, the following pages provide
the bit assignments of a few system data registers that you can
evaluate via STEP 5 operations or with your programmer (see
Section 5.4 for information on the abbreviations).

8

RS/RT Area

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 17

8.3.5
Bit Assignment of the
System Data Words

System data RS 0 Input byte IB 0 Image table (external process interrupts)

Address E F000H

High byte

Bit no. Assignment

15

Occupied by system program

14

13

12

11

10

9

8

Low byte

7 Status of I 0.7

6 Status of I 0.6

5 Status of I 0.5

4 Status of I 0.4

3 Status of I 0.3

2 Status of I 0.2

1 Status of I 0.1

0 Status of I 0.0

Table 8-3 Bits in RS 0 (image of IB 0)

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 18 C79000-B8576-C856-03

System data RS 1 Condition code of external process interrupts currently in
processing queue

Address: E F001H

High byte

Bit no. Assignment

15

All the bits have the value ’0’

14

13

12

11

10

9

8

Low byte

7 Bit = ’1’: edge I 0.7

6 Bit = ’1’: edge I 0.6

5 Bit = ’1’: edge I 0.5

4 Bit = ’1’: edge I 0.4

3 Bit = ’1’: edge I 0.3

2 Bit = ’1’: edge I 0.2

1 Bit = ’1’: edge I 0.1

0 Bit = ’1’: edge I 0.0

Table 8-4 Bits of RS 1 (current process interrupts)

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 19

System data RS 5 Current cycle time

Address: E F005H

High byte and low byte

Bit no. Assignment

15

The entered binary value * 10 msec. equals the
cycle time of the cycle processed last

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Example

Table 8-5 Bits of RS 5 (cycle time)

Bit no. 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

The time of the last cycle is as follows:

(2 4 + 2 3) * 10 ms = (16 + 8) * 10 ms = 240 ms

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 20 C79000-B8576-C856-03

System data RS 7 Programmable controller STOP mode IDs (ISTACK)

Address: E F007H

High byte

Bit no. Assignment

15
Reserved

14

13

12 Faulty ISTACK level

11 Illegal start-up type (UANL)

10 Interruption in stop loop

9 Illegal call of system block (SYSFHL)

8 Error in start-up block (AFEL)

Low byte

7 Interruption by system (USYS –warm restart
possible)

6 Interruption by programming error
(UPROG – cold restart)

5 "End of program test" (BEARBE)

4 Stop switch (STOPS)

3 End of operation stop (STS)

2 End of cycle stop (STP)

1 Multiprocessing stop (HALT)

0 PG stop (PGSTP)

Table 8-6 Bits of RS 7 (PLC stop IDs)

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 21

System data RS 8 Start and restart IDs (ISTACK)

Address: E F008H

High byte

Bit no. Assignment

15 Default: MANUAL COLD RESTART/
WARM RESTART (MSEG)

14 Default: AUTOMATIC COLD
RESTART (ANEG)

13 Default: AUTOMATIC WARM
RESTART (AWEG)

12 OVERALL RESET required (URLER)

11 WARM RESTART permitted (WIEZU)

10 COLD RESTART permitted (NEUZU)

9 OVERALL RESET executed (URLDF)

8 WARM RESTART executed (WIEDF)

Low byte

7 COLD RESTART executed (NEUDF)

6 Automatic start after NAU

5 Manual start

4 COLD RESTART WITH MEMORY

3 PG overall reset

2 PG system start

1 PG warm restart

0 PG cold restart

Table 8-7 Bits of RS 8 (start and start-up IDs)

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 22 C79000-B8576-C856-03

System data words
RS 16 to RS 47

Error areas

RS xx Address(es) Error area

RS 16 E F010 Output bytes 0 to 15

RS 17 to
RS 23

E F011 to
E F017

Output bytes 16 to 127

RS 24 to
RS 31

E F018 to
E F01F

Input bytes 0 to 127

RS 32 to
RS 47

E F020 to
E F02F

Interprocessor communication flag
bytes 0 to 255

RS 16 Address: E F010H

High byte

Bit no. Assignment

15 Output byte 0

14 Output byte 1

13 Output byte 2

12 Output byte 3

11 Output byte 4

10 Output byte 5

9 Output byte 6

8 Output byte 7

Low byte

7 Output byte 8

6 Output byte 9

5 Output byte 10

4 Output byte 11

3 Output byte 12

2 Output byte 13

1 Output byte 14

0 Output byte 15

If errors appear during update of the process image input/output tables
or interprocessor communication flags, the corresponding bits are set
to ’1’. – The system data words RS 17 to 47 are structured analogous
to RS 16.

Table 8-8 Bits of RS 16 (error area output bytes 0 to 15)

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 23

Example of RS 16

System data RS 50 PAFE byte for "backplane bus functions"

System data RS 50 contains the parameter assignment error byte for
the "backplane bus functions" of a CPU.

15 8 7 0

RS 50 PAFE - E F032H

System data words RS 68
to RS 71

Error addresses of QVZ and PARE errors

If a QVZ or PARE error occurs, the address at which the error was
detected is entered here.

15 0

RS 68 QVZ error addr. high E F044H

RS 69 QVZ error addr. low E F045H

RS 70 PARE error addr. high E F046H

RS 71 PARE error addr. low E F047H

The content of system data register RS 16 is

"8020" hexadecimal or "1000 0000 0010 0000"
binary.

The process image for output bytes 0 and 10 has
not been updated correctly.

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 24 C79000-B8576-C856-03

System data words
RS 75 to RS 78

System message

The entries in system data words RS 75 to RS 78 refer to the error that
occurred last. The message consists of four system data words with the
following structure:

15 0

RS 75 Error number Parameter type E F04BH

RS 76 Parameter 1 E F04CH

RS 77 Parameter 2 E F04DH

RS 78 Parameter 3 E F04EH

RS 75 The high byte contains the error number which classifies the error.
The error number assigns the error to one of the following three areas:

Error groups •• 01H to 2FH: user error

•• 30H to 3FH: error in DX 0 or DB 1,

•• 40H system error

Parameter type The low byte contains the parameter type that describes the structure
of the succeeding parameter block in RS 76 to RS 78. The parameter
types from 00H to 10H exist. The structure of the parameter field is
described later.

The two following tables list the error groups "general errors" and
"errors in DX 0 or DB 0".

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 25

General errors

Error
number

Parameter
type

Meaning

01H 01H Block called is not loaded

02H 01H Addressing error

03H 01H Cycle time error

04H 01H Substitution error

05H 02H Timeout distributed peripherals

06H 03H Timeout user memory

07H 01H Load/transfer error with data blocks
and extended data blocks

08H 01H Bracket counter overflow

09H 04H Data block to be opened does not exist

0AH 05H Error with internal time interrupts/
other interrupts

0BH 03H Timeout page frame area

0CH 03H Timeout global communication area

0DH 07H Timeout in process image updating

0EH 03H Timeout in IPC flag synchronization error

0FH 03H Timeout "P"/"O" peripherals

10H 03H Timeout since interface module (IM 3/IM 4)
missing

11H 03H Parity error in user memory

12H 01H Timeout process image transfer

13H 01H Timeout input byte IB 0

14H 01H BSTACK overflow

15H 01H STS operation

16H 01H RUN/STOP switch set to STOP position

17H 01H Halt signal from the coordinator

18H 01H Not used

19H 01H Load/transfer error with L BY/T BY
(process image update)

1AH 01H Load/transfer error during addressing
via the BR register

1BH 01H I/Os not ready

1CH 08H Timeout/parity error during
initialization

Table 8-9 RS 75: general errors

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 26 C79000-B8576-C856-03

Error
number

Parameter
type

Meaning

Table 8-9 continued:

1DH 08H AUTOMATIC WARM RESTART not
possible; COLD RESTART required

1EH 00H Illegal start-up type

1FH 01H Load/transfer error during block transfer
operation (incorrect memory area boundaries
with TNW, TXB, TXW)

20H 09H Illegal length for G DB/GX DX

21H 09H DB/DX already exists for G DB/GX DX

22H 09H Memory space insufficient for G DB/GX DX

23H 05H Masked system interrupt is coming through

24H 00H Block function (compress, transfer, input)
required in STOP, COLD RESTART

25H 00H Battery failure; no start-up possible

26H 00H Change from single to multiprocessor
operation prevents a WARM RESTART

27H 01H STOP caused by STP operation

28H 01H Continuous ready signal (I/O module defect))

29H 08H Error in DB 0 struct. after OVERALL RESET

DX 0/DB1 errors

Error
number

Parameter
type

Meaning

Errors in DX 0

30H 00H No DX 0 in multiprocessing

32H 00H Proc. int. and sys. int. selected simultaneously

33H 00H Interrupts and mode incompatible

34H 06H Invalid DX 0 header

35H 07H Error in DX 0 block ID

36H 07H Error in DX 0 parameter

Errors in DB 1

38H 06H No DB 1 in multiprocessing

39H 06H Invalid DB 1 header

3AH 07H DB 1 ID set more than once

3BH 07H DB 1 byte offset without ID

Table 8-10 RS 75: Errors in DX 0 or DB 1

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 27

Error
number

Parameter
type

Meaning

Table 8-10 continued

3CH 07H Peripheral entered in DB 1 is not
plugged in

3DH 07H Offset too big (parameter error)

3EH 07H Too many offsets

Error codes of the self test
functions

Error
number

Parameter
type

Meaning

61H 0BH Checksum error in system program code

62H 0AH Checksum error in code of the STEP 5
logic blocks

63H 0BH Address decoder error

64H 0CH Error testing the user memory organized in
words

65H 0CH Error testing the user memory organized in
bytes

66H 00H Error testing cycle time monitoring

67H 00H Error testing the BASP signal

68H 00H Error testing the hardware clock

Table 8-11 RS 75: error codes of the self test functions

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 28 C79000-B8576-C856-03

Structure of the parameter
field (RS 76 to RS 78)

Parameter
type

Structure of the parameter field

00H No parameter; parameter 1, 2, 3 = 0

01H Parameter 1: block type/block number (IDs from block header)

Parameter 2: operation that caused an interruption

02H Parameter 1: interface module number (IM 302) (distributed periphery)

Parameter 2: number of the defective interface

Parameter 3: incorrect byte offset

03H Parameter 1: not used

Parameter 2: error address high

Parameter 3: error address low

04H Parameter 1: block type/block number (IDs from block header)

Parameter 2: operation that caused the interruption

Parameter 3: number of the DB/DX to be opened

05H Parameter 1: The following bits are set depending on the error:

Bit no. 0 = 1: timed interrupt/period 1

Bit no. 1 = 1: timed interrupt/period 2

: : : :

Bit no. 7 = 1: timed interrupt/period 8

Bit no. 8 = 1: timed interrupt/period 9

Bit no. 9 = 1: clock masked (ignored) for too long
= 0: queue overflow

Bit no. 10 reserved

Bit no. 11 reserved

Bit no. 12 = 1: interrupt G

Bit no. 13 = 1: interrupt F

Bit no. 14 = 1: interrupt E

Bit no. 15 = 1: interrupt X

06H Parameter 1 data word expected in DX 0 or DB 1 header

Parameter 2 actual data word in DX 0 or DB 1 header

07H Parameter 1 block ID or code word in DX 0 or DB 1

Parameter 2 incorrect parameter 1 in DX 0 or DB 1
(FFFFH: parameter irrelevant)

Parameter 3 incorrect parameter 2 in DX 0 or DB 1
(FFFFH: parameter irrelevant)

Table 8-12 RS 76 to RS 78: Parameter types

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 29

Parameter
type

Structure of the parameter field

Table 8-12 continued:

08H Parameter 1 The following bits are set depending on the error:

Bit no. 0 = 1: QVZ in initialization

Bit no. 1 = 1: PARE in initialization

Bit no. 2 = 1: content of the memory card too large

Bit no. 3 = 1: operating system error

Bit no. 4 = 1: incorrect block ID

Bit no. 5 = 1: incorrect block delimiter

Bit no. 6 reserved

Bit no. 7 reserved

Bit no.8 = 1: DB 0 changed since last COLD RESTART

Bits no. 9
to 15

reserved

Parameter 2 error address high, (when bit 2, 4 or 5 of parameter 1 = ’1’

Parameter 3 error address low, (when bit 2, 4 or 5 of parameter 1 = ’1’

09H Parameter 1 Opcode "GX DX" or "G DB" (indicates the block type)

Parameter 2 block number

Parameter 3 data block length

10H internal system error number

0AH Parameter 1 block type/block number (IDs from block header)

Parameter 2 expected checksum

Parameter 3 actual checksum

0BH Parameter 1 FFFFH

Parameter 2 error address high with address code error,
actual checksum high when testing the system program code

Parameter 3 error address low with address code error,
actual checksum low when testing the system program code

0CH Parameter 1 check pattern when testing the user memory

Parameter 2 error address high

Parameter 3 error address low

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 30 C79000-B8576-C856-03

Example of a system message

RS 75 21H 09H E F04BH

RS 76 7804H E F04CH

RS 77 0064H E F04DH

RS 78 0078H E F04EH

RS 75, error number = 21H:The error occurred in the STEP 5 user program when
generating a DB/DX.

RS 75, parameter type=09H: The parameter block in RS 76 to RS 78 contains
3 parameters.

RS 76, parameter 1 = 7804H: Opcode = "GX DX", this means block type "DX".
RS 77, parameter 2 = 0064H: Block number = 100 (dec.)
RS 78, parameter 3 = 0078H: Data block length = 120 data words

Information contained in the message:
In the STEP 5 user program, data block DX 100 should be generated with a
length of 120 data words. However, this already exists.

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 31

System data words
RS 96 to RS 99

Real-time clock

The current date and time of day are kept in system data areas RS 96
to RS 99 and can if necessary be read out from these locations.

15 0

RS 96 Seconds 1/10, 1/100 seconds E F060H

RS 97 Hours Minutes E F061H

RS 98 Day Day of the week E F062H

RS 99 Year Month E F063H

The clock is updated by a 10 msec. pulse.

RS 96 Seconds and 1/100 seconds (address: E F060H):

High byte

Bit no. Assignment

15
Seconds, tens,
permitted: 00H to 05H

14

13

12

11
Seconds, units,
permitted: 00H to 09H

10

9

8

Low byte

7
1/10 second,
permitted: 00H to 09H

6

5

4

3
1/100 second,
permitted: 00H to 09H

2

1

0

Table 8-13 Structure of RS 96 (real-time clock: seconds, 1/100 seconds)

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 32 C79000-B8576-C856-03

RS 97 Hours and minutes (address: E F061H):

High byte

Bit no. Assignment

15 0 = 12 hour format, 1 = 24 hour format

14 0 = AM, 1= PM

13 Hours, tens, permitted: 00/01H with
12 hour format, 00/02H with 24 hour format12

11
Hours, units,
permitted: 00H to 09H

10

9

8

Low byte

7
Minutes, tens,
permitted: 00H to 05H

6

5

4

3
Minutes, units,
permitted: 00H to 09H

2

1

0

RS 98 Current date and day of the week (address: E F062H):

High byte

Bit no. Assignment
15

Date, tens,
permitted: 00H to 03H

14
13
12
11

Date, units,
permitted: 00H to 09H

10
9
8

Low byte

7
Day of the week,
permitted: 00H to 06H for Mon. to Sun.

6
5
4
3

02
1
0

Table 8-14 Structure of RS 97 (real-time clock: hours, minutes)

Table 8-15 Structure of RS 98 (real-time clock: date, day of the week)

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 33

RS 99 Current year and month (address: E F063H):

High byte

Bit no. Assignment

15
Year, tens,
permitted: 00H to 09H

14

13

12

11
Year, units,
permitted: 00H to 09H

10

9

8

Low byte

7
Month, tens,
permitted: 00/01H

6

5

4

3
Month, units,
permitted: 00 to 09H

2

1

0

Table 8-16 Structure of RS 99 (real-time clock: year, month)

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 34 C79000-B8576-C856-03

System data RS 120 Software protection

System data RS 120 controls the system function "software
protection". With this function, you can prevent blocks being read,
overwritten or deleted by the PG (e.g. by unauthorized personnel) by
specifying a password.

Password The "software protection" function is linked to a password. The
system program is informed of this via RS 120.

Specifying the
password/activating protection

By specifying a password in RS 120, the password protection is
automatically activated.
You can specify a new password after deleting the old one.

Deleting the
password/deactivating
protection

If you delete the password, password protection is automatically
deactivated.
When the password is deleted, the system program must be informed
via RS 120.

Maximum of five attempts to
delete

If you attempt to delete the password and specify the wrong password,
the attempt is rejected by the system program and a count started.
After a maximum of five unsuccessful attempts, the system program
will no longer accept password entries. The password can then only be
deleted after a COLD RESTART.
If the password is successfully deleted, the error counter is reset.

How to specify or delete the
password

The password is specified/deleted (and the software protection
activated/deactivated) by writing a bit pattern in RS 120 (see
Assignment when writing) in one of the following ways:

•• by the STEP 5 program or

•• with a PG job "output address".

Note
When you first receive your CPU and following an overall reset,
the password is deleted and the software protection switched off.

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 35

When is the software
protection
activated/deactivated?

A password can be specified at any time. Once it has been specified,
software protection is, however, only active at certain times, as shown
below:

•• in the SOFT STOP mode:
once after calling OB 38 1),
cyclically before calling OB 39 1),

•• in the START-UP mode:
once after calling the start-up OBs (OB 20, OB 21 OB 22),

•• in the RUN mode:
cyclically before calling OB 1.

Assignment of the system
data when writing

To call the software protection function, write system data RS 120
with a bit pattern for the function as shown in the following table.

Address: E F078H

High byte

Bit no. Assignment

15 Action bit: 1 = execute function

14 Function bit: 1 = set password, 0 = delete PW

13

Bit nos. 8 to 13 of a 14-bit password

12

11

10

9

8

Low byte

7

Bit nos. 0 to 7 of a 14-bit password

6

5

4

3

2

1

0

1) Processing a request does not depend on OB 38 or OB 39 being loaded. This means
that software protection can be activated in the STOP mode.

Table 8-17 Assignment of RS 120 (software protection) when writing

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 36 C79000-B8576-C856-03

Reading system data RS 120 By reading out system data RS 120, you can find out whether a "job"
was executed by writing the system data. The system program enters a
result code here.

Assignment of the system data when reading

After calling the software protection function, you can evaluate the
result code to find out whether the job was successful.

 Address: E F078H

High byte

Bit no. Assignment

15 0

14 Error bit: 0 = no error, 1 = error

13 0

12 0

11 0

10 binary
delete error
counter

9

8

Low byte

7 0

6 0

5 0

4 1 = no password active

3 1 = deleting not possible, wrong password

2 1 = software protection (password) already
activated

1 1 = illegal password

0 1 = error counter overflow

Table 8-18 Assignment of RS 120 (software protection) when reading

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 37

Valid result codes

Value Explanations

0000H No error

4x01H The maximum number of delete attempts has been exceeded. The counter can only be
reset with a cold restart.

4x02H Illegal password (0000H or 3FFFH)

4x04H You have attempted to specify a new password while the password protection was active (x
= number of attempts to delete)

4x08H You attempted to delete the existing password (deactivate protection) with an incorrect
password. The error counter for incorrect attempts was incremented. The counter
reading x is transferred in the result code (binary number in bits no. 8 to 10).

4010H You attempted to delete a non-existent password.

The best time to activate
software protection

The most effective protection is achieved when you activate the
software protection in OB 38/OB 39 (SOFT STOP mode). Protection
is then active immediately following an overall reset even with the
memory card inserted.

Reactions to violations of the
software protection

Once the software protection is active, the system program reacts to
violations of the protection by PG jobs. The following table lists the
reactions to various PG jobs.

PG function Output on PG

Delete block Message "Block type and number illegal"

Read block Output of a dummy block:
FB/FX:

FB number
NAME :DUMMY

:BE

DB/DX: DW0 6500

OB/PB/SB:
:BE

Overwrite block
(block does not yet exist)

The block is entered

Overwrite block
(block already exists)

Message "Block exists"; after confirming with the enter key
the message "Block type and number wrong" is displayed.

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 38 C79000-B8576-C856-03

Examples of writing and
reading RS 120

Activating the software protection in the start-up blocks:

(If you activate the protection in the program, it is best to activate it
in a start-up OB (OB 20, OB 21, OB 22, OB 38).)

:
:L KH C0AF KH = bit pattern "specify password"
: (password = 00AFH)
:T RS 120

:

Evaluate result in RS 120:

Using the following sequence of STEP 5 operations in OB 1 or OB 39 , you can
react to an error occurring when specifying the password by evaluating the
result.
Note that the result can only be evaluated after certain actions of the
system program (see page 8 - 35).

:
:L RS 120
:L KB 0
:><F
:JC FB yyy call function block for error processing

NAME : PW-ERROR

:

Delete and modify the password on the PG using the OUTPUT
ADDRESS function:

Initial status: The CPU is in the RUN or STOP mode.

Go through the following procedure on the PG:

1. Output the address E F078H.

2. Delete the old password by overwriting the content with 80AFH in
hexadecimal ("00AFH" = old password).

3. Wait at least as long as the cycle time of OB 39 or OB 1.

4. Output the address E F078H again.

5. Enter the new password "1234H" by overwriting the content with the
hexadecimal number D234H.

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 39

System data words
RS 136 to RS 137

For self-test function

The system data words RS 136 to RS 137 are used for the self-test.

RS 136 Number of time slices (address: E F088H)

RS 137 Control bits (address: E F089H)

Using the control bits, the individual self-test functions can be
included or excluded (refer to Section 5.7).
Bit = ’1’: self-test function is included
Bit = ’0’: self-test function is excluded

High byte

Bit no. Assignment

15 Memory test

14 Not used

13 Test cycle time monitoring

12 Not used

11 Test BASP signal

10 Clock test

9 Not used

8 Not used

Low byte

7 Test address lines

6 Not used

5 Code test of the STEP 5 logic blocks in
the user memory

4 Not used

3 Not used

2 Code test of the system program

1 Not used

0 Not used

Table 8-19 Bits of RS 137 (control bits for self-test functions)

Bit Assignment of the System Data Words

CPU 948 Programming Guide

8 - 40 C79000-B8576-C856-03

System data RS 139 Cycle time used when retriggering

Address E F08AH

This system data word contains the time used for the cycle since the
last system checkpoint (at the beginning of OB 1) to the next
retriggering with OB 222 (if OB 222 is called more than once within
the cycle, the time to the last retriggering).

The time value is the content of RS 139 * 10 ms.

System data RS 253 List of interface modules plugged in

 Address: E F0FDH

High byte

Bit no. Assignment

15

reserved14

13

12

11 IM number 11

10 IM number 10

9 IM number 9

8 IM number 8

Low byte

7 reserved (IM number 8)

6 reserved (IM number 7)

5 reserved (IM number 6)

4 reserved (IM number 5)

3 reserved (IM number 4)

2 reserved (IM number 3)

1 reserved (IM number 2)

0 reserved (IM number 1)

Table 8-20 Bits of RS 253 (list of interface modules plugged in)

8

Bit Assignment of the System Data Words

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 41

8.3.6
Addressable System Data
Area

The system program uses the memory area from E 8200H to
E DEF0H as an addressable system data area.

PLC identification field At the start of this area there is an information field of 12 words in
which an identifier of the PLC is entered.

This field has the following structure:

Word

0 ’S’ ’5’ E 8200H

1 ’1’ ’5’ E 8201H

2 ’5’ ’U’ E 8202H

3 ’C’ ’P’ E 8203H

4 ’U’ ’9’ E 8204H

5 ’4’ ’8’ E 8205H

6 ’V’ ’x’ E 8206H

7 ’.’ ’y’ E 8207H

8 0

9 0

10 0

11 0 E 820BH

For ’x’ and ’y’ the current version number is entered.

Addressable System Data Area

CPU 948 Programming Guide

8 - 42 C79000-B8576-C856-03

System parameters System parameters in the memory area beginning with the address
E 8210H:

Word

0 Start add. interface module input E 8210H

1 Start add. interface module output E 8211H

2 Start add. process image input table E 8212H

3 Start add. process image output table E 8213H

4 Start add. flags E 8214H

5 Start add. timers E 8215H

6 Start add. counters E 8216H

7 Start add. system data E 8217H

8 Status ID PLC software version E 8218H

9 User memory end address E 8219H

10 System program memory E 821AH

11 Length of DB list E 821BH

12 Length of SB list E 821CH

13 Length of PB list E 821DH

14 Length of FB list E 821EH

15 Length of OB list E 821FH

16 Length of FX list E 8220H

17 Length of DX list E 8221H

18 Length of DB address list (DB 0) E 8222H

19 Slot ID (see below) CPU ID 2 (see below) E 8223H

20 Block header length E 8224H

21 CPU ID 1 (see below) Programmer interface
software version

E 8225H

You can also use the SYSTEM PARAMETER PG online function to
find the information contained in a few system data registers (e.g.,
concerning the internal structure of the CPU, the software version, the
CPU ID).

8

Addressable System Data Area

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 43

Word 19 and word 21 Structure of words 19 and 21:

Word 19

Bit no. High byte

15 0

14 0

13 0

12 0

11 Slot ID CPU 4

10 Slot ID CPU 3

9 Slot ID CPU 2

8 Slot ID CPU 1

Low byte

7 CPU type:
0010 = CPU 948
(only valid in conjunction with the CPU ID)

6

5

4

3 CPU-ID 2:
1000 = S5-155U

2

1

0

Addressable System Data Area

CPU 948 Programming Guide

8 - 44 C79000-B8576-C856-03

Word 21

Bit no. High byte

15 reserved

14

13

12

11

10

9

8

Bit no. Low byte

7

Release of the PG interface software
in the form "xyH"

Example:
13H corresponds to release "V1.3"

6

5

4

3

2

1

0
8

Addressable System Data Area

CPU 948 Programming Guide

C79000-B8576-C856-03 8 - 45

Contents of Chapter 9

9.1 Introduction. 9 - 4

9.2 Memory Access via Addresses in ACCU 1 . 9 - 8

9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly. 9 - 9
9.2.2 Examples of Access to DW > 255 . 9 - 15
9.2.3 LDI/TDI: Loading to or Transferring from a 32-Bit Memory Area Indirectly 9 - 17

9.3 Transferring Memory Blocks . 9 - 19

9.4 Operations with the Base Address Register (BR Register). 9 - 22

9.4.1 Operations for Transfer between Registers . 9 - 23
9.4.2 Accessing the Local Memory. 9 - 24
9.4.3 Accessing the Global Memory. 9 - 25
9.4.4 Accessing the Dual-Port RAM Memory . 9 - 29

9Memory Access Using
Absolute Addresses

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 1

9Memory Access Using
Absolute Addresses

This chapter explains how to use STEP 5 operations and special
STEP 5 registers to address data in certain memory areas using
absolute addresses.

9

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 3

9.1 Introduction

The STEP 5 programming language contains operations with which
you can access the entire memory area. These operations belong to the
"system operations".

The operations described in this chapter work with 20-bit absolute
addresses. Consequently, they are dependent on the memory size and
type, the peripherals, CPs, and IPs of your programmable controller.

Warning
If the operations described in this chapter are not used properly,
STEP 5 blocks and system data can be overwritten. Therefore,
only experienced programmers should use operations that work
with absolute addresses.

Local memory Local memory is the memory area that is available in each CPU. It
includes the following: user submodule, RI/RJ area, RS/RT area,
counters, timers, flags, process images.

Global memory Global memory exists only once for all CPUs. You address it via the
S5 bus.

Memory organization Memory areas are organized in bytes or in words as follows:

•• Bytes: Each address addresses a byte.

•• Words: Each address addresses a 16-bit word
(= 2 bytes).

Organization of the local memory is fixed (see Chapter 8)

Organization of the global memory depends on the type of modules
that are plugged into the programmable controller:

Introduction

CPU 948 Programming Guide

9 - 4 C79000-B8576-C856-03

015

Pages

7

1024 byte/words
2048 byte/words

F 0000H

F F000H

F F400H

F FC00H

F FE00H

F FFFFH
F FEFFH

F EFFFH

Page address register
(select register)

The global memory is external
and is avai lable via the S5 bus.
I t exists as a common memory
area shared by al l CPUs in
one PLC.

The local memory is internal
and is avai lable in each
CPU (acc. to the number
of CPUs plugged)

715 0
0 0000H

E FBFFH
E FC00H

E FFFFH
FFH

0715 0

255

2

1
0

Fig. 9-1 Global and local memory

9

Introduction

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 5

Memory access Using absolute addresses, you can access the following local or global
memory areas with the operations indicated (refer to Fig. 9-2).

Access to the local and global
area

You can access both the local and global areas:

•• Local area (addresses 0 0000H to E FFFFH) and global area
(addresses F 0000H to F FFFFH) with:

LIR, TIR, LDI, TDI, TNW, TXB, TXW,

•• Section of the local area organized in words (addresses 0 0000H
to E FBFFH) or in bytes (addresses E FC000 to E FFFF) with:

LRW, TRW, LRD, TRD.

Access only to the global area You can access the following parts of the global area:

•• Section of the global area organized in bytes (addresses F 0000H
to F FFFFH) with:

LY GB, LY GW, LY GD, TY GB, TY GW, TY GD, TSG,

•• Section of the global area organized in words (addresses F 0000H
to F FFFFH) with:

LW GW, LW GD, TW GW, TW GD, TSG .

Access to the page area You can access the following parts of the page area:

•• Section of the global area organized in bytes (addresses F F400H
to F FBFFH, = dual-port RAM area) with:

LY CB, LY CW, LY CD, TY CB, TY CW, TY CD, TSC,

•• Section of the global area organized in words (addresses F F400H
to F FBFFH, = dual-port RAM area) with:

LW CW, LW CD, TW CW, TW CD, TSC

Introduction

CPU 948 Programming Guide

9 - 6 C79000-B8576-C856-03

access not possible access possible

c) LY GB, LY GW, LY GD,

e) LY CB, LY CW, LY CD,
TY CB, TY CW, TY CD, (TSC)

f) LW CW, LW CD,
TW CW, TW CD, (TSC)

TY GB, TY GW, TY GD, (TSG)
d) LW GW, LW GD,

TW GW, TW GD, (TSG)

b) LRW, TRW, LRD, TRDa) LIR, TIR, LDI, TDI, TNW, TXB TXW

Access in multiprocessor
mode can lead to errors

Fig. 9-2 Access to local or global areas using absolute addresses

9

Introduction

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 7

9.2 Memory Access via Address in ACCU 1

Application The operations listed in this section are suitable primarily for access to
data blocks and other operand areas. You should, however, not access
blocks containing STEP 5 programs (OBs, FBs, PBs and SBs) with
these operations.

To access these areas, you can use various 16 or 32-bit wide registers.
These registers include the accumulators ACCU 1 to ACCU 4 and
other special registers used as resources by the CPU.

