
    

USER MANUAL 

RIO-47xxx 
 

 Manual Rev. 1.0f 

 

 

 

 

 

 

 

By Galil Motion Control, Inc. 

 

 

 
Galil Motion Control, Inc. 

270 Technology Way 
Rocklin, California 95765 

Phone:  (916) 626-0101 
Fax: (916)626-0102 

Email: support@galilmc.com 
URL: www.galilmc.com 

 
Rev Date 3/2009 

 

mailto:support@galilmc.com
http://www.galilmc.com/




RIO-471x0 Contents ● i 

 

 

 

 

 

 

Contents 

 

CONTENTS ...................................................................................................................................................... I 
CHAPTER 1 OVERVIEW ..............................................................................................................................1 

INTRODUCTION ...............................................................................................................................................1 
PART NUMBERING OVERVIEW ........................................................................................................................2 
RIO FUNCTIONAL ELEMENTS .........................................................................................................................3 

Microcomputer Section .............................................................................................................................3 
Communication .........................................................................................................................................3 

CHAPTER 2 GETTING STARTED...............................................................................................................4 
RIO-471XX.....................................................................................................................................................4 
RIO-472XX.....................................................................................................................................................5 
INSTALLING THE RIO BOARD .........................................................................................................................6 

Step 1. Configure Jumpers ........................................................................................................................6 
Step 2. Connecting Power to the RIO........................................................................................................6 
Step 3. Install the Communications Software............................................................................................7 
Step 4. Establish Communications between RIO and the Host PC ...........................................................7 
Communicating to the RIO using Galil Software......................................................................................7 
Using Non-Galil Communication Software ..............................................................................................8 

CHAPTER 3 COMMUNICATION ..............................................................................................................11 
INTRODUCTION .............................................................................................................................................11 
RS232 PORT .................................................................................................................................................11 

RS232 - Port 1 .........................................................................................................................................11 
RS-232 Configuration .............................................................................................................................11 

ETHERNET CONFIGURATION .........................................................................................................................12 
Communication Protocols .......................................................................................................................12 
Jumper Configuration for 10BaseT .........................................................................................................12 
Addressing...............................................................................................................................................12 



  

ii Contents  RIO-471x0 

Email from the RIO.................................................................................................................................13 
Communicating with Multiple Devices...................................................................................................14 
Handling Communication Errors ............................................................................................................14 
Multicasting.............................................................................................................................................15 
Unsolicited Message Handling................................................................................................................15 
Other Protocols Supported ......................................................................................................................15 

MODBUS WITH THE RIO ...............................................................................................................................16 
Sending Modbus Packets.........................................................................................................................16 
Modbus Exceptions .................................................................................................................................17 
Function Code 1 ($01) - Read Coils........................................................................................................18 
Function Code 2 ($02) - Read Discrete Inputs ........................................................................................20 
Function Code 3 ($03) - Read Holding Registers ...................................................................................22 
Function Code 4 ($04) - Read Input Registers ........................................................................................25 
Function Code 5 ($05) - Write Single Coil .............................................................................................28 
Function Code 6 ($06) - Preset Single Register ......................................................................................30 
Function Code 7 ($07) – Read Exception Status.....................................................................................32 
Function Code 15 ($0F) – Write Multiple Coils .....................................................................................34 
Function Code 16 ($10) – Write Multiple Registers ...............................................................................36 
Analog IO Ranges ...................................................................................................................................39 

DATA RECORD..............................................................................................................................................40 
QR and DR Commands...........................................................................................................................40 
RIO Data Record.....................................................................................................................................40 
Explanation of Status Information...........................................................................................................41 

CHAPTER 4 I/O .............................................................................................................................................42 
INTRODUCTION .............................................................................................................................................42 
SPECIFICATIONS............................................................................................................................................42 

44 pin D-Sub Connector (Digital I/O) – RIO-471xx...............................................................................42 
26 pin D-Sub Connector (Analog I/O) ....................................................................................................43 
Screw Terminals – RIO-472xx................................................................................................................43 
High Power Sourcing Outputs.................................................................................................................44 
Low Power Sinking Outputs ...................................................................................................................44 
Digital Inputs...........................................................................................................................................45 
Analog Outputs .......................................................................................................................................47 
Analog Inputs ..........................................................................................................................................47 
Analog Process Control Loop .................................................................................................................49 
Pulse Counter Input .................................................................................................................................50 

STANDARD OPTIONS .....................................................................................................................................50 
-DIN ........................................................................................................................................................50 
-NO DIN..................................................................................................................................................51 
-08-15 SOURCE option ..........................................................................................................................51 
-16Bit.......................................................................................................................................................51 
-422 .........................................................................................................................................................51 
-0-7 or -8-15 SINK/SOURCE .................................................................................................................53 
-HS ..........................................................................................................................................................53 
-10V12-Bit ..............................................................................................................................................53 
-10V16-Bit ..............................................................................................................................................53 

CHAPTER 5 APPLICATION PROGRAMMING......................................................................................54 
OVERVIEW ....................................................................................................................................................54 
EDITING PROGRAMS .....................................................................................................................................54 
PROGRAM FORMAT.......................................................................................................................................54 

Using Labels in Programs .......................................................................................................................55 
Special Labels .........................................................................................................................................55 
Commenting Programs............................................................................................................................55 
Program Lines Greater than 40 Characters..............................................................................................56 



RIO-471x0 Contents ● iii 

Lock Program Access using Password....................................................................................................56 
EXECUTING PROGRAMS - MULTITASKING.....................................................................................................57 
DEBUGGING PROGRAMS ...............................................................................................................................58 

Trace Commands.....................................................................................................................................58 
Error Code Command .............................................................................................................................58 
RAM Memory Interrogation Commands ................................................................................................58 
Operands .................................................................................................................................................58 
Debugging Example: ...............................................................................................................................59 

PROGRAM FLOW COMMANDS .......................................................................................................................59 
Interrupts .................................................................................................................................................59 
Examples: ................................................................................................................................................60 
Conditional Jumps...................................................................................................................................61 
Using If, Else, and Endif Commands ......................................................................................................63 
Stack Manipulation..................................................................................................................................64 
Auto-Start Routine ..................................................................................................................................64 
Automatic Subroutines for Monitoring Conditions.................................................................................64 

MATHEMATICAL AND FUNCTIONAL EXPRESSIONS........................................................................................67 
Mathematical Operators ..........................................................................................................................67 
Bit-Wise Operators..................................................................................................................................67 
Functions .................................................................................................................................................68 

VARIABLES ...................................................................................................................................................69 
Programmable Variables .........................................................................................................................69 

OPERANDS ....................................................................................................................................................70 
Examples of Internal Variables: ..............................................................................................................70 
Special Operands (Keywords).................................................................................................................70 

ARRAYS ........................................................................................................................................................71 
Defining Arrays.......................................................................................................................................71 
Assignment of Array Entries ...................................................................................................................71 
Using a Variable to Address Array Elements..........................................................................................72 
Uploading and Downloading Arrays to On Board Memory....................................................................72 
Automatic Data Capture into Arrays .......................................................................................................72 
Deallocating Array Space........................................................................................................................73 

INPUT OF DATA (NUMERIC AND STRING)......................................................................................................74 
Input of Data............................................................................................................................................74 

OUTPUT OF DATA (NUMERIC AND STRING) ..................................................................................................74 
Sending Messages ...................................................................................................................................74 
Displaying Variables and Arrays.............................................................................................................76 
Formatting Variables and Array Elements ..............................................................................................76 

PROGRAMMABLE I/O ....................................................................................................................................77 
Digital Outputs ........................................................................................................................................77 
Digital Inputs...........................................................................................................................................78 
Input Interrupt Function .......................................................................... Error! Bookmark not defined. 
Analog Inputs ..........................................................................................................................................78 
Analog Outputs .......................................................................................................................................79 

APPENDIX......................................................................................................................................................80 
ELECTRICAL SPECIFICATIONS .......................................................................................................................80 

Input/Output ............................................................................................................................................80 
Power Requirements................................................................................................................................80 

PERFORMANCE SPECIFICATIONS ...................................................................................................................80 
RIO-47xx0...............................................................................................................................................80 
RIO-47xx2...............................................................................................................................................80 

CONNECTORS ON THE RIO............................................................................................................................81 
44 pin D-Sub Connector – RIO-471xx....................................................................................................81 
26 pin D-Sub Connector – RIO-471xx....................................................................................................82 
Screw Terminals – RIO-472xx................................................................................................................82 



  

iv Contents  RIO-471x0 

¹J2 RS-232 Port:  DB-9 Pin Male ............................................................................................................83 
J1 Ethernet Port: 10/100 Base-T (RJ-45) ................................................................................................83 
J5 Power: 2 pin Molex for 18-36VDC (if not using Power over Ethernet) .............................................83 

JUMPER DESCRIPTION FOR RIO ....................................................................................................................84 
RIO DIMENSIONS..........................................................................................................................................85 

RIO-471xx...............................................................................................................................................85 
RIO-472xx...............................................................................................................................................86 

ACCESSORIES AND OPTIONS .........................................................................................................................87 
LIST OF OTHER PUBLICATIONS .....................................................................................................................88 
CONTACTING US...........................................................................................................................................88 
TRAINING SEMINARS ....................................................................................................................................89 
WARRANTY...............................................................................................................................................90 

INDEX .............................................................................................................................................................91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is left blank intentionally 

 

 

 



RIO-471x0 Chapter 1 Overview ● 1 

Chapter 1 Overview 

Introduction 

Derived from the same fundamentals used in building the Galil motion controllers, the RIO-47xxx is a 
programmable remote I/O controller that conveniently interfaces with other Galil boards through its Ethernet 
port.  The RIO is programmed exactly the same way as a DMC (Digital Motion Controller) with the 
exception of a few revised commands and the removal of all motion-related commands.  Communication 
with the RIO even works the same way as with other Galil controllers, and it utilizes the same software 
programs.  Interrogation commands have been included to allow a user to instantly view the entire I/O status, 
I/O hardware, or Ethernet handle availability (see the TZ, ID and TH commands).    

The purpose of an RIO board is to offer remote I/O in a system and the ability to synchronize complex 
events.  To do this, the RIO consists of two boards – a high speed processor with integrated Ethernet and an 
I/O board consisting of digital inputs, digital outputs, analog inputs, and analog outputs.  If different I/O 
requirements are required –a custom I/O board can be made to mate up directly with the RIO processor. 



  

2 Chapter 1 Overview  RIO-471x0 

 

Part Numbering Overview 

 Highlights Standard Options 
RIO-47100 Metal case 

0-5V Analog IO 
8 high power optoisolated digital outputs 
8 low power optoisolated digital outputs 
16 optoisolated digital inputs 

-DIN 
-08-15 SOURCE 

RIO-47102 Same as RIO-47100 but with expanded memory -DIN 
-08-15 SOURCE 

RIO-47120 Same as RIO-47100 but with +-10V analog IO -DIN 
-08-15 SOURCE 
-16 Bit 
-422 
-HS 

RIO-47122 Same as RIO-47120 but with expanded memory -DIN 
-08-15 SOURCE 
-16 Bit 
-422 
-HS 

RIO-47200 Same as RIO-47100 except 
-Screw terminals instead of D-Subs 
-Din rail mount with metal cover 
-All 16 outputs are high power 
-No analog outputs (contact factory if required) 

-422 
-0-7 SINK or -0-7 SOURCE 
-8-15 SINK or -8-15SOURCE 
-HS 
-10V12-Bit 
-10V16-Bit 
-NO DIN 

For details on all the options please see Chapter 4 I/O 

RIO-47xx0 vs. RIO-47xx2 

Controller 
# of 

array 
elements 

# of 
program 

lines 

# of 
variables # of labels 

# of 
control 
loops 

# of 
Ethernet 
handles 

RIO-47xx0 400 200 126 62 2 3 

RIO-47xx2 1000 400 256 126 6 5 



RIO-471x0 Chapter 1 Overview ● 3 

RIO Functional Elements 

Microcomputer Section 
The main processing unit of the RIO is a specialized 32-bit Freescale Microcomputer with 32KB SRAM and 
256KB of Embedded Flash memory.  The SRAM provides memory for variables, array elements and 
application programs.  The flash memory provides non-volatile storage of variables, programs, and arrays; it 
also contains the RIO firmware. The RIO can process individual Galil Commands in approximately 40 
microseconds.   

Communication 
The communication interface with the RIO consists of one RS-232 port (default is 115 kBaud/s) and one 
10/100Base-T Ethernet port (jumper configurable). 

There are four status LEDs on the RIO that indicate operating and error conditions on the controller.  Figure 
1-1 shows a diagram of the LED bank followed by the description of the four lights. 

 

PWR
ERR

LNK
ACT  

Figure 1-1  - Diagram of LED bank on the RIO 

 
Green Power LED (PWR) - The green status LED indicates that the power has been applied 

properly to the RIO.   

Red Status/Error LED (ERR) - The red error LED will flash on briefly at power up.  After the 
initial power up condition, the LED will illuminate for the following reasons: 

 1.  The reset line on the controller is held low or is being affected by noise. 

 2.  There is a failure on the controller and the processor is resetting itself. 

 3.  There is a failure with the output IC that drives the error signal. 

Green Link LED (LNK) – The green LED indicates there is a valid Ethernet connection.  This  
LED will show that the physical Ethernet layer (the cable) is connected. 

Activity (ACT) – The amber LED indicates traffic across the Ethernet connection.  This LED will 
show both transmit and receive activity across the connection. 

 
 

 

 



  

4 Chapter 2 Getting Started  RIO-471x0 

Chapter 2 Getting Started 

RIO-471xx 

 

 

Figure 2-1:  - Outline of RIO-471xx (units in inches) 

 

 



RIO-471x0 Chapter 2 Getting Started ● 5 

RIO-472xx 

 

 

 

Figure 2-2: - Outline of RIO-472xx (units in centimeters) 



  

6 Chapter 2 Getting Started  RIO-471x0 

Installing the RIO Board 

Installation of a complete, operational RIO system consists of 4 steps: 

 Step 1. Configure jumpers 

 Step 2. Connect power to the RIO 

 Step 3. Install the communications software 

 Step 4. Establish communications between the RIO and the host PC 

 

Step 1. Configure Jumpers 
Power Input Jumpers (AUX vs PoE) 

The RIO can be powered using either a 18-36V DC power input or a PoE (Power over Ethernet) switch to 
deliver power over the Ethernet cable.  The default configuration is the 18-36VDC power input.  If PoE is 
used, the four jumpers on JP6 (located next to Ethernet connector) must be moved from AUX to PoE. 

Master Reset and Upgrade Jumper 

Jumpers labeled as MRST and UPGD are located at J5, next to the reset button.  The MRST jumper is for a 
master reset.  When MRST is jumpered, the RIO will perform a master reset upon a power cycle to the board 
or when the board reset button is pushed.  Whenever the I/O board has a master reset, all programs, arrays, 
and variables stored in EEPROM will be erased – this will set the RIO board back to factory defaults. 