Operations

Operation Operand Function

LIR Register
no.

0 to 15

Load the 16-bit register with the content
of a memory word addressed by ACCU 1
(20-bit address).

TIR Register
no.

0 to 15

Load the content of the 16-bit register in
the memory word addressed by ACCU 1
(20-bit address).

LDI Register
name

Load the 32-bit register with the contents
of the memory words ’n’ and ’n+1’
addressed by ACCU 1 (20-bit address).

TDI Register
name

Load the contents of the 32-bit register in
the memory words ’n’ and ’n+1’ addressed
by ACCU 1 (20-bit address).

The absolute address of the memory word or the first of the two
memory words is located in ACCU 1 in the following representation:

The following pages explain which registers you can use with the
operations.

Examples explain how to use the operations.

Table 9-1 Operations for indirect memory access using registers

Bit no.
ACCU-1-H ACCU-1-L

31 20 19 16 15 0

0 Address bits Address bits 0 to 1516 to 19

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

9 - 8 C79000-B8576-C856-03

9.2.1
LIR/TIR: Loading to or
Transferring from a 16-Bit
Memory Area Indirectly

The following table shows which register numbers you can use with
the CPU 948 for the LIR and TIR operations and how these are
assigned.

Register no. Register assignment (each 16 bits wide)

0 ACCU-1-H (left word of ACCU1, bits 16 to 31)1)

1 ACCU-1-L (right word of ACCU1, bits 0 to 15)1)

2 ACCU-2-H

3 ACCU-2-L

5 Block stack pointer (offset)

6 DBA (data block start address register)

8 DBL (data block length register)

9 ACCU-3-H

10 ACCU-3-L

11 ACCU-4-H

12 ACCU-4-L

1) Loading the contents of an addressed memory register into register ’0’or ’1
overwrites the address stored in ACCU 1.

Registers 4, 7, 13, 14 and 15 do not exist on the CPU 948. LIR/TIR
operations with these register numbers must not be used.

LIR/TIR: with 8-bit
memory areas

If you use the LIR and TIR operations to access memory areas that are
only 8 bits wide, remember that

•• the LIR operation overwrites the high byte of the registers with
non-defined values (except for flags, PIQ, PII; with these areas,
FFH is written in the high byte)

and

•• the TIR operation transfers only the low byte of the register. The
high byte of the register is lost.

Figs. 9-3 and 9-4 illustrate the difference when accessing word and
byte-oriented memory areas using LIR/TIR.

Table 9-2 16-bit register for LIR/TIR

9

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 9

19 0 15 0

19 0

ACCU 1

ACCU 1

Register n

Register n

addressed
memory
locat ion

addressed
memory
locat ion

15 0

LIR n

TIR n

15 0

Fig. 9-3 LIR/TIR with 16-bit memory areas (word-oriented)

19 0 15 0

19 0

ACCU 1

ACCU 1

Register n

Register n

addressed
memory
locat ion

addressed
memory
locat ion

15 0

LIR n

x x

x x

TIR n

7 0

Fig. 9-4 LIR/TIR with 8-bit memory areas (byte-oriented)

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

9 - 10 C79000-B8576-C856-03

Registers 0 to 3 and 9 to 12:
ACCUs 1, 2, 3 and 4

During program processing, the accumulators are used as buffers for
the CPU. The TIR operation transfers the contents of the accumulators
into absolutely addressed memory registers. The LIR operation loads
the contents of absolutely addressed memory registers into the
accumulators. The absolute address of the memory locations is in
ACCU 1, bit number 0 to 19.

Examples

Register 6: DBA (Data Block
Start Address)

When you open a data block or an extended data block using the
C DB or CX DX operations, the address of DW 0 in the opened data
block is loaded into register 6. The block address list in DB 0 contains
this address.
The DBA register is set to ’0’ before each OB 1 call.

The DBA register remains the same if one of the following occurs:

•• a jump operation (JU/JC) causes program processing to continue in
a different block,

or

•• the CPU activates a different program processing level.

The contents of the memory location with address E F800 are loaded in flag
word FW 100.

:L DH 000E F800 Load address E F800 of the memory location in ACCU 1
:LIR 1 Load the contents of the memory location addressed by
: ACCU 1 in register 1 (= ACCU-1-L)
:T FW 100 Store the contents of address E F800 in flag word FW 100
:BE

The content of the flag word 200 is transferred to the memory location with
address E F800.

:L FW 200 Load flag word FW 200 in ACCU 1
:L DH 000E F800 Load address E F800 to which the data will be trans-
: ferred in ACCU 1 (flag word FW 200 to ACCU 2)
:TIR 3 Transfer the contents of register 3 = ACCU-2-L in to
: the memory location addressed by ACCU 1
:BE

9

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 11

The DBA register changes if one of the following occurs:

•• Another data block is opened,

or

•• the program returns to a higher order block after a new data block
is opened in the called block (refer to Section 2.4.3).

Example

Effect of the "CX DX 17" operation on the DBA register:

When DX 17 is called, the address of the memory word in which DW 0 is
stored is entered in the DBA register. In this example, the DBA is 4152H.

Note: In the ISTACK, the address entered in the DBA register appears under
the heading ’DB-ADD’.

5 words

Block header

KH = 0000

KH = 0001

4 151BH

4 151CH

4 151DH

4 151EH

4 151FH

4 1520H

4 1521H

4 1522H

DW 0 (at Paragraph address)

DW 1

DW 2

DBA

Addresses
DX17

.

.

.

Fig. 9-5 Using the DBA register

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

9 - 12 C79000-B8576-C856-03

Register 8:
DBL = Data Block Length

In addition to the DBA register, a DBL register is loaded every time a
data block is called. It contains the length (in words) of the data block
called, without the block header. The DBL register is set to ’0’ before
each OB 1 call.

DBL register is retained, when

•• program execution is continued in a different block following a
jump statement (JU/JC)

or

•• a different program execution level is nested in.

It changes when

•• a different data block is opened

or

•• program execution returns to a higher order block after a new data
block is opened in the called block (refer to Section 2.4.2).

Note
You can change the DBA and DBL registers using LIR operations
to address data block addresses higher than 255. The DBA
register contains paragraph addresses. Make sure that a change
in the DBA register does not automatically cause a change in the
DBL register and vice-versa. This would mean that transfer
error monitoring is no longer guaranteed.
On the CPU 948, changes in the DBA/DBL registers are undone,
as soon as the current block is completed (BSTACK entries).
Manipulations on the DBA/DBL registers are therefore only
effective in the block in which they were made.

9

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 13

Example

Effect of the "CX DX 17" operation on the DBL:

When DX 17 is called, the number of existing data words is entered in the
DBL register. In this example the DBL is 8 (DW 0 to DW 7)

Note: In the ISTACK, the number entered in the DBL register appears under the
heading "DBL-REG".

5 words

Block header

eeee

ffff

gggg

aaaa

bbbb

cccc

dddd

hhhh

4 151BH

4 151CH

4 151DH

4 151EH

4 151FH

4 1520H

4 1521H

4 1522H

4 1523H

4 1524H

4 1525H

4 1526H

4 1527H

DW 0

DW 1

DW 2

DW 3

DW 4

DW 5

DW 6

DW 7

DBA

DBL

Addresses
DX17

Fig. 9-6 Using the DBL register

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

9 - 14 C79000-B8576-C856-03

9.2.2
Examples of Access to
DW > 255

Example 1:

The content of data word DW 300 in DB 100 is read and transferred to flag
word FW 100 (by changing the STEP 5 operation shown in bold face, it can
also be used to read other data blocks (DB or DX)).

FB 5

SEGMENT 1 0000 Reading out DW 300 from DB 100
NAME :LIR DW

0005 :L DH 000E EC00 Start addr. of the DB list
0008 :L KF +100 plus the DB number
000A :+D = Address list entry of DB 100
000B : (Bits 4 to 19)
000C :LIR 1 Start addr. DB 100 to ACCU 1
000D :SLD 4 Convert addr. to physical addr.
000E :L KF +300 DW 300 is read out
0010 :+D Addr. = start addr. of DB + DW addr.
0011 :LIR 1 Store content of DW 300 to ACCU 1
0012 :T FW 100 in FW 100
0013 :BE

Example 2:

All the data words of a data block will have a constant written to them.

The program shown below writes the constant KH = A5A5 to all data words of
DB 100. After changing the STEP 5 operations shown in bold face, it can
also be used to write values to other data blocks (DB or DX). Non-existent
data blocks are detected and cause a jump to the NIVO marker.

The program uses three accumulators. Within the loop, the accumulator
contents do not change.
ACCU 1 initially contains the address of the first data word and is
incremented by one each time the loop is run through.
ACCU 2 contains the address of the last data word + 1. The loop is
terminated as soon as the content of ACCU 1 is the same as the content of
ACCU 2.

To write the data words, the operation TIR 10 is used which stores the
content of ACCU-3-L (the constant) at the address contained in ACCU 1.

ACCU contents within the loop:

ACCU 1: address of the current data word to be written to

ACCU 2: address of the last data word to be written to + 1
ACCU 3: constant

Continued on the next page

9

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 15

Example 2 continued:

Flag assignment:

FW 10: Bits 4 to 19 of the start address of the DB/DX (points to DW 0)
FW 12: Length of the DB/DX (number of data words)
FD 14: Address of the last data word in the DB/DX + 1 (physical address)

FB 6

SEGMENT 1 0000 Writing a DB with a constant
NAME :FILL DB
0005 : ! Required flags: FY 10 to FY 17 !

0006 :L DH 000E EC00 Start addr. of the DB list
0009 :L KF +100 plus the DB number
000B :+D = Address list entry of DB 100
000C : (Bits 4 to 19)
000D :LIR 1 Start addr. DB 100 to ACCU 1
000E :T FW 10 Buffer start addr.
000F :L KB 0 (Paragraph address)
0010 :!=F If start addr. = 0, then
0011 :JC =NIVO DB does not exist
0012 :
0013 :L FW 10 Start addr. of DB (1st DW)
0014 :SLD 4 Convert addr. to physical address
0015 :L KB 1 Find out DB length via
0016 :-D 5th word in block header
0017 :LIR 1 Length including block header to ACCU 1
0018 :ADD BN -5 Number of DWs = total length - 5 words (header)
0019 :
001A :T FW 12 Buffer length
001B :
001C :L FW 12 Number of data words +
001D :L FW 10 start address (DW 0 converted to
001E :SLD 4 physical address)
001F :+D produces
0020 :T FD 14 address of the last DW + 1
0021 :

0022 :L KH A5A5 Constant, written to all data words
0024 :
0025 :L FD 14 Address of the last DW + 1
0026 :ENT Shift constant to ACCU-3-L
0027 : (= register 10)
0028 :L FW 10 Convert address of 1st data word (DW 0)
0029 :SLD 4 to physical address
002A :
002B SCHL : Loop:
002C : ACCU 1: address of DW to be written to
002D : ACCU 2: address of last DW + 1
002E : ACCU 3: constant
002F :TIR 10 Store the value of ACCU-3-L in the DW with
0030 : the address in ACCU 1
0031 :
0032 :ADD DH 0000 0001 Increment address by 1
0035 :
0036 :><D Scan whether last DW reached
0037 :JC =SCHL (if not, return to the loop)
0038 :
0039 WEIT : Continue the program ...
003A : after all DWs have been written to ...
003B :
003C :BEU
003D :
003E NIVO : If DB 100 does not exist
003F :BE

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

9 - 16 C79000-B8576-C856-03

9.2.3
LDI/TDI: Loading to or
Transferring from a 32-Bit
Memory Area Indirectly

The following table shows which register names you can use on the
CPU 948 for the LDI and TDI operations and how these are assigned.

Register name Register assignment (each 32 bits wide)

A1 ACCU 1 (ACCU1, bits 0 to 31) 1)

A2 ACCU 2 (ACCU1, bits 0 to 31)

SA STEP address counter (bits 0 to 19)

BA BA register (block start address, bits 0 to 19)

BR BR register (base address register, bits 0 to 19)

1) Loading the contents of an addressed memory register into the A1 register overwrites
the address stored in ACCU 1.

Byte addresses If you reference byte addresses with the LDI or TDI operations, note
the following:

•• the LDI operation overwrites the high byte of the register with non-
defined values (except for flags, PIQ, PII; with these areas, FFH is
written in the high byte)

and

•• the TDI operation transfers only the low bytes of the register (the
high bytes are lost – refer to the example on the following page

Data storage with LDI/TDI

Table 9-3 32-bit register for LDI/TDI

High register Low register
31 16 15

15

DW n

Address

DW n+1

0

0

aaaa

aaaa

bbbb

bbbb

9

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 17

SA Register:
SAC = STEP Address
Counter

On completion of the operation, the 20-bit absolute address of the
operation to be processed next is entered in the SA register.

BA Register:
Block Start Address

During program processing of the STEP 5 user program, a 20-bit
absolute address is entered in the BA register. This address is in the
higher order block (corresponds to the return address). It is the address
of the operation to be processed next.

BR Register:
Available Base Address
Register

The base address register (20 bits) allows you to calculate addresses
and to execute indirect load and transfer operations without using the
ACCUs for the address. It can be used freely during STEP 5 program
processing.

Example of TDI in the byte
area

:L DH 1234 5678 Load data
:L DH 000E FC00 Load address of flag
: byte FY 0
:TDI A2 Store content of ACCU 2

E FC00 = 34 (The values ’12H’ and ’56H’ from
E FC01 = 78 ACCU 2 are lost)

Memory Access via Address in ACCU 1

CPU 948 Programming Guide

9 - 18 C79000-B8576-C856-03

9.3 Transferring Memory Blocks

Application With the operations explained in this section, you can re-store data
areas with a length of up to 255 words located in certain address areas.

Operations

Operation Operand Function

TNW 0 to 255 Field transfer 0 to 255 words 1)

(in the 16-bit memory area)

TXB -- Field transfer from 8-bit to the 16-bit
memory

TXW -- Field transfer from the 16-bit to the
8-bit memory

1) Can also be used for transfer from the byte to the byte area.

Parameters Field length

For TNW: Operand = number of words (0 to 255)

For TXB/TXW ACCU 3 = number of words (0 to 127)

End address of the source area

ACCU 2 = end address of the source area (20 bits)

End address of the destination area

ACCU 1 = end address of the destination area (20 bits)

The entire source and destination areas must be located in one of the
memory areas listed in Table 9-5 and cannot overlap.

Permitted memory areas

Addresses Memory area

0 0000H to C FFFFH
User memory:
16-bit area (dependent on memory
configuration)

Table 9-4 Operations for field transfer

Table 9-5 Memory areas permitted for TNW, TXB and TXW

9

Transferring Memory Blocks

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 19

Addresses Memory area

Table 9-5 continued:

E 8000H to E 9FFFH

E B000H to E FBFFH

E A000H to E AFFFH

E FC00H to E FFFFH

F 0000H to F FFFFH

System RAM:
System data, 16 bits

System data (RI/RS, timers, counters etc.),
16 bits
S flags, 8 bits, low byte in 16-bit word
(High byte not defined)

Flags, process image, 8 bits
(High byte = FFH)

I/Os, 8/16 bits

(Refer also to Chapter 8)

Sequence The field transfer is made in descending order, i.e. it begins with the
highest address of the source area (= end address) and ends with the
lowest.

TNW, TXB and TXW
operations

The operations TNW, TXB and TXW are long-running STEP 5
operations which can only be interrupted by POWER DOWN and
QVZ.

Special features

Interruptions
by POWER DOWN

If one of the operations is interrupted by a power failure (NAU)
followed by a warm restart, the operation does not resume at the point
at which it was interrupted but from the beginning again.

Interruptions by QVZ If a timeout (QVZ) occurs during the transfer, the operation is
interrupted and the appropriate error OB called.
The error address is the address at which an error occurred (refer to
Section 5.6.3).

Transferring Memory Blocks

CPU 948 Programming Guide

9 - 20 C79000-B8576-C856-03

ADF during execution If an addressing error (ADF) occurs once or more than once during the
transfer, all the part fields are first transferred and then OB 25 is called
before the next operation is executed.

Example

TXB and TXW between 8 and 16-bit memory areas:

Transferring bytes 1 to 6 from an 8-bit to a 16-bit area:

:L <field length in words> e.g. :L KH 0003
:L <source address> :L DH EFC10
:ENT :ENT
:L <destination address> :L DH EF208
:TXB :TXB

Transferring bytes 1 to 6 from a 16-bit to an 8-bit area:

:L <field length in words> e.g. :L KH 0003
:L <source address> :L DH EF008
:ENT :ENT
:L <destination address> :L DH EFC10
:TXW :TXW

7 0

Ascending
Addresses

Byte 5

Byte 6 TXB

TXW

Byte 4
Byte 3
Byte 2
Byte 1

Source/
Dest inat ion
Address

15 7 0

Ascending
Addresses

Source/
Dest inat ion
Address

Byte 4

Byte 2

Byte 5Byte 6
Byte 3
Byte 1

8

Fig. 9-7 Transferring memory fields

9

Transferring Memory Blocks

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 21

9.4 Operations with the Base Address Register (BR Register)

Application The base address register (20 bits) allows you to calculate addresses
and use indirect register load and transfer operations without using the
ACCUs.
The memory location whose absolute address is calculated as the sum
of the BR register content plus a constant is accessed.

Absolute address = BR register content + constant

Operations

Operation Operand Function

MBR

ABR

Constant
(0H to
F FFFFH)

Constant
(-32 768 to
+32 767)

Load the BR register with a
20-bit constant

Add a 16-bit constant to the contents
of the BR register

Changing the BR register •• The BR register is retained, when the program is continued in a
different block of the same program execution level due to a
jump statement (’JU FB’/’JC FB’).

•• The BR register is retained after nesting in a different program
execution level.

•• If a different program execution level is called by the system
program, the BR register is set to ’0’ .

Table 9-6 Load and arithmetic operations with the BR register

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

9 - 22 C79000-B8576-C856-03

9.4.1
Operations for
Transfer between Registers

Application You can use the operations described in this section for the fast
exchange of values between the registers ACCU 1 (32 bits), step
address counter (SAC - 20 bits) and BR register (20 bits).

Operations

Operation Operand Function

MAS

MAB

MSA

MSB

MBA

MBS

--

--

--

--

--

Transfer the contents of ACCU 1 to
the STEP address counter (20 bits)

Transfer the contents of ACCU 1 to
the base address register (20 bits)

Transfer the contents of the STEP
address counter (20 bits) to ACCU 1 1)

Transfer the contents of the STEP
address counter (20 bits) to the base
address register (20 bits)

Transfer the contents of the base
address register (20 bits) to ACCU 1 1)

Transfer the contents of the base
address register (20 bits) to the STEP
address counter (20 bits)

1) Bits 220 to 231 are set to ’0’.

The following figure illustrates how the registers are changed by the
operations.

Table 9-7 Register-register operations

9

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 23

9.4.2
Accessing the Local
Memory

Application The following operations allow access to the local memory organized
in words using an absolute memory address. The absolute address is
the sum of the contents of the BR register and the 16-bit constant
contained in the operation (-32768 to +32767).

Operations

Operation Operand Description

LRW

LRD

Constant
(-32768 to
+32767)

Constant
(-32768 to
+32767)

add the specified constant to content 1)

of the BR register and load the word
addressed in this way in ACCU-1-L

add the specified constant to content 1)

of the BR register and load the double
word addressed in this way in ACCU 1

TRW Constant
(-32768 to
+32767)

add the specified constant to content
of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way

31

xx 00 00.xx

20 19 0

ACCU 1

MAS, MAB MSA, MBA

BR,
SAC

BR,
SAC

ACCU 1

31 20 19 0

19 0 19 0

MSB MBS

SAC

BR BR

SAC

19 0

19 0 19 0

19 0

Fig. 9-8 Transfer operations from one register to another

Table 9-8 Operations for accessing the local memory

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

9 - 24 C79000-B8576-C856-03

Operation Operand Description

Table 9-8 continued:

TRD Constant
(-32768 to
+32767)

add the specified constant to content
of the BR register and transfer the
content of ACCU 1 to the double word
addressed in this way

1) ACCU 2 new = ACCU 1old

Error reaction If the calculated address of the memory location is not between
0 0000H and E FFFFH, the CPU detects a load/transfer error (TRAF)
and calls OB 32. If OB 32 is not loaded, the CPU changes to the stop
mode with the error code TRAF (ISTACK).

9.4.3
Accessing the Global
Memory

Application This section describes the operations you can use with absolute
memory addresses to access the global memory organized in bytes or
words. The absolute address is the sum of the contents of the BR
register and the constants contained in the operation (-32768 to 32767).

Testing and setting an
"occupied" register in
the global area

You can control access of individual CPUs to commonly used memory
areas by using an "occupied" register. An "occupied" register is assigned
to each commonly used memory area. Each participating CPU must test
this register before accessing the memory area. The "occupied" register
contains either the value ’0’ or the slot ID of the CPU that is presently
using the memory area. When the CPU is finished using the memory
area, it writes ’0’ to the "occupied" register to re-enable the memory
area. (Note the explanations for the operations "set semaphore/SED" and
"enable semaphore/SEE" in Section 3.5.5.)

The TSG operation enables testing and setting of "occupied" registers.

Operation Operand Description

TSG -32768 to
+32767

Add the specified constant to the content
of the BR register and test and set the
location addressed in this way.

9

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 25

Sequence The location used is the low byte of the word addressed by the BR
register plus the constant. If the content of the low byte is ’0’, the TSG
operation enters the slot ID in the location.

Testing (reading) and possible occupation of the location (writing)
form a program unit that cannot be interrupted.

Result You can evaluate the result of the test using condition codes CC 0 and
CC 1:

CC 1 CC 0 Description

0

1

0

0

0

1

The "occupied" register contains ’0’. The CPU
enters its own slot ID.

The slot ID of the CPU is already entered
in the "occupied" register.

The "occupied" register contains a
different slot ID.

Note
All CPUs that require synchronized access to a common global
memory area must use the TSG operation.

Error reaction The absolute address must be between F 0000H and F FFFFH. If the
absolute addresses are not in the range shown, the CPU detects a
transfer error (TRAF) and calls OB 32. If OB 32 is not loaded, the
CPU changes to the STOP mode with the error code TRAF (ISTACK).

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

9 - 26 C79000-B8576-C856-03

Load and transfer
operations on the
global memory organized
in bytes

Operation Operand Description

LY GB

LY GW

LY GD

TY GB

TY GW

TY GD

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

add the specified constant to content
of the BR register and load the byte
addressed in this way in ACCU-1-LL 1)

3)

add the specified constant to content
of the BR register and load the word
addressed in this way in ACCU-1-L 2) 3)

add the specified constant to content
of the BR register and load the double
word addressed in this way in ACCU 13)

add the specified constant to content
of the BR register and transfer the
content of ACCU-1-LL to the byte
addressed in this way

add the specified constant to content
of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way

add the specified constant to content
of the BR register and transfer the
content of ACCU 1 to the double
word addressed in this way

1) ACCU-1-LH and ACCU-1-H are set to ’0’.

2) ACCU-1-H is set to ’0’.

3) ACCU 2 new : = ACCU 1old

Error reaction The range of absolute addresses for the load and transfer operations
for the global memory organized in bytes

•• between F 0000H and F FFFFH (LY GB, TY GB),

•• between F 0000H and F FFFEH (LY GW, TY GW)

or

•• between F 0000H and F FFFCH (LY GD, TY GD).

Table 9-9 Operations for access to the global memory organized
in bytes

9

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 27

If the absolute addresses are not in the range shown, the CPU detects a
load/transfer error (TRAF) and calls OB 32. If OB 32 is not loaded,
the CPU changes to the STOP mode with the error code TRAF
(ISTACK).

Load and transfer
operations for the
global memory
organized in words

Operation Operand Description

LW GW

LW GD

TW GW

TW GD

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

add the specified constant to content
of the BR register and load the word
addressed in this way in ACCU-1-L 1) 2)

add the specified constant to content
of the BR register and load the double
word addressed in this way in ACCU 1 2)

add the specified constant to content
of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way

add the specified constant to content
of the BR register transfer the
content of ACCU 1 to the double
word addressed in this way

1) ACCU-1-H is set to ’0’.

2) ACCU 2 new : = ACCU 1old

Error reaction The range of absolute addresses must be located

•• between F 0000H and F FFFFH (LW GW, TW GW)

or

•• between F 0000H and F FFFEH (LW GD, TW GD).

If the absolute addresses are not in the range shown, the CPU detects a
load/transfer error (TRAF) and calls OB 32. ACCU 1 contains the
error ID 1A01H. If OB 32 is not loaded, the CPU changes to the
STOP mode with the error code TRAF (ISTACK).

Table 9-10 Operations for access to the global memory organized
in words

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

9 - 28 C79000-B8576-C856-03

9.4.4
Accessing the Dual-Port
RAM Memory

Application With the following operations, you can access pages organized as
bytes or words using an absolute memory address. The absolute
address is the sum of the BR register content and the constant
contained in the operation (-32768 to 32767).

Sequence of page access Between the addresses F F400H to F FBFFH, the global memory area
has a window for accessing one of a maximum of 256 memory areas
called dual-port RAM pages. One dual-port RAM page can occupy a
maximum of 2K addresses and can be organized in either bytes or
words. Before access to the dual-port RAM area, one of the 256 pages
must be selected by entering its number in the select register (page
address register). The procedure of writing to the select register and
then accessing the dual-port RAM area cannot be interrupted.

Before you can access the dual-port RAM area (load/transfer), you must
select one of the 256 dual-port RAM pages. Do this by putting the
number of the dual-port RAM page that you want to open into
ACCU-1-L. Use the ACR operation to enter this number into the
CPU-internal dual-port RAM register. All dual-port RAM operations
that follow ACR write the contents of the dual-port RAM register into
the select register of the corresponding modules on the S5 bus before
dual-port RAM access.

Changing the page register •• The page register is retained when another block is called.

•• If the page register is changed in a block, its value is retained
when the program returns to the calling block at the end of the
block.

•• The page register is retained after nesting in another program
execution level.

9

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 29

Opening a dual-port RAM
page

Operation Parameter Description

ACR Open the dual-port RAM page whose
number is located in ACCU-1-L ,

permissible values: 0 to 255

The dual-port RAM page number must be between 0 and 255. If it is not,
the CPU detects a substitution error (SUF) and calls OB 27. If OB 27 is
not loaded, the CPU changes to the STOP mode.

Testing and setting an
"occupied" register in
the dual-port RAM area

You can control access of individual CPUs to commonly used memory
areas by using an "occupied" register. An "occupied" register is assigned
to each commonly used memory area. Each participating CPU must test
this register before accessing the memory area. The "occupied" register
contains either the value ’0’ or the slot ID of the CPU that is presently
using the memory area. When the CPU is finished using the memory
area, it writes ’0’ to the "occupied" register to re-enable the memory
area. (Note the explanations of the operations "set semaphore/SED" and
"enable semaphore/SEE" in Section 3.5.5.)

The TSC operation handles the testing and setting of a location on the
open page.

Operation Operand Description

TSC -32 768 to
+32 767

Add the specified constant to the content
of the BR register and test and set the
location addressed in this way on the
open page.

Sequence The low byte of the word addressed by the sum of the BR register +
constant is used as the "occupied" register. If the low byte contains
’0’, the TSC operation enters the slot ID of the CPU in the "occupied"
register.

Testing (reading) and possible occupation (writing) form a program
unit that cannot be interrupted.

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

9 - 30 C79000-B8576-C856-03

Result You can evaluate the result of the TSC operation using condition
codes CC 0 and CC 1:

CC 1 CC 0 Description

0

1

0

0

0

1

The "occupied" register contains ’0’. The CPU
enters its own slot ID.

The slot ID of the CPU is already entered in
the "occupied" register.

The "occupied" register contains a
different slot ID.

Note
All CPUs that require synchronized access to a common global
memory area (dual-port RAM area) must use the TSC operation.

Error reaction The location must be on the corresponding module and on the
common page between F F400H and F FBFFH. If this is not the case,
the CPU recognizes a transfer error (TRAF) and calls OB 32. If
OB 32 is not loaded, the CPU changes to the stop mode with the error
code TRAF (ISTACK).

Load and transfer
operations for the
dual-port RAM memory
organized in bytes

Operation Operand Description

LY CB

LY CW

LY CD

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

add the specified constant to content
of the BR register and load the byte
addressed in this way in the open page
into ACCU-1-LL 1) 3)

add the specified constant to content
of the BR register and load the word
addressed in this way in the open page
into ACCU-1-L 2) 3)

add the specified constant to content
of the BR register and load the double
word addressed in this way in the open
page into ACCU 1 3)

Table 9-11 Operations for access to pages organized in bytes

9

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 31

Operation Operand Description

Table 9-11 continued:

TY CB

TY CW

TY CD

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

add the specified constant to content
of the BR register and transfer the
content of ACCU-1-LL to the byte
addressed in this way in the open page

add the specified constant to content
of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way in the open
page

add the specified constant to content
of the BR register and transfer the
content of ACCU 1 to the double
word addressed in this way in the open
page.

1) ACCU-1-LH and ACCU-1-H are set to ’0’.

2) ACCU-1-H is set to ’0’.

3) ACCU 2 new: = ACCU 1old

Error reaction The range of absolute addresses must be

•• between F F400H and F FBFFH (LY CB, TY CB),

•• between F F400H and F FBFEH (LY CW, TY CW)

or

•• between F F400H and F FBFCH (LY CD, TY CD).

If the absolute addresses are not in the range shown, the CPU detects a
load/transfer error (TRAF) and calls OB 32. If OB 32 is not loaded,
the CPU changes to the STOP mode with the error bit TRAF
(ISTACK).

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

9 - 32 C79000-B8576-C856-03

Load and transfer
operations for the dual-port
RAM memory
organized in words

Operation Operand Description

LW CW

LW CD

TW CW

TW CD

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

add the specified constant to content
of the BR register and load the word
addressed in this way in the open page
into ACCU-1-L 1)

add the specified constant to content
of the BR register and load the double
word in the page addessed in this way in
the open page into ACCU 1 2)

add the specified constant to content
of the BR register and transfer the
contents of ACCU-1-L to the word in
the open page addressed in this way.

add the specified constant to content
of the BR register and transfer the
contents of ACCU 1 to the double word
in the open page addressed in this way.

1) ACCU-1-H is set to ’0’.

2) ACCU 2 new: = ACCU 1old

Error reaction The range of absolute addresses must be

•• between F F400H and F FBFFH (LW CW, TW CW)

or

•• between F F400H and F FBFEH (LW CD, TW CD).

If the absolute addresses are not in the range shown, the system
program detects a load/transfer error (TRAF) and calls OB 32. If
OB 32 is not loaded, the CPU changes to the STOP mode with the
error bit TRAF (ISTACK).