The UPGD jumper enables the user to unconditionally update the board firmware.  This jumper is not 
necessary for firmware updates when the RIO board is operating normally, but may be necessary in cases of 
a corrupted EEPROM.  EEPROM corruption should never occur under normal operating circumstances; 
however, corruption is possible if there is a power fault during a firmware update.  If EEPROM corruption 
occurs, your board may not operate properly.  In this case, install the UPGD jumper and use the update 
firmware function in the Galil software to re-load the system firmware. 

Setting the Baud Rate on the RIO 

The default baud rate for the RIO is 115K (jumper OFF). 

The jumper labeled “19.2,” also located at JP5, allows the user to select the serial communication baud rate.  
The baud rate can be set using the following table: 

19.2 BAUD RATE 

OFF 115k 

ON 19.2k 

 

Step 2. Connecting Power to the RIO 
Since the RIO can be powered using either a 18-36V DC power input or a PoE (Power over Ethernet) switch, 
there are two possible connection options shown here:   

1) EXT: 18-36VDC power input is the default configuration.  The four jumpers on JP6 will be located on the 
side labeled EXT.  Apply a DC power supply  in the range of 18-36V to the  2-pin molex connector.  The 



RIO-471x0 Chapter 2 Getting Started ● 7 

power supply should be capable of delivering up to 4 Watts.  The RIO uses Molex Pitch Mini-Fit, Jr.™ 
Receptacle Housing connectors for connecting DC Power.  For more information on the connectors, go to 
http://www.molex.com/. 

Note: The part number listed below is the connector that is found on the controller. For more information see 
the Molex website.  http://www.molex.com/ 
 

 

Molex Part Number Pin Part Number (x2) Type 
39-31-0020 44476-3112 2 Position 

 

Warning: Damage can occur if a supply larger than 36VDC  is connected to the board. 

2) PoE: Power over Ethernet.  This configuration needs the four jumpers on JP6 to be placed on the side 
labeled PoE.  Once this is done, the controller will derive its power directly from the Ethernet cable.  A PoE 
style switch can be used such as the FS108P from Netgear.   

Applying power will turn on the green LED power indicator. 

 

Step 3. Install the Communications Software  
After applying power to the computer, install the Galil software that enables communication between the I/O 
board and your PC.  It is strongly recommended to use the Galil software “GalilTools” when communicating 
to the RIO unit.  Please see the GalilTools Manual for a complete description of how to install and connect to 
Serial or Ethernet controllers. 

http://www.galilmc.com/products/software/galiltools.html  

 

Step 4. Establish Communications between RIO and the Host PC 
Communicating to the RIO using Galil Software 

RS-232: 

To use serial communication, connect a 9pin straight-through RS-232 cable (CABLE-9-PIND) between the 
serial port of the RIO and the computer or terminal communications port.  The RIO serial port is configured 
as DATASET.  

Ethernet: 

Connect the RIO Ethernet port to your computer via a crossover Ethernet cable, or to a network hub with a 
straight through Ethernet cable. 

 

http://www.molex.com/
http://www.molex.com/
http://www.galilmc.com/products/software/galiltools.html


  

8 Chapter 2 Getting Started  RIO-471x0 

 

Using Non-Galil Communication Software 

RS-232:  

The RIO serial port is configured as DATASET.  The computer or terminal must be configured as a for full 
duplex, no parity, 8 data bits, one start bit and one stop bit.  A standard Windows HyperTerminal session can 
connect to the controller using a straight-through serial cable. 

Check to insure that the baud rate jumpers have been set to the desired baud rate as described above.  Also, 
the hardware handshake lines (RTS/CTS) need to be connected.  See Chapter 3 for more information on 
‘Handshake Modes.’ 

Ethernet: 

Connect the RIO Ethernet port to your computer via a crossover or null modem Ethernet cable, or to a 
network hub by a straight through Ethernet cable.  An IP address needs to be assigned via a DHCP server, 
through Galil software, or via a serial cable using the IA command.  See Chapter 3 for more information on 
how to establish an IP address.  Once an IP address is established, a standard Windows Telnet session can 
connect to the controller. 

 

Sending Test Commands to the Terminal after a successful Connection 

After connecting to the computer or terminal, press <carriage return> or the <enter> key on the keyboard.  In 
response to carriage return {CR}, the controller responds with a colon, : 

Now type 

 TZ {CR} 

This command directs the RIO to return the current I/O status.  The controller should respond with something 
similar to the following: 

:TZ 
Block 0 (7-0) Inputs - value 255 (1111_1111) 
Block 1 (15-8) Inputs - value 255 (1111_1111) 
Block 0 (7-0) Outputs - value 0 (0000_0000) 
Block 1 (15-8) Outputs - value 0 (0000_0000) 
Analog Inputs(7-0) 
0.0000,0.0000,0.0000,0.0000,0.0037,0.0012,0.0000,0.0000 
Analog Outputs(7-0) 
0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

 



RIO-471x0 Chapter 2 Getting Started ● 9 

RIO Web Server 

The RIO has a built-in web server that can be accessed by typing the IP address of the controller into a 
standard web browser.  The controller comes from the factory without any IP address assigned so a user must 
go through the steps outlined above to establish an IP address before the web-server is accessible. Here’s an 
example screenshot of the web server: 

 
 

 

 

  



  

10 Chapter 2 Getting Started  RIO-471x0 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank 



RIO-471x0 Chapter 3 Communication ● 11 

 

Chapter 3 Communication 

Introduction 

The RIO has one RS-232 port and one Ethernet port.  The RS-232 port is the data set, and it is a standard 
serial link with a communication baud rate up to 115kbaud.  The Ethernet port is jumper configurable for 10 
or 100Base-T (default). 

 

RS232 Port 

The RIO board has a single RS232 connection for sending and receiving commands from a PC or other 
terminal.  The pin-outs for the RS232 connection are as follows. 

 

RS232 - Port 1 

1  N/C (No Connect) 6  N/C 

2  TXD (Transmit Data)  7  RTS (Ready to Send) 

3  RXD (Receive Data) 8  CTS (Clear to Send) 

4  N/C 9  N/C (Can connect +5V if needed) 

5  Ground  

 

RS-232 Configuration 

Configure the PC for 8 data bits, no parity, one stop bit, and hardware handshaking.  The baud rate for the 
RS232 communication defaults to 115k baud but can be set to 19.2k baud by placing a jumper on J5. 

 

Handshaking Modes 

The RS232 port is configured for hardware handshaking.  In this mode, the RTS and CTS lines are used.  The 
CTS line will go high whenever the RIO is not ready to receive additional characters.  The RTS line will 



  

12 Chapter 3 Communication  RIO-471x0 

inhibit the RIO board from sending additional characters.  Note:  The RTS line goes high for inhibit.  This 
handshake procedure is required and ensures proper communication especially at higher baud rates. 

 

Ethernet Configuration 

Communication Protocols 
The Ethernet is a local area network through which information is transferred in units known as packets.  
Communication protocols are necessary to dictate how these packets are sent and received.  The RIO 
supports two industry standard protocols, TCP/IP and UDP/IP.  The board will automatically respond in the 
format in which it is contacted. 

TCP/IP is a "connection" protocol.  The master must be connected to the slave in order to begin 
communicating.  Each packet sent is acknowledged when received.  If no acknowledgement is received, the 
information is assumed lost and is resent. 

Unlike TCP/IP, UDP/IP does not require a "connection".  This protocol is similar to communicating via 
RS232.  If a cable is unplugged, the device sending the packet does not know that the information was not 
received on the other side.   Because the protocol does not provide for lost information, the sender must re-
send the packet. 

Galil recommends using TCP/IP for standard communication to insure that if a packet is lost or destroyed 
while in transit, it will be resent.  However UDP is recommended in certain situations such as launching Data 
Record information to a host for graphing or data collection. 

Each packet must be limited to 470 data bytes or less.  This is not an issue when using Galil software as the 
Galil Ethernet driver will take care of the low level communication requirements. 

The IK command blocks the controller from receiving packets on Ethernet ports lower than 1000 except for 
ports 0, 23, 25, 68, 80 and 502.  To receive packets on all ports, set IK to 0. 

NOTE:  In order not to lose information in transit, Galil recommends that the user wait for an 
acknowledgement of receipt of a packet before sending the next packet. 

Jumper Configuration for 10BaseT 
If 10BaseT communication is required, a jumper must be placed on the pins labeled OPT.  The default is no 
jumper which is 100BaseT Ethernet communication. 

Addressing 
There are three levels of addresses that define Ethernet devices.  The first is the MAC or hardware address.  
This is a unique and permanent 6 byte number.  No other device will have the same MAC address.  The RIO 
MAC address is set by the factory and the last two bytes of the address are the serial number of the board.  
To find the  Ethernet MAC address for a RIO unit, use the TH command.  A sample is shown here with a unit 
that has a serial number of 3: 

Sample MAC Ethernet Address: 00-50-4C-28-00-03 

The second level of addressing is the IP address.  This is a 32-bit (or 4 byte) number that usually looks like 
this: 192.168.15.1.  The IP address is constrained by each local network and must be assigned locally.  
Assigning an IP address to the RIO board can be done in a number of ways. 

The first method for setting the IP address is using a DHCP server.  The DH command controls whether the 
RIO board will get an IP address from the DHCP server.  If the unit is set to DH1 (default) and there is a 



RIO-471x0 Chapter 3 Communication ● 13 

DHCP server on the network, the controller will be dynamically assigned an IP address from the server.  
Setting the board to DH0 will prevent the controller from being assigned an IP address from the server. 

The second method to assign an IP address is to use the BOOT-P utility via the Ethernet connection.  The 
BOOT-P functionality is only enabled when DH is set to 0.  Either a BOOT-P server on the internal network 
or the Galil software may be used.  When opening the Galil Software, it will respond with a list of all RIO 
boards and controllers on the network that do not currently have IP addresses.  The user must select the board 
and the software will assign the specified IP address to it.  This address will be burned into the controller 
(BN) internally to save the IP address to the non-volatile memory.  Note: if multiple boards are on the 
network – use the serial numbers to differentiate them. 

CAUTION:  Be sure that there is only one BOOT-P or DHCP server running.  If your network has 
DHCP or BOOT-P running, it may automatically assign an IP address to the RIO board upon linking 
it to the network.  In order to ensure that the IP address is correct, please contact your system 
administrator before connecting the I/O board to the Ethernet network. 

 

The third method for setting an IP address is to send the IA command through the RS-232 port.  (Note: The 
IA command is only valid if DH0 is set).  The IP address may be entered as a 4 byte number delimited by 
commas (industry standard uses periods) or a signed 32 bit number (e.g. IA 124,51,29,31 or IA 2083724575).  
Type in BN to save the IP address to the RIO non-volatile memory.   

NOTE:  Galil strongly recommends that the IP address selected is not one that can be accessed across the 
Gateway.  The Gateway is an application that controls communication between an internal network and the 
outside world. 

The third level of Ethernet addressing is the UDP or TCP port number.  The Galil board does not require a 
specific port number.  The port number is established by the client or master each time it connects to the RIO 
board.  Typical port numbers for applications are: 

Port 23:  Telnet 
Port 502:  Modbus 
Port 80:  HTTP 
 

Email from the RIO 
If the RIO is on a network with a SMTP Mail Server, the RIO is capable of sending an email message using 
the MG command.  There are three configuration commands necessary to send an email from the RIO unit – 
MA, MS and MD.  MA sets the smtp email server IP address.  MS sets the email source or “from” address 
and MD sets the destination or “to” address.  There is a maximum character limit for the MS and MD 
commands of 30 characters.  An example of this is shown here: 

MA 10,0,0,1;   ‘example SMTP Email Server IP address 
MD someone@example.com;     ‘sample destination email address 
MS me@example.com;    ‘sample source address 
MG "Testing Email"{M};  ‘Message to send via Email 

Please contact your system administrator for information regarding email settings. 

Note: it is strongly recommended that the email messaging frequency is limited so as not to overload the 
email server. 

 

 

mailto:someone@example.com
mailto:me@example.com


  

14 Chapter 3 Communication  RIO-471x0 

Communicating with Multiple Devices 
The RIO is capable of supporting multiple masters or slaves.  A typical scenario would be connecting a PC (a 
master) and a motion controller (a 2nd master) that can both send commands to the RIO board over Ethernet 
on different handles. 

Note: The term “master” is equivalent to the Internet “client” and the term “slave” is equivalent to the 
Internet “server”. 

An Ethernet handle is a communication resource within a device.  The RIO-47xx0 can have a maximum of 3 
Ethernet handles open at any time. This number is increased to 5 Ethernet handles on the RIO-47xx2.  If all 
handles are in use and another device tries to connect, it will be sent a "reset packet" showing that the RIO 
cannot establish any new connections. 

NOTE:  A reset will cause the Ethernet connection to be lost.  There are a number of ways to reset the board.  
Hardware resets (push reset button or power down RIO board) and software resets (through Ethernet or 
RS232 by entering the RS command).   

When the RIO acts as the master, the IH command is used to assign handles and connect to its slaves.  The IP 
address may be entered as a 4 byte number separated with commas (industry standard uses periods) or as a 
signed 32 bit number.  A port number may also be specified, but if it is not, it will default to 1000.  The 
protocol (TCP/IP or UDP/IP) to use must also be designated at this time.  Otherwise, the board will not 
connect to the slave.  (Ex:  IHB=151,25,255,9<179>2.  This will open handle #2 and connect to the IP 
address 151.25.255.9, port 179, using TCP/IP) 

Once the IH command is used to connect to slaves, the user can communicate to these slaves by sending 
commands to the master.  The SA command is used for this purpose, and it has the following syntax. 

 SAh= "command string" 

Here "command string" will be sent to handle h.  For example,  SAA=”XQ” command will send an XQ 
command to the slave/server on handle A.  A more flexible form of the command is 

 SAh= field1,field2,field3,field4 ... field8 

where each field can be a string in quotes or a variable.   

When the Master/client sends an SA command to a Slave/server, it is possible for the master to determine the 
status of the command.  The response _IHh4 will return the number 1 to 4.  1 indicates waiting for the 
acknowledgement from the slave.  2 indicates a colon (command accepted) has been received.  3 indicates a 
question mark (command rejected) has been received.  4 indicates the command timed out. 

If a command generates multiple responses (such as the TE command), the values will be stored in _SAh0 
thru _SAhn where n is the last field.  If a field is unused, its _SA value will be -2^31. 

See the Command Reference for more information on the SA command. 
 
Which devices receive what information from the RIO depends on various things.  If a device queries the 
RIO, it will receive the response unless it explicitly tells the RIO to send it to another device.  If the 
command that generates a response is part of a downloaded program, the response will route to whichever 
port is specified by the CF command (either a specific Ethernet handle or the RS232 port). If the user wants 
to send the message to a port other than what is specified by the CF command, add an {Eh} or {P1} to the 
end of the command (Ex.  MG{EB}"Hello" will send the message "Hello" to handle #2 and MG{P1}”Hello” 
will send it to the serial port). 
 

Handling Communication Errors 

A reserved automatic subroutine which is identified by the label #TCPERR can be used to catch 
communication errors.  If an RIO has an application program running and the TCP or UDP communication is 



RIO-471x0 Chapter 3 Communication ● 15 

lost, the #TCPERR routine will automatically execute.  The #TCPERR routine should be ended with the RE 
command.   
 

Multicasting 
A multicast may only be used in UDP/IP and is similar to a broadcast (where everyone on the network gets 
the information) but specific to a group.  In other words, all devices within a specified group will receive the 
information that is sent in a multicast.  There can be many multicast groups on a network and are 
differentiated by their multicast IP address.  To communicate with all the devices in a specific multicast 
group, the information can be sent to the multicast IP address rather than to each individual device IP 
address.  All Galil devices belong to a default multicast address of 239.255.19.56.  This multicast IP address 
can be changed by using the IA>u command. 

 

Unsolicited Message Handling 

Unsolicited messages are any messages that are sent from the controller that are not directly requested by the 
host PC.  An example of this is a MG or TP command inside of a program running on the controller.  Error 
messages are also “unsolicited” because they can come out at any time.  There are two software commands 
that will configure how the controller handles these unsolicited messages: CW and CF. 

The RIO has 3 Ethernet handles as well as 1 serial port where unsolicited messages may be sent.  The CF 
command is used to configure the controller to send these messages to specific ports.  In addition, the Galil 
software has various options for sending messages using the CF command.  For more information, see the CF 
command description in the Command Reference. 

The CW command has two data fields that affect unsolicited messages.  The first field configures the most 
significant bit (MSB) of the message.  A value of 1 will set the MSB of unsolicited messages, while a value 
of 2 suppresses the MSB.  Programs like HyperTerminal or Telnet need to use a setting of CW2 for the 
unsolicited messages to be readable in standard ASCII format.  However, the Galil software needs a value of 
CW1 to be set so that it can differentiate between solicited and unsolicited messages.  If you have difficulty 
receiving characters from the controller, or receive garbage characters instead of messages, check the status 
of the CW command. 

The second field of the CW command controls whether the product should pause while waiting for the 
hardware handshake to enable the transmission of characters over RS-232 (CW,0), or continue processing 
commands and lose characters until the hardware handshake allows characters to be sent (CW,1). 

 

Other Protocols Supported 
Galil supports DHCP, ARP, BOOT-P, and Ping, which are utilities for establishing Ethernet connections.  
ARP is an application that determines the Ethernet (hardware) address of a device at a specific IP address.  
BOOT-P is an application that determines which devices on the network do not have an IP address and 
assigns the IP address you have chosen to it.  Ping is used to check the communication between the device at 
a specific IP address and the host computer. 

The RIO can communicate with a host computer through any application that can send TCP/IP or UDP/IP 
packets.  A good example of this is Telnet, a utility that comes standard with the Windows operating system. 

When using DHCP and a DNS (Domain Name Server), the DNS will assign the name “RIO47100-n” to the 
controller where n is the serial number of the unit. 

 

 



  

16 Chapter 3 Communication  RIO-471x0 

Modbus with the RIO 

The RIO-47xxx supports Modbus/TCP, and requires an Ethernet connection between its master or slave 
devices. 

As a Modbus class 1 device, the RIO supports the following Modbus function codes: 

 Of the Modbus function codes the RIO supports, all are supported by the RIO when it operates as a master 
(also known as a client) or when it operates as a slave (server). 

 

Note1: By default the RIO uses function code 3 for analog inputs and function code 4 for analog outputs. For 
a majority of Modbus devices this functionality is inverted. Use the MV command to switch the 
functionality. Please see the command reference for details. 

Note2: The remainder of this document uses the '$' symbol to signify that numbers are in hexadecimal 
notation.  

Setup 

Modbus/TCP requires an Ethernet connection between master and slave. Modbus/TCP also requires that all 
slaves communicate with their masters over port 502. See the IH command to setup port communication for 
the RIO. Note that the RIO by default  

Sending Modbus Packets 
The RIO programming language provides 3 ways of issuing Modbus packets as a master.  

1) Issue the MB command of type Mbh = -1,len,array[] 

  This Galil command allows the user complete control over the creation of their Modbus 
 packet. len is the number of bytes to be included in the packet, and array[] is the name of the 
 array containing the Modbus packet. Each element of array[] may contain only one byte, and 
 array[] must contain the entire Modbus packet, including transaction identifiers, protocol  identifiers, 
length field, Modbus function code, and data specific to that function code. 

2) Issue the MB command of type Mbh = addr, x, m, n, array[] 

  This Galil command allows the user to send a Modbus command easily by allowing the 
 user to select a few key parameters, and allowing the controller to do the rest.  addr is the Unit 
 ID field, which if not set, Galil will automatically set to the value of the handle the 
 communication is over (Handle A=$01, B=$02, etc). Also, as a slave the RIO ignores the Unit 
 ID field. x is the function code of the Modbus command. m is the address at which to begin 
 reading or writing. n is either the number of coils or the number of registers to read/write. 
 array[] is the array in which data from a read gets stored or where data to write is stored. See 
 individual function code descriptions in the command reference for specifics of this command. 

Function Code Modbus Description Galil Description
1 Read Coil Status Read Digital Outputs
2 Read Input Status Read Digital Inputs
3 Read Holding Registers Read Analog Inputs
4 Read Input Registers Read Analog Outputs
5 Force Single Coil Write Digital Output
6 Preset Single Register Write Digital Outputs
7 Read Exception Status Read Digital Outputs
15 Force Multiple Coils Write Digital Outputs
16 Preset Multiple Registers Write Analog Outputs



RIO-471x0 Chapter 3 Communication ● 17 

3) Issue another Galil command that supports Modbus 

The following Galil commands support Modbus, and are an easy way to use the Modbus protocol: 
SB,CB,AO,OB,@IN[],@OUT[],@AN[],@AO[]. The I/O number (variable) to use with these commands 
when using Modbus can be calculated as follows: 

I/O Number = (HandleNum*1000) + (bitNum) 

Modbus Exceptions 
An RIO configured as a slave will return an exception response if it receives an invalid request (e.g. An 
invalid function code, or a communication error). As a class 1 Modbus device the RIO-47xxx can respond 
with exception codes $01 or $02. Exception code $01 is returned when a request referencing an Illegal 
Function is received. Exception code $02 is returned when a request referencing an Illegal Data Address is 
received.  

When an Exception Response occurs, the function code of the response is $80 added to the original function 
code (e.g. Improper use of function code $01 will result in the exception response $81) 

An RIO-47xxx configured as a master can query the function code of the last response it received using the 
_MW command (see command reference). The _MW command can be used to determine if an exception has 
occurred. The _MW1 command (see the command reference) can be used to query the exception code. 

 

 

 

 



  

18 Chapter 3 Communication  RIO-471x0 

 

Function Code 1 ($01) - Read Coils 
Description 

Modbus function code $01 is a request to read coils. This will read digital outputs from an RIO configured as 
a slave.  

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1.  

Example: 

 Normal Response   Exception Response 
 _MW results in $01  _MW results in $81 
     _MW1 contains $01 or $02 
 
When using the MB command with Modbus function code 1, response data will be stored in the array 
referenced in the command line. When using @OUT[], @OUT[] contains the response data, which can either 
be stored to a variable or transmitted via serial port or ethernet. 

Ways to use function code $01 with Galil commands: 

     1.  MB command in raw packet mode 
     2.  MB command with Modbus function code1 
     3. @OUT[] (see @OUT[] in the command reference) 
 
Operating as a slave 

The RIO will accept  a read coils request with a starting address ranging from $0000-$000F, referencing 
digital outputs 0-15. The RIO will accept a request for up to all 16 of its digital outputs, with the quantity of 
coils ranging from $0001-$0010. The RIO will respond with function code $01 followed by a byte count of 
either $01 or $02, which describes the number of bytes of digital outputs being returned (byte count = 
quantity of outputs/8; if the remainder is not 0, byte count = quantity of outputs/8 +1). The RIO will respond 
with a coil status of 1 or 2 bytes (equal to the byte count) ranging from $0001-$FFFF, with each bit 
representing the state of a digital output (1 or 0). The LSB of the first coil status byte refers to the output 
addressed by the request packet.  

Coil Mapping 

Coil Addresses  Coil Addresses 

0 Digital Output 0  8 Digital Output 8 

1 Digital Output 1  9 Digital Output 9 

2 Digital Output 2  10 Digital Output 10 

3 Digital Output 3  11 Digital Output 11 

4 Digital Output 4  12 Digital Output 12 

5 Digital Output 5  13 Digital Output 13 

6 Digital Output 6  14 Digital Output 14 

7 Digital Output 7  15 Digital Output 15 



RIO-471x0 Chapter 3 Communication ● 19 

 

Examples: 

MBA= ,1,2,12,array[]  Request  the status of coils 2-13 (result is stored in array[]) 

MG@OUT[1002]  Requests the status of coil 2 (result is transmitted via serial port or  
    ethernet) 

Packets 

The command MBA=,1,2,10,array[] results in the following packets being sent, when one RIO is the master, 
and another RIO is the slave, communicating over handle A, port 502(Modbus). Assume digital outputs, in 
descending order from 15-0 are: 0,1,1,1,0,0,1,1,0,0,1,1,0,1,1,1  

 

Request    Response  

Field Name (hex) Field Name (hex) 

Function 01 Function 01 

Starting Address High 00 Byte Count 02 

Starting Address Low 02 Outputs Status 9-2 CD 

Quantity of Outputs High 00 Outputs Status 13-10 0C 

Quantity of Outputs Low 0C   

 

1st Byte of Response Word 

bit 7 6 5 4 3 2 1 0 

Coil # 9 8 7 6 5 4 3 2 

Value 1 1 0 0 1 1 0 1 

 

2nd Byte of Response Word 

bit 15 14 13 12 11 10 9 8 

Coil # X X X X 13 12 11 10 

Value 0 0 0 0 1 1 0 0 

 

Note: bits in the response marked 'X' are not valid coil response data, but are instead 0's that fill the 
remainder of the byte 

On the master RIO, array[0]=205 and array[1]=12 after the MBA= ,2,2,12,array[]command is issued 



  

20 Chapter 3 Communication  RIO-471x0 

 

Function Code 2 ($02) - Read Discrete Inputs 
Description 

Modbus function code $02 is a request to read discrete inputs. This will read digital inputs from an RIO 
configured as a slave. 

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1.  

Example: 

 Normal Response   Exception Response 
 _MW results in $02  _MW results in $82 
     _MW1 contains $01 or $02 
 
When using the MB command with Modbus function code $02, response data will be stored in the array 
referenced in the command line. When using @IN[], @IN[] contains the response data, which can either be 
stored to a variable or transmitted via serial port or ethernet. 

Ways to use function code 2 with Galil commands: 

     1.  MB command in raw packet mode 
     2.  MB command with Modbus function code 2 
     3. @IN[] (see @IN[] in the command reference) 
 
Operating as a slave 

The RIO will accept  a read discrete inputs request with a starting address ranging from $0000-$000F, 
referencing digital inputs 0-15. The RIO will accept a request for up to all 16 of its digital inputs, with a 
quantity of inputs range of $0001-$0010. 

The RIO will respond with a byte count of either $01 or $02, which describes the number of bytes of digital 
inputs being returned (byte count = quantity of inputs/8; if the remainder is not 0, byte count = quantity of 
inputs/8 +1). The RIO will respond with a input status of 1 or 2 bytes (equal to the byte count) ranging from 
$0001-$FFFF, with each bit representing the state of a digital input (1 or 0). The LSB of the first input status 
byte refers to the input addressed by the request packet.  

Coil Mapping 

Coil Addresses  Coil Addresses 

0 Digital Input 0  8 Digital Input 8 

1 Digital Input 1  9 Digital Input 9 

2 Digital Input 2  10 Digital Input 10 

3 Digital Input 3  11 Digital Input 11 

4 Digital Input 4  12 Digital Input 12 

5 Digital Input 5  13 Digital Input 13 

6 Digital Input 6  14 Digital Input 14 

7 Digital Input 7  15 Digital Input 15 



RIO-471x0 Chapter 3 Communication ● 21 

Examples: 

MBA= ,2,2,12,array[] Request  the status of discrete inputs 2-13 (result is stored in array[]) 

MG@IN[1002]  Requests the status of input 2 (result is transmitted via serial port or   
   ethernet) 

 

Packets: 

The command MBA=,2,2,12,array[] results in the following packets being sent, when one RIO is the master, 
and another RIO is the slave, communicating over handle A, port 502(Modbus). Assume digital inputs, in 
descending order from 15-0 are: 0,1,1,1,0,0,1,1,0,0,1,1,0,1,1,1. 

 

Request    Response  

Field Name (hex) Field Name (hex) 

Function 02 Function 02 

Starting Address High 00 Byte Count 02 

Starting Address Low 02 Inputs Status 9-2 CD 

Quantity of Inputs High 00 Inputs Status 13-10 0C 

Quantity of Inputs Low 0C   

 

1st Byte of Response Word 

bit 7 6 5 4 3 2 1 0 

Input # 9 8 7 6 5 4 3 2 

Value 1 1 0 0 1 1 0 1 

 

2nd Byte of Response Word 

bit 15 14 13 12 11 10 9 8 

Input # X X X X 13 12 11 10 

Value 0 0 0 0 1 1 0 1 

 

Note: bits in the response marked 'X' are not valid input response data, but are instead 0's that fill the 
remainder of the byte. Inputs report back a 0 when active and a 1 when inactive 

On the master RIO, array[0]=205 and array[1]=12 after the MBA= ,2,2,12,array[] command is issued 



  

22 Chapter 3 Communication  RIO-471x0 

 

Function Code 3 ($03) - Read Holding Registers 
Description 

Modbus function code $03 is a request to read holding registers. In its default configuration the RIO-471x0 
responds to this command with analog input register information. To configure the RIO to respond to a 
function code 3 request with analog output information see the MV command in the command reference. 

 

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1.  

Example: 

 Normal Response   Exception Response 
 _MW results in $03  _MW results in $83 
     _MW1 contains $01 or $02 
 

When using the MB command with Modbus function code $03, response data will be stored in the array 
referenced in the command line. When using @AN[], @AN[] contains the response data, which can either be 
stored to a variable or transmitted via serial port or ethernet. 

 

Ways to use function code 3 with Galil commands: 

     1.  MB command in raw packet mode 
     2.  MB command with Modbus function code 3 
     3. @AN[] (see @AN[] in the command reference) 
 

Operating as a slave 

The RIO will accept different starting address ranges for a read holding registers request depending on the 
state of the MI command. If MI is set to 0 (register data is volts in 32-bit floating point), the RIO will accept 
a read holding registers request with an address range of $0000-$000E. If MI is set to 1 (register data is 
counts in 16-bit decimal), The RIO will accept a read holding registers request with an address range of 
$0000-$0007.  The RIO will accept a request with a quantity of registers field up to $0008 if MI is set to 0, 
and $00010 if MI is set to 1. 