Table 9-12 Operations for access to pages organized as words

9

Operations with the Base Address Register (BR Register)

CPU 948 Programming Guide

C79000-B8576-C856-03 9 - 33

Contents of Chapter 10

10.1 Multiprocessor Mode . 10 - 4

10.1.1 When to use the Multiprocessor Mode . 10 - 4
10.1.2 What Communications Mechanisms are Available? . 10 - 4
10.1.3 Exchanging Data via IPC Flags . 10 - 5
10.1.4 Exchanging Data via Handling Blocks . 10 - 8
10.1.5 What needs to be Programmed for the Multiprocessor Mode? 10 - 9
10.1.6 How to Create Data Block DB 1 . 10 - 9
10.1.7 Starting up in the Multiprocessor Mode . 10 - 13
10.1.8 Test Mode . 10 - 14

10.2 Multiprocessor Communication . 10 - 15

10.2.1 Introduction. 10 - 15
10.2.2 How the Transmitter and Receiver are Identified . 10 - 16
10.2.3 Why Data is Buffered. 10 - 17
10.2.4 How the Buffer is Processed and Managed. 10 - 18
10.2.5 System Start-Up . 10 - 21
10.2.6 Calling Communication OBs . 10 - 22
10.2.7 How to Assign Parameters to Communication OBs . 10 - 23
10.2.8 How to Evaluate the Output Parameters . 10 - 24

10.3 Runtimes of the Communication OBs . 10 - 31

10.4 INITIALIZE Function (OB 200) . 10 - 33

10.4.1 Function. 10 - 33
10.4.2 Call Parameters . 10 - 35
10.4.3 Input Parameters . 10 - 35
10.4.4 Output Parameters. 10 - 38

10Multiprocessor Mode and
Communication in the S5-155U

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 1

10.5 SEND Function (OB 202) . 10 - 40

10.5.1 Function. 10 - 40
10.5.2 Call Parameters . 10 - 40
10.5.3 Input Parameters . 10 - 40
10.5.4 Output Parameters. 10 - 42

10.6 SEND TEST Function (OB 203) . 10 - 45

10.6.1 Function. 10 - 45
10.6.2 Call Parameters . 10 - 45
10.6.3 Input Parameters . 10 - 45
10.6.4 Output Parameters. 10 - 45

10.7 RECEIVE Function (OB 204) . 10 - 47

10.7.1 Function. 10 - 47
10.7.2 Call Parameters . 10 - 47
10.7.3 Input Parameters . 10 - 47
10.7.4 Output Parameters. 10 - 48

10.8 RECEIVE TEST Function (OB 205). 10 - 51

10.8.1 Function. 10 - 51
10.8.2 Call Parameters . 10 - 51
10.8.3 Input Parameters . 10 - 51
10.8.4 Output Parameters. 10 - 51

10.9 Applications . 10 - 53

10.9.1 Calling the Special Function OB using Function Blocks . 10 - 53
Programming function blocks. 10 - 54

10.9.2 Transferring Data Blocks . 10 - 60
Programming FB 110 . 10 - 60
Application of FB 110. 10 - 64

10.9.3 Extending the IPC Flag Area . 10 - 66
The problem . 10 - 66
The solution. 10 - 67
Data structure. 10 - 67
Structure of the link list . 10 - 68
Program structure . 10 - 70
Programming function blocks. 10 - 72
Application example . 10 - 77

CPU 948 Programming Guide

10 - 2 C79000-B8576-C857-03

10Multiprocessor Mode and
Communication in the S5-155U

At the beginning of this chapter, you will see when you can use the
multiprocessor mode and which data exchange is possible in this
mode. The chapter provides you with information about programming
for multiprocessor operation (Section 10.1).
The second part of the chapter provides you with detailed instructions
and examples of exchanging larger amounts of data in the
multiprocessor mode (multiprocessor communication Sections 10.2 to
10.9).

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 3

10.1 Multiprocessor Mode

Definitions of terms The S5-155U is set up for multiprocessor operation as soon as you
plug in a coordinator module, regardless of how many CPUs or
CP/IPs are plugged in. The CPUs must be plugged in without any
gaps between them.

10.1.1
When to use the
Multiprocessor Mode

•• If your user program is too large for one CPU and there is not
enough memory, distribute your program on several CPUs.

•• When a particular part of your system has to be processed
especially fast, separate the appropriate program part from the total
program and run it on its own fast CPU.

•• When your system consists of several parts that you can separate
easily and control independently, let CPU 1 process system part 1,
CPU 2 process system part 2, etc.

For more information on multiprocessing, read the information in your
system manual. This will help you to decide which CPUs are best suited
for your problem.

10.1.2
What Communications
Mechanisms are Available?

•• "Interprocessor communication flags" are available for cyclic
exchange of binary data between CPUs (CPU 948, CPU 946/947,
CPU 928B, CPU 928 and CPU 922) or between CPUs and
communications processors (CPs).

•• For the exchange of large amounts of data (e.g., entire data blocks)
between the CPU 948, CPU 946/947, CPU 928B, CPU 928 and
CPU 922 you are supported by the "special functions for
multiprocessing" OB 200 to OB 205 (for more information refer to
Section 10.2).

•• "Handling blocks" are available for communication with
intelligent input/output modules (IPs) and with CPs (These
handling blocks must be ordered separately).

Multiprocessor Mode

CPU 948 Programming Guide

10 - 4 C79000-B8576-C857-03

10.1.3
Exchanging Data via IPC
Flags

Interprocessor communication (IPC) flags are available for cyclic
exchange of binary data. They are used mainly for transmitting
information byte by byte.

Data is transferred as follows:

CPU(s) ↔ CPU(s)

CPU(s) ↔ Communications processor(s)

The system program transfers IPC flags once per cycle. For data
transfer between CPUs, the IPC flags are buffered physically on the
coordinator.

IPC flags are bytes that are transferred. You define them in DB 1 for
each CPU as IPC input or output flags. If, for example, you have
defined flag byte 50 on the CPU 1 as an IPC output flag byte, its
signal state is transferred cyclically via the coordinator to the CPU on
which the flag byte F 50 is defined as an IPC input flag byte.

Note
There is no error message when the IPC flag byte exists
physically but is only written by one CPU and never read out and
vice-versa.

Memory area With the CPU 948 the memory area for the IPC flags in the
coordinator and the CPs covers the addresses F F200H to F F2FFH.
On a CPU/communications processor there are 256 available IPC flag
bytes.

Jumper settings To avoid double assignments you must group the 256 available IPC
flag bytes on the COR or CP modules. Fields of 32 bytes can be
enabled or disabled (your system manual contains information about
setting the jumpers).

10

Multiprocessor Mode

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 5

Example

Note
The only flag bytes that you can specify as IPC flags are the ones
enabled on the coordinator or on the CP(s). S flags cannot be
used as IPC flags!

A flag byte that is defined on one or more CPUs as an IPC input
flag byte must be defined as an IPC output flag byte on one other
CPU or CP. An IPC output flag byte is only allowed on one CPU,
but this may be used as an IPC input flag in all other CPUs in the
rack.

If you have flag bytes that you have not defined as IPC flags in a
CPU, you can use them as normal flags!

In DB 1, indicate only the number of IPC flag bytes that you actually
need: the smaller the number of IPC flag bytes, the shorter the
transfer time!

CPU 1

IPC output f lags:
FY 96 to FY 119

IPC input f lags:
FY 120 to FY 125

CPU 2

Coordinator

IPC output f lags:
FY 120 to FY 125

IPC input f lags:
FY 96 to FY 119

Wri te

Read

Wri te

Read

Enabled area
per jumpers:

IPC flag bytes
FY 96 to FY 127

Fig. 10-1 Transferring IPC flags in the multiprocessor mode

Multiprocessor Mode

CPU 948 Programming Guide

10 - 6 C79000-B8576-C857-03

Data exchange between
CPUs and communication
processors

If you want to exchange data between one CPU and one CP, you must
enable the necessary number of IPC flags on the CP. You have 256
bytes available that you can divide into groups of 32 bytes.

If you want to transfer data from one CPU to several CPs, the areas you
enable in the CPs and the coordinator must not overlap, otherwise the
same address is assigned twice.

If you want to use IPC flags simultaneously on the coordinator and in
one or more CPs, you must also prevent double addressing as follows:
Divide the IPC flags among the coordinator and the CPs in groups of
32 bytes. Remove jumpers on the coordinator to mask the IPC flag
bytes that you want to use in the CP (refer to the system manual).

You can define a specific flag byte as an IPC output flag in one CPU
only. However, you can define a specific flag byte as in IPC input flag in
several CPUs.

Example

CPU 1

Enabled area:

IPC flag bytes
FY 96 to FY 127

Enabled area:

IPC flag bytes
FY 192 to FY 223

CP 1

CP 2

CP 1

CP 2

CP 1

CP 2

IPC output f lags:
CP 1: FY 96 to FY 119
CP 2: FY 201 to FY 205

IPC input f lags:
CP 1: FY 120 to FY 125
CP 2: FY 195 to FY 200

Fig. 10-2 Example of IPC flag areas on the CPs

10

Multiprocessor Mode

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 7

Transmitting IPC flags in
multiprocessor operation

At the end of each program cycle, along with the updating of the
process image, the CPU transmits the IPC flags specified in DB 1
when the coordinator signals the CPU that it can access the S5 bus.

The coordinator allocates the bus enable signal to each CPU in
sequence. When a CPU has access to the S5 bus, it can transmit only
one byte. Because of this interleaved transmission, related (byte
groups) IPC flag information can be separated and subsequently
processed with old or incorrect values.

If you want to transfer information that takes up more than one byte,
you can prevent corruption of data by setting a parameter in extended
data block DX 0. This parameter uses semaphores to ensure that all
IPC flags specified in DB 1 are transferred in groups (see Chapter 7).
While one CPU is transmitting IPC flags, another CPU cannot
interrupt it. Because the next CPU has to wait to transmit its data,
cyclic program processing of this CPU is delayed accordingly.
Under certain circumstances, the setting you make in DX 0 can
increase the cycle time considerably.

Multiprocessor
communication

For transferring data blocks or more exactly fields of data with a size
of max. 64 byte (= 32 data words), the following special functions are
integrated in the CPU:

•• OB 200: INITIALIZE: preassign

•• OB 202: SEND: send a data field

•• OB 203: SEND TEST: test sending capacity

•• OB 204: RECEIVE: receive a data field

•• OB 205: RECEIVE TEST: test receiving capacity

10.1.4
Exchanging Data via
Handling Blocks

Handling blocks are capable of multiprocessing. A special parameter
assignment for the multiprocessor mode is not necessary. For more
information on handling blocks refer to the appropriate manual.

Multiprocessor Mode

CPU 948 Programming Guide

10 - 8 C79000-B8576-C857-03

10.1.5
What needs to be
Programmed for the
Multiprocessor Mode?

•• To allow the coordinator to coordinate access by the individual
CPUs to the I/O area, you must program data block DB 1. Even
if the CPU does not use I/Os or the IPC flags, a (empty) DB 1
must exist (for more information refer to Section 10.1.6)

•• Data block DX 0 must also exist. Program this so that process
interrupts via input byte IB 0 are disabled and the system interrupts
are activated.

10.1.6
How to Create Data Block
DB 1

For multiprocessing, you must program DB 1 for each CPU. This
establishes the inputs, outputs (byte addresses 0 to 127) and IPC
input and output flags with which each CPU works.

Note
The system program recognizes only the inputs and outputs
defined in DB 1 when it updates the process image!

Inputting or changing DB 1 •• Create/modify DB 1 on the PG using the DB 1 screen form

or

•• by editing DB 1 as a data block on the PG and then transferring it
to the CPU.

Note
The CPU accepts the entered or changed DB 1 only after a cold
restart!

Using the DB 1 screen form 1. Select the editor for the DB 1 screen form on your PG
(refer to Fig. 10-3).

2. Enter the required values for "digital inputs" etc. as decimal
numbers.

10

Multiprocessor Mode

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 9

3. Enter the values by pressing the enter key on the PG.
The PG then generates DB 1.

4. Transfer DB 1 to the CPU.

Note
Entry of the timer field length is ignored! This parameter must be
specified in DX 0 (see Chapter 7).

Example of the DB 1 screen
form

Editing DB 1 as a data block 1. Write the DB 1 start ID in data words 0, 1 and 2:

DW 0: KH = 4D41 (’M’ ’A’)
DW 1: KH = 534B (’S’ ’K’)
DW 2: KH = 3031 (’0’ ’1’)

DB 1

0, 1, 2, 3, 7, 10,

2, 4, 12,0,

50, 51, 60,

70, 72,100,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

I/O assignment:

Digital inputs:

Digital outputs:

IPC flag inputs:

IPC flag outputs:

Timer field length:

Fig. 10-3 PG screen form for generating DB 1

Multiprocessor Mode

CPU 948 Programming Guide

10 - 10 C79000-B8576-C857-03

2. Type in the individual operand areas (from data word 3 onwards).
Before each operand area, you must specify an ID. The possible ID
words are as follows:

ID word for digital inputs KH = DE00
ID word for digital outputs KH = DA00
ID word for IPC input flags KH = CE00
ID word for IPC output flags KH = CA00

After each ID word, use fixed-point format to list the numbers of the
inputs and outputs used.

3. Complete the entries with the DB 1 end ID "KH = EEEE" and
transfer DB 1 to the CPU.

Note
You can make the DB 1 entries in any order. Remember that the
process image of the inputs and outputs is updated in the reverse
order to which you store the addresses in DB 1 (i.e. the last entry
is updated first).
Multiple entries of the same bytes (e.g., for test purposes) are
possible. The system program makes multiple updates of the process
images of bytes that are entered more than once.

Example of editing DB 1

 DB1 FD: CPU948ST.S5D

 0: KH = 4D41; DW 0-2:
 1: KH = 534B; Start ID
 2: KH = 3031; for DB 1
 3: KH = DE00; ID word for digital inputs
 4: KF = +00000; Input byte 0
 5: KF = +00001; Input byte 1
 6: KF = +00002; Input byte 2
 7: KF = +00003; Input byte 3
 8: KF = +00007; .
 9: KF = +00010; Input byte 10
10: KH = DA00; ID word for digital outputs
11: KF = +00000; Output byte 0
12: KF = +00002; Output byte 2
13: KF = +00004; .
14: KF = +00012; Output byte 12
15: KH = CE00; ID word for IPC flag inputs
16: KF = +00050; Flag byte 50
17: KF = +00051; .
18: KF = +00060; Flag byte 60
19: KH = CA00; ID word for IPC flag outputs
20: KF = +00070; Flag byte 70
21: KF = +00072; .
22: KF = +00100; Flag byte 100
23: KH = EEEE; End ID
24:

10

Multiprocessor Mode

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 11

Entering DB 1 The system program adopts DB 1 during a cold restart. The system
program checks to see if the inputs and outputs or IPC flags indicated
in DB 1 exist in their corresponding modules. If they are not present
there, a DB 1 error causes the CPU to go into the STOP mode and the
STOP LED flashes slowly. The CPU no longer processes your
program.

After you program DB 1 and the CPU accepts it during a cold restart,
the following rules apply:

•• Only the inputs and outputs indicated in DB 1 can access peripheral
modules via the process images (L.../T... ...IB, ...IW, ...ID, ...QB,
...QW, ...QD operations and logic operations with inputs and outputs).
Access to process image addresses not entered in DB 1 cause
addressing errors.

•• You can load peripheral bytes directly by bypassing the process
image using the L PB/L PY, L PW, L OY, L OW operations for all
acknowledging inputs, regardless of entries in DB 1.

•• You can transfer directly (T PB/T PY, T PW) to bytes 0 to 127 only
for the outputs indicated in DB 1. This is because the process image is
also written to during direct transfer. Writing to I/O addresses not
entered in DB 1 causes an addressing error.

•• Transfer without a process image :
Direct transfer to byte addresses >127 is possible regardless of the
entries in DB 1.
Direct transfer of byte addresses of the extended I/Os (T OY,
T OW) is also possible regardless of the entries in DB 1.

Multiprocessor Mode

CPU 948 Programming Guide

10 - 12 C79000-B8576-C857-03

10.1.7
Starting up in the
Multiprocessor Mode

You can start the coordinator for multiprocessing in one of the
following ways:

Initial status: The RUN/STOP switch of each CPU is
 in the RUN position. The RUN/STOP switch

on the coordinator is in the STOP position.

Handling: Move the RUN/STOP switch on the coordinator
from STOP to RUN. (Starting the S5-155U in
multiprocessor operation simply by starting the
coordinator is possible only if the coordinator
itself caused the controller to change to the STOP
mode).

or:

Initial status: The RUN/STOP switch of each CPU is in
the RUN position as well as that of the
coordinator.

Handling: Use the PG START function to start the
CPU that caused the STOP in the required
restart type.

Starting up individual CPUs The restart type that each CPU now uses depends on what took place
while the CPU was in the STOP mode. Some CPUs need MANUAL
WARM RESTART, others, a COLD RESTART.

If the CPU settings were not changed in that time, execute a manual
warm restart.

Note
Due to the various restart types, incorrect signal statuses can be
transferred from one CPU to another via the IPC flags. This could
happen if the controller was in cycle prior to entering the STOP
mode. Prevent this by programming the start-up organization
blocks OB 20, OB 21 and OB 22 appropriately.

You can call special function block OB 223 to check whether the
start-up types of all the CPUs are the same (refer to Chapter 6).

10

Multiprocessor Mode

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 13

Power failure/return of power When power is shut off and then restored, the coordinator starts
automatically. In this case, all CPUs execute an AUTOMATIC
WARM RESTART or an AUTOMATIC COLD RESTART ,
depending on the setting in DX 0 (see Chapter 7).

The start-up of the individual CPUs in multiprocessor operation is
synchronized. Each CPU waits until all others have ended their
initialization phase. Then they begin their cycle simultaneously.
However, you can use a setting in DX 0 to cancel start-up
synchronization.

10.1.8
Test Mode Proceed as follows:

1. Make sure that the "test mode" function is enabled on the
coordinator.

2. Switch the mode selector on the COR from STOP to TEST.
The BASP LED goes off.

3. Go through a COLD RESTART or WARM RESTART on the
CPUs you want to change to the RUN mode.

Special features of test
operation

In test operation, you can run CPUs individually or in any combination.
CPUs in the STOP mode cannot disable the entire PLC.

Start-up of individual CPUs is not synchronized in test operation. The
CPUs begin their cyclic operation at different times according to the
length of the start-up organization blocks OB 20, OB 21 or OB 22.

If an error occurs in one CPU during test operation, only that CPU goes
into the STOP mode. The error does not affect the other CPUs.

Warning
Since no CPU can output the BASP signal in case of an error
in the test mode, the test mode must be switched inactive after
successful installation to avoid a critical or even dangerous
situation arising in the system.

Multiprocessor Mode

CPU 948 Programming Guide

10 - 14 C79000-B8576-C857-03

10.2 Multiprocessor Communication

Definition Multiprocessor communication means the exchange of larger
amounts of data (data blocks) between CPUs operating in the
multiprocessor mode. The COR C is necessary for multiprocessor
communication.

10.2.1
Introduction To transfer data blocks, or to be more precise, blocks of data with a

maximum length of 64 bytes (= 32 data words), you can use the
following special functions that are integrated in the CPU:

•• OB 200: INITIALIZE: preassign

•• OB 202: SEND: send a field of data

•• OB 203: SEND TEST: test sending capacity

•• OB 204: RECEIVE: receive a data field

•• OB 205: RECEIVE TEST: test receiving capacity

The special function OBs, OB 200 and OB 202 to OB 205 are simply
called "communication OBs" in the following sections.

Required knowledge To use these functions, you only require basic knowledge of the
STEP 5 programming language and the way in which SIMATIC S5
programmable controllers operate. You can obtain this basic
information from the publications listed in the Further Reading.

Basic sequence To transfer data, you must activate the SEND function on the
transmitting CPU and the RECEIVE function on the receiving CPU.
The data words of a DB or DX data block located in the transmitting
CPU are transported via the coordinator 923C to the receiving CPU
one after the other and written to the DB or DX data block with the
same number and under the same data word address; i.e. this
represents a "1:1" copy operation.

Data fields The amount of data that can be transferred with the SEND and
RECEIVE functions is normally 32 words.
If the block length (without header) is not a multiple of 32 words, the
last field of data to be transferred is an exception and is less than 32
words long.

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 15

The data block in the receiving CPU can be longer or shorter than the
data block to be sent. It is, however, important that the data words
transferred by the SEND function exist in the receiving block;
otherwise the RECEIVE function signals an error.

Example:

10.2.2
How the Transmitter and
Receiver are Identified

Each field of data exchanged between the CPUs is marked with a
number to indicate the source and destination CPU.
The CPUs are numbered so that the leftmost CPU has the number 1
and each subsequent CPU to the right has a number increased by 1.

Example

S5-135U/155U:

Data to be
sent in the
transmitting
CPU:

Data
received
in the
receiving
CPU:

Data block: DB 17 DB 17

Data word address: DW 32 to DW 63 DW 32 to DW 63

C
O
R

C

C
P
U

1

C
P
U

2

C
P
U

3

C
P

C
P

I
M

. .

. .

I QI I Q

Fig. 10-4 Sender/receiver identification

CPU 948 Programming Guide

10 - 16 C79000-B8576-C857-03

10.2.3
Why Data is Buffered Generally, the multiprocessor mode is used to distribute tasks on

several CPUs. Since the tasks are not identical and the performance of
the CPUs involved can be different, the program execution of the
individual CPs in the multiprocessor mode is always asynchronous.
This means that the data sent by a CPU cannot always be received
immediately by another CPU.

For this reason, the data to be transferred is buffered on the
coordinator 923 C. The number of the sender and receiver are always
included along with the data.

Example

Data transfer from CPU 3 to CPU 2:

1st step:

CPU 3 buffers its data on the coordinator.

2nd step:

When CPU 2 is ready to receive, it copies the data from the coordinator
buffer to the destination DB.

C
O
R

C

C
P
U

1

C
P
U

2

C
P
U

3

C
P

C
P I

M

. .

. .

I

SEND, parameter of receiv ing CPU = 2

QI I Q

C
O
R

C

C
P
U

1

C
P
U

2

C
P
U

3

C
P

C
P I

M

. .

. .

I

RECEIVE, parameter of t ransmit t ing CPU = 3

QI I Q

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 17

10.2.4
How the Buffer is
Processed and Managed

Principle The buffer is based on the FIFO principle (first in - first out, queue
principle). The data is received in the order in which it is sent. This
applies to each individual link (identified by the transmitting and
receiving CPU) and is independent of other links.

Data protection The buffer is battery-backed; this means that the "automatic warm
restart following a power down" is possible without any restrictions. A
loss of power during a data transfer does not cause any loss of data in
the programmable controller.

Management The coordinator 923 C has a memory capacity of 48 data fields each
with a fixed length of 32 words. The INITIALIZE function assigns
these fields to individual CPU links.
Each memory field can receive exactly one field of data. The length
of the data can be from 1 data word to 32 data words. A data field is
entered in a memory field by a SEND function and read out again by a
RECEIVE function.
The number of memory fields assigned to a link is directly related to the
parameters for the transmitting capacity (SEND, SEND TEST function)
and receiving capacity (RECEIVE, RECEIVE TEST function).

The transmitting capacity indicates how many of the memory fields
reserved for a link are free at any particular time.

The receiving capacity indicates how many of the memory fields
reserved for a link are occupied at any particular time.

The sum of the transmitting and receiving capacity is always equal to
the number of memory fields reserved for a link.

CPU 948 Programming Guide

10 - 18 C79000-B8576-C857-03

Example

Occupation of the buffer by a link

The link between CPU 3 and CPU 2 is initialized. The link is assigned seven
memory fields in the buffer of the coordinator. Following this, the data
transfer shown below would be possible.

Sending/receiving n data fields means that the corresponding functions are
called n times one after the other.

To simplify the representation, at any one time, data can either be sent or
received in this example.
It is, however, possible and useful to transmit (CPU 3) and receive (CPU 2)
simultaneously ("Parallel processing in a multiprocessor programmable
controller"). In the example, fields H and I are received while fields K
and L are sent.

The example illustrates the queue organization of the buffer: the fields of
data sent first (A,B,C...) are received first (A,B,C...).

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

Transmitter: CPU 3

initialize

0

0

send
field A

send 4 fields
B, C, D, E

send 4 fields
F, G, H, I

send 2 fields
K, L

Time

receive
fields A, B

receive
fields C, D,
E, F, G

receive
fields H, I

receive
fields K, L

Transmitting capacity
(no. of free
memory fields)

Receiving capacity
(no. of free
memory fields)

6 2

5

7 7

1

4

3 7 2 2

5 5

Receiver: CPU 2

Fig. 10-5 Example of the occupation of the COR buffer

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 19

Summary Buffering data on the coordinator COR 923C allows the asynchronous
operation of transmitting and receiving CPUs and compensates for
their different processing speeds.

Since the capacity of the buffer is limited, the receiver should check
"often" and "regularly" whether there are data in the buffer (RECEIVE
TEST function, receiving capacity > 0) and should attempt to fetch
stored data (RECEIVE function). Ideally, the RECEIVE function
should be repeated until the receiving capacity is zero. This means that
the transmitted data are not buffered for a longer period of time and
that the receiver always has the current data. This also means that
memory fields remain free (the transmitting capacity is increased) and
prevents the sender from being blocked (i.e. when the transmitting
capacity is zero).

Note
A receiving capacity of zero represents the ideal state (i.e. all
transmitted data have been fetched by the receiver), on the other
hand a transmitting capacity of zero indicates incorrect planning,
as follows:

- the SEND function is called too often,

- the RECEIVE function is not called often enough

or

- there are not enough memory fields assigned to the link.
The capacity of the buffer is insufficient to compensate tempo-
rary imbalances in the frequency with which the CPUs trans-
mit and receive data.

CPU 948 Programming Guide

10 - 20 C79000-B8576-C857-03

10.2.5
System Start-Up If you require multiprocessor communication, then all CPUs involved

must go through the same STOP-RUN transition (= RESTART), i.e.
all the CPUs go through a COLD RESTART or all CPUs go through a
WARM RESTART.

You must make sure that the restart of at least all the CPUs involved
in the communication is uniform (see Section 10.1.7), in the
following ways:

•• direct operation (front switch, programmer),

•• parameter assignment (DX 0)

and/or

•• programming (using the special function organization block OB 223
"stop if non-uniform restarts occur in the multiprocessor mode")

COLD RESTART In organization block OB 20 (COLD RESTART) only one CPU must
set up the buffer (in the COR 923C) using the INITIALIZE function.
Any existing data is lost.
Following this, i.e. during the RESTART, you can call the SEND,
SEND TEST, RECEIVE, RECEIVE TEST functions in the individual
CPUs. With appropriate programming, you must make sure that this
only occurs after the buffer in the coordinator has been correctly
initialized.
On completion of the RESTART, i.e. in the RUN mode, the user
program is processed from the beginning, i.e. from the first operation
in OB 1.

WARM RESTART You must not use the INITIALIZE function in the organization blocks
OB 21 (MANUAL WARM RESTART) and OB 22 (AUTOMATIC
WARM RESTART). Calling the SEND, SEND TEST, RECEIVE,
RECEIVE TEST functions can cause problems (refer to the following
sections).

On completion of the WARM RESTART, i.e. in the RUN mode, the
user program is not processed from the start, but from the point at
which it was interrupted. The point of interruption can, for example,
be within the SEND function.

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 21

10.2.6
Calling Communication OBs

Proceed as follows:

1. Call the INITIALIZE function only in the cold restart
organization block OB 20 on one CPU.

2. Call the SEND, SEND TEST, RECEIVE, RECEIVE TEST
functions either only within the cyclic program or only within the
time-driven program.

Double call Depending on the assignment of parameters in DX 0 ("interrupts at
operation boundaries"), and the type of program execution (WARM
RESTART, interrupt handling, e.g. OB 26 for cycle time error) it is
possible that one of the functions INITIALIZE, SEND, SEND TEST,
RECEIVE and RECEIVE TEST can be interrupted.
If a user interface inserted at the point of interruption also contains one
of the functions SEND, SEND TEST, RECEIVE and RECEIVE
TEST an illegal call (double call) is recognized and an error is
signalled (error number 67, Section 10.2.8).

Parallel processing Once you have completed the assignment of the buffer (INITIALIZE
function), you can execute the functions SEND, SEND TEST,
RECEIVE and RECEIVE TEST in any combination and with any
parameter assignment in all the CPUs simultaneously and parallel to
each other.

Taking a single link (e.g. from CPU 2 to CPU 3) it is possible to
execute the SEND function (CPU 2) and the RECEIVE function
(CPU 3) simultaneously. While CPU 2 is sending data fields to the
coordinator, CPU 3 can already receive (fetch) buffered data fileds
from the coordinator.

Areas occupied The communication OBs do not require a working area (for buffering
variables) and do not call data blocks. They do, of course, access areas
containing parameters, although only the parameters marked as output
parameters are modified.

CPU 948 Programming Guide

10 - 22 C79000-B8576-C857-03

Results bits The results bits (CC 1/CC 0, RLO etc.) are influenced by the
communication OBs. For more detailed information refer to Section
10.2.8.

Changes in the ACCUs •• CPU 922, CPU 928,
CPU 928B: The contents of ACCU 1 to ACCU 4 and the

contents of the registers are not affected by
the communication OBs.

•• CPU 946/947,
CPU 948: The contents of all registers and ACCU 1, 2

and 3 remain the same, only the contents of
ACCU 4 are affected.

10.2.7
How to Assign Parameters
to Communication OBs The communication OBs have the following types of parameter:

•• input parameters,

•• output parameters

and

•• call parameters.

Input and output parameters are located in a maximum 10 byte long
data field in the F flag area. The data field is divided into an area for
input parameters and an area for output parameters.

Input parameters The input parameters specify how a function is handled. All or part of
the parameters are read out by communication OBs and evaluated, no
write access takes place.

Output parameters The output parameters contain all the information that the calling
program needs about the result of a job, e.g. error bits.
Some or all of the output parameters are written to by the
communication OBs, this area is not read.

Note
You can assign a flag area with 10 flag bytes for all
communications functions. The functions themselves require
different numbers of bytes. Refer to the description of the single
functions (Section 10.4ff).

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 23

Call parameters For all communication OBs the number of the first flag byte in the
data field (= pointer to data field) in ACCU-1-L is transferred as the
call parameter. Permitted values are 0 to 246.

Example

10.2.8
How to Evaluate the
Output Parameters

Among other things, the output parameters indicate whether or not a
function could be executed and if not they indicate the reason for the
termination of the function.