The RIO will respond with a byte count ranging from $0000 to $0020 if MI is 0, and from $0000 to $0010 if 
MI is 1 (Byte Count = 2*NumberOfRegisters, where NumberOfRegisters is equal to the number of analog 
inputs you are trying to read multiplied by 2 if MI is 0, or 1 if MI is 1). The RIO will respond with a byte 
count field equal to the byte count field in the request packet. The RIO will respond with a register value 
field consisting of either 2 bytes (counts) or 4 bytes (32-bit floating point) per analog input in ascending 
order from the analog input referenced in the address. 

 



RIO-471x0 Chapter 3 Communication ● 23 

Galil Register Map 

Examples: 

MBA= ,3,2,4,array[] Request  the status of holding registers 2-5 (AN1 and AN2 if MI0, or   
   AN2, AN3, AN4, AN5 if MI1). The response is stored in array[] 

MG@AN[1002]  Requests the status of analog input 2 (result is transmitted via serial port  
   or ethernet). 

32-Bit Floating Point Counts
0 Analog Input 0 Analog Input 0
1 Analog Input 1
2 Analog Input 1 Analog Input 2
3 Analog Input 3
4 Analog Input 2 Analog Input 4
5 Analog Input 5
6 Analog Input 3 Analog Input 6
7 Analog Input 7
8 Analog Input 4
9
10 Analog Input 5
11
12 Analog Input 6
13
14 Analog Input 7
15

Register 
Address



  

24 Chapter 3 Communication  RIO-471x0 

 

Packets: 

The command MBA=,3,2,4,array[] results in the following packets being sent, when one RIO is the master, 
and another RIO-47100 is the slave, communicating over handle A, port 502(Modbus).  When MI is set to 0 
the response is given as volts in 32-bit Floating Point. When MI is set to 1 the response is given as counts in 
16-bit decimal notation. Assume analog inputs in ascending order from 0-7 are: .4822, .9753, 1.4673, 1.9629, 
2.4622, 2.9675, 3.4583, 3.9600 

    Slave MI0                                                           Slave MI1 

 

With the slave MI set to 0, the master RIO’s arrays will look like this: 

array[0]=16249 
array[1]=45056 
array[2]=16315 
array[3]=53248 
 
With the slave MI set to 1, the master RIO’s arrays will look like this: 

array[0]=9600 
array[1]=12904 
array[2]=16160 
array[3]=19480

Request Response Response
32-bit Floating Point Real Value 16-bit Integer Real Value

Field Name (hex) Field Name (hex) (volts) Field Name (hex) (counts)
Function 03 Function 03 Function 03
Starting Address High 00 Byte Count 08 Byte Count 08
Starting Address Low 02 RegVal2 High 3F 0.9753 RegVal2 High 25 9600
Quantity of Registers High 00 79 RegVal2 Low 80
Quantity of Registers Low 04 B0 RegVal3 High 32 12904

RegVal2 Low 00 RegVal3 Low 68
RegVal3 High 3F 1.4673 RegVal4 High 3F 16160

BB RegVal4 Low 20
D0 RegVal5 High 4C 19480

RegVal3 Low 00 RegVal5 Low 18

 



RIO-471x0 Chapter 3 Communication ● 25 

 
Function Code 4 ($04) - Read Input Registers 
 

Description 

Modbus function code $04 is a request to read input registers. In its default configuration the RIO-471x0 
responds to this command with analog output register information. To configure the RIO to respond to a 
function code 4 request with analog input information see the MV command in the command reference. 

 

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1.  

Example: 

 Normal Response   Exception Response 
 _MW results in $04  _MW results in $84 
     _MW1 contains $01 or $02 
 

When using the MB command with Modbus function code $04, response data will be stored in the array 
referenced in the command line. When using @AO[], @AO[] contains the response data, which can either be 
stored to a variable or transmitted via serial port or ethernet. 

 

Ways to use function code1 with Galil commands: 

     1.  MB command in raw packet mode 
     2.  MB command with Modbus function code 4 
     3. @AO[] (see @AO[] in the command reference) 
 

Operating as a slave 

The RIO will accept different address ranges for a read input registers request depending on the state of the 
MI command. If MI is set to 0 (register data is volts in 32-bit floating point), the RIO will accept a read input 
registers request with an address range of $0000-$000E.  If MI is set to 1 (register data is counts in 16-bit 
decimal), The RIO will accept a read input registers request with an address range of $0000-$0007.  The RIO 
will accept a request with a quantity of registers field up to $0008 if MI is set to 0, and $00010 if MI is set to 
1.  The RIO will respond with a byte count ranging from $0000 to $0010 if MI is 1, and from $0000 to $0020 
if MI is 0 ((byte count = 2*NumberOfRegisters, where NumberOfRegisters is equal to the number of analog 
outputs you are trying to read multiplied by 2 if MI is 0, or 1 if MI is 1). The RIO will respond with an input 
registers field consisting of either 2 bytes (counts) or 4 bytes (32-bit floating point) per analog output register 
in ascending order from the analog output referenced in the address. 

 



  

26 Chapter 3 Communication  RIO-471x0 

Galil Register Map 

Examples: 

MBA= ,4,2,4,array[] Request  the status of Registers 2-5 (AO1 and AO2 if MI0, and AO2,   
   AO3, AO4, AO5 if MI1). The response is stored in array[] 

MG@AO[1002]  Requests the status of analog output 2 (result is transmitted via ethernet or  
   serial) 

 

32-Bit Floating Point Counts
0 Analog Output 0 Analog Output 0
1 Analog Output 1
2 Analog Output 1 Analog Output 2
3 Analog Output 3
4 Analog Output 2 Analog Output 4
5 Analog Output 5
6 Analog Output 3 Analog Output 6
7 Analog Output 7
8 Analog Output 4
9
10 AnalogOutput 5
11
12 Analog Output 6
13
14 Analog Output 7
15

Register 
Address



RIO-471x0 Chapter 3 Communication ● 27 

Packets: 

The command MBA=,4,2,4,array[] results in the following packets being sent, when one RIO is the master, 
and another RIO-47100 is the slave, communicating over handle A, port 502(Modbus). When MI is set to 0 
the response is given as volts in 32-bit Floating Point. When MI is set to 1 the response is given as counts in 
16-bit decimal notation. Assume analog outputs in ascending order from 0-7 are: .5, 1, 1.5, 2, 2.5, 3, 3.5, 4 

      Slave MI0                                                          Slave MI1 

 

With the slave MI set to 0, the master RIO’s arrays will look like this: 

array[0]=16256 
array[1]=0 
array[2]=16320 
array[3]=0 
 
With the slave MI set to 1, the master RIO’s arrays will look like this: 

array[0]=19661 
array[1]=26214 
array[2]=32768 
array[3]=39321 

Request Response Response
32-bit Floating Point Real Value 16-bit decimal Real Value

Field Name (hex) Field Name (hex) (volts) Field Name (hex) (counts)
Function 04 Function 04 Function 04
Starting Address High 00 Byte Count 08 Byte Count 08
Starting Address Low 02 RegVal2 High 3F 1.0000 RegVal2 High 4C 19661
Quantity of Registers High 00 80 RegVal2 Low CD
Quantity of Registers Low 04 00 RegVal3 High 66 26214

RegVal2 Low 00 RegVal3 Low 66
RegVal3 High 3F 1.5000 RegVal4 High 80 32768

C0 RegVal4 Low 00
00 RegVal5 High 99 39321

RegVal3 Low 00 RegVal5 Low 99

 



  

28 Chapter 3 Communication  RIO-471x0 

Function Code 5 ($05) - Write Single Coil 
Description 

Modbus function code $05 is a request to write a single coil. This will write a digital output of an RIO 
configured as a slave. 

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1. 

Example: 

 Normal Response   Exception Response 
 _MW results in $05  _MW results in $85 
     _MW1 contains $01 or $02 
 
Ways to use Function Code 5 with Galil commands: 

     1.    MB command in raw packet mode 
     2.  MB command with Modbus function code 5 
     3. SB 
     4. CB 
     5. OB 
 
Operating as a slave 

The RIO will accept a write single coil request with a starting address ranging from $0000-$000F, 
referencing digital outputs 0-15.  

The RIO will respond with a Modbus packet that is identical to the packet it received. 



RIO-471x0 Chapter 3 Communication ● 29 

 

Coil Mapping 

Coil Addresses  Coil Addresses 

0 Digital Output 0  8 Digital Output 8 

1 Digital Output 1  9 Digital Output 9 

2 Digital Output 2  10 Digital Output 10 

3 Digital Output 3  11 Digital Output 11 

4 Digital Output 4  12 Digital Output 12 

5 Digital Output 5  13 Digital Output 13 

6 Digital Output 6  14 Digital Output 14 

7 Digital Output 7  15 Digital Output 15 

 

Examples: 

For the following example, array[] contains [0,0,0,0,0,6,1,5,0,7,$FF,$00] 

MBA= -1,12,array[]  Request to set digital output 7 high 

MBA=,5,7,1   Request to set digital output 7 high 

SB1007    Request to set digital output 7 high 

OB1007,@IN[1000]  Request to set digital output 7 high if digital output 0 is high 

Packets: 

The command MBA=,5,7,1 results in the following packets being sent, when one RIO is the master, and 
another RIO is the slave, communicating over handle A, port 502(Modbus).  

 

Request    Response  

Field Name (hex) Field Name (hex) 

Function 05 Function 05 

Starting Address High 00 Starting Address High 00 

Starting Address Low 07 Starting Address Low 07 

Output Value High FF Output Value High FF 

Output Value Low 00 Output Value Low 00 

 

As a result of the MB command above, the slave RIO will have output 7 turned on.



  

30 Chapter 3 Communication  RIO-471x0 

 

Function Code 6 ($06) - Preset Single Register 
 

Description 

Modbus function code $06 is a request to write to a single register. This will write all 16 digital outputs of an 
RIO configured as a slave. 

 

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1. 

Example: 

 Normal Response   Exception Response 
 _MW results in $06  _MW results in $86 
     _MW1 contains $01 or $02 
 

Ways to use function code 6 with Galil commands: 

     1.    MB command in raw packet mode 
     2.  MB command with Modbus function code 6 
 

Operating as a slave 

The RIO will accept a preset single register request with a starting address of $0000. The register values can 
range from 0x0000 to 0xFFFF and correspond to a binary representation of the 16 digital outputs. The RIO 
will respond with a Modbus packet that is identical to the packet it received. 



RIO-471x0 Chapter 3 Communication ● 31 

 

Coil Mapping 

 

Coil Addresses  Coil Addresses 

0 Digital Output 0  8 Digital Output 8 

1 Digital Output 1  9 Digital Output 9 

2 Digital Output 2  10 Digital Output 10 

3 Digital Output 3  11 Digital Output 11 

4 Digital Output 4  12 Digital Output 12 

5 Digital Output 5  13 Digital Output 13 

6 Digital Output 6  14 Digital Output 14 

7 Digital Output 7  15 Digital Output 15 

 

Examples: 

For the following example, array[] contains [0,0,0,0,0,6,1,6,0,0,$55,$AA] 

MBA= -1,12,array[]  Request to write digital outputs 15-0  to $55AA 

MBA= ,6,0,$55AA  Request to write digital outputs 15-0  to $55AA 

Note: writing digital outputs 15-0 to $55AA results in digital outputs 15-0 in descending order, being           
0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0. 

Packets: 

The command MBA= ,6,0,$55AA results in the following packets being sent, when one RIO is the master, 
and another RIO is the slave, communicating over handle A, port 502(Modbus).  

 

Request    Response  

Field Name (hex) Field Name (hex) 

Function 06 Function 06 

Starting Address High 00 Starting Address High 00 

Starting Address Low 00 Starting Address Low 00 

Register Value High 55 Register Value High 55 

Register Value Low AA Register Value Low AA 

 



  

32 Chapter 3 Communication  RIO-471x0 

 

Function Code 7 ($07) – Read Exception Status 
Description 

Modbus function code $07 is a request to read the 8 exception status outputs. This will read digital outputs 0-
7 of an RIO configured as a slave.  

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1.  

Example: 

 Normal Response   Exception Response 
 _MW results in $07  _MW results in $87 
     _MW1 contains $01 or $02 
 
When using the MB command with Modbus function code $07, response data will be stored in the array 
referenced in the command line.  

Ways to use function code 7 with Galil commands: 

     1. MB command in raw packet mode 
     2.  MB command with Modbus function code 7. 
 
Operating as a slave 

The RIO will accept a read exception status request. The RIO will respond with function code $07, and will 
return 1 byte of output data ranging from $00 to $FF, with each bit representing the state of a digital output 
(1 or 0). The LSB of the output data byte is digital output 0, and the MSB of the output data byte is digital 
output 7. 



RIO-471x0 Chapter 3 Communication ● 33 

 

Coil Mapping 

 

Coil Addresses 

0 Digital Output 0 

1 Digital Output 1 

2 Digital Output 2 

3 Digital Output 3 

4 Digital Output 4 

5 Digital Output 5 

6 Digital Output 6 

7 Digital Output 7 

 

Examples: 

MBA= ,7,array[]  Request to read exception status 

 

Packets: 

The command MBA= ,7,array[] results in the following packets being sent, when one RIO is the master, and 
another RIO is the slave, communicating over handle A, port 502(Modbus). Assume digital outputs, in 
descending order from 15-0 are:0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0. ($55AA) 

 

Request    Response  

Field Name (hex) Field Name (hex) 

Function 07 Function 07 

  Output Data AA 

 

array[0] on the master RIO will equal 170 in this example.



  

34 Chapter 3 Communication  RIO-471x0 

 

Function Code 15 ($0F) – Write Multiple Coils 
 

Description 

Modbus function code ($0F) is a request to write multiple coils. This will write multiple digital outputs to an 
RIO configured as a slave. 

 

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1. 

Example: 

 Normal Response   Exception Response 
 _MW results in $0F  _MW results in $8F 
     _MW1 contains $01 or $02 
 

Ways to use function code 15 with Galil commands: 

     1.    MB command in raw packet mode 
     2.  MB command with Modbus function code 15 
 

Operating as a slave 

The RIO will accept a write multiple coils request with a starting address ranging from $0000-$000F, 
referencing digital outputs 0-15. The RIO will accept a request for up to all 16 of its digital outputs, or 
$0001-$0010. 

The RIO will respond with function code $0F, a starting address field which matches the starting address 
field of the request packet, and a quantity of outputs which matches the quantity of outputs field of the 
request packet. 



RIO-471x0 Chapter 3 Communication ● 35 

 

Coil Mapping 

Coil Addresses  Coil Addresses 

0 Digital Output 0  8 Digital Output 8 

1 Digital Output 1  9 Digital Output 9 

2 Digital Output 2  10 Digital Output 10 

3 Digital Output 3  11 Digital Output 11 

4 Digital Output 4  12 Digital Output 12 

5 Digital Output 5  13 Digital Output 13 

6 Digital Output 6  14 Digital Output 14 

7 Digital Output 7  15 Digital Output 15 

Examples: 

For the following example, array[] contains [0,0,0,0,0,9,1,15,0,0,0,16,2,$AA,$55] 

MBA= -1,15,array[] Request to write $AA55 to digital outputs 15-0 

For the following example, array[] contains [$AA55] 

MBA= ,15,0,16,array[] Request to write $AA55 to digital outputs 15-0 

Packets: 

The command MBA= ,15,0,16,array[] (when array contains [$AA55]) results in the following packets being 
sent, when one RIO is the master, and another RIO is the slave, communicating over handle A, port 
502(Modbus). The slave RIO’s outputs 15-0 will be set to the following (1 is on 0 is off): 

Output 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

 

Request    Response  

Field Name (hex) Field Name (hex) 

Function 15 Function 15 

Starting Address High 00 Starting Address High 00 

Starting Address Low 00 Starting Address Low 00 

Quantity of Outputs High 00 Quantity of Outputs High 00 

Quantity of Outputs Low 10 Quantity of Outputs Low 10 

Byte Count 02   

Outputs Value High AA   

Outputs Value Low 55   

 



  

36 Chapter 3 Communication  RIO-471x0 

 

Function Code 16 ($10) – Write Multiple Registers 
Description 

Modbus function code ($10) is a request to write multiple registers, also known as analog outputs  

Operating as a master 

The function code of the response can be queried with the _MW command. If an exception occurred, the 
exception code of the response can be queried with _MW1. 

Example: 

 Normal Response   Exception Response 
 _MW results in $10  _MW results in $90 
     _MW1 contains $01 or $02 
 
Ways to use function code 16 with Galil commands: 

     1.    MB command in raw packet mode 
     2.  MB command with Modbus function code 16 
     3. AO[x] See command reference for details 
 
Note: The RIO acting as a master can write up to 123 registers at a time with function code 16 per the 
Modbus specification. 

The Modbus transaction results are available with the _MW and _MW1 commands. 

Operating as a slave 

The RIO will accept different starting address ranges for a write multiple registers request depending on the 
state of the MI command. If MI is set to 0 (register data is volts in 32-bit floating point), the RIO will accept 
an address range of $0001-$000E. If MI is set to 1 (register data is count in 16-bit decimal), the RIO will 
accept a write multiple registers request with an address range of $0000-$0007.  The RIO will respond with 
function code 16, a 2 byte starting address field identical to the starting address field of the request packet, 
and a 2 byte quantity of registers field identical to the quantity of registers field of the request packet. 



RIO-471x0 Chapter 3 Communication ● 37 

Galil Register Map 

Examples: 

For the following example, array[] contains [0,0,0,0,0,15,1,16,0,2,0,4,8,64,160,0,0,64,64,0,0] 

MBA= -1,21,array[]  Request to write 5V to analog output 1 and 3V to analog output 2 

For the following example, array[] contains [$40A0, $0000, $4040, $0000] ($40A00000 is 32-bit Floating 
Point for 5.0000 decimal and $40400000 is 32-bit Floating Point for 3V decimal) 

MBA= ,16,2,4,array[]  Request to write 5V to analog output 1 and 3V to analog output 2 

AO1001,5   Request to write 5V to analog output 1 

32-Bit Floating Point Counts
0 Analog Output 0 Analog Output 0
1 Analog Output 1
2 Analog Output 1 Analog Output 2
3 Analog Output 3
4 Analog Output 2 Analog Output 4
5 Analog Output 5
6 Analog Output 3 Analog Output 6
7 Analog Output 7
8 Analog Output 4
9
10 Analog Output 5
11
12 Analog Output 6
13
14 Analog Output 7
15

Register 
Address



  

38 Chapter 3 Communication  RIO-471x0 

 

Packets: 

The command MBA= ,16,2,4,array[] results in the following packets being sent, when one RIO is the master, 
and another RIO is the slave, and array[] contains [$40A0,$0000,$4040,$0000], communicating over handle 
A, port 502(Modbus). MI is set to 0 on the slave. 

Request  Response  
32-Bit Floating Point    
Field Name (hex) Field Name (hex) 
Function  10 Function 10 
Starting Address Hi 0 Starting Address Hi 0 
Starting Address Lo 2 Starting Address Lo 2 
Quantity Outputs Hi 0 Quantity of Registers Hi 0 
Quantity Outputs Lo 4 Quantity of Registers Lo 4 
Byte Count 8    
RegVal0 High 40    
 A0    
 0    
RegVal0 Low 0   
RegVal1 High 40   
 40   
 0   
RegVal1 Low 0   

 

The slave RIO will have analog output 1 set to 5V and analog output 2 set to 3V 

Example 2 

The command MBA= ,16,2,2,array[] results in the following packets being sent, when one RIO is the master, 
and another RIO-47100 is the slave, and array[] contains [$FFFF,$9999,$6666,$3333], communicating over 
handle A, port 502(Modbus). MI is set to 1 on the slave. 

Request  Response  
Counts    
Field Name (hex) Field Name (hex) 
Function  10 Function 10 
Starting Address Hi 0 Starting Address Hi 0 
Starting Address Lo 2 Starting Address Lo 2 
Quantity Outputs Hi 0 Quantity of Registers Hi 0 
Quantity Outputs Lo 2 Quantity of Registers Lo 2 
Byte Count 4    
RegVal0 High FF    
RegVal0 Low FF    
RegVal1 High 99    
RegVal1 Low 99   

 

The slave RIO will have analog output 2 set to 5V and analog output 3 set to 3V 



RIO-471x0 Chapter 3 Communication ● 39 

Analog IO Ranges 
 The analog inputs and outputs range from different values depending on the configuration of the 
RIO-471x0. This information is specifically important when using the RIO to communicate as a modbus 
slave and MI is set to 1. 

 

RIO-47100 

Analog Inputs 

AQx,m(see command reference for details) 

m Analog Range Counts Range(decimal) Counts Range(hex) 

0 0-5V 0-32572 0x0000 - 0x7FF0 

1 +/-5V 0-32572 0x0000 - 0x7FF0 

 

Analog Outputs 

Analog Range Counts Range(decimal) Counts Range(hex) 

0-5V 0-65520 0x0000 - 0xFFF0 

 

RIO-47120 (12 or 16 bit version) 

Analog Inputs 

AQx,m(see command reference for details) 

m Analog Range Counts Range(decimal) Counts Range(hex) 

1 +/5V -32768 to 32767 0x8000 - 0x7FFF 

2 +/-10V -32768 to 32767 0x8000 - 0x7FFF 

3 0-5V 0-65535 0x0000 - 0xFFFF 

4 0-10V 0-65535 0x0000 - 0xFFFF 

 

Analog Outputs 

DQx,m(see command reference for details) 

m Analog Range Counts Range(decimal) Counts Range(hex) 

1 0-5V 0-65535 0x0000 - 0xFFFF 

2 0-10V 0-65535 0x0000 - 0xFFFF 

3 +/-5V 0-65535 0x0000 - 0xFFFF 

4 +/-10V 0-65535 0x0000 - 0xFFFF 



  

40 Chapter 3 Communication  RIO-471x0 

Data Record 

QR and DR Commands 

The RIO can provide a block of status information back to the host computer in a single Ethernet packet 
using either the QR or DR commands.  The QR command returns the Data Record as a single response.  The 
DR command causes the controller to send a periodic update of the Data Record out a dedicated UDP 
Ethernet handle. The Data Record response packet contains binary data that is a snapshot of the controller’s 
I/O status.   

Since the Data Record response contains all information in binary format; the result of this command cannot 
be displayed in a Galil terminal.   

The QR and DR commands will return 4 bytes of header information, followed by an entire data record.  A 
data record map is provided below. 

RIO Data Record 

DATA TYPE ITEM 
UB 1st byte of header 
UB 2nd byte of header 
UB 3rd byte of header 
UB 4th byte of header 
UW Sample number 
UB Error Code 
UB General Status 
UW Analog Out  Channel 0 (counts) 
UW Analog Out  Channel 1 (counts) 
UW Analog Out  Channel 2 (counts) 
UW Analog Out  Channel 3 (counts) 
UW Analog Out  Channel 4 (counts) 
UW Analog Out  Channel 5 (counts) 
UW Analog Out  Channel 6 (counts) 
UW Analog Out  Channel 7 (counts) 
UW Analog In Channel 0 (counts)  
UW Analog In Channel 1 (counts)  
UW Analog In Channel 2 (counts)  
UW Analog In Channel 3 (counts)  
UW Analog In Channel 4 (counts)  
UW Analog In Channel 5 (counts)  
UW Analog In Channel 6 (counts)  
UW Analog In Channel 7 (counts)  
UW Output State 
UW Input State 
UL Pulse Count 
SL ZC data – user configurable variable 
SL ZD data – user configurable variable  

 

Note: UB=Unsigned Byte, UW=Unsigned Word (2 bytes), SL=Signed Long Word 

This data can be broken up into sections.  The Data Record Map includes the 4 bytes of header.  The 
General Data Block consists of the sample number, the error code, and the general status.  The I/O Data 
Block includes all the other items in the above table. 



RIO-471x0 Chapter 3 Communication ● 41 

Explanation of Status Information 

Header Information –  

Bytes 0, 1 of Header: 

The first two bytes of the data record provide the header information. 

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 

1 N/A N/A N/A N/A N/A N/A N/A 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

N/A N/A N/A N/A N/A N/A N/A N/A 

 

Bytes 2, 3 of Header: 

Bytes 2 and 3 make up a word, which represents the Number of bytes in the data record, including the 
header.  Byte 2 is the low byte, and byte 3 is the high byte. 

Note: The header information of the data records is formatted in little endian. 

General Status Information (1 Byte) 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

Program 
Running 

N/A N/A N/A N/A Waiting for 
input from IN 
command 

Trace On Echo On 

 

ZC and ZD Commands 

Another important feature of the data record is that it contains two variables that can be set by the user.  The 
ZC and ZD commands are responsible for these variables.  Each variable can be a number, a mathematical 
equation, or a string.  See the Command Reference for more information on the ZC and ZD commands.   

 



  

42 Chapter 4 I/O  RIO-471x0 

Chapter 4 I/O   

Introduction 

The standard RIO controller has 16 digital inputs, 16 digital outputs, 8 analog inputs and 8 analog outputs.   
The interrogation command, TZ, allows the user to get a quick view of the I/O configuration and bit status.   

Specifications 

Access to I/O points is made through the 44pin and 26pin High Density D-Sub connectors on the top of the 
unit.  Pin outs and I/O specifications are listed below. 

44 pin D-Sub Connector (Digital I/O) – RIO-471xx 

Pin Label Description Pin Label Description Pin Label Description 

1 DI15 Digital Input 15 16  No Connect / INC1B¹ 31 DI14 Digital Input 14 

2 DI12 Digital Input 12 17 DI13 Digital Input 13 32 DI11 Digital Input 11 

3 DI9 Digital Input 9 18 DI10 Digital Input 10 33 DI8 Digital Input 8 

4 N/C No Connect 19 INC1 Input Common DI[8-15] 34  No Connect / INC0B¹ 

5 DI6 Digital Input 6 20 DI7 Digital Input 7 35 DI5 Digital Input 5 

6 DI3 Digital Input 3 21 DI4 Digital Input 4 36 DI2 Digital Input 2 

7 DI0 Digital Input 0 22 DI1 Digital Input 1 37 INC0 Input Common DI[0-7] 

8 OP1B² 
+5-24V Output Power 
Supply for DO[8-15]² 23 N/C No Connect 38 DO15 Digital Output 15 

9 DO13 Digital Output 13 24 DO14 Digital Output 14 39 DO12 Digital Output 12 

10 DO10 Digital Output 10 25 DO11 Digital Output 11 40 DO9 Digital Output 9 

11 OP1A³ 
Output Power Ground 
for DO[8-15]³  26 DO8 Digital Output 8 41 N/C No Connect 

12 DO7 Digital Output 7 27 OP0B 
Output Power GROUND 
for DO[0-7] 42 DO6 Digital Output 6 

13 DO4 Digital Output 4 28 DO5 Digital Output 5 43 DO3 Digital Output 3 

14 DO1 Digital Output 1 29 DO2 Digital Output 2 44 DO0 Digital Output 0 

15 OP0A 
+12-24V  Output Power 
Supply for  DO[0-7] 30 OP0A 

+12-24V  Output Power 
Supply for  DO[0-7]       

¹ INC0B and INC1B are only valid when INC jumpers are used. 

² When ordered with -08-15 SOURCE this pin will actually be Output Power Ground for DO[8-15] 

³ When ordered with -08-15 SOURCE this pin will actually be +5-24V Output Power Supply for DO[8-15] 



RIO-471x0 Chapter 4 I/O ● 43 

26 pin D-Sub Connector (Analog I/O) 

Pin Label Description Pin Label Description Pin Label Description 

1 N/C No Connect 10 N/C No Connect 19 N/C No Connect 

2 N/C No Connect 11 N/C No Connect 20 N/C No Connect 

3 AI7 Analog Input 7 12 GND Ground 21 AI6 Analog Input 6 

4 AI4 Analog Input 4 13 AI5 Analog Input 5 22 AI3 Analog Input 3 

5 AI1 Analog Input 1 14 AI2 Analog Input 2 23 AI0 Analog Input 0 

6 GND Ground 15 GND Ground 24 AO7 Analog Output 7 

7 AO5 Analog Output 5 16 AO6 Analog Output 6 25 AO4 Analog Output 4 

8 AO2 Analog Output 2 17 AO3 Analog Output 3 26 AO1 Analog Output 1 

9 GND GND 18 AO0 Analog Output 0    

 

Screw Terminals – RIO-472xx 
On the RIO-472xx series the IO is accessible through screw terminals only. Below are the details 

Label Description Label Description 

18-36 18-16VDC logic power input DI10 Digital Input 10 

RET Return side of logic power input DI11 Digital Input 11 

AGND Analog Ground DI12 Digital Input 12 

AGND Analog Ground DI13 Digital Input 13 

AI0 Analog Input 0 DI14 Digital Input 14 

AI1 Analog Input 1 DI15 Digital Input 15 

AI2 Analog Input 2 OP0A +12-24V  Output Power Supply for  DO[0-7] 

AI3 Analog Input 3 OP0B Output Power GROUND for DO[0-7] 

AI4 Analog Input 4 DO0 Digital Output 0 

AI5 Analog Input 5 DO1 Digital Output 1 

AI6 Analog Input 6 DO2 Digital Output 2 

AI7 Analog Input 7 DO3 Digital Output 3 

INC0A Input common DI[0-7] DO4 Digital Output 4 

INC0B No connect for standard configuration DO5 Digital Output 5 

DI0 Digital Input 0 DO6 Digital Output 6 

DI1 Digital Input 1 DO7 Digital Output 7 

DI2 Digital Input 2 OP1A +12-24V  Output Power Supply for  DO[8-15] 

DI3 Digital Input 3 OP1B Output Power GROUND for DO[8-15] 

DI4 Digital Input 4 DO8 Digital Output 8 

DI5 Digital Input 5 DO9 Digital Output 9 

DI6 Digital Input 6 DO10 Digital Output 10 

DI7 Digital Input 7 DO11 Digital Output 11 

INC1A Input common DI[8-15] DO12 Digital Output 12 

INC1B No connect for standard configuration DO13 Digital Output 13 

DI8 Digital Input 8 DO14 Digital Output 14 

DI9 Digital Input 9 DO15 Digital Output 15 
 

 



  

44 Chapter 4 I/O  RIO-471x0 

 

High Power Sourcing Outputs  
On the RIO-471xx digital outputs 0-7 are opto-isolated sourcing power outputs. On the RIO-472xx all 16 of 
the digital outputs are configured this way by default.  12-24VDC with 500mA of current capability per 
output.  The internal circuit diagram is shown here: 

 

 

 
 

OP0A should be connected to the positive side of a 12-24VDC external power supply. 