Condition codes The INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE
TEST functions affect the condition codes (see programming
instructions for your CPUs, general notes on the STEP 5 operations):

•• the OV and OS bits (word condition codes) are always cleared,

•• the OR, STA, ERAB bits (bit condition codes) are always cleared,

•• RLO, CC 1 and CC 0 indicate whether a function has been executed
correctly and completely.

Data field with parameters for the RECEIVE function
(OB 204)

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter

FY x + 4: block ID output parameter
FY x + 5: block number output parameter

FY x + 6: address of the first output parameter
FY x + 7: received data word output parameter

FY x + 8: address of the last output parameter
FY x + 9: received data word output parameter

This example illustrates that the number of the first F flag byte in the
data field must not be higher than FY 246, since otherwise the parameter
field of up to 10 bytes would exceed the limits of the flag area (FY 255).

CPU 948 Programming Guide

10 - 24 C79000-B8576-C857-03

Condition codes
Evaluation Meaning

RLO CC 1 CC 0

0 0 0 JC= Function executed
completely and correctly

1 0 0 JC= Function aborted,
pointer to data field
illegal (>246)

Function aborted
owing to an initialization
conflict

1 0 1 JC= and
JM=

Function aborted
owing to an error
(error number 1 to 9)

1 1 0 JC= and
JP=

Function aborted
owing to a warning
(warning number 1 or 2)

In the following sections, it is assumed that the pointer to the data
field contains a correct value. The first byte of the output parameter
provides detailed information about the cause of termination.

Condition code byte
Bit no. 7 6 5 4 3 2 1 0

W E I 0 Number

W = 1: Warning

E = 1: Error

I = 1: Initialization conflict

Number: - of a warning
- of an error
- of an initialization conflict

Table 10-1 Condition codes of the communication OBs

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 25

The first byte in the field of the output parameters (condition code
byte) also indicates whether or not a function has been correctly and
completely executed. This byte contains detailed information about
the cause of termination of a function.
Assuming that at least the pointer to the data field contains a correct
value, this byte is always relevant.

If the function has been executed correctly and completely, all the bits
are cleared (= 0), and all other output parameters are relevant.

If the function is aborted with a warning (bit number 7 = 1), only the
condition code for the transmitting/receiving capacity is relevant,
other output parameters (if they exist) are unchanged.

If the function is aborted owing to an error (bit number 6 = 1) or an
initialization conflict (bit number 5 = 1), all other output parameters
remain unchanged.

Evaluation of the code byte The identifiers ’W’, ’E’ and ’I’ indicate the significance of the
numbers.
Apart from this bit-by-bit evaluation, it is also possible to interpret the
whole condition code byte as a fixed point number without sign. If
you interpret the condition code byte as a byte, the groups of numbers
have the following significance:

Number group Significance

0

 33 to 42

65 to 73

 129 to 130

Function executed correctly and completely

Function aborted owing to an initialization
conflict

Function aborted owing to an error

Function aborted owing to a warning

Errors are detected and indicated in the ascending order of the error
numbers. This means that several errors may have occurred although
(currently) only one is indicated. The other errors are then indicated by
further calls.

Table 10-2 Code byte for the communication OBs/number groups

CPU 948 Programming Guide

10 - 26 C79000-B8576-C857-03

Example

Initialization conflict An initialization conflict can only occur with the INITIALIZATION
function. If a conflict occurs, you must modify the program or the
parameters.

Initialization conflict numbers (evaluation of the condition code byte
as a byte):

Cond.
code
byte

Significance

33 The pages required for multiprocessor communication
(numbers 252 to 255) are not or not all available.

34 The pages required for multiprocessor communication
(numbers 252 to 255) are defective.

35 The parameter "automatic/manual" is illegal.
The following errors are possible:

- the "automatic/manual" ID is less than 1,
- the "automatic/manual" ID is greater than 2.

36 The parameter "number of CPUs" is illegal.
The following errors are possible:

- the number of CPUs is less than 2,
- the number of CPUs is greater than 4.

37 The parameter "block ID" is illegal.
The following errors are possible:

- the block ID is less than 1,
- the block ID is greater than 2.

38 The parameter "block number" is incorrect, since it is a data
block with a special significance.
The following errors are possible:

- if block ID = 1 DB 0, DB 1
- if block ID = 2 : DX 0

39 The parameter "block number " is incorrect, since the data
block does not exist.

40 The parameter "start address of the assignment list" is too
high or the data block is too short.

The SEND function indicates an error and is not
executed. If you then make program and/or
parameter modifications and the SEND function
again indicates an error with a higher number
than previously, you can assume that you have
corrected one of several errors.

Table 10-3 Condition code byte: Initialization conflict numbers

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 27

Cond.
code
byte

Significance

Table 10-3 continued:

41 The assignment list in the data block is not correctly
structured.

42 The sum of the assigned memory fields is greater than 48.

Errors If an error occurs, you must change the program/parameters.

Error numbers (evaluation of the condition code byte as a byte):

Cond.
code
byte

Significance

65 The parameter "receiving CPU" (SEND, SEND TEST)
is illegal. The following errors are possible:

- The number of the receiving CPU is greater than 4,
- the number of the receiving CPU is less than 1,
- the number of the receiving CPU is the same as the

 CPU’s own number.

66 The parameter "transmitting CPU" (RECEIVE, RECEIVE
TEST) is illegal. The following errors are possible:

- The number of the transmitting CPU is greater than 4,
- the number of the transmitting CPU is less than 1,
- the number of the transmitting CPU is the same as the

CPU’s own number.

67 The special function organization block call is wrong
(SEND, RECEIVE, SEND TEST, RECEIVE TEST). The
following errors are possible:

- Secondary error, since the INITIALIZE function could
not be called or was terminated by an initialization
conflict.

- Double call: the call for this function (SEND, SEND
TEST, RECEIVE or RECEIVE TEST) is illegal,
since one of these functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower
processing level (i.e. cyclic program execution).

- The CPU’s own number is incorrect (system data
corrupted); following power down/power up the CPU
number is generated again by the system program.

Table 10-4 Condition code byte: Error numbers

CPU 948 Programming Guide

10 - 28 C79000-B8576-C857-03

Cond.
code
byte

Significance

Table 10-4 continued:

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in the
coordinator 923C again using the INITIALIZE function
(SEND, RECEIVE, SEND TEST, RECEIVE TEST).

69 The parameter "block ID" (SEND) or the block ID provided
by the sender (RECEIVE) is illegal. The following errors are
possible:

- The block ID is less than 1,
- the block ID is greater than 2.

70 The parameter "block number" (SEND) or the block number
supplied by the sender (RECEIVE) is illegal, since it is a data
block with a special significance. The following errors are
possible:

- If the block ID = 1 : DB 0, DB 1

- if the block ID = 2 : DX 0

71 The parameter "block number" (SEND) or the block number
provided by the sender (RECEIVE) is incorrect. The
specified data block does not exist.

72 The parameter "field number" (SEND) is incorrect.
The data block is too short or the field number too high.

73 The data block is not large enough to receive the data field
transmitted by the sender (RECEIVE).

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 29

Warning The function could not be executed; the function call must be
repeated, e.g. in the next cycle.

Warning numbers (evaluation of the condition code byte as a byte):

Cond.
code
byte

Significance

129 The SEND function cannot transfer data, since the
transmitting capacity was already zero when the
function was called.

130 The RECEIVE function cannot accept data, since the
receiving capacity was already zero when the function
was called.

Table 10-5 Condition code bytes: Warning numbers

CPU 948 Programming Guide

10 - 30 C79000-B8576-C857-03

10.3 Runtimes of the Communication OBs

The "runtime" is the processing time of the special function
organization blocks; the time from calling a block to its termination
can be much greater if it is interrupted by higher priority activities
(e.g. updating timers, etc.).

Special function OB

Block
name

CPU 922 CPU 928 CPU 928B CPU 946/
947

CPU 948

OB 200/
initialize

230 ms 130 ms 130 ms 128 ms 90 ms

OB 202/
send

806 µs (294 µs
basic time

+ 16 µs/word);
118 µs if a

warning occurs

666 µs (250 µs
 basic time

+ 13 µs/word);
115 µs if a

warning occurs

696 µs (280 µs
 basic time

+ 13 µs/word);
145 µs if a

warning occurs

762 µs (426 µs
 basic time
+ 21 µs/

double word);
243 µs if a

warning occurs

542 µs (220 µs
 basic time
+ 19 µs/

double word);
110 µs if a

warning occurs

OB 203/ send test 72 µs 50 µs 80 µs 207µs 115 µs

OB 204/ receive 825 µs (281 µs
basic time

+ 17 µs/word);
115 µs if a

warning occurs

660 µs (244 µs
basic time

+ 13 µs/word);
98 µs if a

warning occurs

690 µs (274 µs
basic time

+ 13 µs/word);
128 µs if a

warning occurs

772 µs (421 µs
basic time
+ 22 µs/

double word);
243 µs if a

warning occurs

506 µs (218 µs
 basic time
+ 18 µs/

double word);
132 µs if a

warning occurs

OB 205/
receive test

70 µs 48 µs 78 µs 223 µs 120 µs

The runtimes listed in table 10-6 assume that of four CPUs inserted in
a rack, only the CPU whose runtimes are being measured accesses the
SIMATIC S5 bus. If other CPUs use the bus intensively, the runtime
increases particularly for the send/receive functions.

Table 10-6 Runtimes of the communication OBs

10

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 31

Transfer time An important factor of a link (e.g. from CPU 1 to CPU 2) is the total
data transfer time. This is made up of the following components:

•• time required to send (see runtime),

•• length of time the data are buffered (on the COR 923C coordinator)

and

•• the time required to receive data (see runtime)

The length of time that the data are "in transit" is largely
dependent on the length of time that the data is buffered and
therefore on the structure of the user program (see "Buffering
Data").

CPU 948 Programming Guide

10 - 32 C79000-B8576-C857-03

10.4 INITIALIZE Function (OB 200)

10.4.1
Function To transfer data from one CPU to another CPU, the data must be

temporarily buffered. The INITIALIZE function sets up a buffer on
the COR 923C coordinator.
The memory is initialized in fields with a fixed length of 32 words.

Each memory field accepts one data field with a length between 1 data
word and 32 data words. A data field is entered in a memory field by a
SEND function and read out by a RECEIVE function.

If you are using two CPUs, there are two links (transfer directions,
"channels"):

If you are using three CPUs, there are six links:

CPU 1 CPU 2

CPU 2

CPU 3

CPU 1

10

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 33

If you are using four CPUs, there are twelve links:

The INITIALIZE function specifies how the total of 48 available memory
fields are assigned to the maximum twelve links.
This means that each possible link, specified by the parameters
"transmitting CPU" and "receiving CPU" has a certain memory capacity
available.

Note
Before you can call the SEND / RECEIVE / SEND TEST /
RECEIVE TEST functions, one CPU must have already called the
INITIALIZE function and executed it completely and without errors.

If the INITIALIZE function is called several times, one after the other,
the last assignment made is valid. While a CPU is processing the
INITIALIZE function, no other multiprocessor communication
functions including the INITIALIZE function can be called on other
CPUs.

CPU 3 CPU 4

CPU 1 CPU 2

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

10 - 34 C79000-B8576-C857-03

10.4.2
Call Parameters

Structure of the (parameter)
data field

Before calling OB 200, you must supply the input parameters in the
data field. OB 200 requires eight F flag bytes in the data field for input
and output parameters:

FY x + 0: Mode (automatic/
manual) input parameter

FY x + 1: Number of CPUs input parameter
FY x + 2: Block ID input parameter
FY x + 3: Block number input parameter
FY x + 4: Start address of the input parameter
FY x + 5: assignment list

FY x + 6: Condition code byte output parameter
FY x + 7: Total capacity output parameter

 ACCU-1-L When OB 200 is called, you transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

10.4.3
Input Parameters

Mode (automatic/manual) Mode = 1: automatic
Mode = 2: manual
Mode = 0 or 3 to 255: illegal, causes an

initialization conflict

Number of CPUs This parameter is only relevant when you have selected the
"automatic" mode. With the "automatic" setting, the memory fields
are divided evenly according to the number of CPUs.

Number of
CPUs

Number of
links

Memory fields per
link

2

 3

4

2

6

12

24

8

4

0; 1; 5 to 255 Illegal, causes an initialization conflict

10

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 35

Block ID, block number,
address assignment list

The parameters are only relevant if you select the "manual" mode.
You must then create an assignment list in a data block in which the
48 available memory fields (or less) are assigned to the maximum 12
links. This function is particularly useful when some CPUs transfer
more data than others.
The CPUs not involved in the multiprocessor communication do not
need and should not have memory fields assigned to them.
The parameters

•• block ID,

•• block number

and

•• start address of the assignment list

specify where the assignment list is stored.

Block ID ID = 1: DB data block
ID = 2: DX data block
ID = 0 or 3 to 255 : illegal, causes an

initialization conflict

Block number For the block number, you specify the number of the DB or DX data
block in which the assignment list is stored.

Start address of the
assignment list:

Along with the block ID and number, this specifies the area (or more
precisely, the start address of the area) in the data block in which the
assignment list is stored.
As the address of the assignment list, specify the data word number at
which the assignment list begins in flag bytes FY x+4 (high byte) and
FY x+5 (low byte).

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

10 - 36 C79000-B8576-C857-03

Assignment list With the assignment list, you specify how many of the existing 48
memory fields are to be assigned to the links.

The list is not changed by the system program. It has the following
structure.

Data word Format Value Significance

DW n + 0
DW n + 1
DW n + 2
DW n + 3

KS
KY
KY
KY

S1
2 , a
3 , b
4 , c

Transmitter = CPU 1
Receiver = CPU 2
Receiver = CPU 3
Receiver = CPU 4

DW n + 4
DW n + 5
DW n + 6
DW n + 7

KS
KY
KY
KY

S2
1 , d
3 , e
4 , f

Transmitter = CPU 2
Receiver = CPU 1
Receiver = CPU 3
Receiver = CPU 4

DW n + 8
DW n + 9
DW n + 10
DW n + 11

KS
KY
KY
KY

S3
1 , g
2 , h
4 , i

Transmitter = CPU 3
Receiver = CPU 1
Receiver = CPU 2
Receiver = CPU 4

DW n + 12
DW n + 13
DW n + 14
DW n + 15

KS
KY
KY
KY

S4
1 , k
2 , l
3 , m

Transmitter = CPU 4
Receiver = CPU 1
Receiver = CPU 2
Receiver = CPU 3

Instead of the lower case letters a to m (in bold face) numbers between 0
and 48 must be inserted depending on the number of assigned memory
fields. The sum of these numbers must not exceed 48.

Note
You must keep to the structure shown in table 10-7 even if you have
less than four CPUs.

Table 10-7 Assignment list for OB 200 (initialize)

10

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 37

Example

10.4.4
Output Parameters

Condition code byte This byte informs you whether the INITIALIZE function was
executed correctly and completely.

Initialization conflict The initialization conflicts listed are recognized and indicated by the
function in the ascending order of their numbers.

If an initialization conflict occurs, you must change the
program/parameters.

All the numbers listed in Table 10-3 can occur in the condition code
byte.

You have three CPUs in your rack, CPU 2 sends a lot of data to the other
two CPUs. The other two CPUs, however, only send a small amount of data
back to CPU 2 as acknowledgements in a logical handshake. There is no data
exchange between CPU 1 and CPU 3 .

The assignment list is stored in data block DB 40 from DW 0 onwards and has
the following parameters:

DB40 FD: CPU948ST.S5D

 0: KS = S1; Transmitter: CPU 1

 1: KY = 2, 2; Receiver: CPU 2/2 fields

 2: KY = 3, 0; Receiver: CPU 3/no field

 3: KY = 4, 0; Receiver: CPU 4 (does not exist)/no field
 4: KS = S2; Transmitter: CPU 2

 5: KY = 1, 22 ; Receiver: CPU 1/22 fields

 6: KY = 3, 22; Receiver: CPU 3/22 fields

 7: KY = 4, 0; Receiver: CPU 4 (does not exist)/no field
 8: KS = S3; Transmitter: CPU 3

 9: KY = 1, 0; Receiver: CPU 1/no field

10: KY = 2, 2; Receiver: CPU 2/2 fields

11: KY = 4, 0; Receiver: CPU 4 (does not exist)/no field
12: KS = S4; Transmitter: CPU 4 (does not exist)

13: KY = 1, 0; Receiver: CPU 1/no field

14: KY = 2, 0; Receiver: CPU 2/no field
15: KY = 3,0; Receiver: CPU 3/no field
16:

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

10 - 38 C79000-B8576-C857-03

Errors The "error" number group cannot occur with the INITIALIZE
function.

Warning The "warning" number group cannot occur with the INITIALIZE
function.

Total capacity This parameter specifies how many of the 48 available memory fields
are assigned to links.
In the "automatic" mode, this parameter always has the value 48. In the
"manual" mode, it can have a value less than 48. This means that existing
memory capacity is not used.

10

INITIALIZE Function (OB 200)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 39

10.5 SEND Function (OB 202)

10.5.1
Function The SEND function transfers a data field to the buffer of the

COR 923C coordinator. It also indicates how many data fields can still
be sent or buffered.

10.5.2
Call Parameters

Structure of the (parameter)
data field

Before calling OB 202 you must specify the input parameters in the data
field. OB 202 requires six F flag bytes in the data field for input and
output parameters:

FY x + 0: receiving CPU input parameter
FY x + 1: block ID input parameter
FY x + 2: block number input parameter
FY x + 3: field number input parameter

FY x + 4: condition code byte output parameter
FY x + 5: transmitting capacity output parameter

 ACCU-1-L When OB 202 is called, transfer the flag byte at which the parameter
data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

10.5.3
Input Parameters

Receiving CPU CPU number of the receiver (destination); the permitted value is between
1 and 4 but must be different from the CPU’s own number.

SEND Function (OB 202)

CPU 948 Programming Guide

10 - 40 C79000-B8576-C857-03

Block ID ID = 1: DB data block
ID = 2: DX data block
ID = 0 or 3 to 255: illegal, causes an

error message

Block number The block number, along with the block ID and the field number
specifies the area from which the data to be sent is taken (and where it
is to be stored in the receiving CPU).

Remember that certain data blocks have a special significance, for
example, DB 0, DB 1 or DX 0 (see programming instructions for your
CPUs). These data blocks must therefore not be used for the data
transfer described here!
If you attempt to use these block numbers, the function is aborted with
an error message.

Field number The field number indicates the area in which the data to be sent is
located.

Field
number

Data area

First data word Last data word

0
1

2
3

4
5

6
7

8
9
:
:

DW 0
DW 32

DW 64
DW 96

DW 128
DW 160

DW 192
DW 224

DW 256
DW 288

:
:

DW 31
DW 63

DW 95
DW 127

DW 159
DW 191

DW 223
DW 255

DW 287
DW 319

:
:

10

SEND Function (OB 202)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 41

The following situations are possible:

•• DB is longer than source area:
If the data block is sufficiently long, you obtain a 32-word long
area per field as shown in the table above.

•• DB is too short:
If the end of the data block is within the selected field, in the last
field an area with a length between 1 and 32 words will be
transferred.

•• Field is outside the DB:
If the first data word address of a field is not within the length of
the data block, the SEND function detects and indicates an error.

Example

10.5.4
Output Parameters

Condition code byte This byte informs you whether the SEND function was executed
correctly and completely.

Initialization conflict Has no significance with the SEND function.

Data block with a length of 80 words: DW 0 to
DW 74, 5 words are required for the block header.

Field no.: First data word: Last data word: Length:

0 DW 0 DW 31 32 words
1 DW 32 DW 63 32 words

2 DW 64 DW 74 11 words

3 and
higher Incorrect parameter assignment

SEND Function (OB 202)

CPU 948 Programming Guide

10 - 42 C79000-B8576-C857-03

Errors When the SEND function is called, the following error numbers
(evaluation of the condition code byte) can occur:

Condition
code byte

Significance

65 The parameter "receiving CPU" is illegal.
The following errors are possible:

- The number of the receiving CPU is greater than 4,
- The number of the receiving CPU is less than 1,
- The number of the receiving CPU is the same as

the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:

- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted)
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

69 The parameter "block ID" is illegal.
The following errors are possible:

- The block ID is less than 1,
- the block ID is greater than 2.

70 The parameter "block number" is illegal, since it is a data
block with a special significance.
The following errors are possible:

- If the block ID = 1 : DB 0, DB 1
- If the block ID = 2 : DX 0

71 The parameter "block number" is incorrect.
The specified data block does not exist.

72 The parameter "field number" is incorrect. The data
block is too short or the field number too high.

10

SEND Function (OB 202)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 43

Warning The function could be executed; the function call must be repeated,
e.g. in the next cycle.

The following warning numbers (evaluation of the condition code
byte) can occur:

Condition
code byte

Significance

129 The SEND function cannot transfer data, since the
transmitting capacity was already zero when the
function was called.

Transmitting capacity The "transmitting capacity" indicates how many data fileds can still be
sent and buffered.

SEND Function (OB 202)

CPU 948 Programming Guide

10 - 44 C79000-B8576-C857-03

10.6 SEND TEST Function (OB 203)

10.6.1
Function The SEND TEST function determines the number of free memory

fields in the buffer of the COR 923C coordinator.
Depending on this number m, the SEND function can be called m
times to transfer m data fields.

10.6.2
Call Parameters

Structure of the (parameter)
data field

Before calling OB 203, you must specify the input parameters in the
data field. OB 203 requires 4 F flag bytes in the data field for input
and output parameters:

FY x + 0: receiving CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: transmitting capacity output parameter

ACCU-1-L When OB 203 is called, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

10.6.3
Input Parameters

Receiving CPU The CPU’s own number and the number of the receiving CPU identify
the link for which the transmitting capacity is determined.

10.6.4
Output Parameters

Condition code byte This byte indicates whether the SEND TEST function was executed
correctly and completely.

10

SEND TEST Function (OB 203)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 45

Initialization conflict Has no significance for the SEND TEST function.

Errors When calling the SEND TEST function, the following error numbers
(evaluation of the condition code byte) can occur:

Condition
code byte

Significance

65 The parameter "receiving CPU" is illegal.
The following errors are possible:

- The number of the receiving CPU is greater than 4,
- The number of the receiving CPU is less than 1,
- The number of the receiving CPU is the same as

the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:

- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted);
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

Warning The "warning" number group cannot occur with the SEND TEST
function.

Transmitting capacity The "transmitting capacity" parameter indicates how many data fields
can be sent and buffered.

SEND TEST Function (OB 203)

CPU 948 Programming Guide

10 - 46 C79000-B8576-C857-03

10.7 RECEIVE Function (OB 204)

10.7.1
Function The RECEIVE function takes a data field from the buffer of the

COR 923C coordinator. It also indicates how many data fields are still
buffered and can still be received.
The RECEIVE function should be called in a loop until all the
buffered data fields have been received.

10.7.2
Call Parameters

Structure of the (parameter)
data field

Before calling OB 204, you must specify the input parameters in the
data field. OB 204 requires 10 F flag bytes in the data field for input
and output parameters:

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter
FY x + 4: block ID output parameter
FY x + 5: block number output parameter
FY x + 6: address of the first output parameter
FY x + 7: received data word output parameter
FY x + 8: address of the last output parameter
FY x + 9: received data word

 ACCU-1-L When calling OB 204, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

10.7.3
Input Parameters

Transmitting CPU The receive block receives data supplied by the transmitting CPU.
Specify the number of the transmitting CPU. The permitted value is
between 1 and 4, but must be different from the CPU’s own number.

10

RECEIVE Function (OB 204)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 47

10.7.4
Output Parameters

Condition code byte This byte informs you whether the RECEIVE function was executed
correctly and completely.

Initialization conflict Has no significance with the RECEIVE function.

Errors When calling the RECEIVE function the following error numbers
(evaluation of the condition code byte) can occur:

Condition
code byte

Significance

66 The parameter "transmitting CPU" is illegal.
The following errors are possible:

- The number of the transmitting CPU is greater
than 4,

- The number of the transmitting CPU is less than 1,
- The number of the transmitting CPU is the same as

the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:

- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted)
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

69 The block identifiers supplied by the transmitter are
illegal.
The following errors are possible:

- The block ID is less than 1,
- The block ID is greater than 2.

RECEIVE Function (OB 204)

CPU 948 Programming Guide

10 - 48 C79000-B8576-C857-03

Condition
code byte

Significance

Error numbers continued:

70 The block number supplied by the transmitter is illegal,
since it is a data block with a special significance.
The following errors are possible:

- If the block ID = 1 : DB 0, DB 1
- If the block ID = 2 : DX 0

71 The block number provided by the transmitter is
incorrect. The specified data block does not exist.

73 The data block is too small to receive the data field
supplied by the transmitter.

Warning The function could not be executed; the function call must be
repeated, e.g. in the next cycle.

The following warning number (evaluation of the condition code byte)
can occur:

Condition
code byte

Significance

130 The RECEIVE function cannot receive data, since
the receiving capacity was already zero when the
function was called.

Receiving capacity The "receiving capacity" parameter indicates how many data fields are
still buffered and can still be received.

10

RECEIVE Function (OB 204)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 49

Block ID: ID = 1: DB data block
ID = 2: DX data block
ID = 0 or 3 to 255: illegal, causes an

error message

Block number Block number of the DB/DX in which the received data are stored
(and from which they are taken by the SEND function in the
transmitting CPU).

Remember that the receive data blocks must be in a random access
memory, using read-only memories (EPROM) might possibly serve a
practical purpose for transmit data blocks only.

Address of the first
received data word

Data word number within the DB/DX in which the first
transferred/received data word was stored.

Address of the last
received data word

Data word number within the DB/DX in which the last
transferred/received data word was stored.

Note
The difference between the addresses of the first and last data
word transferred is a maximum of 31, since a maximum of 32
data words can be transferred per function call.

RECEIVE Function (OB 204)

CPU 948 Programming Guide

10 - 50 C79000-B8576-C857-03

10.8 RECEIVE TEST Function (OB 205)

10.8.1
Function The RECEIVE TEST function determines the number of occupied

memory fields in the buffer of the COR 923C coordinator. Depending
on this number m, the RECEIVE function can be called m times to
receive m data fields.

10.8.2
Call Parameters

Structure of the (parameter)
data field

Before calling OB 205, you must specify the input parameters in the
data field. OB 205 requires 4 F flag bytes in the data field for input
and output parameters:

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter

ACCU-1-L When calling OB 204, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0 to 246

10.8.3
Input Parameters

Transmitting CPU The CPU’s own number and the number of the transmitting CPU identify
the link for which the receiving capacity is determined.

10.8.4
Output Parameters

Condition code byte This byte indicates whether the RECEIVE TEST function was executed
correctly and completely.

Initialization conflict Has no significance with the RECEIVE TEST function.

10

RECEIVE TEST Function (OB 205)

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 51

Errors When calling the RECEIVE TEST function, the following error
numbers (evaluation of the condition code byte) can occur:

Condition
code byte

Significance

66 The parameter "transmitting CPU" is illegal.
The following errors are possible:

- The number of the transmitting CPU is greater
than 4,

- The number of the transmitting CPU is less than 1,
- The number of the transmitting CPU is the same as

the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:

- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted);
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

Warning The "warning" number group cannot occur with the RECEIVE TEST
function.

Receiving capacity The "receiving capacity" parameter indicates how many data fields can be
received and buffered.

RECEIVE TEST Function (OB 205)

CPU 948 Programming Guide

10 - 52 C79000-B8576-C857-03

10.9 Applications

Based on examples, this section explains how to program
multiprocessor communication.

Note
If you use the function blocks listed below and service interrupts
on your CPU (e.g. with OB 2) remember to save the "scratchpad
flags" at the start of interrupt servicing and to write them back
when the interrupt is completed.
This also applies to the setting "interrupts at block boundaries",
since the call of the special function organization blocks
represents a block boundary.

10.9.1
Calling the Special
Function OB using
Function Blocks

The following five function blocks (FB 200 and FB 202 to FB 205)
contain the call for the corresponding special function organization block
for multiprocessor communication (OB 200 and OB 202 to OB 205).
The numbers of the function blocks are not fixed and can be changed.
The parameters of the special function OBs are transferred as actual
parameters when the function blocks are called. The direct call of the
special function organization blocks is faster, however, is more difficult to
read owing to the absence of formal parameters

FB no. FB name Function

FB 200

FB 202

FB 203

FB 204

FB 205

INITIAL

SEND

SEND-TST

RECEIVE

RECV-TST

Set up buffer

Send a data field

Test sending capacity

Receive a data field

Test receiving capacity

The flag area from FY 246 to maximum FY 255 is used by the function
blocks as a parameter field for the special function organization blocks.

The exact significance of the input and output parameters is explained
in the description of the special function organization blocks.

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 53

Note
The following examples of applications involve finished applications
that you can program by copying them.