OP0B should be connected to Ground on the external power supply 

OP0A and OP0B are the Output Power for Bank 0.  The device that needs to be turned on/off (solenoid, 
relay, etc…) should be connected with the positive side of the device connected to the digital output DO [7:0] 
and the negative side connected to the Ground of the power supply.  When the SBn (Set Bit n) command is 
given, this will provide a positive voltage to the device on the output pin to turn it on (with up to 500mA of 
current available).  A CBn (Clear Bit n) will remove the voltage to turn it off. The bold connections in the 
schematic above are external connections. 

There are two internal 2Amp fuses for the high power outputs.  One fuse for outputs 0-3 and another fuse for 
outputs 4-7.  These fuses are not field-replaceable. 

Low Power Sinking Outputs  
Digital Outputs 8-15 are opto-isolated sinking outputs on the RIO-471xx (by default none of the digital 
outputs on the RIO-472xx are configured this way). If ordered with -08-15 SOURCE option please see the 
section below.  5-24VDC with 25mA of current capability in a sinking configuration. 



RIO-471x0 Chapter 4 I/O ● 45 

 
 

 

OP1B should be connected to the positive side of a 5-24VDC external power supply. 

OP1A should be connected to Ground on the external power supply. 

OP1A and OP1B are the Output Power for Bank 1.  The output can sink up to 25mA of current.  The device  
should be connected between the digital output DO[15:8] and the positive side of the power supply.  When 
current is not flowing through the opto-coupler (CB), the 10k resistor pulls-up the output pin to the voltage 
supplied to OP1B.  When current is flowing through the opto-coupler (SB), the digital output drops to 
Ground (supplied by OP1A) and is able to sink up to 25mA of current. The bold connections in the 
schematic above are external connections. 

OUTC jumpers 

The OUTC jumpers can be used when an external power supply is not desired for digital outputs 8-15. These 
low power outputs can use the internal +5V from the RIO instead.  To do this, place a jumper on the pins 
labeled OUTC as shown here: 

Note:  These jumpers DO NOT supply power to high power digital outputs;, an external supply is required 
for these outputs 

O
U

TC

IN
C

 

Digital Inputs 
Digital inputs 0-15 are opto-isolated inputs with a range of 5-24VDC.  There is a 2.2k internal series resistor 
to INC0 (Input Common Bank 0) for inputs 0-7 and INC1 (Input Common Bank 1) for inputs 8-15.  The 
series resistor limits the current through the PS2805 opto-coupler.  The INC0 and INC1 can either be 
connected to the positive side of a DC power supply or to the Ground side of a DC power supply.  When a 
device is connected to the digital input, current flowing through the opto-coupler will cause the input to turn 
on.  The logic of the input can be configured using the IQ command. 



  

46 Chapter 4 I/O  RIO-471x0 

+5V to 24V
or

GND

Toggle
Switch

+5V to 24V or GND
(needs to be the opposite of

what goes into INC0 and INC1)
 

INC  jumpers 

The INC jumpers can be used when an external power supply is not desired for digital inputs 0-15.  These 
inputs can use the internal +5V from the RIO instead.  To do this, place a jumper on the pins labeled INC as 
shown here: 

O
U

TC

IN
C

 

When using the INC jumpers, the digital inputs must have a reference.  This reference comes from the RIO 
from pin34 (INC0B) for inputs 0-7 and from pin 16 (INC1B) for inputs 8-15. 

INC0B (pin 34)
or

INC1B (pin 16)

DI0-DI7
or

DI8-DI15

Toggle
Switch

 



RIO-471x0 Chapter 4 I/O ● 47 

Analog Outputs 
RIO-4710x: 

Analog Outputs 0-7 on the RIO-4710x are 12 bit analog outputs and have a voltage range of 0-5VDC.  The 
outputs can sink or source up to 4mA of current. 

RIO-4712x: 

Analog Outputs 0-7 on the RIO-4712x have a configurable voltage range that is set using the DQ command.  
The default outputs have a 12bit DAC resolution (order RIO-4712x-16 for 16 bit resolution).  The analog 
outputs can sink or source up to 4mA of current.  See the DQ command in the Command Reference for a 
full explanation. 

DQ Analog Output Range 
DQ 0,1 Sets AO0 to 0-5VDC 
DQ 1,2 Sets AO1 to 0-10VDC 
DQ 2,3 Sets AO2 to +/-5VDC 
DQ 3,4 Sets AO3 to +/-10VDC 

 

Analog Inputs 
Each analog input goes through its own internal ADC (Analog to Digital Converter) but when differential 
mode is chosen – the inputs are treated as “pairs”.  The difference of two analog inputs is the value reported 
by the controller.  The same analog value is reported on both “pairs” of inputs.  The table below shows how 
the differential channels are grouped.  For instance, if AN0 is at 1.5VDC and AN1 is at 0VDC, a value of 
1.5V is reported on @AN[0] and @AN[1]. 

Here’s the equation used to get the analog value for a sample pair of inputs (0 and 1). 

10_ InputInputvalueAI −=  

RIO-4710x: 

Analog Inputs 0-7 have a voltage range of 0-5VDC.  They have 12bit ADC (a resolution of approximately 
1.22mV) with a 100k input impedance. 

Depending on the hardware configuration, the AQ command behaves differently.  (Check the ID command to 
see what style of RIO hardware is installed.) 

AQ Differential Pairs 
AQ 0,1 Input 0 & Input 1 
AQ 2,1 Input 2 & Input 3 
AQ 4,1 Input 4 & Input 5 
AQ 6,1 Input 6 & Input 7 

 Table 1: Differential Analog Input Channels on RIO-4710x 

RIO-4712x: 

The default resolution for the RIO-4712x is 12bit with a 16bit option.  The part number is RIO-4712x-16 for 
the 16 bit version. 

Input Impedance: 
 Single Ended:  42k Ω 
 Differential: 31k Ω 



  

48 Chapter 4 I/O  RIO-471x0 

Use the AQ command to specify the analog input range on the RIO-4712x.   

AQ Input Range 
AQ 0,1 Set input 0 to have +/-5V input range 
AQ 1,2 Set input 1 to have +/-10V input range 
AQ 2,3 Set input 2 to have 0-5V input range 
AQ 3,4 Set input 3 to have 0-10V input range 

 Table 2: Setting Input Ranges on RIO-4712x 

On the RIO-4712x, the AQ command also allows the RIO to change the configuration from the default 8 
single ended analog inputs to 4 differential analog inputs.   

AQ Differential Pairs 
AQ 0,-1 Input 0 & Input 1 and +/-5V input range 
AQ 2,-2 Input 2 & Input 3 and +/-10V input range 
AQ 4,-3 Input 4 & Input 5 and 0-5V input range 
AQ 6,-4 Input 6 & Input 7 and 0-10V input range 

 Table 3: Differential Analog Input Channels on RIO-4712x 

RIO-472xx 

The default resolution for the RIO-472xx is 12 bit with a 16 bit option. The part number is RIO-472xx-16 for 
the 16 bit version. 

Input Impedance (default 12 bit): 

 Single Ended: 100kΩ 

Input Impedance (With +-10V option) 

 Single Ended:  42k Ω 
 Differential: 31k Ω 

See the AQ command in the command reference for a full explanation. 

 



RIO-471x0 Chapter 4 I/O ● 49 

Analog Process Control Loop 
A Process Control Loop allows closed loop control of a process or device.  The RIO-471x0 has two 
independent PID filters to provide process control of two devices simultaneously.  The RIO-471x2 has a total 
of 6 PID loops available and the RIO-472xx has 0 PID loops. The set of commands shown in the table below 
are used to set the structure of the Process Control Loop.   

Command Description 
AF Analog Input for feedback 
AZ Analog Output for control 
KP Proportional Gain 
KD Derivative Gain 
KI Integral Gain 
IL Integrator Limit 

DB Deadband 
CL Control Loop Update Rate 
PS Commanded Setpoint 
TE Tell Error 
AQ Analog Input Range 
DQ Analog Output Range 

 

To understand how a Process Control Loop works on the RIO, consider an example where it is desirable to 
control the temperature of an oven.  The key items needed to do this are a heater, a temperature sensor, the 
oven itself, and a RIO unit to control the process.  As shown in the diagram below, the heating element is 
coupled to the “System” which in this case is the oven.  The temperature sensor provides feedback to the RIO 
in the form of an analog input.  The RIO unit then compares the desired set-point (entered by the PS 
command) with the temperature sensor.  The difference between the two is called the error “E”.  The error 
goes through a PID digital filter and then through a Digital to Analog Converter (DAC) which outputs a 
control voltage to the heater to close the loop. 

PID Digital
FilterΣ

DAC Heater System

Temperature
Sensor

Kh

Τ

Ks

+

-

V

RIO-47100
Temperature

Setpoint
(PS)

Feedback
(Volts)

E

ADC

 



  

50 Chapter 4 I/O  RIO-471x0 

 

The example program below uses analog input 0 as the feedback from the temperature sensor and analog 
output 0 as the control voltage to the heater.  An update rate of 25msec was set using the CL command, but a 
slower update rate could have been chosen due to the slow nature of temperature response. The PID values 
entered were experimentally found to provide optimum results based on the system. The desired set-point 
was chosen as 1V.  A dead-band of 0.1V was added in order to prevent the system from responding to minor 
disturbances of the sensor.  

#PCL 
CL 25; '25msec update rate 
AF 0; 'analog input 0 as feedback 
AZ 0; 'analog output 0 as control 
KP 1; 'proportional gain to 1 
KD 10; 'derivative gain to 10 
KI 0.5; 'integral gain to 0.5 
DB 0.1; 'deadband of 0.1V 
PS 1.8; 'set-point at 1.8V 

 

Note: When the Process Control Loop is enabled, the Analog output voltage is normalized to half of the total 
voltage input.  For instance, with a 0-5V analog input range such as the RIO-47100 – the voltage is 
normalized to 2.5V.  This allows the output to go below 2.5 to compensate for a negative error and above 
2.5V to compensate for positive error. 

The AQ and DQ must be set on the RIO-47120 to configure the Analog input and output ranges before the 
process control loops are run and prior to setting AZ & AF.  The range of the PS command is dependant on 
the AQ command.  

 

Pulse Counter Input 
Digital input 3 (DI3) is a special purpose input that (when enabled) is used to count pulses coming in.  To 
enable the pulse counter, the PC command must be issued with the following syntax: 
  PCn  where  

n=0 (default) input DI3 is a general purpose input  

n=1 sets input DI3 to be a rising edge pulse counter (also clears the pulse counter)  

n=-1 sets input DI3 to be a falling edge pulse counter (also clears the pulse counter)  

n=? returns the status of the pulse counter (0 if disabled, 1 if enabled) 

When the PC command is enabled, input DI3 will count high or low going edges.  The operand _PC is used 
to report back the number of pulses counted.  The maximum frequency of the input is limited by the opto-
couplers to 1-2kHz.  If a higher frequency is needed, please contact Galil. 

 

Standard Options 

-DIN 
If ordered with the –DIN option the RIO has a DIN rail mount attached to the case. This option is valid for all 
RIO-471xx controllers. It is not valid for the RIO-472xx family as the RIO-472xx comes in a DIN rail mount 
by default.  



RIO-471x0 Chapter 4 I/O ● 51 

-NO DIN 
This option is only valid with the RIO-472xx. This option removes the din rail clips. The unit will still be in a 
plastic trey. 

-08-15 SOURCE option 
If a RIO-471xx is ordered with the -08-15 SOURCE option then outputs 8-15 are configured to source 
current. They will be capable of 5-24VDC with 25mA of current in a sourcing configuration. 

 

OP1A should be connected to the positive side of 5-24VDC external power supply. 

OP1B should be connected to Ground on the external power supply. 

OP1A and OP1B are the Output Power for Bank 1. The output can source up to 25mA of current. The device  
should be connected between the digital output DO[15:8] and the return side of the power supply (OP1B). 
When current is not flowing though the optocoupler (CB), the 10k resistor pulls-down the output pin to 
OP1B. When current is flowing through the optocouple (SB), the digital output switches to the voltage 
supplied by OP1A and is able to source 25mA of current, The bold connections in the schematic above are 
external connections. 

-16Bit 
The -16 option specifies 16 bit resolution on the analog inputs and outputs. This option is valid on the RIO-
4712x only. 

-422 
This option allows the RIO to communicate via RS-422 instead of RS-232. It is only available on the RIO-
472xx as a standard option. If required on the RIO-471xx, please consult the factory. 

Pin Number Description  Pin Number Description 

1 RTS-  6 RTS+ 

2 TXD-  7 TXD+ 

3 RXD-  8 RXD+ 

4 CTS-  9 CTS+ 

5 GND    



  

52 Chapter 4 I/O  RIO-471x0 

 



RIO-471x0 Chapter 4 I/O ● 53 

 

-0-7 or -8-15 SINK/SOURCE 
These four options are only available on the RIO-472xx. By default the RIO-472xx has all 16 high power 
outputs. These options allow either of the two banks of 8 outputs to be configured for low power sinking or 
low power sourcing. For example, if output 0-7 need to be configured for low power sourcing the option 
would be -0-7SOURCE. The circuits for low power sourcing and sinking will be the same as the circuits for 
the low power outputs previously defined. 

-HS 
This option changes digital input 3 to a high speed digital input. It is only available on the RIO-472xx and 
RIO-4712x as a standard option. With this option, the input becomes a TTL level input. It is activated by 
connecting the input to the AGND terminal. The maximum frequency of pulses that can be captured is 
increased to 3Mhz. If higher values are required, please consult factory. 

-10V12-Bit 
This option changes the analog inputs on the RIO-472xx to accept +-10V analog signals with 12 bit 
resolution. The range of the analog inputs can be changed with the AQ command, similar to the RIO-4712x. 

-10V16-Bit 
This option changes the analog inputs on the RIO-472xx to accept +-10V analog signals with 16 bit 
resolution. The range of the analog inputs can be changed with the AQ command, similar to the RIO-4712x. 

 



  

54 Chapter 5 Application Programming  RIO-471x0 

Chapter 5 Application Programming 

Overview 

The RIO provides a versatile programming language that allows users to customize the RIO board for their 
particular application.  Programs can be downloaded into the RIO memory, freeing up the host computer for 
other tasks.  However, the host computer can send commands to the RIO at any time, even while a program 
is being executed.  

In addition to commands that handle I/O, the RIO provides commands that allow it to make decisions.  These 
commands include conditional jumps, event triggers, and subroutines.  For example, the command 
JP#LOOP, n<10 causes a jump to the label #LOOP if the variable n is less than 10. 

For greater programming flexibility, the RIO provides user-defined variables, arrays, and arithmetic 
functions.  The following sections in this chapter discuss all aspects of creating applications programs.  The 
RIO-47xx0 program memory size is 200 lines x 40 characters. The RIO 47xx2 increases the memory size to 
a total of 400 lines x 40 characters. 

 

Editing Programs 

Use Galil software to enter programs in the Editor window.  After downloading a program, use the XQ 
command to execute the program.   The RIO also has an internal editor that may be used to create and edit 
programs in the RIOs memory.  The internal editor is a rudimentary editor and is only recommended when 
operating with Galil’s DOS utilities or through a simple RS-232 communication interface such as Windows 
Hyperterminal.  See the ED command in the Command Reference for more info.   

Program Format 

A RIO program consists of instructions combined to solve a programmable logic application.  Action 
instructions, such as setting and clearing I/O bits, are combined with Program Flow instructions to form the 
complete program.  Program Flow instructions evaluate real-time conditions, such as elapsed time or input 
interrupts, and alter program flow accordingly. 

A delimiter must separate each RIO instruction.  Valid delimiters are the semicolon (;) or carriage return.  
The semicolon is used to separate multiple instructions on a single program line where the maximum number 
of characters on a line is 40 (including semicolons and spaces).  A line continuation character ( ` ) (below the 
~ on a standard keyboard)  allows a command to be continued on the next line in the case that 40characters is 
not enough for a single command (see example at the end of this section). 



RIO-471x0 Chapter 5 Application Programming ● 55 

Using Labels in Programs 

All RIO programs must begin with a label and end with an End (EN) statement.  Labels start with the number 
(#) sign followed by a maximum of seven characters.  The first character must be a letter; after that, numbers 
are permitted.  Spaces are not allowed. 

The maximum number of labels that can be defined in the RIO-47xx0 is 62. The RIO-47xx2 increases this to 
a total of 126 labels. 

Valid labels: 
 #BASICIO 

#SQUARE 
 #X1 
 #input1 
 
Invalid labels: 
 #1Square 
 #123 
 #PROGRAMMING  (longer than 7 characters) 
 
Special Labels 
The RIO also has some special labels, which are used to define input interrupt subroutines and command 
error subroutines.  The following is a list of the automatic subroutines supported by the RIO.  Sample 
programs for these subroutines can be found in the section Automatic Subroutines for Monitoring Conditions. 

#AUTO Automatic Program Execution on power up 
#ININTn Label for Input Interrupt subroutine 
#CMDERR Label for incorrect command subroutine 
#TCPERR Ethernet communication error 

 
#AUTO is a special label for automatic program execution.  A program which has been saved into the 
controller non-volatile memory using the BP (Burn Program) command can be automatically executed upon 
power up or reset by beginning the program with the label #AUTO.   
 

Commenting Programs 

Using an Apostrophe to Comment 
The RIO provides an apostrophe (‘) for commenting programs.  This character allows the user to include up 
to 39 characters on a single line after the apostrophe and can be used to include comments from the 
programmer as in the following example: 

#OUTPUT 
‘ PROGRAM LABEL 
SB1; CB2 
‘Set Bit 1 and Clear Bit 2 
EN;  ‘END OF PROGRAM 
 
 

Note: The NO command also works to comment programs.  The inclusion of the apostrophe or NO 
commands will require process time by the RIO board. 

Using REM Statements with the Galil Terminal Software 
When using Galil software to communicate with the RIO, REM, as in remark, statements may also be 
included.  ‘REM’ statements begin with the word ‘REM’ and may be followed by any comments that are on 



  

56 Chapter 5 Application Programming  RIO-471x0 

the same line.  The Galil terminal software will remove these statements when the program is downloaded to 
the RIO board.  For example: 

#OUTPUT 
REM PROGRAM LABEL 
SB1;CB2; 
REM Set Bit 1 and Clear bit 2 
EN 
REM END OF PROGRAM 

 

Since the REM statements will be removed when the program is downloaded to RIO, be sure to keep a copy 
of the program with comments stored on the PC. 

 

Program Lines Greater than 40 Characters 

Line Continuation Character 
A new character ( ` ) {ascii character 96} has been included to allow a command in an application program to 
extend beyond the confines of the 40 character maximum line length.   

#TEST 
IF((var100=100)& (var101=50));MG"Condi` 
tion satisfied”;ELSE;MG”Stop”;ENDIF 
EN 
 

 

This allows for  

a) more efficient command compressing 

b) the continuation of message commands (MG) on multiple lines. 

c) Longer IF, JP, & JS conditional statements 

(Note: the total length of a multi-line command can not exceed 80 characters) 

 

Lock Program Access using Password 
The RIO can lock out user access to the internal program using the PW and {cntrl}L{cntrl}K commands.  
The PW sets the Password for the unit and the {cntrl}L{cntrl}K will lock the application program from being 
viewed or edited .  The commands ED, UL, LS and TR will give privilege error #106 when the RIO is in a 
locked state.  The program will still run when locked.  The locked or unlocked state can be burned with the 
BN command.    Once the program is unlocked, it remains accessible until a lock command or a reset (with 
the locked condition burned in) occurs.  An example of how to lock the program is shown here: 

:PW test, test 
:^L^K test,1          1 locks, 0 unlocks 
:LS 
? 
TC1 
106 Privilege violation 

 



RIO-471x0 Chapter 5 Application Programming ● 57 

Executing Programs - Multitasking 

The RIO can run up to 4 independent programs or threads simultaneously.  They are numbered 0 thru 3, 
where 0 is the main thread.  

The main thread differs from the others in the following ways: 

1.  Only the main thread, thread 0, may use the input command, IN. 

2.  When interrupts are implemented for command errors, the subroutines are executed in thread 0.  However 
for the #ININTn subroutines, the RIO has the ability to execute multiple input interrupts (#ININTn) on 
designated threads, not limited to the main thread.  For more information, refer to the II command in the 
Command Reference. 

To begin execution of the various programs, use the following instruction: 

 XQ #A,n 

Where A represents the label and n indicates the thread number.  To halt the execution of any thread, use the 
instruction 

 HX n 

where n is the thread number. 

Note that both the XQ and HX commands can be performed from within an executing program. 

For example: 

Instruction Interpretation 
#TASK1 Task1 label 
AT0 Initialize reference time 
CB1 Clear Output 1 
#LOOP1 Loop1 label 
AT 10 Wait 10 msec from reference time 
SB1 Set Output 1 
AT -40 Wait 40 msec from reference time, then initialize reference 
CB1 Clear Output 1 
JP #LOOP1 Repeat Loop1 
#TASK2 Task2 label 
XQ #TASK1,1 Execute Task1 
#LOOP2 Loop2 label 
WT20000 Wait for 20 seconds 
HX1 Stop thread 1 
MG”DONE” Print Message 
EN End of Program 

 

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the main 
thread (i.e. Thread 0).  #TASK1 is executed within TASK2. 

 



  

58 Chapter 5 Application Programming  RIO-471x0 

Debugging Programs 

The RIO provides commands and operands that are useful in debugging application programs.   These 
commands include interrogation commands to monitor program execution, determine the state of the RIO 
board and the contents of the program, array, and variable space.  Operands also contain important status 
information, which can help to debug a program. 

Trace Commands 

The trace command causes the RIO to send each line in a program to the host computer immediately prior to 
execution.  Tracing is enabled with the command, TR1.  TR0 turns the trace function off.  Note: When the 
trace function is enabled, the line numbers as well as the command line will be displayed as each command 
line is executed.  The program lines come back as unsolicited messages. 

Error Code Command 

When a program error occurs, the RIO halts the program execution at the point of the error.  To display the 
last line number of program execution, issue the command, MG _ED.  

The user can obtain information about the type of error condition that occurred by using the command TC1.  
This command returns a number and text message, which describe the error condition.  The command TC0 
(or TC) will return the error code without the text message.  For more information about the command TC, 
see the Command Reference. 

RAM Memory Interrogation Commands 

For debugging the status of the program memory, array memory, or variable memory, the RIO has several 
useful commands.  The command DM ? will return the number of array elements currently available.  The 
command DA? will return the number of arrays that can be currently defined.  For example, the RIO has a 
maximum of 400 array elements in up to 6 arrays.  If a single array of 100 elements is defined, the command 
DM ? will return the value 250, and the command DA ? will return 5. 

To list the contents of the variable space, use the interrogation command LV (List Variables). To list the 
contents of array space, use the interrogation command LA (List Arrays).  To list the contents of the program 
space, use the interrogation command LS (List Program).  To list the application program labels only, use the 
interrogation command LL (List Labels). 

Operands  

In general, all operands provide information that may be useful in debugging an application program.  Below 
is a list of operands that are particularly valuable for program debugging.  To display the value of an operand, 
the message command may be used.  For example, since the operand, _ED, contains the last line of program 
execution, the command MG _ED will display this line number. 

_ED contains the last line of program execution (useful to determine where program stopped) 

_DL contains the number of available labels (62 max.) 

_UL contains the number of available variables (126 max.) 

_DA contains the number of available arrays (6 max.) 

_DM contains the number of available array elements (400 max.) 



RIO-471x0 Chapter 5 Application Programming ● 59 

Debugging Example: 

The following program has an error.  It attempts to set bit 14 high, but “SD” is used as the command instead 
of “SB”.  When the program is executed, the RIO stops at line 001.  The user can then query the RIO board 
using the command, TC1.  The RIO responds with the corresponding explanation: 

Instruction Interpretation 
:LS List Program 
000 #A Program Label 
001 SD14 Set bit 14 high 
002 SB15 Set bit 15 high 
003 MG”DONE” Print message 
004 EN End 
:XQ #A Execute #A 
?001 SD14 Error on Line 1 
:TC1 Tell Error Code 
130 Unrecognized Command This command doesn’t 
:MG_ED Print line number where problem occurred 
1.00 The error occurred on line 1 of the program 

 

Program Flow Commands 

The RIO provides instructions to control program flow.  The RIO program sequencer normally executes 
program instructions sequentially.  The program flow can be altered with the use of interrupts and conditional 
jump statements. 

Interrupts 

To function independently from the host computer, the RIO can be programmed to make decisions based on 
the occurrence of an input interrupt, causing the RIO board to wait for multiple inputs to change their logic 
levels before jumping into a corresponding subroutine.  Normally, in the case of a Galil controller, when an 
interrupt occurs, the main thread will be halted.  However, in the RIO, the user can indicate in which thread 
(the thread must be already running when the interrupt occurs) the interrupt subroutine is to be run.  When 
the interrupt occurs, the specified thread’s main program will be paused to allow the interrupt subroutine to 
be executed.  Therefore, the user has the choice of interrupting a particular thread execution upon an input 
interrupt (see II command).  The input interrupt routines are specified using #ININTn where n can be 0-3.  In 
this way, the RIO can make decisions based on its own I/O status without intervention from a host computer. 
The Return from Interrupt (RI) command is used to return from this subroutine to the place in the program 
where the interrupt had occurred.  If it is desired to return to somewhere else in the program after the 
execution of the #ININTn subroutine, the Zero Stack (ZS) command is used, followed by unconditional jump 
statements. 
Note: When using multiple II commands in a program, each II command must point to a unique label and 
must activate on an unused thread. Two or more II commands cannot be set to execute on the same thread, 
nor can multiple II commands be pointed to the same #ININTn label. Please see the II command in the RIO-
47xxx command reference for more details. 

 



  

60 Chapter 5 Application Programming  RIO-471x0 

Examples: 
Interrupt 

 

 

Note: This multitasking program can be executed with the instruction XQ #A,0 designating A as the main 
thread (i.e. Thread 0).  #B is executed within A. 

 

Event Trigger 

This example waits for input 1 to go low and input 3 to go high, and then execute the TZ interrogation 
command.  Note:  The AI command actually halts execution of the program until the input occurs.  If you do 
not want to halt the program sequences, use the Input Interrupt function (II) or a conditional jump on an 
input, such as: 

JP #GO,(@IN[1] = 0) | (@IN[3] = 1). 

Instruction Interpretation 
#INPUT Program Label 
AI-1&3 Wait for input 1 low and input 3 high 
TZ List the entire I/O status 
EN End program 

 

Instruction Interpretation 
#A Program Label 
XQ#B,1 Execute #B in thread 1  
II1,0,-1&3 #ININT1 in thread 0 when input 1 low and input 3 high 
II2,1,-5&10 #ININT2 in thread 1 when input 5 low and input 10 high 
AI 13&14 Trippoint on inputs 13 and 14 
#LOOP;JP#LOOP Pseudo program – Loop indefinitely 
EN End program 
  
#B Program Label 
AI 7&-8 Trippoint on inputs 7 and 8 
#LOOP2  
SB10 Set bit 10 high 
WT500 Wait for half a second 
CB10 Set bit 10 low 
WT500 Wait for 500msec 
JP#LOOP2 Create a ‘light-blinker’ effect 
EN End program 
  
#ININT1 Input interrupt program label 
MG”Loop stops” Print message, saying loop program in main thread halted 
RI0 Return to main program without restoring trippoint, but keeping the 

interrupt enabled 
  
#ININT2  
MG”Blinker stops” Print message, saying blinker effect in thread 1 halted, since #ININT2 

runs in thread 1 
WT10000 Wait 10 seconds for user to reset inputs 5 and 10 
RI1,1 Return to thread 1’s main program (blinker continues) while restoring 

trippoint on inputs 5 and 10; interrupt disabled 



RIO-471x0 Chapter 5 Application Programming ● 61 

Conditional Jumps 
The RIO provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions for branching 
to a new program location based on a specified condition. The conditional jump determines if a condition is 
satisfied and then branches to a new location or subroutine.  Unlike event triggers such as the AI command, 
the conditional jump instruction does not halt the program sequence.  Conditional jumps are useful for testing 
events in real-time.  They allow the RIO to make decisions without a host computer.  

Command Format -  JP and JS  

 Format  Description 
JS destination, logical condition Jump to subroutine if logical condition is satisfied 
JP destination, logical condition Jump to location if logical condition is satisfied 

 

The destination is a program line number or label where the program sequencer will jump if the specified 
condition is satisfied.  Note that the line number of the first line of program memory is 0.  The comma 
designates "IF".  The logical condition tests two operands with logical operators.   

 



  

62 Chapter 5 Application Programming  RIO-471x0 

Logical operators: 

 Operator  Description 
< less than 
> greater than 
= equal to 
<= less than or equal to 
>= greater than or equal to 
<> not equal 

 

Conditional Statements 

The conditional statement is satisfied if it evaluates to any value other than zero. The conditional statement 
can be any valid RIO numeric operand, including variables, array elements, numeric values, functions, 
keywords, and arithmetic expressions.  If no conditional statement is given, the jump will always occur. 