Programming function
blocks

FB 200: initializing the links

FB 200

INITIAL

 (1) AUMA INIC (5)

 (2) NUMC TCAP (6)

 (3) TNAS

 (4) STAS

Parameter
name

Significance Parameter
type

Data
type

Parameter
field

AUMA

NUMC

TNAS

STAS

INIC

TCAP

Automatic/manual

Number of CPUs

Type (H byte) and number (L byte)
of the data block containing the
assignment list

Start address of the assignment list

Ini tialization conflict

Total capacity

I

I

I

I

Q

Q

BY

BY

W

W

BY

BY

FY 246

FY 247

FW 248

FW 250

FY 252

FY 253

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 54 C79000-B8576-C857-03

FB 200 continued

FB 200 LEN=45
SEGMENT 1 0000
NAME:INITIAL
DECL :AUMA I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :NUMC I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :TNAS I/Q/D/B/T/C: I BI/BY/W/D: W
DECL :STAS I/Q/D/B/T/C: I BI/BY/W/D: W
DECL :INIC I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :TCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY

0017 :L =AUMA Automatic/manual
0018 :T FY 246
0019 :L =NUMC Number of CPUs
001A :T FY 247
001B :L =TNAS DB type, DB no.
001C :T FY 248
001D :L =STAS Start address of the assignment list
001E :T FW 250
001F :
0020 :L KB 246 SF OB:

0021 :JU OB 200 "Initialize "
0022 :
0023 :L FY 252 Initialization conflict
0024 :T =INIC
0025 :L FY 253 Total capacity
0026 :T =TCAP
0027 :BE

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 55

FB 202: Sending a data field

FB 202

SEND

 (1) RCPU ERWA (4)

 (2) TNDB TCAP (5)

 (3) FINO

Parameter
name

Significance Parameter
type

Data
type

Parameter
field

RCPU

TNDB

FINO

ERWA

TCAP

Receiving CPU

Type (H byte) and number (L byte)
of the source data block

Field number

Er ror/warning

Transmitting capacity

I

I

I

Q

Q

BY

W

BY

BY

BY

FY 246

FW 247

FY 249

FY 250

FY 251

FB 202 LEN=40

SEGMENT 1 0000
NAME:SEND
DECL :RCPU I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :TNDB I/Q/D/B/T/C: I BI/BY/W/D: W
DECL :FINO I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :TCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY

0014 :L =RCPU Receiving CPU
0015 :T FY 246
0016 :L =TNDB DB type, DB no.
0017 :T FW 247
0018 :L =FINO Field number
0019 :T FY 249
001A :
001B :L KB 246 SF OB:

001C :JU OB 202 "Send a data field"
001D :
001E :L FY 250 Error/warning
001F :T =ERWA
0020 :L FY 251 Transmitting capacity
0021 :T =TCAP
0022 :BE

Applications

CPU 948 Programming Guide

10 - 56 C79000-B8576-C857-03

FB 203: Testing the transmitting capacity

FB 203

SEND-TST

 (1) RCPU ERRO (2)

 TCAP (3)

Parameter
name

Significance Parameter
type

Data
type

Parameter
field

RCPU

ERRO

TCAP

Receiving CPU

Erro r

Transmitting capacity

I

Q

Q

BY

BY

BY

FY 246

FY 248

FY 249

FB 203 LEN=30

SEGMENT 1 0000
NAME:SEND-TST
DECL :RCPU I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :ERRO I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :TCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY

000E :L =RCPU Receiving CPU
000F :T FY 246
0010 :
0011 :L KB 246 SF OB:

0012 :JU OB 203 "Test transmitting capacity"
0013 :
0014 :L FY 248 Error
0015 :T =ERRO
0016 :L FY 249 Transmitting capacity
0017 :T =TCAP
0018 :BE

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 57

FB 204: Receiving a data field

FB 204

RECEIVE

 (1) TCPU ERWA (2)

 RCAP (3)

TNDB (4)

STAA (5)

ENDA (6)

Parameter
name

Significance Parameter
type

Data
type

Parameter
field

TCPU

ERWA

RCAP

TNDB

STAA

ENDA

Transmitting CPU

Er ror/warning

Receiving capacity

Type (H byte) and number (L byte) of the
destination data block

Address of the first received data word
(start address)

Address of the last received data word
(end address)

I

Q

Q

Q

Q

Q

BY

BY

BY

W

W

W

FY 246

FY 248

FY 249

FW 250

FW 252

FW 254

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 58 C79000-B8576-C857-03

FB 204 continued:

FB 204 LEN=45

SEGMENT 1 0000
NAME:RECEIVE
DECL :TCPU I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :RCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :TNDB I/Q/D/B/T/C: Q BI/BY/W/D: W
DECL :STAA I/Q/D/B/T/C: Q BI/BY/W/D: W
DECL :ENDA I/Q/D/B/T/C: Q BI/BY/W/D: W

0017 :L =TCPU Transmitting CPU
0018 :T FY 246
0019 :
001A :L KB 246 SF OB:

001B :JU OB 204 "Receive a data field"
001C :
001D :L FY 248 Error/warning
001E :T =ERWA
001F :L FY 249 Receiving capacity
0020 :T =RCAP
0021 :L FW 250 DB type, DB no.
0022 :T =TNDB
0023 :L FW 252 Start address
0024 :T =STAA
0025 :L FW 254 End address
0026 :T =ENDA
0027 :BE

FB 205: Testing the receiving capacity

FB 205

RECV-TST

 (1) TCPU ERRO (2)

 RCAP (3)

Parameter
name

Significance Parameter
type

Data
type

Parameter
field

TCPU

ERRO

RCAP

Transmitting CPU

Erro r

Receiving capacity

I

Q

Q

BY

BY

BY

FY 246

FY 248

FY 249

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 59

10.9.2
Transferring Data Blocks In this example, the function block TRAN DAT (FB 110) transfers a

selectable number of data fields from a data block in one CPU to the
data block of the same type and same number in a different CPU.
The FB number (FB 110) has been selected at random and you can use
other numbers.

Programming FB 110 is described first followed by the application of
FB 110.

Programming FB 110

FB 205 continued:

FB 205 LEN=30

SEGMENT 1 0000
NAME:RECV-TST
DECL :TCPU I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :ERRO I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :RCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY

000E :L =TCPU Transmitting CPU
000F :T FY 246
0010 :
0011 :L KB 246 SF OB:

0012 :JU OB 205 "Test receiving capacity"
0013 :
0014 :L FY 248 Error
0015 :T =ERRO
0016 :L FY 249 Receiving capacity
0017 :T =RCAP
0018 :BE

FB 110: Transferring a data block

Task

The data area to be transferred is stipulated by the input parameter FIRB
(= number of the first data field to be transferred) and NUMB (= number of
data fields to be transferred). A data field normally consists of 32 data
words. Depending on the data block length, the last data field may be less
than 32 data words.

The transfer is triggered by a positive-going edge at the start input STAR.
If the output parameter REST is zero after the transfer, this means that
the function block TRANDAT was able to send all the data fields (according
to the NUMB parameter).

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 60 C79000-B8576-C857-03

FB 110 continued:

If, however, the REST output parameter has a value greater than zero, this
means that the function block must be called again, for example in the next
cycle. This means that you or the user program can only change the set
parameters (i.e. the values of all parameters) when the REST parameter
indicates zero showing that the data transfer is complete.

You can call the function block TRANDAT several times with different
parameters. In this case, various data areas are transferred simultaneously
(interleaved in each other). The special function organization blocks for
multiprocessor communication OB 202 to OB 205 can also be used "directly".
This possibly is illustrated in the application example.

If the SEND function (OB 202) is not correctly executed with the TRANDAT
function block, the error number is entered in the output parameter ERRO, the
RLO = ’1’ and the output parameter REST is set to ’0’.

The TRANDAT function block uses flag bytes FY 246 to FY 251 as scratchpad
flags. All other variables whose value is significant as long as the output
parameter REST = ’0’ continue to have memory assigned to them using the
mechanism of formal/actual parameters. This is necessary to allow various
data blocks to be transferred simultaneously.

Implementation

FB 110

TRAN-DAT

 (1) STAR ERRO (6)

 (2) RCPU REST (7)

 (3) TNDB CUBN (8)

 (4) NUMB EDGF (9)

 (5) FIRB

Continued on the next page

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 61

FB 110 continued:

Parameter
name

Significance Parameter
type

Data
type

STAR

RCPU

TNDB

NUMB

FIRB

ERRO

REST

CUBN 1)

EDGF 1)

Start the transfer of the data block on a positive-going edge

Receiving CPU

Type (H byte) and number (L byte) of the data block to be
transferred.

Number of data fields to be transferred.

Number of the first data field to be transferred.

Erro r

Number of data fields still to be transferred.

Current field number

Edge flag

I

I

I

I

I

Q

Q

Q

Q

BI

BY

W

BY

BY

BY

BY

BY

BI

1) Internal scratchpad flag, not intended for evaluation

FB 110 LEN=89

SEGMENT 1 0000
NAME:TRAN-DAT
DECL :STAR I/Q/D/B/T/C: I BI/BY/W/D: BI
DECL :RCPU I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :TNDB I/Q/D/B/T/C: I BI/BY/W/D: W
DECL :NUMB I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :FIRB I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :ERRO I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :REST I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :CUBN I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :EDGF I/Q/D/B/T/C: Q BI/BY/W/D: BI

0020 :L =RCPU Assign parameter field for
0021 :T FY 246 SF OB 202
0022 :L =TNDB
0023 :T FW 247
0024 :

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 62 C79000-B8576-C857-03

FB 110 continued:

0025 :L =REST First send any remaining
0026 :L KB 0 data fields
0027 :><F
0028 :JC =TRAN
0029 :
002A :AN =STAR Positive edge at start
002B :RB =EDGF input ?
002C :ON =STAR
002D :O =EDGF
002E :JC =GOOD
002F :S =EDGF
0030 :
0031 :L =NUMB Initialize the global flags
0032 :T =REST after postive edge at
0033 :L =FIRB START input
0034 :T =CUBN
0035 :
0036 :L =REST As long as REST ><0,
0038 LOOP :L KF+0 continue to attempt to
0039 :!=F send data fields
003A :JC =GOOD
003B TRAN :L =CUBN
003C :T FY 249
003D :L KB 246 SF OB:

003E :JU OB 202 "Send a data field"
003F :L FY 250
0040 :JM =ERRO Abort if error
0041 :JP =GOOD Abort if trans-cap. = 0
0042 :L =CUBN Increment
0043 :I 1 field number
0044 :T =CUBN
0045 :L =REST Decrement number of
0046 :D 1 remaining data fields
0047 :T =REST
0048 :JU =LOOP
0049 :
004A GOOD :A F 0.0 Regular end of program:
004B :AN F 0.0
004C :L KB 0 RLO = 0, ERRO = 0
004D :T =ERRO
004E :BE
004F :
0050 ERRO :T =ERRO Program end if error:
0051 :L KB 0
0052 :T =REST RLO = 1, ERRO contains error number
0053 :BE

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 63

Application of FB 110

Application of FB 110 on the S5-155U

Task

You want CPU 1 to transfer data blocks DB 3 (data fields 2 to 5) and DB 4
(data fields 1 to 3) to CPU 2 during the cyclic user program. The RECEIVE
function (OB 204) is also called in the cyclic user program.

Implementation

Function CPU 1 CPU 2

called in: called in:

Initialization (OB 200)

Send organization (FB 1)

Receive organization (FB 2)

OB 20

OB 1

–

–

–

OB 1

exists: exists:

Send DB

Receive DB

DB 3; DB 4

–

–

DB 3; DB 4

The user program in function block FB 1 of CPU 1 contains two calls for the
function block TRANDAT in each case with different sets of parameters.
The transfer of the first data block DB 3 begins after a positive edge
after input I 2.0. A positive edge at input I 2.1 starts the transfer of
the second data block.

FB 1 LEN=yy

SEGMENT 1 0000
NAME:S-ORG
0000 :L KB 2 To CPU 2 ..
0001 :T FY 0
0002 :L KY 1,3 .. from data block DB 3
0003 :T FW 1
0004 :L KB 4 .. four data fields
0005 :T FY 3
0006 :L KB 2 .. send from 2nd data field
0007 :T FY 4
0008 :

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 64 C79000-B8576-C857-03

Application example continued:

0009 :JU FB 110
000A NAME :TRAN-DAT
000B STAR : I 2.0
000C RCPU : FY 0
000D TNDB : FW 1
000E NUMB : FY 3
000F FIRB : FY 4
0010 ERRO : FY 5
0011 REST : FY 6
0012 CUBN : FY 7
0013 EDGF : F 8.0
0014 :
0015 :
0016 :JC =HALT Abort after error
0017 :
0018 :L KB 2 To CPU 2 ..
0019 :T FY 10
001A :L KY 1,4 .. from data block DB 4
001B :T FW 11
001C :L KB 3 .. three data fields
001D :T FY 13
001E :L KB 1 .. send from 2nd data field
001F :T FY 14
0020 :
0021 :JU FB 110
0023 NAME :TRAN-DAT
0024 STAR : I 2.1
0025 RCPU : FY 10
0026 TNDB : FW 11
0027 NUMB : FY 13
0028 FIRB : FY 14
0029 ERRO : FY 5
002A REST : FY16
002B CUBN : FY17
002C EDGF : F 8.1
002D :
002E :
002F :JC =HALT Abort after error
0030 :BEU
0031 :
0032 HALT :
0033 : The error handling takes place here
0034 : (e.g. stop, message output
0035 : on the printer, ...)
0036 :

00xx :BE

Continued on the next page

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 65

10.9.3
Extending the IPC
Flag Area

The problem In the S5-135U/155U programmable controllers, each of the 256 flag
bytes of a CPU can become an input or output IPC flag by making an
entry in data block DB 1. This, however, reduces the number of
"normal" flag bytes. To transfer a data record (several bytes) other
mechanisms are also required (semaphore variable or DX 0 parameter
assignment "transfer IPC flags as a block") are necessary to prevent
the receiver from receiving a fragmented data record.

Application example continued:

In CPU 2, the RECEIVE function (OB 204) called by FB 2 enters each transmitted
data field into the appropriate data block. It may take
several cycles before a data block has been completely received.

FB 2 LEN=yy

SEGMENT 1 0000
NAME:RECV-DAT
0000 :L KB 1 Receive data from CPU 1
0001 :T FY 246
0002 :
0003 SCHL :L KB 246 SF OB:

0004 :JU OB 204 "Receive"
0005 :JM =ERRO Abort if error
0006 :L FY 249 The RECEIVE function is
0007 :L KB 0 called until there are no
0008 :><F further of data fields in
0009 :JC =LOOP the buffer, i.e. the
000A : receiving capacity = 0.
000B :BEU
000C ERRO :
000D : The error handling takes place here
000E : (e.g. stop, message output
000F : on printer, ...)

00xx :BE

Applications

CPU 948 Programming Guide

10 - 66 C79000-B8576-C857-03

The solution Consecutive data words of a DB or DX data block are defined from
DW 0 onwards as "IPC data words". Each link is assigned its own
data block and is totally independent of the other links.

At the beginning of the cycle block, the IPC data words are received with
the aid of the special function organization blocks for multiprocessor
communication. This is followed by the "regular" cyclic program, that
evaluates the received data and generates the data to be sent. At the end
of the cycle, this data is then sent with the aid of the special organization
blocks for multiprocessor communication. It can therefore be received by
the other CPUs at the beginning of their cycles.

The following applies for each of the maximum 12 possible links
regardless of the other links:

•• The transmitting CPU is only active when the receiving CPU has
read out all the "old" data from the COR 923C buffer.

•• The receiving CPU is only active when the transmitting CPU has
written all the "new" data in the COR 923C buffer.

This means that the receiving CPU can either receive a complete new
data record or the old data record remains unchanged: no mixing of
"old" and "new" data.

Data structure Which data words (for the data word area below) are to be transferred
from which CPU to which CPU is described in the link list (see the table
on the following page). This is located in an additional data block that
must exist in all the CPUs involved.

The data word areas always begin from data word DW 0, and their
lengths are specified in data fields. Remember the following points:

•• A complete data field consists of 32 data words.

•• If the last data field is "truncated", i.e. it contains between 1 and 31
data words, less data words are transferred.

•• If a send data block is longer than the number of fields of data
specified in the link list, the excess data words can be used in the
corresponding CPU.

•• If a receive data block is longer than the received data word area,
the excess data words can be used in the corresponding CPU.

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 67

Structure of the
link list

SUB-LIST 1 SUB-LIST 2

Link DB type DB
number

No. of data
fields

from CPU 1
to ...

DW 0 S 1 DW 16 S 1

... CPU 2 DW 1 DW 17 2 ...

... CPU 3 DW 2 DW 18 3 ...

...CPU 4 DW 3 DW 19 4 ...

from CPU 2
to ...

DW 4 S 2 DW 20 S 2

... CPU 1 DW 5 DW 21 1 ...

... CPU 3 DW 6 1 1) 10 1) DW 22 3 2 1)

... CPU 4 DW 7 DW 23 4 ...

from CPU 3
to ...

DW 8 S 3 DW 24 S 3

... CPU 1 DW 9 DW 25 1 ...

... CPU 2 DW 10 DW 26 2 ...

... CPU 4 DW 11 DW 27 4 ...

from CPU 4
to ...

DW 12 S 4 DW 28 S 4

... CPU 1 DW 13 DW 29 1 ...

... CPU 2 DW 14 DW 30 2 ...

... CPU 3 DW 15 DW 31 3 ...

2 15 2 0 2 15 2 0

1) Refer to the example on the following page

Table 10-8 Link list for extending the IPC flag area

Applications

CPU 948 Programming Guide

10 - 68 C79000-B8576-C857-03

The link consists of two similarly structured sub-lists, each with 16 data
words. For each of the four sender CPUs (S1, S2, S3, S4) three entries are
required to describe a link.

•• Number of data fields

The number of data fields specifies the size (= the number of data
words) of the data word area to be transferred. (If links do not exist
or you do not require them, enter 0 for the number of data fields,
and for the DB type and DB number.)

•• DB type

Type of data block containing the data word area to be transferred.

•• DB number

Number of the data block containing the data word area to be trans-
ferred.

As shown in the table, these entries can be read in and completed in lines.
If, for example, you want to transfer the first two data fields in data block
DB 10 from CPU 2 (S2) to CPU 3, make the following entries:

CPU 2 (S 2) sends ..

Sub-list 2 is identical to the assignment ("manual" mode) required for
the INITIALIZE function (OB 200). Within the data block, sub-list 2
must occupy data words 0 to 15 and sub-list 2 data words 16 to 31.
You must not alter the entries shown in bold face.

DW 22 3 2 DW 6 1 10

..to CPU 3 2 data fields from DB 10

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 69

Program structure During restart, one of the CPUs calls the INITIALIZE function (OB
200) to reserve exactly the same number of coordinator memory fields
per link as data fields to be transmitted on this link.

To send and receive data word areas, each CPU uses two function
blocks:

FB no. Name Function

FB 100

FB 101

SEND-DAT

RECV-DAT

Send data word areas
to the other CPUs

Receive data word areas
from the other CPUs

These FB numbers have been selected at random and you can use
others.

The function blocks SEND-DAT and RECV-DAT read the link list to
determine which data word areas are to be sent from or received by which
data blocks. The whole data word area is always sent or received. If this is
not possible owing to insufficient transmitting or receiving capacity, the
send or receive function is not executed.

Note
This example (IPC flag extension using function blocks
SEND-DAT and RECV-DAT) can only run correctly when the
special function organization blocks for multiprocessor
communication OB 202 to OB 205 are not called in any of the
CPUs.

The function blocks SEND-DAT and RECV-DAT contain the
special function organization blocks for multiprocessor
communication OB 202 to OB 205. You cannot call these
organization blocks outside SEND-DAT/RECV-DAT.

Applications

CPU 948 Programming Guide

10 - 70 C79000-B8576-C857-03

OB 20

Restart OB to reserve
the buffer on the
923C coordinator JU OB 200

BE

Cycl ic user program
extended by the cal ls for
the RECV-DAT and SEND-DAT
funct ion blocks.

OB 1

C
JU

DB xxx
FB 101

C
JU

DB xxx
FB 100

BE

FB 100

FB 101

Funct ion block: SEND-DAT
Send data blocks

Funct ion block: RECV-DAT
Receive data blocks

Data block containing
the l ink l is t

Maximum three input and
three output blocks

DB xxx

BE

BE

KS = S1
KY = 1,. . . evalu-

ated

by .. .

DB yyy
or/and
DX zzz

.

.

.

.

.

.

.

.

.

.

.

.

OB 200 must
only be cal led
in one processor.

1)

1)

Fig. 10-6 Overview of the blocks required in each CPU

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 71

Programming function
blocks

FB 100: Sending data word areas

Before you call FB 100, the data block containing the link list must be
open. The function block SEND-DAT requires the number of the CPU on which
it is called in order to evaluate the information contained in the link
list.
If the SEND function (OB 202) is not executed correctly in the function
block, the error or warning number is transferred to the output parameter
ERWA and RLO is set to 1.
If the input parameter CPUN (CPU number) is illegal, ERWA has the value 16
(bit no. 4 = 1).
The function block SEND-DAT uses flag bytes FY 239 to FY 251 as scratchpad
flags.

FB 100

SEND-DAT

 (1) CPUN ERWA (2)

Parameter
name

Significance Parameter
type

Data
type

CPUN

ERWA

Number of the CPU on which FB 100 is called.
The numbers 1 to 4 are permitted.

Er ror/warning (see SEND function/
OB 202)

D

Q

KF

BY

FB 100 LEN=90

SEGMENT 1 0000
NAME:SEND-DAT
DECL :CPUN I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG:KF
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY

000B :LW =CPUN CPUN = CPUN - 1
000C :L KB 1 Error if:
000D :-F
000E :JM =ERWA CPU no. <1
000F :L KB 3
0010 :>F
0011 :JC =ERWA CPU no. >4
0012 :TAK

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 72 C79000-B8576-C857-03

FB 100 continued:

0013 :
0014 :SLW 2 CPUN = CPUN * 4
0015 :T FY 245 Base address
0016 :
0017 :L KB 1
0018 :T FY 244 Link counter
0019 :
001A LOOP :L FY 245 Base address
001B :L FY 244 + counter
001C :+F
001D :T FW 240
001E :ADD BN+16 + offset
001F :T FW 242
0020 :
0021 :DO FW 242
0022 :L DR 0 Number of reserved
0023 :T FY 239 fields = 0 ?
0024 :L KB 0
0025 :!=F
0026 :JC =EMPT
0027 :
0028 :B FW 242
0029 :L DL 0 No. of the receiving CPU
002A :T FY 246
002B :L KB 246 SF OB:

002C :JU OB 203 "Test sending capacity"
002D :L FY 248 Abort if error
002E :JC =OBER
002F :
0030 :L FY 249 Transmitting capacity >< no.
0031 :L FY 239 of reserved fields?
0032 :><F
0033 :JC =EMPT
0034 :
0035 :L KB 0 Field counter
0036 :T FY 249
0037 :
0038 :B FY 240
0039 :L DW 0 Type and number of
003A :T FW 247 the source DB
003B :
003C TRAN :L KB 246 SF OB:

003D :JU OB 202 Send a data field
003E :L FY 250 Abort if error/warning
003F :JC =OBER
0040 :
0041 :L FY 249 Field no. = field no. + 1
0042 :I 1
0043 :T FY 249 All data fields transferred?
0044 :L FY 239

0045 :<F
0046 :JC =TRAN
0047 :

Continued on the next page

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 73

FB 100 continued:

0048 EMPT :L FY 244 Increment
0049 :I 1 link counter
004A :T FY 244
004B :L KB 4 All links
004C :<F processed ?
004D :JM =LOOP
004E :L KB 0 Regular program end:
004F :T =ERWA RLO = 0, ERWA = 0
0050 :BEU
0051 :
0052 ERWA :L KB 16 Program end if error:
0053 OBER :T =ERWA RLO = 1, ERWA contains
0054 :BE error/warning number

FB 101: Receive data word areas

Before you call FB 101, the data block containing the link list must
already be open. The function block RECV-DAT requires the number of the CPU
in which it is called in order to evaluate the information contained in the
link list.

If the RECEIVE function (OB 204) is not correctly processed within the
function block, the corresponding error or warning number is transferred to
the output parameter ERWA and the RLO is set to 1. If the input parameter CPUN
is illegal, ERWA has the value 16 (bit no. 4 = 1).

The RECV-DAT function block uses flag bytes FY 242 to FY 255 as scratchpad
flags.

FB 101

RECV-DAT

 (1) CPUN ERWA (2)

Parameter
name

Significance Parameter
type

Data
type

CPUN

ERWA

Number of the CPU, on which FB 101 is called.
The numbers 1 to 4 are permitted.

Er ror/warning (see RECEIVE function /
OB 204)

D

Q

KF

BY

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 74 C79000-B8576-C857-03

FB 101 continued:

FB 101 LEN=88

SEGMENT 1 0000
NAME:RECV-DAT
DECL :CPUN I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY

000B :LW =CPUN Error if:
000C :L KB 1
000D :<F
000E :JC =ERWA CPU no. <1
000F :LW =CPUN
0010 :L KB 4
0011 :>F
0012 :JC =ERWA CPU no. >4
0013 :
0014 :L KB 1 Link counter
0015 :T FY 242
0016 :
0017 :L KB 16
0018 :T FW 244 Pointer to sub-list 2
0019 :
001A SRCH :L FW 244 Search sub-list 2 until
001B :I 1 the next entry for the
001C :T FW 244 receiving CPU with the
001D :DO FW 244 number ’CPUN’ is found.
001E :L DL 0
001F :LW =CPUN
0020 :><F
0021 :JC =SRCH
0022 :
0023 :DO FW 244
0024 :L DR 0 Number of reserved
0025 :T FY 243 memory fields = 0 ?
0026 :L KB 0
0027 :!=F
0028 :JC =EMPT
0029 :
002A :L FW 244 Determine the number of the
002B :L KM 00000000 00001100 transmitting CPU from the
002D :AW pointer to sub-list 2.
002E :SRW 2
002F :I 1
0030 :T FY 246
0031 :
0032 :L KB 246 SF OB:

0033 :JU OB 205 "Test receiving capacity"
0034 :L FY 248
0035 :JC = OBER Abort if error
0036 :

Continued on the next page

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 75

FB 101 continued:

0037 :L FY 249 Receiving capacity = number
0038 :L FY 243 of reserved
0039 :><F memory fields ?
003A :JC = EMPT
003B :
003C RECV :L KB 246 SF OB:

003D :JU OB 204 "Receive a data field"
003E :L FY 248
003F :JM =OBER Abort if error/warning
0040 :L FY 249 if receiving capacity = 0
0041 :L KB 0 process next
0042 :><F link
0043 :JC =RECV
0044 :
0045 EMPT :L FY 242 Increment
0046 :I 1 link counter
0047 :T FY 242
0048 :L KB 4 All links
0049 :<F processed ?
004A :JM = SRCH
004B :L KB 0 Regular program end:
004C :T =ERWA RLO = 0, ERWA = 0
004D :BEU
004E :
004F ERWA :L KB 16 Program end if error:
0050 OBER :T =ERWA RLO = 1, ERWA contains
0051 :BE error/warning number

Applications

CPU 948 Programming Guide

10 - 76 C79000-B8576-C857-03

Application example

Application of FB 100/101 on the S5-155U

Task

You want to exchange data between three CPUs:

- From CPU 1 to CPU 2: data block DB 3, DW 0 to DW 127 (= 4 data fields)

- From CPU 1 to CPU 3: data block DX 4, DW 0 to DW 63 (= 2 data fields)

- From CPU 2 to CPU 1
 and CPU 3: data block DB 5, DW 0 to DW 95 (= 3 data fields)

Function block FB 1 is the interface for the cyclic user program on all
three CPUs. CPU 1 calls the INITIALIZE function (OB 200) during the cold
restart. The link list is in data block DB 100.

Continued on the next page

DB 5, 3 data f ie lds

DB 3,
4 data
f ie lds

DB 5,
3 data
f ie lds

DX 4, 2 data f ie lds

CPU 2 CPU 3

CPU 1

Fig. 10-7 Data exchange between 3 CPUs

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 77

Application example continued:

Implementation

1. Loading blocks

The following blocks must be loaded in the indivitual CPUs:

Function CPU 1 CPU 2 CPU 3

Restart OB

User program
FB: SEND-DAT
FB: RECV-DAT
Link list

Input DB
Output DB

OB 20

FB 1
FB 100
FB 101
DB 100

DB 5
DB 3; DX 4

—

FB 1
FB 100
FB 101
DB 100

DB 3
DB 5

—

FB 1
FB 100
FB 101
DB 100

DB 5; DX 4
—

2. Creating the link list

The link list is created and entered in data block DB 100:

DB100 LEN=37
PAGE 1

– – Sub-list 1 – –

 0: KS = ’S1’; Send from CPU 1 to ..
 1: KY = 001,003; .. CPU 2 (DB 3)
 2: KY = 002,004; .. CPU 3 (DX 4)
 3: KY = 000,000;
 4: KS = S2 ; Send from CPU 2 to ..
 5: KY = 001,005; .. CPU 1 (DB 5)
 6: KY = 001,005; .. CPU 3 (DB 5)
 7: KY = 000,000;
 8: KS = ’S3’;
 9: KY = 000,000;
10: KY = 000,000;
11: KY = 000,000;
12: KS = ’S4’;
13: KY = 000,000;
14: KY = 000,000;
15: KY = 000,000;

Continued on the next page

Applications

CPU 948 Programming Guide

10 - 78 C79000-B8576-C857-03

Application example continued:

– – Sub-list 1 – –

16: KS = ’S1’; Send from CPU 1 to ..
17: KY = 002,004; .. CPU 2 (four data fields)
18: KY = 003,002; .. CPU 3 (two data fields)
19: KY = 004,000;
20: KS = S2’; Send from CPU 2 to ..
21: KY = 001,003; .. CPU 1 (three data fields)
22: KY = 003,003; .. CPU 3 (three data fields)
23: KY = 004,000;
24: KS = ’S3’;
25: KY = 001,000;
26: KY = 002,000;
27: KY = 004,000;
28: KS = ’S4’;
29: KY = 001,000;
30: KY = 002,000;
31: KY = 003,000;

Data words DW 16 to DW 31 contain the assignment list required for the
manual INITIALIZATION function (OB 200).

3. Program OB 200 call in the start-up block OB 20 for CPU 1

OB 200 is called by the OB 20 shown below in CPU 1 during the restart.

OB 20 LEN=yyABS

SEGMENT 1
0000 :L KB 2 Manual initialization of
0001 :T FY 246 the pages
0002 :
0003 :L KY 1,100 The assignment list is entered
0005 :T FW 248 in DB 100 from data word 16
0006 :L KF+16 onwards
0008 :T FW 250
0009 :
000A :L KB 246 SF OB:
000B :JU OB 200 "Initialize"
000C :
000D :AN F 252.5 Block end if there is no
000E :BEC initialization conflict
000F :
0010 : The error handling routine
0011 : is inserted here if an
0012 : initialization clonflict
0013 : occurs (e.g. stop, output
0014 : message on printer, or ...)

00xx :BE

Continued on the next page

10

Applications

CPU 948 Programming Guide

C79000-B8576-C857-03 10 - 79

Application example continued:

4. Program calls for the function blocks in FB 1 of the CPUs:

The user program on each CPU is extended by the RECV-DAT and SEND-DAT call.
Function block FB 1 shown below is for CPU 1. For the other CPUs, the input
parameter CPUN (CPU number) must be modified.

FB 1 LAN=yy

SEGMENT 1 0000
NAME:EM-SE
0000
0000 :C DB100 Link list DB 100
0001 :JU FB101 Receive the input
0002 : data blocks
0003 NAME :RECV-DAT
0004 CPUN : KF+1
0005 ERWA : FY0
0006 :JC =ERWA Abort if error/warning
0007 :
0008 :
0009 : Here, the cyclic user program that
000A : reads data from the input data
000B : blocks and enters data in the
000C : output data blocks is inserted.
000D :
000E :
000F :
0010 :C DB 100 Link list DB 100
0011 :JU FB100 Send the output
0012 : data blocks
0012 NAME :SEND-DAT
0013 CPUN : KF+1
0014 ERWA : FY0
0015 :JC =ERWA Abort if error/warning
0016 :BEU
0017 :
0018 ERWA : Run an error handling routine
0019 : following an error/warning (here,
001A : the error handling routine is
001B : inserted, e.g. stop, output error
001C : message on printer or screen, or ..)

00xx :BE

Applications

CPU 948 Programming Guide

10 - 80 C79000-B8576-C857-03

Contents of Chapter 11

11.1 Overview. 11 - 4

11.2 PG Functions. 11 - 5

11.2.1 Info . 11 - 6
Memory configuration. 11 - 6
Output DIR . 11 - 7
Output address. 11 - 7

11.2.2 Installation. 11 - 7
Overall reset. 11 - 7
Compress memory. 11 - 7
Transfer block . 11 - 8
Delete block. 11 - 8

11.2.3 Program Test . 11 - 8
Start/stop . 11 - 8
Status block . 11 - 9
Program test. 11 - 10
Status variables . 11 - 14
Force . 11 - 14
Force variables . 11 - 15

11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface . 11 - 16

11.4 Parallel Operation of Two Serial PG Interfaces . 11 - 17

11.4.1 Installation. 11 - 19
11.4.2 Operation. 11 - 19
11.4.3 Sequence in Certain Operating Situations . 11 - 21

Parallel operation with short-running functions. 11 - 21
Parallel operation with long-running functions . 11 - 22
Parallel operation with cyclic functions . 11 - 22
General notes . 11 - 26

PG Interfaces and Functions 11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 1

11.5 PG Functions via the S5 Bus . 11 - 27

11.5.1 Application . 11 - 27
11.5.2 How the PG Functions Work via the S5 Bus . 11 - 29
11.5.3 Installation and Getting Started . 11 - 31

The CP 143 is used exclusively for PG Functions . 11 - 31
The CP 143 is used for PG Functions and Communication via SINEC H1. 11 - 33

11.5.4 Condition Codes Indicating Problems . 11 - 35

CPU 948 Programming Guide

11 - 2 C79000-B8576-C857-03

11PG Interfaces and Functions

This chapter explains how to connect your PG to the CPU 948 and the
functions provided by the PG software with which you can test your
STEP 5 program.
If you only use the standard PG interface (1st serial PG interface) you
do not need to read Sections 11.4 and 11.5. These sections tell you
about further interfaces with which you can connect a PG to your
CPU. These sections also contain points to note if you use PG
functions on both interfaces.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 3

11.1 Overview

You can load and test your user program using the online functions of
the STEP 5 software.

To use these functions, the CPU must be connected to the PG. The
following interfaces are available for this link:

•• link via the serial standard interface "PG - PLC",

•• link via the 2nd serial interface of the CPU 948,

•• link via the S5 bus with SINEC H1.

The PG functions can operate simultaneously on the two serial
interfaces, however, via the SINEC H1 link, the PG functions can only
be used alternately with those on the serial interfaces

PG functions provide the following support for installing and testing
your STEP 5 program:

Function Section

Info

Size of the internal RAM and free
user memory

"Memory configuration"

List of loaded blocks "Output DIR"

Display contents of memory
words/bytes and I/O bytes

"Output address"

Memory management

Delete the whole memory "Overall reset"

Create more memory space "Compress memory

Manage blocks "Transfer/delete blocks"

Program test

Start/stop CPU "Start/stop"

Test the operation sequence in a
block

"Status block"

Test single program steps "Program test"

Display signal state of process
variables

"Status variables"

Output signals in the stop mode "Force"

Display/change process variables "Force variables"

Table 11-1 Functions for installation and testing

CPU 948 Programming Guide

11 - 4 C79000-B8576-C857-03

11.2 PG Functions

Note

The terms used in this section for the PG functions may in some
cases differ from the terms in your PG software. Please refer to
your STEP 5 manual.

Calling and using functions How to call and use the individual PG functions is described in the
manual for your PG.

Checkpoint The PG functions are performed at defined checkpoints in the CPU.
In the CPU 948 there are four different checkpoints. Each of these
checkpoints has certain test functions assigned to it.

Checkpoint "Stop"

You can access PG functions that are permissible only in the STOP
mode at checkpoint "stop" (e.g. "start", "overall reset", "compress
memory" in the stop mode).
The "stop" checkpoint is located immediately before OB 39 is called
(the block for cyclic processing in the soft STOP mode).

Checkpoint "Cycle"

PG functions that you want to execute during cyclic program
processing are called at checkpoint "cycle" (e.g. "compress memory"
in the RUN mode, "stop", "status"). The "cycle" checkpoint is located
immediately before the updating of the process image of the inputs
(PII). At this point, the system program has not updated the PII yet.

Checkpoint "Test"

PG functions that you want to execute as soon as the next breakpoint
is reached are called at checkpoint "test" (in the program test), see
Section 11.2.3).

Checkpoint "General Functions"

This checkpoint exists both in the STOP and the RUN mode. Online
PG functions that can be executed in all operating modes of the
programmable controller are called at checkpoint "general functions".
These functions include "transfer block", "delete block", "status
variables". In the STOP mode, this checkpoint is located immediately
before OB 39 is called (the block for cyclic processing in the soft
STOP mode). During cyclic program processing, the checkpoint is
located after updating the process image of the inputs and before
calling OB 1.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 5

11.2.1
Info

Memory configuration The CPU 948 is available with two memory versions and you can
check the memory capacity using the PG function "memory
configuration". With this function, the following information about
the CPU user memory is transferred to the PG (from PG software
version V6.0 upwards with "Delta diskette" for the CPU 948):

•• memory capacity (640 Kbytes/1664 Kbytes)

•• longest free block of user memory

•• sum of all free blocks of user memory.

The PG software V6.3 with "Delta diskette" for the CPU 948 displays
the memory configuration exactly.
With older PG software versions (e.g. V3.0 or MT1.0) the memory
configuration is as for the CPU 946/947 (refer to Fig. 11-1). The total
memory configuration of the CPU 948 must then be calculated from
the total of the submodule values.

P L C i n f o SIMATIC S5 / OES0C

M e m o r y configuration S 5 1 5 5 U

Module Submod Type Start address End address Length

0 1

1

2

2

2

2

2

3

3

Longest free block of RAM

Sum of all free blocks of RAM

1

1

1

1

RAM

RAM

RAM

00000

10000

30000

Submod. empty / not plugged in

Submod. empty / not plugged in

Submod. empty / not plugged in

Submod. empty / not plugged in

0FFFF

2FFFF

4FFFF

64 KW

1)

1) corresponds to the memory configuration of the CPU 948-1: 320 Kw = 640 Kbytes

128 KW

128 KW

: 314800 Words

: 315664 Words

F1 F2 F3 F4 F5 F6
OUTP ADDR MEM CONF SYSPAR BSTACK ISTACK RETURN

F7 F8

Fig. 11-1 PG display of the memory configuration

CPU 948 Programming Guide

11 - 6 C79000-B8576-C857-03

Output DIR If you want to display a list of all the programmed blocks on the PG
with the CPU 948, OB 0 is displayed instead of the system program
blocks.

The function is permitted in the operating modes RUN, SOFT STOP,
HARD STOP and can also be called within the "program test"
function.

Output address With the "output address" function, you can display the contents of
memory and I/O addresses in hexadecimal format. You can access all
addresses (RAM, S5 bus, areas with no modules assigned). In the
process image area no ADF is triggered, in the I/O area there is no
QVZ.

In the areas addressed as bytes (flags, process image) the high byte is
represented as ’FF’.

11.2.2
Installation

Overall reset With the function "delete all blocks" you can carry out an overall reset
of the CPU from the PG. The overall reset is carried out
unconditionally (refer to Section 4.2).

Compress memory This function shifts all valid blocks in the user memory to the
beginning of the user memory. Unused areas that resulted from
deleting or correcting blocks are eliminated. This function shifts
complete blocks to the beginning of the memory area. Ideally, one
large free area results from many small unused areas. You can load
blocks into the resulting large space.

You can call this function in the RUN and soft STOP modes. In the
RUN mode, DBs and DXs that are longer than 512 data words are not
shifted. In the STOP mode, all blocks are shifted.

The blocks are shifted via a buffer so that no data is lost if there is a
power failure. If this buffer is insufficient for intermediate storage of a
block, compressing continues at the next unused memory area.
Consequently, some unused areas can still remain after compressing.

See also Section 8.3.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 7

Transfer block With this function you can transfer new or existing logic and data
blocks to the user memory of the CPU.

If a block already exists in the user memory of the CPU, it is declared
invalid and the new block becomes valid.

Delete block With this function you declare a logic or data block in the user
memory as invalid.

The space taken up by such blocks is released and can be used again.

11.2.3
Program Test

Start/stop When you use the START and STOP PG functions, operating the PG
corresponds to manual operation.

You can put the programmable controller into the STOP mode by
calling the STOP function while the controller is in the RUN mode.

PGSTP is marked in the control bit display. In multiprocessor
operation, the HALT control bit is set for the other CPUs.

You exit the SOFT STOP status with a COLD RESTART or WARM
RESTART. In the single processor mode, the CPU exits the stop
mode. In multiprocessor operation, the restart type is registered
initially (the NEUDF or WIEDF control bit is set). However, the CPU
stays in the soft STOP mode until all CPUs are initialized for
multiprocessing. With the next operation "system start" you can start
the programmable controller. This corresponds to switching the
coordinator switch to RUN.

You can call the START PG function in the multiprocessor mode to
select the restart type you want for all the CPUs you are using. After
that, you can start the programmable controller with the last CPU.

CPU 948 Programming Guide

11 - 8 C79000-B8576-C857-03

Status block You can call the "status" PG function to test related operational
sequences (STEP 5 operations) in one block at any location in the user
program.
The current signal status of operands, the accumulator contents, and
the RLO are output on the PG screen for every executed operation in
the block (i.e., step mode). You can also use this function to test the
parameter assignment of function blocks (i.e., field operation):
The signal status of the actual operands is displayed.

Calling the function and
specifying a breakpoint

When you call the "status" function on a PG and enter the type and
number of the block you want to test (possibly including the nesting
sequence and search key), you enter a breakpoint.

When the "status" function is called during program processing in the
RUN mode, program processing continues until it reaches the
operation marked by the specified breakpoint in the correct nesting
sequence. Then the system program executes each of the monitored
operations up to the operation boundary, outputting the processing
results to the PG.

Note

The results of operation processing are not output in each of the
subsequent cycles.

Nesting and interruptions A sequence of operations marked by a breakpoint is completed even if
a different program execution level (e.g., an error OB or interrupt OB)
is activated and processed. With this you can see whether data has
been changed by nested program sections.

If an interruption in a nested program execution level puts the CPU
into the STOP mode, data is output up to the operation that was
executed before the program execution levels changed. The data of the
remaining operations is padded with zeros (the SAC is also 0).

The "status" function is possible in the following modes. RUN,
RESTART (OB 20, OB 21, OB 22) soft STOP (OB 39 only).

DO FW/DO DW operations While the "status block" function is active, if the cursor is positioned
exactly on the operation following DO FW or DO DW, the message
"Statement not processed" appears on the PG.

Remedy:
Avoid positioning the cursor on the operation following DO FW or
DO DW.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 9

Older PG software versions If you move the cursor quickly in the "status block" function with
older PG software versions, each cursor movement means a wait of 3
to 5 seconds.

Remedy:
Cancel the status with the abort key, reposition the cursor and then
continue the status function again. There are then no waiting times.

Program test You can call the "program test" function to test individual program
steps anywhere in your user program. When you do this, you stop
program processing and allow the CPU to process one operation after
the other. The PG outputs the current signal status of operands, the
accumulator contents, and the RLO for each operation executed.

Calling the program test
and specifying the first
breakpoint

You can call the "program test" function in the RUN and soft STOP
modes. To call the function, specify the type and number of the block
you want to test. You may also want to include the nesting sequence.
At the PG, mark the first operation you want to test. This is how you
specify the first breakpoint.

When you specify the first breakpoint during program processing,
the CPU continues processing the program until it reaches the
operation marked by the specified breakpoint. The operation is
executed up to the operation boundary. (The DO FW and DO DW
operations are processed including the substituted operation.) The
CPU checks to see if the current block nesting sequence matches the
block nesting sequence that you specified. If the nesting sequences do
not match, the CPU continues program processing.

If program processing does not reach the specified breakpoint (e.g.,
because the CPU goes into the STOP mode or there is a continuous
loop in the user program), the PG displays the message "Statement not
processed". However, the function and the specified stopping point
remain active.

If the nesting depths match, the output command is disabled (the
"BASP" LED is on) and the PG displays the data of the processed
operation. The CPU waits for further instructions from the PG.

DO FW/DO DW operations When the "program test" function is active, the cursor cannot be
moved beyond the operation following DO FW/DO DW.

Remedy:
Cancel the function, skip the sequence of operations mentioned above
and set a new breakpoint after the operation following
DO FW/DO DW

CPU 948 Programming Guide

11 - 10 C79000-B8576-C857-03

Calling test functions in SOFT
STOP

You can also call the "program test" function and specify an initial
breakpoint when the CPU is in the soft STOP mode. The CPU
remains in the soft STOP mode, and you can execute either a COLD
RESTART or a MANUAL WARM RESTART. The CPU processes
the program up to the marked operation and it proceeds as outlined
above.

Executing the function and
specifying another
breakpoint

Initial situation: the CPU has processed the 1st break point.

To continue the function, you have two possibilities:

1. Specify the next operation as the following breakpoint:

Move the cursor down to the next operation to specify the following
breakpoint.
The CPU continues by processing this operation up to the operation
boundary. Then the CPU outputs the data and waits for further
instructions from the PG. However, if a nested program
execution level interrupts operation processing at the following
breakpoint, the CPU processes the nested program first. Then
the CPU returns to the 2nd breakpoint that you specified.

Note

You cannot specify a following breakpoint when the CPU is in
the STOP mode.

2. Specify a new breakpoint:

At the PG, specify any other operation in the same block
or in a different block. The CPU continues program processing
until it reaches the new breakpoint. The CPU processes the
operation up to the operation boundary, then it outputs the data.

Cancelling the
breakpoint

You can cancel the breakpoint by pressing the <BREAK> key if the
CPU has not reached this breakpoint. After that you can specify a new
breakpoint or terminate the program test.

Aborting the function You can abort the "program test" function during program processing
and when the CPU is in the soft STOP mode by calling the "program
test end" function. The CPU goes into the STOP mode (or stays in
STOP). The STOP-LED flashes slowly. BEARBE is marked in the
control bits display. Afterwards a COLD RESTART is required.
The function is also aborted if an interface error occurs during the
"program test" function (i.e., the cable between the PG and the
programmable controller is disconnected).

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 11

Nesting with "interruptability
at operation boundaries"

While the "program test" function is running, the other program
execution levels can be activated, if the mode "interruptability at
operation boundaries" is set.

When an operation has been processed at a breakpoint and a different
program execution level is called at this point (e.g. an error OB or an
interrupt OB) this is first processed completely before the program is
continued at the next breakpoint.

Note

The system program reads data and outputs it at an operation
boundary. At this point, all related program execution levels have
not yet been processed.

The sequence of the "program test" function is illustrated in Fig. 11-2.

Note

If an operation has been processed at a breakpoint and activation
of a different program execution level is requested, you can set a
breakpoint at an operation in the different program execution
level (e.g., you can look at a QVZ error OB directly after an
operation that triggers a QVZ error).

Execute operat ion
and
read data

Execute operat ion
and
read data

< <<<<<

< <<<<<

1st breakpoint

WAIT STATE (output data)

WAIT STATE (output data)

Process interrupt , t imed
interrrupt , error OB

Process interrupt , t imed
interrupt , error OB

Next
breakpoint

Fig. 11-2 Sequence of "program test"

CPU 948 Programming Guide

11 - 12 C79000-B8576-C857-03

Interruptions •• Program processing → STOP mode:
If an interruption occurs during program processing (e.g., multipro-
cessor stop, I/O not ready/STOP, error OB not programmed etc.)
before the program reaches the specified breakpoint, the CPU goes
into the STOP mode immediately. If you execute a COLD REST-
ART or a MANUAL WARM RESTART, the "program test" func-
tion is still in effect and the breakpoint is still set.

•• Program processing at breakpoint → STOP mode:

If stop conditions occur at the breakpoint or following breakpoint
during program processing, the CPU goes directly into the soft
STOP mode and outputs the data.
If you do not specify a new breakpoint while the CPU is in the
STOP mode, the "program test" function is still in effect after the
restart.

While the "program test" function is in effect, you can execute the
following other functions on your PG

- Output ISTACK

- Output BSTACK

- Load block

- Read block

- Delete block

- Output block list

- Force variables

- Force

In rare situations, the function may be terminated and the CPU is
subsequently in the STOP mode.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 13

Status variables Using the "status variables" function, you can display the current
signal states of certain operands (process variables).

When a checkpoint is reached, the PG displays the present signal
status of the desired process variable. You can display the following
process variables: inputs, outputs, flags, timers, counters and data
words. No addressing error (ADF) is triggered in the process image
area.

Sequence in RUN If the function is active in the RUN mode, the signal states of the
operands are scanned and displayed when the checkpoint is reached.
The system program reads inputs from the process image. As long as
the function is not aborted, signal states are updated cyclically.

Note

If the program does not reach the system checkpoint, the system
program does not output the signal states (e.g., in a continuous
loop in the user program).

Sequence in
SOFT STOP

When the function is active in the STOP mode, the signal states of the
operands are displayed when they exist at the system checkpoint. It is
important to note that the inputs are scanned and output directly on the
I/O module.

Force You can call the "force" PG function to manually set the output bytes
of the programmable controller to the signal states you want.

Note

The "force" function is only permitted in the stop mode (SOFT
STOP mode or within the "program test" function).

Sequence of the function When you call the "force" function in the STOP mode, the disable
output command signal is suppressed (i.e., the BASP LED is off). All
digital peripherals are cleared (i.e., the value 0 is written to each
address). While the peripherals are being cleared, this function cannot
be interrupted. If any timeout signals (QVZs) occur while the outputs
are being cleared, they are ignored.

CPU 948 Programming Guide

11 - 14 C79000-B8576-C857-03

The peripheral outputs are forced byte by byte.

In multiprocessor operation, you can force all peripheral outputs
(regardless of the peripheral assignment in DB 1).

Timeout errors that occur are detected when outputs are changed (PG
message "I/O module does not exist").

Terminating the function You can terminate the function by pressing the <BREAK> key on the
PG. The disable output command signal is active again (i.e., the
"BASP" LED is on). The function also ends if the CPU goes into the
RUN mode between calling the function and actually forcing outputs.

Force variables You can call the "force variables" function to look at the values of
operands (process variables) in the process image table and change
them. You can use this function in the RUN and soft STOP modes and
within the "program test" function. You can display the following
process variables: inputs, outputs, flags, timers, counters and data
words.

Special features Any change becomes effective at the next system checkpoint, i.e.
regardless of the system checkpoint (start of cycle or end).

Note that the forced values can be overwritten again (e.g. by the user
program or by the process image updating).

Note

The PG forces process variables in bytes.

If you are forcing several operands, the bytes are changed in
memory one after the other distributed over several cycles. 11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 15

11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface

For the serial link PG - PLC there are the following possibilities:

•• Direct link to the CPU via the standard cable.

•• Link to the PG via the coordinator COR C. In this case the PG is
connected via the cable to the coordinator. This means that the 1st
serial interface is no longer available.

•• Link to the PG via a PG multiplexer 757. The permitted cables can
be found in the system manual 135U/155U /2/.

•• Link to the PG via SINEC H1/L2/L1 and "swing cable"; the
COR C or PG multiplexer can be connected in the link.

CPU 948 Programming Guide

11 - 16 C79000-B8576-C857-03

11.4 Parallel Operation of Two Serial PG Interfaces

You can use the second interface on the CPU 948 (SI 2) as a PG
interface in exactly the same way as the first interface.

To be able to link your PG via this interface, you must also order the
PG interface module in addition to your CPU 948 (the order number is
listed in the system manual 135U/155U /2/).

All the PG functions are available on both interfaces. The following
sections contain only the information that you require if you work
with PGs or OPs on both interfaces simultaneously.

PG

SI1

SI2
PG

Inter face
submodule PG

Fig. 11-3 Using the second interface as a PG interface 11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 17

Examples of configurations

CPU 948 CP 143

SINEC H1

SI1 PG connected via SINEC H1 and COR C

SI2

"swing cable"

PG connected direct ly

Fig. 11-4 First example of a configuration

CPU 948

OP PG

SI 2 PG connected direct ly
(for programming)

SI 1 OP connected direct ly
(for operat ion and monitor ing)

Fig. 11-5 Second example of a configuration

CPU 948 Programming Guide

11 - 18 C79000-B8576-C857-03

11.4.1
Installation To use the second interface of the CPU 948 as a PG interface, follow

the steps outlined below:

Step Action

1 Install the PG submodule in the CPU 948.

(refer to the instructions in the Appendix)

2 Connect the PG to the serial interface SI2.

11.4.2
Operation If you use the second interface as a PG interface then initially the full

range of functions of the standard PG interface is available on each
interface. This remains true, providing the individual functions do not
influence each other, i.e., called sequentially one after the other.

To understand the exceptions to this, the PG functions can be divided
into three groups:

Group Name

Short-running functions Functions that execute a job and then are
terminated.
(e.g. "transfer", "delete" etc.)

Long-running functions Functions that process a fixed number of
jobs:

- "force",
- "program test".

Cyclic functions Functions that execute a job repeatedly
until you terminate them:

- "status block",
- "status variables",
- "force variables".

Caution

With long-running and cyclic functions you must coordinate the
activation of these functions on both PGs.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 19

The table below lists the pairs of functions that you cannot work with
simultaneously.

Function active
on the first PG:

You must not activate this
function on the second PG

"Force" Any function

"Program test" Any function

A "status" function" "Force"

A "status" function" "Program test"

A "status" function" "Overall reset"

"Status" on long running blocks
or blocks which are not processed

Any function

If you attempt to start one of the illegal functions, the second PG
displays an error message, e.g.: "AS function disabled: function
active".

The same error message or "Overflow in data exchange with PG"
appears if the CPU 948 is currently processing functions of the other
PG, which prevent your PG accessing the CPU within the monitoring
time. Your input is then rejected. Repeat your input once the functions
are completed on the other PG.

Note

Owing to the different performances and range of functions, time
monitoring and the response to errors is not identical in all PGs
and OPs.

If you activate the function "memory configuration"
simultaneously on both PGs, the displays may be incorrect.

Caution

If you input, correct or delete blocks online on both PGs
simultaneously, you must make sure that the blocks are not
protected by the other PG before you access them.
"Status" of a block which is not processed or "status" in the STOP
mode blocks the other interface for all functions.

Table 11-2 Functions which cannot run simultaneously on both PGs

CPU 948 Programming Guide

11 - 20 C79000-B8576-C857-03

11.4.3
Sequence in Certain
Operating Situations

Parallel operation with
short-running functions

If you work with PGs on both interfaces simultaneously, both PGs
want to execute their functions independently of each other. As long
as they stagger the jobs they send to the CPU, the jobs will be
processed in the order in which they arrive.

The situation may, however, arise that the CPU 948 either receives
two jobs simultaneously or receives a job from the second PG while a
job from the first PG is still active.
Since simultaneous processing is not possible, the jobs are processed
one after the other; the second job is, however, delayed by such a short
time that it is hardly noticeable for the user.

When jobs are sent simultaneously, the sequence is as follows:

From this sequence, you can see that both PGs can operate
independently from each other, but that the one nevertheless affects
the other.
It is possible that both PGs process the same block simultaneously or
that a block currently being processed by one PG is deleted by the
other PG.
With this configuration, you must always take into account the way in
which input at one PG affects the other PG.

Input at keyboard of PG 1
Interpretat ion of input 1 in PG 1

Job 1 transferred to the CPU

Job 1 processed in the CPU

Resul ts of job 1 transferred to PG 1

Resul ts of job 1 interpreted

Resul ts of job 1 displayed
on PG 1

CPU 948User on PG 1

Job 1 transferred to the CPU

Job 2 processed in the CPU

Resul ts of job 2 transferred to PG 2

Resul ts of job 2 interpreted at PG 2

Resul ts of job 2 displayed on PG 2

Input at keyboard of PG 2

Interpretat ion of input 2 in PG 2

*
*
*
*

User on PG 2

Here PG 2 must wait
unti l the CPU has
processed job 1.

Fig. 11-6 Handling simultaneous jobs

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 21

Parallel operation with
long-running functions

The long-running functions "force" and ""program test" cannot
interrupt other functions and cannot be interrupted by other functions.
They can therefore not be executed parallel to other functions,
i.e. they are treated as a standard job "en bloc".

Parallel operation with
cyclic functions

Cyclic functions can be executed both parallel to other cyclic and to
short-running functions. The following example shows the standard
sequence of the "status variables" function.

PG 1 informs the CPU
of the var iables
to be output.

PG 1 requests the
current data

PG 1 requests the
current data

PG 1 requests the
current data.

PG 1 requests the
current data.

PG 1 must wai t unt i l
the CPU is free.

Job sent by PG 2 is processed

PG 2 must wai t unt i l
the CPU is free.

PG 2 sends a job

PG 2 job complete

CPU 948User on PG 1 User on PG 2

Fig. 11-7 Typical sequence of a cyclic function and parallel short-running function

CPU 948 Programming Guide

11 - 22 C79000-B8576-C857-03

To allow a second PG to send a job to the CPU, the status function is
interrupted between two requests and then continued on completion of
the inserted job. Since the interrupting function requires CPU
facilities, the whole CPU system facilities must be divided between
the two functions, e.g. the updating of the data output by the "status
variables" function takes somewhat longer.

With both PGs working simultaneously, the sequence shown in figure
11.8 results.

This also applies when cyclic functions are active on both PGs; the
two PGs then access the PLC alternately.

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 23

PG 1 informs the CPU
of the var iables
to be output.

PG 1 requests the
current data.

PG 1 requests the
current data.

PG 1 requests the
current data.

PG 1 requests the
current data.

F irst job of PG 2 is processed

Second job sent by PG 2 is processed

PG 2 sends the f i rst job

PG 2 sends the second job

First job of PG 2 complete

Second job of PG 2 complete

PG 1 must wai t unt i l
the CPU is free.

PG 2 must wai t unt i l
the CPU is free.

PG 1 must wai t unt i l
the CPU is free.

CPU 948User on PG 1 User on PG 2

Fig. 11-8 Sequence of two parallel cyclic functions

CPU 948 Programming Guide

11 - 24 C79000-B8576-C857-03

Special feature with cyclic
functions on both PGs

If the interrupting function blocks the CPU 948 ("status" in a block
that is not executed) the interrupted function is also blocked. It can
only be resumed when the interrupting function is terminated.

When working simultaneously with two PGs, the following sequence
results:

General notes If "status variables", "force variables" (with the status display) or
"status" is output on one interface and "compress memory", "delete
block" or "transfer block" on the other, the status display can be
corrupted.

PG 1 informs the CPU
of the var iables
to be output.

PG 1 requests the
current data.
(PG signals: status
processing act ive)

PG 1 requests the
current data.

PG 1 requests the
current data.

PG 1 must wai t unt i l
the CPU is free.

PG 2 must wai t unt i l
the CPU is free.

Job sent by PG 2 is processed

(PG signals: status processing act ive)

(PG signals: statement
not processed)

PG2 sends a new job
(e.g. "Status PB 9").

PG 2 job complete

PG 1 receives new data

PG 2 aborts the STATUS funct ion;
The CPU processes the abort request

CPU 948User on PG 1 User on PG 2

Fig. 11-9 Sequence when a function blocks the CPU 948

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 25

11.5 PG Functions via the S5 Bus

11.5.1
Application The PG functions via the S5 bus allow you to load and control

S5-155U programmable controllers with the CPU 948 connected via
SINEC H1 using the PG 7xx. With the PG functions via the S5 bus,
the CPU 948 can be loaded up to eight times faster than via the PG
interface. The actual speed depends on the length of the blocks to be
transferred.

You can also use the PG functions via the S5 bus in the multiprocessor
mode.

The PG functions via the S5 bus are a component of the system
program of the CPU 948.

Caution

The PG functions via the S5 bus can only be used alternately
with the PG functions via the first and second serial interface (i.e.
one function only at a time).With some functions,
(simultaneous/nested functions) data or blocks may be corrupted.

With the CPU 948 numbers > 232 are reserved for the PG
functions via the S5 bus. These numbers are not freely available
for handling blocks.!

CPU 948 Programming Guide

11 - 26 C79000-B8576-C857-03

Fig 11-10 shows a typical configuration for the multiprocessor mode.

No parameter assignment
for the CPU

No parameter assignment is necessary on the CPU 948 to use the PG
functions via the S5 bus.

Technical requirements The PG functions via the S5 bus with the CPU 948 can only be used
when the PG and PLC are networked via SINEC H1.

You require the following:

•• a PG 7xx with SINEC-H1 connection and with STEP 5 software
version 6.3 (ST) or 6.0 (MT) installed with the delta diskette
CPU 948

•• in the PLC (central controller or expansion unit EU 185), a CP 143
communications processor from version 06 (firmware version 3.0)
upwards with the base interface number 232 selected (the base in-
terface number is set in the hardware using jumpers and in the
SYSID using COM 143).

Bus couplerBus couplerSINEC H1

C
P
1
4
3

C
O
R
9
2
3
C PG 7xxS5-155U

Fig. 11-10 Multi processor mode with a CP 143
(2 x CPU 948, 1 x CP 143)

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 27

11.5.2
How the PG Functions Work
via the S5 Bus

Using pages For communication with the CPUs, the CP 143 has four pages
(interfaces). If you do not use the PG functions via the S5 bus, all the
pages are available for communication using handling blocks (HDBs).

When using the S5 bus functions, the pages of the CPU are divided
into two pages for user HDBs and two pages for PG functions.
The pages for user HDBs can be used as previously for SINEC H1
applications. Remember, however, the special features listed in
Section 11.5.3.
The pages for PG functions are used by the CP 143 and the CPU 948
for the PG functions via the S5 bus and are therefore no longer
available for communication via handling blocks.

Interface numbers (SSNR) The PG functions via the S5 bus are activated automatically in the CP
143 when you set the base interface number of the CP to 232 or 236
(jumpers and SYSID). You then occupy interface numbers 232 to
239. Interface numbers 240 to 247 are intended for later expansions
(e.g. CPs with eight pages/interfaces).

SINEC H1

CP 1

CP 2

SINEC H1

SINEC H1

SINEC H1

232

233

234

235

236

237

238

239

.

.

PG functions

PG functions

PG functions

PG functions

reserved (8 pages)

Fig. 11-11 Interface assignment of the PG functions via the S5 bus

CPU 948 Programming Guide

11 - 28 C79000-B8576-C857-03

Parameters for the CP 143 Assigning parameters for the CP 143 is described in the CP 143
manual (Further Reading /6/).

Caution

The interface numbers 232ff and 236ff must not be assigned on
the CP 143 when operating with other SIMATIC CPUs. When
operating the CPU 948 with other CPs, the use of interface
numbers 232 to 247 is restricted.

Multiprocessor mode The PG functions via the S5 bus can also be used in the
multiprocessor mode with the CPU 948.

With one CP 143, two CPUs (948) can use the online functions in the
S5-155U. The CP 143 can also be used in the expansion unit (EU 185).
In the multiprocessor mode, CPU 1 uses the page with SSNR 234,
and CPU 2 the page with SSNR 235.

If a second CP 143 is inserted and has appropriate parameters
assigned, this is reserved for the online functions via the S5 bus with
CPU 3 and CPU 4 (with SSNR 238 and 239).

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 29

11.5.3
Installation and Getting
Started

During installation, remember the following alternatives.

The CP 143 is used
exclusively for
PG Functions

If the CP 143 is used exclusively for PG functions via the S5 bus, no
further parameters other than the SINEC H1 parameters must be set.

After POWER UP, the PG functions are always available on CPU 948
via the S5 bus without the CP 143 previously being synchronized with
the HDB SYNCHRON (FB 125). The mode selector on the CPU
must, however, be set to RUN.
An "empty" CPU 948 can be started up via the S5 bus without an
OVERALL RESET.

After POWER UP, the CPU 948 automatically synchronizes the pages
assigned to it on the CP 143 for PG functions via the S5 bus.

The following steps are necessary for starting up:

Step Action

1 Set the interface number (SSNR) on the CP 143 (jumpers):
Select the SSNR according to the existing hardware configuration as shown below.
Keep in mind the explanations in Further Reading /6/.

Possible hardware configuration Corresponding SSNR on the CP 143

1 x CPU 948, 1 x CP 143

1 x CPU 948, 2 x CP 143

2 x CPU 948, 1 x CP 143

3 x CPU 948, 2 x CP 143

4 x CPU 948, 2 x CP 143

232

232 on 1st CP, 236 on 2nd CP

232

232 on 1st CP, 236 on 2nd CP

232 on 1st CP, 236 on 2nd CP

2 Insert the CP 143 in the S5-155U (power supply to the PLC must be off).

3 Connect the PG to the PG interface of the CP 143 and load the COM program.

4 Set the interface number selected in step 1 in the SYSID of the CP 143 using COM 143
and set the Ethernet address.

CPU 948 Programming Guide

11 - 30 C79000-B8576-C857-03

Step Action

5 Load the parameter data on the CP 143:
The parameter data of the CP 143 can either be stored
- in an EPROM cartridge

or
- in the RAM of the CP 143.

You can transfer the parameter data via the serial interface of the PG 7xx.
The operations necessary for loading the parameter data of the CP 143 are described in /6/.

6 Perform an overall reset on the CPU, switch the power supply to the PLC off and on
again.

7 Edit the path to the CPU 948 in the bus selection screen form of STEP 5.

8 Select the path to the CPU 948 via SINEC H1/CP 143 in the presets screen form of
STEP 5.

Once these actions have been performed, the PG functions can be used
via the S5 bus. You can now load your user program and run or test it.

Alternative operation via the
serial PG interface

At any one time, the CPU 948 only processes one PG function. If you
attempt to activate further PG functions on a second PG via the serial
PG interface while a PG function is already being processed, a
message, for example, "AS function disabled: function active" is
displayed on this PG.

Notes If a PG function is aborted by switching the mode selector on the CPU
from RUN to STOP or by an error, wait times of greater than 15
seconds are activated for communication via SINEC H1.

If you make a mistake on the PG (e.g. switching off the PG with a PG
function still active) it is possible that the "selection" function must be
repeated when the path is re-established. 11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 31

The CP 143 is used for PG
Functions and
Communication via
SINEC H1

If you use the CP 143 for communication via SINEC H1 as well as for
PG functions via the S5 bus, you must make further settings in
addition to those described in Section 3.1 and must take certain special
features into account.

During installation follow the procedure outlined below:

Step Action

1 to 8 Steps 1 to 8 are identical to those described for the alternative "The CP 143 is used exclusively
for PG functions"

9 Program the HDB SYNCHRON (FB 125) call in the start-up OBs OB 20 and OB 22 so
that the CP 143 is synchronized for SINEC H1 communication during
MANUAL/AUTOMATIC COLD RESTART and AUTOMATIC WARM RESTART.
The HDB SYNCHRON should only be called when the interface is actually used, since the
connection to the PG is subsequently terminated and must then be re-established manually on
the PG.

Using pages for
communication via handling
blocks

The following diagram illustrates how the PG functions via the S5 bus
use the pages of the CP 143. The free pages for user HDBs can be
used by CPUs 1 to 4 for communication via SINEC H1.

CPU 948 Programming Guide

11 - 32 C79000-B8576-C857-03

Special features when
communicating via pages for
user HDBs

By synchronizing the CP 143 for communication (FB 125 called with
SSNR 232, 233 or 236, 237) the existing connections are terminated
by the CP 143
The paths must then be re-established. Waiting times then occur on
the PG (even if you press the abort key). The path selection must be
repeated on the PG.

Owing to this response, you cannot use the PG function "status
block" via the S5 bus for the start-up OBs if you use pages for user
HDBs for communication. You should therefore call FB 125 (HDB
SYNCHRON) only in a COLD RESTART or in a restart following
POWER UP (COLD RESTART or WARM RESTART).

End point
of path

Communication via user HDB with
CPU 3 and CPU 4 is not possible.

SSNR

SSNR

SSNR

SSNR

CPU 948

233

237

235

239

234

238

SSNR
232

SSNR
236

Page for
user
HDB

Page for
user
HDB

Page for
user
HDB

Page for
user
HDB

Page for
PG
functions

Page for
PG
functions

Page for
PG
functions

Page for
PG
functions

PG

1)

1)

1)

1st CP 143

2nd CP 143

CPU 1

CPU 948

CPU 2

CPU 948

CPU 3

CPU 948

CPU 4

SSNR

SSNR

Fig. 11-12 Paths between the PG and CPU 948 and assignment of the CP 143 pages 11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 33

11.5.4
Condition Codes Indicating
Problems

Each of the maximum four CPUs (CPU 948), for which the PG
functions via the S5 bus are activated, writes condition codes to its RS
and RT areas if an error occurs in the PG functions via the S5 bus.

These condition codes consist of a parameter assignment error byte
(PAFE) for each possible connection and a condition code word
(ANZW) to indicate the current sequence of the transmit and receive
blocks. These codes largely correspond to those of the handling blocks.

RS 50 PAFE codes set during the synchronization of the PG functions are
stored in system data word RS 50 (address E F032H).

Evaluating PAFE in RS 50 The PAFE byte is always in the high byte of RS 50.

CPU no. RS 50
high byte

RS 50
low byte

1 PAFE
SSNR 234

-

2 PAFE
SSNR 235

-

3 PAFE
SSNR 238

-

4 PAFE
SSNR 239

-

Significance of the PAFE
codes

All errors are indicated which occur in the interaction with the
CP 143. The following PAFE codes are then set:

PAFE value Significance

00H No error

71H Interface (page) does not exist

81H Interface not ready

91H Interface overloaded

A1H Interface being used by a different CPU

B1H Job number or field size illegal (FB SYNCHRON)

C1H Interface not responding or not in time

D1H Other interface errors, also error code for the CP

CPU 948 Programming Guide

11 - 34 C79000-B8576-C857-03

Meaning of the code 71H:

The code 71H means that the page does not exist. If this error occurs,
the PG functions cannot be used via the S5 bus. In this case, check the
interface assignment of the CP 143. Interface numbers 232ff or 236ff
must be set (jumpers and SYSID!).

RT area If the pages for PG functions exist and the connection to the CP 143 is
established, an information field consisting of 16 words is set up in the
RT area of the CPU 948 with the structure shown below.

Note

As long as there is no connection to the CP 143 (PAFE = 71), e.g.
because there is no page with SSNR 232ff or 236ff, no additional
information is stored in the RT area.

Address

E F2E8H Data sent from CPU to PG for
interface 234 or 238

RT 232

E F2E9H Data sent from CPU to PG for
interface 235 or 239

RT 233

E F2EAH reserved RT 234

E F2EBH reserved RT 235

E F2ECH Data sent from PG to CPU for
interface 234 or 238

RT 236

E F2EDH Data sent from PG to CPU for
interface 235 or 239

RT 237

E F2EEH reserved RT 238

E F2EFH reserved RT 239

E F2F0H reserved PAFE 234 RT 240

E F2F1H reserved reserved RT 241

E F2F2H reserved PAFE 235 RT 242

E F2F3H reserved reserved RT 243

E F2F4H reserved PAFE 238 RT 244

E F2F5H reserved reserved RT 245

E F2F6H reserved PAFE 239 RT 246

E F2F7H reserved reserved RT 247

11

CPU 948 Programming Guide

C79000-B8576-C857-03 11 - 35

Note

The RT area is reset during an OVERALL RESET.

If you use the PG functions via the S5 bus, the RT area is
occupied as described above and is then no longer available for
other programs (e.g. standard FBs). You should bear this in mind
when planning your system.

ANZW ANZW contains the current status of the send and receive blocks. The
individual bits of an ANZW have the following significance:

High byte

Bit no. Assignment

15

Not used

14

13

12

11

10

9

8

Low byte

7 Not used

6 Data acceptance complete

5 Data transfer complete

4 1: error

3 Job complete with error

2 Job complete without error

1 0: SEND enabled 1)

1: SEND disabled

0 0: RECEIVE disabled 1)

1: RECEIVE enabled

1) Specifically for PG functions via the S5 bus

CPU 948 Programming Guide

11 - 36 C79000-B8576-C857-03

Contents of Chapter 12

Appendix 1: Jumper Settings for System Interrupts. 12 - 4

Appendix 2: Inserting and Removing the PG Submodule. 12 - 5

Appendix 3: Technical Data of the CPU 948, CPU 946/947 and CPU 928B. 12 - 7

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1 12 - 10

Byte IDs in ACCU-1-LL . 12 - 10
Word IDs in ACCU-1-L . 12 - 12

12Appendix

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 1

12Appendix

This chapter provides additional information about the CPU 948 such
as jumper settings for system interrupts, notes on inserting and
removing the PG submodule, comparisons of runtimes with
CPU 946/947 and CPU 928B, and results IDs of some of the special
function OBs .

12

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 3

Appendix 1: Jumper Settings for System Interrupts

For interrupt-controlled program execution with the CPU 948, there
are four system interrupts available, as follows:

- INT A/B/C/D (dependent on the CPU slot, see System Manual /2/,
- INT E,
- INT F

and
- INT G.

The interrupts you want to use must be enabled using jumpers. The
jumpers are located on the basic board above the receptacle for the
memory card. The exact position can be seen in the following diagram:

INTF
INTG

INTE
INTA/B/C/D

Fig. 12-1 Location of the jumper

CPU 948 Programming Guide

12 - 4 C79000-A8576-C848-03

Appendix 2: Inserting and Removing the PG Submodule

If you want to use a PG submodule, this must first be added to the
CPU (before the CPU is installed in the central controller).

Caution
Switch off the power supply to the programmable controller
before you remove the CPU.

Inserting the submodule
Note
The jumpers on the PG submodule are already correctly set when
supplied. If, following installation you encounter difficulties,
compare the jumper setting with the settings shown in the System
Manual /2/.

Insert your PG submodule as follows:

Step Action

1 Switch off the power supply to your PLC.

2 Remove the CPU from the central controller.

3 Undo the two screws securing the cover of the submodule
receptacle on the CPU and remove the cover.

4 Insert the PG submodule through the front panel into the
connector (components in the same direction as those of
the CPU).

5 Secure the submodule with the two screws previously
used for the cover.

6 Insert the CPU in the central controller.

7 Switch on the power supply to your PLC again. 12

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 5

Removing the submodule You remove the PG submodule as follows:

Step Action

1 Switch off the power supply to your PLC.

2 Remove the CPU from the central controller.

3 Undo the two screws securing the submodule and remove
the submodule from the receptacle.

4 Insert a further submodule (as described above) or close
the submodule receptacle with the cover. Use the same
screws used to secure the submodule.

6 Insert the CPU in the central controller.

7 Switch the power supply to your PLC on again.

Note
Screwing the interface submodule to the CPU diverts disturbance
pulses via the screen of the CPU. The CPU must only be operated
with the submodule receptacle closed (cover or submodule).

CPU 948 Programming Guide

12 - 6 C79000-A8576-C848-03

Appendix 3: Technical Data of the CPU 948, CPU 946/947 and CPU 928B

Operation / Processing CPU 948 CPU 946/947 CPU 928B

Typical command execution times for bit commands:

with
F, I, Q

 D
Formal operand

0.18 µs
 0.7 µs
 0.91 µs

1.4 µs
 2.4 µs
 2.7 µs

0.57 µs
 3.4 µs
 2.4 µs

Typical command execution times for word commands:

- Load operations
 L FY (byte)
 L FW (word)
 L FD (double word)

0.18 µs
0.5 µs
0.71 µs

1.5 µs
1.8 µs
2.8 µs

0.81 µs
0.94 µs
1.6 µs

- Fixed point arithmetic
- Floating point arithmetic

0.55 ... 3.8 µs
 3.3 ... 6.3 µs

1.0 ... 8.7 µs
 12.8 ... 18 µs

0.94 ... 10 µs
 9.1 ... 23 µs

Cyclic program execution (single processor mode)

Basic overhead calling OB 1/FB 0: 65/– µs 400/– µs 170/172 µs

Extra time for process image updating
depending on the number of
I/O bytes (n)

where 0 < n ≤128

n ≤ 64:
64 µs

+ n * 2.3 µs

n > 64:
92 µs

+ n * 2.3 µs

n ≤ 64:
70 µs

+ n * 3.5 µs

n > 64:
130 µs

+ n * 3.5 µs

18 µs
+ n * 2.13 µs

Extra time for IPC flag transfer
depending on the number of
IPC flags (n)

where 0 < n ≤ 256

n ≤ 64:
64 µs

+ n * 2.1 µs

n > 64:
92 µs

+ n * 2.1 µs

n ≤ 64:
150 µs

+ n * 3.5 µs

n > 64:
210 µs

+ n * 3.5 µs

n ≤ 128:
18 µs

+ n * 2.38 µs

n > 128:
36 µs

+ n * 2.38 µs

Extra time for timer processing
depending on the timer block
length

Timer block length (TBL) = 0
 every 10 ms

11.6 µs
 every 10 ms

4.4 µs
 every 10 ms

1 µs

12

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 7

Operation / Processing CPU 948 CPU 946/947 CPU 928B

timer block length #0
n = number of timers running
(steps: 10 ms)

11.6 µs
+ TBL* 0.32 µs

4.4 µs
+ TBL * 1.3 µs

20 µs
+ TBL * 1 µs

(no difference
between

running and
stopped
timers)

Interrupt driven program execution

Cycle time extension from
nesting an empty OB 2 (without
STEP 5 operations) at a block
boundary 262 µs 405 µs 492 µs

Reaction time 175 µs 270 µs 297 µs

Time-driven program execution

Cycle time extension from
nesting an empty OB 13 (without
STEP 5 operations) at a block
boundary 287 µs 400 µs

440 µs for the 1st
timed int. OB

200 µs for
each further

timed int. OB
due at the same

time

Clock rate for time-driven program
(timed interrupts OB 10 to OB 18)

Variable
basic clock rate

from 1 to 255 ms.
Spec. in steps of

10 ms:
10, 20, 50, 100
200, 500 ms,

1, 2, 5 s
or

10, 20, 40, 80,
160,

320, 640 ms,
1.28, 2.56 s

Variable
basic clock rate

from 1 to 255 ms.
Spec. in steps of

10 ms:
10, 20, 50, 100
200, 500 ms,

1, 2, 5 s
or

10, 20, 40, 80,
160,

320, 640 ms,
1.28, 2.56 s

10, 20, 50, 100,
 200, 500 ms,

1, 2, 5 sec

Resolution for clock-driven
timed interrupts
(OB 9)

every minute,
hourly,
daily,

weekly,
monthly,
yearly,
once

–
every minute,

hourly,
daily,

weekly,
monthly,
yearly,
once

CPU 948 Programming Guide

12 - 8 C79000-A8576-C848-03

Operation / Processing CPU 948 CPU 946/947 CPU 928B

Resolution for delayed
interrupt (OB 6) 1 ms – 1 ms

Cycle time monitoring

Default
selectable between

triggerable

200 ms
1 to 2550 ms

yes

200 ms
1 to 2550 ms

no

150 ms
1 to 13000 ms

yes

Memory sizes

Size of the user memory module
(in Kbytes) 640 or

1664
128 +

n * 128
(n = number of

submodules
inserted in
memory

module 355
(max. 6

submodules in 2
memory modules)

64

Size of memory for data
blocks (DB-RAM, in
Kbytes)

– – approx. 46.6

Timers, counters and flags

Number of timers and counters 256 of each 256 of each 256 of each

Number of flags 2048 flags
+ 32768 S flags

2048 flags
+ 32768 S flags

2048 flags
+ 8192 S flags

12

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 9

Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

Byte IDs in
ACCU-1-LL

Some of the byte IDs are used by several special function OBs. Their
significance therefore depends on the OB called.

SF-OB ACCU-1-LL Meaning

OB 124 01H Function processed correctly

45H
47H
4DH

Errors:
Block type not permitted
Block does not exist
Online function COMPRESS MEMORY
ACTIVE

8DH

8EH

Warning
Conflict with an online function
(except "compress memory")
10-ms waiting time not yet elapsed

OB 125 01H Function processed correctly

42H
43H
44H
45H
4DH

Errors:
Block already exists
Not enough memory
Block length not permitted
Block type not permitted
Online function COMPRESS MEMORY
active

8DH

8EH

Warnings:
Conflict with an online function (except
"compress memory")
10-ms waiting time not yet elapsed

OB 126 01H Function processed correctly

02H
03H
04H

05H

06H
07H

Errors:
Function no. illegal
Pointer in ACCU-1-L (flag no.) illegal
Block type/number illegal or
block DB/DX does not exist
The 1st ID word is not in the specified
data word of the data block (wrong DW
no.) or
the address list contains an incorrect ID
word
Address list no. illegal
The function cannot be called at the
current program execution level

OB 223 01H
02H
03H
04H

Start-up modes same
Internal system error
Start-up modes not same
Single processor mode, no comparison of
start-up modes possible

CPU 948 Programming Guide

12 - 10 C79000-A8576-C848-03

SF-OB ACCU-1-LL Meaning

OB 254/
255

01H Function processed correctly

41H

43H
48H
4AH

4BH

4CH

4DH

4EH

Errors:
Block header on memory card
invalid
Not enough memory
Source data block does not exist
Block number or type
illegal/source DB
Block number or type
illegal/destination DB
Destination data block already exists in
user memory
Online function COMPRESS MEMORY
active
No memory card inserted

8DH

8EH

Warnings:
Conflict with an online function
(except COMPRESS MEMORY)
10-ms waiting time not yet elapsed

12

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 11

Word IDs in
ACCU-1-L

Word results IDs are only used once (with one exception). The
following table is therefore sorted according to ID values.

ID in
ACCU-1-L

ID from
SF OB:

Meaning

8D01H

8D02H

OB 141 Illegal function no. in
ACCU-2-L 1)

One of the reserved bits in ACCU 1
is ’1’ 1)

8E01H

8E02H

8EFFH

OB 142 Illegal function no. in
ACCU-2-L 1)

One of the reserved bits (no. 4 to 15) in
ACCU 1 is ’1’ 1)

Wrong mode (e.g. when the delayed
interrupt is to be disabled and DX 0
contains the parameter "process interrupts
via IB0 = on"

8F01H

8F02H

OB 143 Illegal function no. in
ACCU-2-L 1)

One of the reserved bits in ACCU 1
is ’1’ 1)

9601H
960FH
9611H
9612H
9613H
9614H

9615H
9621H
9622H
9623H

9624H

9625H
9626H
9627H
9628H
9629H

OB 150 Data block not loaded
Block called more than once
Illegal function no.
Address area type illegal
Data block no. illegal
"Number of first data field word"
illegal
Data block length < 4 words
Year specified in data field illegal
Month specified in data field illegal
Day of month specified in data field
illegal
Day of week specified in data field
illegal
Hours specified in data field illegal
Minutes specified in data field illegal
Seconds specified in data field illegal
1/100 seconds in data field not 0
Hour format not as in OB 151

1) the incorrect value is in ACCU-2-L

CPU 948 Programming Guide

12 - 12 C79000-A8576-C848-03

ID in
ACCU-1-L

ID from
SF OB:

Meaning

9701H
970FH
9710H

9711H
9712H
9713H
9714H

9715H
9721H
9722H
9723H

9724H

9725H
9726H
9727H
9728H
9729H

972AH

OB 151 Data block not loaded
Block called more than once
Wrong mode ("process interrupts via
IB 0 = on")
Illegal function no.
Address area type illegal
Data block no. illegal
"Number of first data field word"
illegal
Data block length < 4 words
Year specified in data field illegal
Month specified in data field illegal
Day of month specified in data field
illegal
Day of week specified in data field
illegal
Hours specified in data field illegal
Minutes specified in data field illegal
Seconds specified in data field illegal
1/100 seconds in data field not 0
Hour format not as in
OB 121/OB 150
Job type illegal

990FH
9910H

9911H
9921H

OB 153 Block called more than once
Wrong mode ("process interrupts via
IB 0 = on")
Illegal function no.
Delay time illegal

B501H
B502H
B503H

OB 181 Block does not exist
Wrong block number
Wrong block ID

B601H
B60FH
B611H
B612H
B613H
B621H

B622H
B623H
B624H

B625H

B626H
B627H
B628H

OB 182 Data block not loaded
Block called more than once
Content of data field incorrect
Address area type illegal
Data block no. illegal
"Number of first data field word"
illegal
"Source data block type" illegal
"Source data block no." illegal
"No. of first data word to be transferred
in source DB" illegal
Length of source data block in
block header < 5 words
"Destination data block type" illegal
"Destination data block no." illegal
"No. of first data word to be written in
destination DB" illegal

12

CPU 948 Programming Guide

C79000-A8576-C848-03 12 - 13

ID in
ACCU-1-L

ID from
SF OB:

Meaning

B629H

B62AH

B62BH
B62CH

OB 182
(cont.)

Length of destination data block in block
header< 5 words
"Number of data words to be transferred"
illegal (= 0 or > 4091)
Source data block too short
Destination data block too short

F001H
F00FH
F101H
F102H
F103H
F104H
F105H
F106H
F107H
F108H
F109H

OB 121 Illegal function no.
Block called more than once
Year illegal
Month illegal
Day illegal
Day of week illegal
Hours illegal
Minutes illegal
Seconds illegal
1/100 to1/10 seconds illegal
Hour format not as in OB 151

F001H OB 122 Illegal function no.

CPU 948 Programming Guide

12 - 14 C79000-A8576-C848-03

13Further Reading

CPU 948 Programming Guide

C79000-A8576-C848-03 13 - 1

Further Reading

/1/ S5-135U/155U
CPU 922/CPU 928/CPU 928B/CPU 948
Pocket Guide

Order no. 6ES5 997-3UA22

/2/ System Manual S5-135U/155U

Order no. 6ES5 998-0SH21

/3/ STEP 5 Manual

Order no. C79000-G8576-C140

/4/ GRAPH 5: Graphic programming of
sequential controls under the
S5-DOS SIMATIC S5 operating system

Order no. 6ES5 998-1SA01

/5/ Handling Blocks
Standard Function Blocks
CPU 948

Order no. C79000-G8563-C572

/6/ SINEC
Manual
CP 143 with COM 143

Order no. 6GK1970-1AB43-0AB0

/7/ Hans Berger:
Automating with the SIMATIC S5-155U

SIEMENS AG ISBN 3-8009-1538-3

13

CPU 948 Programming Guide

C79000-A8576-C848-03 13 - 3

/8/ Programmable Controllers
Basic Concepts

SIEMENS AG
Order no. E80850-C293-X-A2

/9/ Catalog ST 59: Programmers
SIMATIC S5

/10/ Catalog ST 54.1: Programmable Controllers
S5-135U, S5-155U and S5-155H

/11/ Catalog ST 57: Standard Function Blocks
and Driver Programs for
Programmable Controllers of the U Series
SIMATIC S5

/12/ Manual SCL

Order no. C79000-G8576-C162

/13/ S5-C-Compiler for S5-155U

Order no. 6ES5 886-1MA21

/14/ S5-135U/155U
Communication CPU 928B/CPU 948

Order no. 6ES5 998-0CN22

CPU 948 Programming Guide

13 - 4 C79000-A8576-C848-03

Contents of Chapter 14

List of Abbreviations . 14 - 3

List of Key Words. 14 - 5

List of Tables and Figures . 14 - 11

List of Tables . 14 - 11
List of Figures. 14 - 17

14Indexes

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 1

Abbreviations

(An explanation of the ISTACK abbreviations can be found in Section 5.4)

ACCU-1 (2, 3, 4)-L low word in accumulator 1 (2, 3, 4), 16 bit
ACCU-1 (2, 3, 4)-H high word in accumulator 1 (2, 3, 4), 16 bit
ACCU-1 (2 ,3, 4)-LL low byte of low word in accumulator 1 (2, 3, 4), 8 bit
ACCU-1 (2, 3, 4)-LH high byte of low word in accumulator 1 (2, 3, 4), 8 bit
ADF addressing error
ANZW condition code word

BASP disable command output (signal on S5 bus)
BCD binary coded decimal
BR base address register
BSTACK block stack

CC 1, CC 0 condition code bits for digital operations
COR coordinator module
CP communications processor
CPU central processing unit
CSF control system flowchart

DB data block
DBA data block start address (in register 6)
DBL data block length (in register 8)
DX extended data block

EPROM erasable programmable read only memory
ERAB first scan (bit code)
EU expansion unit

FB function block
FX extended function block

IM interface module
INT (system)interrupt
IP intelligent peripheral module
ISTACK interrupt stack

List of Abbreviations

14

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 3

KB call for a non-existent logic block
KDB opening a non-existent DB/DX-data block

LAD ladder diagram
LED light-emitting diode

NAU power failure

OB organization block
OR or (bit code)
OS overflow latching (word code)
OV overflow (word code)

PAFE parameter assignment error byte
PARE parity error
PB program block
PEU power failure on expansion unit
PG programmer
PI process image
PII process image of the inputs
PIQ process image of the outputs
PLC programmable controller

QVZ timeout

RAM random-access memory
RLO result of logic operation

SAC step address counter
SB sequence block
SPU operating system processor
STA status (bit code)
STL statement list
STS stop statement
SUF substitution error
STUEB BSTACK overflow
STUEU ISTACK overflow

TRAF transfer or load error

ZYK cycle error

CPU 948 Programming Guide

14 - 4 C79000-T8576-C848-03

List of Key Words

!

ERAB
see results codes

A

access to DW 255 9-15
ACCU writing conventions 6-5
accumulators 6-25
actual operands

of function blocks 2-29
ADF (addressing error) 5-26
arithmetic operations 3-57
assignment list 2-24

B

basic operations 2-4, 3-19
BASP LED 4-6
BASP signal 4-29, 4-33
binary logic operations 3-50
binary numbers 2-8
block

block preheader 2-35
body 2-13, 2-24, 2-36
formal operands (block parameters) 2-27
header 2-13, 2-36
number 2-12, 2-36, 3-33
preheader 2-14

block address list 3-8, 8-13
block calls 2-16, 3-8, 3-32
block ID 2-36
block operations 3-32
blocks

deleting 6-13
generating 6-16

BR register 9-22
BSTACK (block stack) 5-5

evaluating 5-7
output 5-6

C

CC 1 and CC 0
see results codes

checkpoints 11-5
clock-controlled interrupt 1-21, 4-37, 4-39, 6-43
clock-controlled interrupts 4-33

COLD RESTART 4-24
collision of timed interrupts 4-43
communication OBs 10-22

condition code byte 10-25
parameters 10-23
runtimes 10-31

communication processors (CPs) 10-7
comparison operations 3-32
control bits 5-5, 5-9
correcting blocks 2-15
counter value 3-28
counters C 1-14
CPU type and ID 8-44
CSF (control system flowchart) 2-4
CYCLE 3-11, 4-34

interrupt points 4-35
program execution level 4-33
user interface OB 1 4-35

cycle monitoring time 6-63
cycle time

used 8-41
cyclic communication 4-12
cyclic processing 1-6
cyclic program execution 1-17, 4-34
cyclic timed interrupt 4-37
cyclic timed interrupts 4-33, 4-41

D

data area 6-59
data block DB 0 2-41, 3-8, 8-13
data block DB 1 2-41
data block DB 2 2-41
data block DX 0 2-41, 7-4

parameters 7-8
structure 7-5

data block DX 1 2-41
data blocks

general 1-14
data blocks (DB/DX)

copying from memory card 6-65
copying/duplicating 6-65
general 2-13, 2-35
generating 3-33
programming 2-37
structure 2-35
testing 6-57
validity 2-38

data word 1-14, 2-35, 2-39
date 6-38
DBA (data block start address) 9-11
DBL (data block length) 9-13
decimal numbers 2-8

14

CPU 948 Programming Guide
C79000-T8576-C848-03 14 - 5

decrementing 3-66
defaults, modifying 1-9
delay interrupts 6-32, 6-35
delayed interrupt 1-21, 4-33, 4-37 - 4-38, 6-50
digital logic operations 3-50
disable interrupts 6-11, 6-29
dual-port RAM 9-29

E

error analysis 5-8
error in self-test 5-33
error information 5-5
errors

avoiding 5-4
cause 5-23
handling 5-20

F

F flags 1-13, 10-23
FEDBX (error in G DB/GX DX) 5-32
fixed point numbers 2-9
flags

multiple use 4-50
floating point numbers 2-8
formal operands 2-25, 3-52
function blocks (FB/FX)

general 2-13, 2-23
programming 2-25
standard function blocks 2-23, 2-33
structure 2-24

G

global memory
access 9-25
general 9-4

GRAPH 5 2-5

H

Handling blocks 1-22
HARD STOP 4-4
hot restart 4-30

I

I/Os
modules 1-12
O area 1-12
P area 1-12

incrementing 3-66
interface

to system program 1-9, 1-11, 2-18
interprocessor communication flags

data exchange via IPCs 10-5
general 3-13, 10-5
jumper settings 10-5

interrupt-driven processing 1-7
interrupt-driven program execution 4-36, 4-45
interrupts

jumper settings 12-4
interrupts

general 4-47
ISTACK 4-8
ISTACK (interrupt stack)

code bits 5-15
contents 5-14
error information 5-5
information in ISTACK 5-15
output 5-6, 5-9

J

jump operations 3-59

L

LAD (ladder diagram) 2-4
LED display 4-5 - 4-6, 4-15 - 4-16
library number 2-36
load operations 3-21, 3-55
local memory

access 9-24
general 9-4

logic operations 3-50

M

mantissa
see floating point number

memory access 9-6
via the BR register 9-22
via address in ACCU 1 9-8

memory card 1-20, 3-10

CPU 948 Programming Guide
14 - 6 C79000-T8576-C848-03

memory organization 9-4
mode of operation of CPU 1-6
multiprocessor communication 6-62

application examples 10-53
assignment list 10-37
buffering data 10-17
data amount 10-15
initializing 10-33
modes 10-35
receive data 10-47
send data 10-40
sequence 10-15
test mode 10-14

multiprocessor mode
data exchange between
CPUs and CPs 10-7
data exchange with HDBs 10-8
programming 10-9

N

NAU (power failure) 4-22, 4-31
nesting depth 3-9
nesting program execution levels 4-9
no operation 3-33

O

O area
see I/Os

OB 01-22
operand areas 1-12
operating statuses 4-4
OR

see results codes
organization block (OB)

general 2-12, 2-16
organization blocks

for communication in SOFT STOP 2-20
organization blocks (OB)

as user interfaces 2-18
for processing errors 2-20
special function organization blocks 6-4

OS (overflow latching)
see results codes

OV (overflow)
see results codes

OVERALL RESET 4-17

P

P area
see I/Os

page area/DPR
occupied register 9-30

pages
accessing 9-29

parameters for DX 0 1-9
PARE (parity error) 5-28
PG functions 11-4
PG functions via S5 bus 11-26
PG interface module 11-17
PG screen form

for DX 0 parameter assignment 7-14
for generating DB1 10-10

PG software 1-19
PG submodule

installing 12-5
removing 12-6

PLC identification field 8-42
priority 1-7, 4-8, 4-10, 4-37, 4-46, 7-10
process image

outputs (PIQ) 1-6
defining/transferring 6-19
inputs (PII) 1-6
general 1-12
inputs (PII) 1-12
outputs (PIQ) 1-12
updating 4-33

PROCESS INTERRUPT 4-33
process interrupts

disable 3-72
enable 3-72, 4-49

process interrupts via input byte IB 0
general 4-45
user interfaces 4-45

program
storing 3-10

program blocks (PB) 2-12, 2-16
program execution level

general 4-9, 6-32
program execution levels 4-7
programming

general 1-16
programming language

C with S5-C compiler 1-19
GRAPH 5 1-19
SCL 1-19
STEP 5 1-19

programming language SCL 1-19
programming tools 1-19

14

CPU 948 Programming Guide
C79000-T8576-C848-03 14 - 7

Q

QVZ (timeout error) 5-25

R

reaction time 4-50
reactions with error OBs not loaded 5-21
real-time clock 8-32
results codes

ERAB 3-16, 3-20
CC 1 and CC 0 3-18, 3-61
OR 3-17
OS 3-17
OV 3-17
RLO 2-7, 3-17, 3-20
STA 3-17, 3-20

RI/RJ area 8-14
RLO

see results codes
RS/RT area 8-15

assignment of RS area 8-16
RUN

general 4-4, 4-33
RUN LED 4-5

S

S flags 1-13
S-6 (communication error) 5-32
scratchpad flags 10-53
self-test 1-22, 5-34

activating/deactivating tests 5-37
control bits 8-40
error handling 5-38
error information 5-39

sequence blocks (SB) 2-12
serial link PG - PLC 11-16
set/reset operation 3-20
shift operations 3-61
SOFT STOP 4-4
software protection 8-35
special functions

calling 6-5
errors in processing 6-6
general 6-4
interfaces to special functions 6-5
new 1-21

STA (status)
see results codes

standard function blocks

see also function blocks
START-UP 3-11

general 3-11, 4-4, 4-19
interruptions 4-31
triggering 4-20, 4-22

start-up types
comparing 6-64

starting up 10-13
STEP 5 operations 3-15
STL (statement list) 2-4
STOP

mode 4-12
STOP LED 4-5
stop operations 3-33
structure of the memory area 8-4 - 8-5
structured programming 2-5
sub-level 4-10
SUF (substitution error) 5-28
suitability of the CPU 948 1-4
supplementary operations 2-4
system data 8-15
system data words

bit assignment 8-18
system interrupt

see interrupt 12-4
system interrupts 7-9
system operations 2-4, 3-59, 9-4
system program 1-8
system program defaults 1-9
system RAM 8-6
system time 6-7, 6-38

T

testing address lines 5-36
testing the block code 5-36
testing the hardware clock 5-35
testing the system program code 5-36
testing the user memory 5-35
time slice 5-34

calculating 5-37
setting the number 5-37

time-controlled processing 1-7
time-controlled program execution 4-37
timed interrupts 4-33, 7-8
timed job 4-39, 6-43
timer and counter operations 3-26, 3-53
timers T 1-14
TRAF (load and transfer error) 5-29
transfer operations 3-21, 3-55
transferring memory fields 9-19

CPU 948 Programming Guide
14 - 8 C79000-T8576-C848-03

U

user interfaces
for clock-controlled interrupt 4-39
for cyclic program execution 4-35
for delayed interrupt 4-38
for interrupts 4-48
for process interrupts 4-45
for start-up 4-27
for timed interrupts 4-42

user memory 1-15, 3-10
user program 1-8, 1-10

processing 3-4, 3-11
see program
storing 1-11
tasks 1-10

W

WARM RESTART 4-24
WEFES/WEFEH
(collision of timed interrupts) 5-30

Z

ZYK (cycle time error) 5-27

14

CPU 948 Programming Guide
C79000-T8576-C848-03 14 - 9

List of Tables

Table 2-1 Overview of the organization blocks of the CPU 948 for program execution. 2 - 19

Table 2-2 Overview of the organization blocks of the CPU 948 for start-up. 2 - 20

Table 2-3 Organization blocks of the CPU 948 for a SOFT STOP . 2 - 20

Table 2-4 Overview of the organization blocks of the CPU 948 for error handling 2 - 20

Table 2-5 Overview of the organization blocks of the CPU 948 for special functions 2 - 22

Table 2-5 Permitted formal operands for function blocks . 2 - 27

Table 2-6 Permitted actual operands for function blocks . 2 - 29

Table 2-7 Data formats permitted in a data block . 2 - 37

Table 3-1 Result condition codes of STEP 5 operations . 3 - 18

Table 3-2 Binary logic operations . 3 - 19

Table 3-3 Set/reset operations . 3 - 20

Table 3-4 Load and transfer operations/part 1 . 3 - 21

Table 3-5 Load and transfer operations/part 2 . 3 - 22

Table 3-6 Timer and counter operations . 3 - 26

Table 3-7 Arithmetic operations . 3 - 31

Table 3-8 Comparison operations . 3 - 32

Table 3-9 Block operations . 3 - 32

Table 3-10 NOP/display/stop operations . 3 - 33

Table 3-11 Binary logic operations with formal operands . 3 - 50

List of Tables and Figures

14

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 11

Table 3-12 Digital logic operations. 3 - 50

Table 3-13 Bit test operations . 3 - 51

Table 3-14 Set/reset operations with formal operands . 3 - 52

Table 3-15 Set and reset operations. 3 - 52

Table 3-16 Timer and counter operations with formal operands . 3 - 53

Table 3-17 Load and transfer operations with formal operands . 3 - 55

Table 3-18 Load and transfer operations with special operands. 3 - 56

Table 3-19 Arithmetic operation ENT . 3 - 57

Table 3-20 Supplementary arithmetic operations . 3 - 58

Table 3-21 Jump operations . 3 - 59

Table 3-22 Shift operations . 3 - 61

Table 3-23 Conversion operations . 3 - 63

Table 3-24 Decrement/increment operation . 3 - 66

Table 3-25 Processing operations . 3 - 66

Table 3-26 I/O operations . 3 - 72

Table 3-27 Other operations . 3 - 72

Table 3-28 Meaning of the abbreviations in UAMW . 3 - 73

Table 3-29 Disable/enable semaphore . 3 - 75

Table 4-1 Meaning of the LEDs "RUN" , "STOP" and "SYSFAULT" . 4 - 5

Table 4-2 Program execution levels . 4 - 8

Table 4-3 Characteristics of COLD RESTART and WARM RESTART . 4 - 24

Table 4-4 Differences between a cold restart and a RETENTIVE COLD RESTART 4 - 26

Table 4-5 Sets of intervals and intervals of the TIMED INTERRUPTS . 4 - 41

Table 4-6 Timed interrupt collision IDs: meaning of the bits in ACCU-1-L 4 - 43

CPU 948 Programming Guide

14 - 12 C79000-T8576-C848-03

Table 4-7 User interfaces for process interrupts . 4 - 45

Table 4-8 User interfaces for interrupts . 4 - 48

Table 5-1 Meaning of the control bits SYSTEM DESCRIPTION. 5 - 11

Table 5-2 Meaning of the control bits STOP CAUSE . 5 - 11

Table 5-3 Meaning of the control bits START-UP IDS . 5 - 12

Table 5-4 Meaning of the control bits ERROR IDS. 5 - 13

Table 5-5 Meaning of the ISTACK IDs for errors . 5 - 15

Table 5-6 ISTACK IDs CAUSE OF INTERRUPTION. 5 - 17

Table 5-7 The organization blocks called in case of errors . 5 - 20

Table 6-1 Overview of the special functions available with the CPU 948. 6 - 4

Table 6-2 Error IDs of OB 121 in ACCU-1-L . 6 - 9

Table 6-3 Error IDs of OB 122 in ACCU-1-L . 6 - 13

Table 6-4 Results bits of OB 124 . 6 - 15

Table 6-5 Result IDs of OB 124 in ACCU-1-LL . 6 - 16

Table 6-6 Result bits of OB 125 . 6 - 18

Table 6-7 Result IDs of OB 125 in ACCU-1-LL . 6 - 19

Table 6-8 Result IDs of OB 125 in ACCU-1-LL . 6 - 22

Table 6-9 Error IDs of OB 141 in ACCU-1-L . 6 - 31

Table 6-10 Error IDs of OB 142 in ACCU-1-L . 6 - 34

Table 6-11 Error IDs of OB 143 in ACCU-1-L . 6 - 37

Table 6-12 Error IDs of OB 150 in ACCU-1-L . 6 - 41

Table 6-13 Error IDs of OB 151 in ACCU-1-L . 6 - 46

Table 6-14 Assignment of "timed job - time parameters" . 6 - 47

14

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 13

Table 6-15 Error IDs of OB 153 . 6 - 51

Table 6-16 Error IDs of OB 180 . 6 - 54

Table 6-17 Error codes of OB 181 and their scans . 6 - 58

Table 6-18 Error IDs of OB 182 in ACCU-1-L . 6 - 61

Table 6-19 Results IDs of OB 223 in ACCU-1-LL . 6 - 64

Table 6-20 Result codes for OB 254/255 . 6 - 67

Table 6-21 Result IDs for OB 254/255 in ACCU-1-LL . 6 - 68

Table 7-1 DX 0 parameters and their meaning . 7 - 8

Table 8-1 Structure of the memory area . 8 - 4

Table 8-2 Assignment of the RS area . 8 - 16

Table 8-3 Bits in RS 0 (image of IB 0) . 8 - 18

Table 8-4 Bits of RS 1 (current process interrupts) . 8 - 19

Table 8-5 Bits of RS 5 (cycle time). 8 - 20

Table 8-6 Bits of RS 7 (PLC stop IDs) . 8 - 21

Table 8-7 Bits of RS 8 (start and start-up IDs) . 8 - 22

Table 8-8 Bits of RS 16 (error area output bytes 0 to 15). 8 - 23

Table 8-9 RS 75: general errors. 8 - 26

Table 8-10 RS 75: Errors in DX 0 or DB 1. 8 - 27

Table 8-11 RS 75: error codes of the self test functions . 8 - 28

Table 8-12 RS 76 to RS 78: Parameter types . 8 - 29

Table 8-13 Structure of RS 96 (real-time clock: seconds, 1/100 seconds) . 8 - 32

Table 8-14 Structure of RS 97 (real-time clock: hours, minutes). 8 - 33

Table 8-15 Structure of RS 98 (real-time clock: date, day of the week) . 8 - 33

CPU 948 Programming Guide

14 - 14 C79000-T8576-C848-03

Table 8-16 Structure of RS 99 (real-time clock: year, month) . 8 - 34

Table 8-17 Assignment of RS 120 (software protection) when writing. 8 - 36

Table 8-18 Assignment of RS 120 (software protection) when reading . 8 - 37

Table 8-19 Bits of RS 137 (control bits for self-test functions) . 8 - 40

Table 8-20 Bits of RS 253 (list of interface modules plugged in) . 8 - 41

Table 9-1 Operations for indirect memory access using registers . 9 - 8

Table 9-2 16-bit register for LIR/TIR . 9 - 9

Table 9-3 32-bit register for LDI/TDI. 9 - 17

Table 9-4 Operations for field transfer . 9 - 19

Table 9-5 Memory areas permitted for TNW, TXB and TXW . 9 - 19

Table 9-6 Load and arithmetic operations with the BR register . 9 - 22

Table 9-7 Register-register operations . 9 - 23

Table 9-8 Operations for accessing the local memory . 9 - 24

Table 9-9 Operations for access to the global memory organized
in bytes . 9 - 27

Table 9-10 Operations for access to the global memory organized
in words. 9 - 28

Table 9-11 Operations for access to pages organized in bytes . 9 - 31

Table 9-12 Operations for access to pages organized as words . 9 - 33

Table 10-1 Condition codes of the communication OBs . 10 - 25

Table 10-2 Code byte for the communication OBs/number groups . 10 - 26

Table 10-3 Condition code byte: Initialization conflict numbers . 10 - 27

Table 10-4 Condition code byte: Error numbers. 10 - 28

Table 10-5 Condition code bytes: Warning numbers . 10 - 30

14

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 15

Table 10-6 Runtimes of the communication OBs. 10 - 31

Table 10-7 Assignment list for OB 200 (initialize) . 10 - 37

Table 10-8 Link list for extending the IPC flag area. 10 - 68

Table 11-1 Functions for installation and testing . 11 - 4

Table 11-2 Functions which cannot run simultaneously on both PGs . 11 - 20

CPU 948 Programming Guide

14 - 16 C79000-T8576-C848-03

List of Figures

Fig. 1-1 Example of application of the S5-155U with the CPU 948 . 1 - 5

Fig. 1-2 Tasks of the system program . 1 - 8

Fig. 1-3 Structure of a STEP 5 user program . 1 - 11

Fig. 2-1 Methods of representation in the STEP 5 programming language 2 - 5

Fig. 2-2 Example of block storage in the user memory . 2 - 15

Fig. 2-3 Block calls that enable processing of a program block . 2 - 17

Fig. 2-4 Structure of a function block (FB/FX) . 2 - 24

Fig. 2-5 Range of validity of an opened data block . 2 - 40

Fig. 3-1 Principle of cyclic program execution . 3 - 4

Fig. 3-2 Example of the organization of the user program according to the program structure . . . 3 - 6

Fig. 3-3 Example of the organization of the user program according to the structure of the
controlled system . 3 - 7

Fig. 3-4 Nested logic block calls . 3 - 8

Fig. 3-5 Example of block nesting depth . 3 - 9

Fig. 3-6 Load and transfer operations in a byte-oriented memory area . 3 - 23

Fig. 3-7 Load and transfer operations in a word-oriented memory area . 3 - 24

Fig. 3-8 Coordination of access to the global memory . 3 - 76

Fig. 4-1 Front panel of the CPU 948 with display and operating elements. 4 - 4

Fig. 4-2 Program execution levels . 4 - 7

Fig. 4-3 Principle of changing level and the ISTACK. 4 - 11

Fig. 4-4 Program execution after POWER UP. 4 - 14

14

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 17

Fig. 4-5 Program execution after a cycle interruption . 4 - 14

Fig. 4-6 Cyclic program execution . 4 - 34

Fig. 4-7 Position of the jumper plug for setting interrupts. 4 - 47

Fig. 5-1 Example of the first screen form page "OUTPUT ISTACK": control bits 5 - 10

Fig. 5-2 Example of a screen page "OUTPUT ISTACK" . 5 - 14

Fig. 5-3 Example of evaluating the ISTACK. 5 - 19

Fig. 6-1 Effect of the "roll-up" function . 6 - 28

Fig. 6-2 Effect of the "roll-down" function . 6 - 28

Fig. 6-3 Shifting the DB start address . 6-56

Fig. 7-1 Structure of DX 0 . 7 - 6

Fig. 7-2 PG screen form for assigning parameters to DX 0 / Part 1 . 7 - 14

Fig. 7-3 PG screen form for assigning parameters to DX 0 / Part 2 . 7 - 15

Fig. 8-1 Memory assignment in CPU 948/overview . 8 - 5

Fig. 8-2 Memory assignment for the system RAM/Part 1 . 8 - 6

Fig. 8-3 Memory assignment of the system RAM/Part 2 . 8 - 7

Fig. 8-4 Address areas for peripherals (8 bits) on the S5 bus . 8 - 8

Fig. 8-5 Example: Location of blocks in memory . 8 - 11

Fig. 8-6 Block addresses in DB 0 . 8 - 13

Fig. 9-1 Global and local memory . 9 - 5

Fig. 9-2 Access to local or global areas using absolute addresses . 9 - 7

CPU 948 Programming Guide

14 - 18 C79000-T8576-C848-03

Fig. 9-3 LIR/TIR with 16-bit memory areas (word-oriented) . 9 - 10

Fig. 9-4 LIR/TIR with 8-bit memory areas (byte-oriented) . 9 - 10

Fig. 9-5 Using the DBA register. 9 - 12

Fig. 9-6 Using the DBL register . 9 - 14

Fig. 9-7 Transferring memory fields . 9 - 21

Fig. 9-8 Transfer operations from one register to another . 9 - 24

Fig. 10-1 Transferring IPC flags in the multiprocessor mode . 10 - 6

Fig. 10-2 Example of IPC flag areas on the CPs . 10 - 7

Fig. 10-3 PG screen form for generating DB 1 . 10 - 10

Fig. 10-4 Sender/receiver identification . 10 - 16

Fig. 10-5 Example of the occupation of the COR buffer . 10 - 19

Fig. 10-6 Overview of the blocks required in each CPU . 10 - 71

Fig. 10-7 Data exchange between 3 CPUs . 10 - 77

Fig. 11-1 PG display of the memory configuration . 11 - 6

Fig. 11-2 Sequence of "program test" . 11 - 12

Fig. 11-3 Using the second interface as a PG interface . 11 - 17

Fig. 11-4 First example of a configuration. 11 - 18

Fig. 11-5 Second example of a configuration . 11 - 18

Fig. 11-6 Handling simultaneous jobs . 11 - 21

Fig. 11-7 Typical sequence of a cyclic function and parallel short-running function 11 - 22

Fig. 11-8 Sequence of two parallel cyclic functions . 11 - 24

Fig. 11-9 Sequence when a function blocks the CPU 948 . 11 - 25

14

CPU 948 Programming Guide

C79000-T8576-C848-03 14 - 19

Fig. 11-10 Multiprocessor mode with a CP 143
(2 x CPU 948, 1 x CP 143) . 11 - 28

Fig. 11-11 Interface assignment of the PG functions via the S5 bus . 11 - 29

Fig. 11-12 Paths between the PG and CPU 948 and assignment of the CP 143 pages 11 - 34

Fig. 12-1 Location of the jumper . 12 - 4

CPU 948 Programming Guide

14 - 20 C79000-T8576-C848-03

Siemens AG
AUT 1282
Östliche Rheinbrückenstr. 50
D-76181 Karlsruhe
Federal Republic of Germany

From:
Your Name: .

Your Title: .

Company Name: .

Street: .

City, Zip Code: .

Phone: .

Please check any industry that applies to you:

❑ Pharmaceutical❑ Automotive

❑ Plastic❑ Chemical

❑ Pulp and Paper❑ Electrical Machinery

❑ Textiles❑ Food

❑ Transportation❑ Instrument and Control

❑ Other❑ Nonelectrical Machinery

❑ Petrochemical

C79000-V8576-C118-01 1

Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it to
Siemens.

Please do not forget to state the title, order number and release of your manual.

Please give each of the following questions your own personal mark within the range from 1 (very
good) to 5 (poor).
1.Do the contents meet your requirements?

2.Is the information you need easy to find?

3.Is the text easy to understand?

4.Does the level of technical detail meet your requirements?

5.Please rate the quality of the graphics/tables:

Additional comments:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Title of Your Manual:

Order No. of Your Manual: Release:

2 C79000-V8576-C118-01

	Title
	How to Use this Manual
	Contents
	1 Introduction
	1.1 Area of Application for the S5-155U with the CPU 948
	1.2 Typical Mode of Operation of a CPU
	1.3 The Programs in a CPU
	1.4 Which Operands are available to the User Program?
	1.5 How much Memory is available for the User Program?
	1.6 How to Tackle Programming
	1.7 Programming Tools
	1.8 What is New with the CPU 948?
	1.8.1 CPU 948, Version A01
	1.8.2 CPU 948, Version A02
	1.8.3 CPU 948, Version A03 and Higher

	1.9 Converting User Programs of the CPU 928B for the CPU 948

	2 User Program
	2.1 STEP 5 Programming Language
	2.1.1 The LAD, CSF, STL Methods of Representation
	2.1.2 Structured Programming
	2.1.3 STEP 5 Operations
	2.1.4 Number Representation
	2.1.5 STEP 5 Blocks and Storing them in Memory

	2.2 Program, Organization and Sequence Blocks
	2.2.1 Organization Blocks as User Interfaces
	2.2.2 Organization Blocks for Special Functions

	2.3 Function Blocks
	2.3.1 Structure of Function Blocks
	2.3.2 Programming Function Blocks
	2.3.3 Calling Function Blocks and Assigning Parameters to them
	2.3.4 Special Function Blocks

	2.4 Data Blocks
	2.4.1 Creating Data Blocks
	2.4.2 Opening Data Blocks
	2.4.3 Special Data Blocks

	3 Program Execution
	3.1 Principle of Program Execution
	3.2 Program Organization
	3.3 Storing Program and Data Blocks
	3.4 Processing the User Program
	3.4.1 Definition of Terms used in Program Execution

	3.5 STEP 5 Operations with Examples
	3.5.1 Basic Operations
	3.5.2 Programming Examples in the STL, LAD and CSF Methods of Representation
	3.5.3 Supplementary Operations
	3.5.4 Executive Operations
	3.5.5 Semaphore Operations

	4 Operating Statuses and Program Execution Levels
	4.1 Introduction and Overview
	4.2 Program Execution Levels
	4.3 STOP Mode
	4.3.1 SOFT STOP
	4.3.2 HARD STOP
	4.3.3 OVERALL RESET

	4.4 START-UP Mode
	4.4.1 MANUAL and AUTOMATIC GOLD RESTART
	4.4.2 MANUAL and AUTOMATIC WARM RESTART
	4.4.3 Comparison between GOLD RESTART and WARM RESTART
	4.4.4 RETENTIVE COLD RESTART
	4.4.5 Comparison of GOLD RESTART and RETENTIVE GOLD RESTART
	4.4.6 User Interfaces for Start-Up
	4.4.7 Extended AUTOMATIC WARM RESTART with the CPU 948 (HOT RESTART)
	4.4.8 Interruptions during START-UP

	4.5 RUN Mode
	4.5.1 Cyclic Program Execution
	4.5.2 Specifying Time and Interrupt-Driven Program Execution
	4.5.3 Time-Controlled Program Execution
	4.5.4 Interrupt-Driven Program Execution

	5 Interrupt and Error Diagnostics
	5.1 Frequent Errors in the User Program
	5.2 Error Information
	5.3 Procedure for Error Analysis
	5.4 Control Bits and Interrupt Stack
	5.4.1 Control Bits
	5.4.2 ISTACK Content
	5.4.3 Example of Error Diagnosis using the ISTACK

	5.5 Error Handling Using Organization Blocks
	5.6 Causes of Error and Reactions of the CPU
	5.6.1 OB 19: Calling a Logic Block That Is Not Loaded (KB)
	5.6.2 OB 19: Calling a Data Block That Is Not Loaded (KDB)
	5.6.3 OB 23/24, OB 28/29: Timeout Error (QVZ)
	5.6.4 OB 25: Addressing Error (ADF)
	5.6.5 OB 26: Cycle Time Exceeded Error (ZYK)
	5.6.6 OB 27: (Substitution Error SUF)
	5.6.7 OB 30: Parity Error and Timeout Error in the User Memory (PARE)
	5.6.8 OB 32: Load and Transfer Error (TRAF)
	5.6.9 OB 33: Collision of Timed Interrupts Error (WEFES/WEFEH)
	5.6.10 OB 34: Error with G DB/GX DX (FEDBX)
	5.6.11 OB 35: Communication Errors
	5.6.12 OB 36: Error in Self-test

	5.7 Self-Test
	5.7.1 Overview
	5.7.2 Description of the Test Functions
	5.7.3 Settings
	5.7.4 Error Handling

	6 Integrated Special Functions
	6.1 Introduction
	6.2 OB 121: Set/Read System Time
	6.3 OB 122: "Disable Interrupts" On/Off
	6.4 OB 124: Delete STEP 5 Blocks
	6.5 OB 125: Generate STEP 5 Blocks
	6.6 OB 126: Define, Transfer Process Images
	6.7 OB 129: Battery State
	6.8 OB 131: Delete ACCUs 1, 2, 3 and 4
	6.9 OB 132/133: Roll-Up ACCU/Roll-Down ACCU
	6.10 OB 141: "Disable Single Cyclic Timed Interrupts" On/Off
	6.11 OB 142: "Delay All Interrupts" On/Off
	6.12 OB 143: "Delay Single Cyclic Timed Interrupts" On/Off
	6.13 OB 150: Set/Read System Time
	6.14 OB 151: Set/Read Time for Clock-Controlled Interrupt
	6.15 OB 153: Set/Read Time for Delayed Interrupt
	6.16 OB 180: Variable Data Block Access
	6.17 OB 181: Test Data Blocks (DB/DX)
	6.18 OB 182: Copy Data Area
	6.19 OB 202 to 205: Multiprocessor Communication
	6.20 OB 222: Restart Cycle Monitoring Time
	6.21 OB 223: Compare Start-Up Modes
	6.22 OB 254/255: Copy/Duplicate Data Blocks

	7 Extended Data Block DX 0
	7.1 Application
	7.2 Structure of DX 0
	7.2.1 Example of Input in DX 0

	7.3 Parameters for DX 0
	7.4 Examples of Parameter Assignment
	7.4.1 STEP 5 Programming
	7.4.2 Parameter Assignment using the PG Screen Form

	8 Memory Assignment and Memory Organization
	8.1 Structure of the Memory Area
	8.2 Memory Assignment in the CPU 948
	8.2.1 Memory Assignment for the System RAM
	8.2.2 Memory Assignment for the Peripherals

	8.3 User Memory Organization in the CPU 948
	8.3.1 Block Headers in User Memory
	8.3.2 Block Address List in Data Block DB 0
	8.3.3 RI/RJ Area
	8.3.4 RS/RT Area
	8.3.5 Bit Assignment of the System Data Words
	8.3.6 Addressable System Data Area

	9 Memory Access Using Absolute Addresses
	9.1 Introduction
	9.2 Memory Access via Address in ACCU 1
	9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly
	9.2.2 Examples of Access to DW > 255
	9.2.3 LDI/TDI: Loading to or Transferring from a 32-Bit Memory Area Indirectly

	9.3 Transferring Memory Blocks
	9.4 Operations with the Base Address Register (BR Register)
	9.4.1 Operations for Transfer between Registers
	9.4.2 Accessing the Local Memory
	9.4.3 Accessing the Global Memory
	9.4.4 Accessing the Dual-Port RAM Memory

	10 Multiprocessor Mode and Communication in the S5-155U
	10.1 Multiprocessor Mode
	10.1.1 When to use the Multiprocessor Mode
	10.1.2 What Communications Mechaisms are Available ?
	10.1.3 Exchanging Data via IPC Rags
	10.1.4 Exchanging Data via Handling Blocks
	10.1.5 What needs to be Multiprocessor Mode?
	10.1.6 How to Create Data Block DB 1
	10.1.7 Starting up in the Multiprocessor Mode
	10.1.8 Test Mode

	10.2 Multiprocessor Communication
	10.2.1 Introduction
	10.2.2 How the Transmitter and Receiver are Identified
	10.2.3 Why Data is Buffered
	10.2.4 How the Buffer is Processed and Managed
	10.2.5 System Start-Up
	10.2.6 Calling Communication OBs
	10.2.7 How to Assign Parameters to Communication OBs
	10.2.8 How to Evaluate the Output Parameters

	10.3 Runtimes of the Communication OBs
	10.4 INITIALIZE Function (OB 200)
	10.4.1 Function
	10.4.2 Call Parameters
	10.4.3 Input Parameters
	10.4.4 Output Parameters

	10.5 SEND Function (OB 202)
	10.5.1 Function
	10.5.2 Call Parameters
	10.5.3 Input Parameters
	10.5.4 Output Parameters

	10.6 SEND TEST Function (OB 203)
	10.6.1 Function
	10.6.2 Call Parameters
	10.6.3 Input Parameters
	10.6.4 Output Parameters

	10.7 RECEIVE Function (OB 204)
	10.7.1 Function
	10.7.2 Call Parameters
	10.7.3 Input Parameters
	10.7.4 Output Parameters

	10.8 RECEIVE TEST Function (OB 205)
	10.8.1 Function
	10.8.2 Call Parameters
	10.8.3 Input Parameters
	10.8.4 Output Parameters

	10.9 Applications
	10.9.1 Calling the Special Function OB using Function Blocks
	10.9.2 Transferring Data Blocks
	10.9.3 Extending the IPC Flag Area

	11 PG Interfaces and Functions
	11.1 Overview
	11.2 PG Functions
	11.2.1 Info
	11.2.2 Installation
	11.2.3 Program Test

	11.3 Serial Link PG - PLC via 1st or 2nd Serial Interface
	11.4 Parallel Operation of Two Serial PG Interfaces
	11.4.1 Installation
	11.4.2 Operation
	11.4.3 Sequence in Certain Operating Situations

	11.5 PG Functions via the S5 Bus
	11.5.1 Application
	11.5.2 How the PG Functions Work via the S5 Bus
	11.5.3 Installation and Getting Started
	11.5.4 Condition Codes Indicating Problems

	12 Appendix
	Appendix 1: Jumper Settings for System Interrupts
	Appendix 2: Inserting and Removing the PG Submodule
	Appendix 3: Technical Data of the CPU 948, CPU 946/947 and CPU 928B
	Appendix 4: Results IDs of some of the Special Function OBs in ACCU 1

	13 Further Reading
	14 Indexes
	List of Abbreviations
	List of Key Words
	List of Tables
	List of Figures