Examples: 

Number V1=6 
Numeric Expression V1=V7*6 
 @ABS[V1]>10 
Array Element V1<Count[2] 
Variable V1<V2 
Internal Variable _TI1=255 
 _DM<100 
I/O V1>@IN[2] 
 @IN[1]=0 

 

Multiple Conditional Statements 

The RIO will accept multiple conditions in a single jump statement.  The conditional statements are 
combined in pairs using the operands “&” and “|”.  The “&” operand between any two conditions, requires 
that both statements be true for the combined statement to be true.  The “|” operand between any two 
conditions requires that only one statement be true for the combined statement to be true.   

Note: Each condition must be placed in parentheses for proper evaluation by the RIO.  In addition, the RIO 
executes operations from left to right.    

For example, using variables named V1, V2, V3 and V4: 

JP #TEST, (V1<V2) & (V3<V4) 

In this example, this statement will cause the program to jump to the label #TEST if V1 is less than V2 and 
V3 is less than V4.  To illustrate this further, consider this same example with an additional condition: 

JP #TEST, ((V1<V2) & (V3<V4)) | (V5<V6) 

This statement will cause the program to jump to the label #TEST under two conditions:  1) If V1 is less than 
V2 AND V3 is less than V4.  OR  2) If V5 is less than V6. 

Using the JP Command: 

If the condition for the JP command is satisfied, the RIO branches to the specified label or line number and 
continues executing commands from this point.  If the condition is not satisfied, the RIO board continues to 
execute the next commands in sequence. 



RIO-471x0 Chapter 5 Application Programming ● 63 

Instruction Interpretation 
JP #Loop,COUNT<10 Jump to #Loop if the variable, COUNT, is less than 10 
JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high.  After 

the subroutine MOVE2 is executed, the program sequencer returns 
to the main program location where the subroutine was called. 

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of variable, V2, is greater 
than 2 

JP #C,V1*V7<=V8*V2 Jump to #C if the value of V1 times V7 is less than or equal to the 
value of V8*V2 

JP#A Jump to #A 
 

Using If, Else, and Endif Commands 
The RIO provides a structured approach to conditional statements using IF, ELSE and ENDIF commands.   

Using the IF and ENDIF Commands 

An IF conditional statement is formed by the combination of an IF and ENDIF command.  The IF command 
has arguments of one or more conditional statements.  If the conditional statement(s) evaluates true, the 
command interpreter will continue executing commands which follow the IF command.  If the conditional 
statement evaluates false, the RIO will ignore commands until the associated ENDIF command is executed 
OR an ELSE command occurs in the program (see discussion of ELSE command below). 

Note: An ENDIF command must always be executed for every IF command that has been executed. 

Using the ELSE Command 

The ELSE command is an optional part of an IF conditional statement and allows for the execution of 
commands only when the argument of the IF command evaluates False.   The ELSE command must occur 
after an IF command and has no arguments.  If the argument of the IF command evaluates false, the RIO will 
skip commands until the ELSE command.  If the argument for the IF command evaluates true, the RIO board 
will execute the commands between the IF and ELSE commands.  

Nesting IF Conditional Statements 

The RIO allows for IF conditional statements to be included within other IF conditional statements.  This 
technique is known as 'nesting' and the RIO allows up to 255 IF conditional statements to be nested.  This is a 
very powerful technique allowing the user to specify a variety of different cases for branching. 

Command Format -  IF, ELSE and ENDIF  

 Function  Condition 
IF conditional statement(s) Execute commands proceeding IF command (up to ELSE command) 

if conditional statement(s) is true, otherwise continue executing at 
ENDIF command or optional ELSE command. 

ELSE  Optional command.  Allows for commands to be executed when 
argument of IF command evaluates not true.  Can only be used with 
IF command. 

ENDIF Command to end IF conditional statement.  Program must have an 
ENDIF command for every IF command. 

 

Example using IF, ELSE and ENDIF: 

Instruction Interpretation 
#TEST Begin Main Program "TEST" 



  

64 Chapter 5 Application Programming  RIO-471x0 

#LOOP Begin loop inside main program 
TEMP=@IN[1]|@IN[2] TEMP is equal to 1 if either Input 1 or Input 2 is high 
JS#COND, TEMP=1 Jump to subroutine if TEMP equals 1 
JP#LOOP Loop back if TEMP doesn’t equal 1 
EN End of main program 
#COND Begin subroutine “COND” 
IF (@IN[1]=0) IF conditional statement based on input 1 
IF (@IN[2]=0) 2nd IF conditional statement executed if 1st IF 

conditional true 
MG "INPUT 1 AND INPUT 2 ARE 
INACTIVE" 

Message to be executed if 2nd IF conditional is true 

ELSE ELSE command for 2nd IF conditional statement 
MG "ONLY INPUT 1 IS ACTIVE” Message to be executed if 2nd IF conditional is false 
ENDIF End of 2nd conditional statement 
ELSE ELSE command for 1st IF conditional statement 
MG"ONLY INPUT 2 IS ACTIVE" Message to be executed if 1st IF conditional statement 
ENDIF End of 1st conditional statement 
#WAIT Label to be used for a loop 
JP#WAIT,(@IN[1]=0) & (@IN[2]=0) Loop until both input 1 and input 2 are not active 
EN End of subroutine 

 

Stack Manipulation 

It is possible to manipulate the subroutine stack by using the ZS command.  Every time a JS instruction, 
interrupt or automatic routine (such as #ININTn or #CMDERR) is executed, the subroutine stack is 
incremented by 1 (up to a maximum of 16).  Normally the stack is restored with an EN instruction.  
Occasionally it is desirable not to return back to the program line where the subroutine or interrupt was 
called.  The ZS1 command clears 1 level of the stack.  This allows the program sequencer to continue to the 
next line.  The ZS0 command resets the stack to its initial value.  For example, if an interrupt occurs and the 
#ININT1 routine is executed, it may be desirable to restart the program sequence instead of returning to the 
location where the interrupt occurred.  To do this, give a ZS (ZS0) command at the end of the #ININT1 
routine. 

Auto-Start Routine 

The RIO has a special label for automatic program execution.  A program that has been saved into the RIO 
non-volatile memory can be automatically executed upon power up or reset, simply by beginning the 
program with the label #AUTO.   

Note: The program must be saved into non-volatile memory using the command, BP.  

Automatic Subroutines for Monitoring Conditions 

Often it is desirable to monitor certain conditions continuously without tying up the host or RIO program 
sequences.  The RIO can monitor several important conditions in the background.  These conditions include 
checking for the occurrence of a defined input, position error, a command error, or an Ethernet 
communication error.  Automatic monitoring is enabled by inserting a special, predefined label in the 
applications program.  The pre-defined labels are: 

 

 

SUBROUTINE DESCRIPTION 
#AUTO Automatic Program Execution on power up 
#AUTOERR Automatic Program Execution on power up if error condition occurs 
#ININTn Input specified by II goes low (n from 0 to 3) 



RIO-471x0 Chapter 5 Application Programming ● 65 

#CMDERR Bad command given  
#TCPERR Ethernet communication error  
#COMINT Communication Interrupt Routine 

For example, the #ININT label could be used to designate an input interrupt subroutine.  When the specified 
input occurs, the program will be executed automatically. 

NOTE:  An application program must be running for automatic monitoring to function. 

Example - Input Interrupt 
Instruction Interpretation 
#A Label 
II0,0,1 Input Interrupt on 1 
#LOOP;JP#LOOP;EN Loop 
#ININT0 Input Interrupt 
MG “INPUT 1 IS HIGH” Send Message to screen 
RI0 Return from interrupt routine to Main Program and 

do not re-enable trippoints 
 

Example - Command Error 
Instruction Interpretation 
#BEGIN Begin main program 
IN "ENTER THE OUTPUT (0-15)", OUT Prompt for output number 
SB OUT Set the specified bit 
JP #BEGIN Repeat 
EN End main program 
#CMDERR Command error utility 
JP#DONE,_ED<>3 Check if error on line 3 
JP#DONE,_TC<>6 Check if out of range 
MG "VALUE OUT OF RANGE" Send message 
MG "TRY AGAIN" Send message 
ZS1 Adjust stack 
JP #BEGIN Return to main program 
#DONE End program if other error 
ZS0 Zero stack 
EN End program 
  

The above program prompts the operator to enter the output port to set.   If the operator enters a number out 
of range (greater than 15), the #CMDERR routine will be executed prompting the operator to enter a new 
number. 

In multitasking applications, there is an alternate method for handling command errors from different 
threads.  Using the XQ command along with the special operands described below allows the controller to 
either skip or retry invalid commands. 

OPERAND FUNCTION 
_ED1 Returns the number of the thread that generated an error 
_ED2 Retry failed command (operand contains the location of the failed command) 
_ED3 Skip failed command (operand contains the location of the command after the 

failed command) 
 



  

66 Chapter 5 Application Programming  RIO-471x0 

The operands are used with the XQ command in the following format: 

 XQ _ED2 (or _ED3),_ED1,1  

Where the “,1” at the end of the command line indicates a restart; therefore, the existing program stack will 
not be removed when the above format executes. 

The following example shows an error correction routine that uses the operands.   

Example - Command Error  w/Multitasking 

 

Instruction Interpretation 
#A   Begin thread 0 (continuous loop) 
JP#A  
EN    End of thread 0 
#B    Begin thread 1 
N=17   Create new variable  
SB N   Set the 17th bit, an invalid value 
TY    Issue invalid command 
EN    End of thread 1 
#CMDERR   Begin command error subroutine 
IF _TC=6   If error is out of range (SB 8) 
N=1    Set N to a valid number 
XQ _ED2,_ED1,1  Retry SB N command 
ENDIF  
IF _TC=1   If error is invalid command (TY) 
XQ _ED3,_ED1,1  Skip invalid command  
ENDIF  
EN    End of command error routine 

 

Example – Ethernet Communication Error 

This simple program executes in the RIO and indicates (via the serial port) when a communication handle 
fails.  By monitoring the serial port, the user can re-establish communication if needed.  

Instruction Interpretation 

#LOOP Simple program loop 

JP#LOOP  

EN  

#TCPERR Ethernet communication error auto routine 

MG {P1}_IA4 Send message to serial port indicating which handle did not receive proper 
acknowledgment. 

RE Return to main program 

 

Note:  The #TCPERR routine only detects the loss of TCP/IP Ethernet handles, not UDP. 

 



RIO-471x0 Chapter 5 Application Programming ● 67 

Mathematical and Functional Expressions 

Mathematical Operators 
For manipulation of data, the RIO provides the use of the following mathematical operators: 

 

 Operator  Function 
+ Addition 
- Subtraction 
* Multiplication 
/ Division 
& Logical And (Bit-wise) 
| Logical Or (On some computers, a solid vertical line appears as a broken line) 
( ) Parenthesis 
% Modulus 

 

The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999.  The 
precision for division is 1/65,000. 

Mathematical operations are executed from left to right.  Calculations within parentheses have precedence. 

Examples: 
SPEED=7.5*V1/2 The variable, SPEED, is equal to 7.5 multiplied by V1 and divided 

by 2 
COUNT=COUNT+2 The variable, COUNT, is equal to the current value plus 2. 
RESULT=Val1 -
(@COS[45]*40) 

Puts the value of Val1 - 28.28 in RESULT.  40 * cosine of 45° is 
28.28 

K=@IN[1]&@IN[2] K is equal to 1 only if Input 1 and Input 2 are high 
 

Note: Mathematical operations can be done in hexadecimal as well as decimal.  Just precede hexadecimal 
numbers with a $ sign so that the RIO recognizes them as such. 

Bit-Wise Operators 
The mathematical operators & and | are bit-wise operators.  The operator, &, is a Logical And.  The operator, 
|, is a Logical Or.  These operators allow for bit-wise operations on any valid RIO numeric operand, 
including variables, array elements, numeric values, functions, keywords, and arithmetic expressions.  The 
bit-wise operators may also be used with strings.  This is useful for separating characters from an input 
string.  When using the input command for string input, the input variable will hold up to 6 characters.  These 
characters are combined into a single value, which is represented as 32 bits of integer and 16 bits of fraction.  
Each ASCII character is represented as one byte (8 bits), therefore the input variable can hold up to six 
characters.  The first character of the string will be placed in the top byte of the variable and the last character 
will be placed in the lowest significant byte of the fraction.  The characters can be individually separated, by 
using bit-wise operations as illustrated in the following example: 

 

 

Instruction Interpretation 



  

68 Chapter 5 Application Programming  RIO-471x0 

#TEST Begin main program 
IN "ENTER",LEN{S6} Input character string of up to 6 characters into variable 

‘LEN’ 
FLEN=@FRAC[LEN] Define variable ‘FLEN’ as fractional part of variable 

‘LEN’ 
FLEN=$10000*FLEN Shift FLEN by 32 bits (IE - convert fraction, FLEN, to 

integer) 
LEN1=(FLEN&$00FF) Mask top byte of FLEN and set this value to variable 

‘LEN1’ 
LEN2=(FLEN&$FF00)/$100 Let variable, ‘LEN2’ = top byte of FLEN 
LEN3=LEN&$000000FF Let variable, ‘LEN3’ = bottom byte of LEN 
LEN4=(LEN&$0000FF00)/$100 Let variable, ‘LEN4’ = second byte of LEN 
LEN5=(LEN&$00FF0000)/$1000
0 

Let variable, ‘LEN5’ = third byte of LEN 

LEN6=(LEN&$FF000000)/$1000
000 

Let variable, ‘LEN6’ = fourth byte of LEN 

MG LEN6 {S4} Display ‘LEN6’ as string message of up to 4 chars 
MG LEN5 {S4} Display ‘LEN5’ as string message of up to 4 chars 
MG LEN4 {S4} Display ‘LEN4’ as string message of up to 4 chars 
MG LEN3 {S4} Display ‘LEN3’ as string message of up to 4 chars 
MG LEN2 {S4} Display ‘LEN2’ as string message of up to 4 chars 
MG LEN1 {S4} Display ‘LEN1’ as string message of up to 4 chars 
EN  

 

This program will accept a string input of up to 6 characters, parse each character, and then display each 
character.  Notice also that the values used for masking are represented in hexadecimal (as denoted by the 
preceding ‘$’).  For more information, see the section on Sending Messages (page 74). 

To illustrate further, if the user types in the string “TESTME” at the input prompt, the RIO will respond with 
the following: 

T Response from command MG LEN6 {S4} 
E Response from command MG LEN5 {S4} 
S Response from command MG LEN4 {S4} 
T Response from command MG LEN3 {S4} 
M Response from command MG LEN2 {S4} 
E Response from command MG LEN1 {S4} 

 

Functions 

 Function  Description 
@SIN[n] Sine of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution) 
@COS[n] Cosine of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution) 
@TAN[n] Tangent of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution) 
@ASIN*[n] Arc Sine of n,  between -90° and +90°.   Angle resolution in 1/64000 degrees. 
@ACOS* [n] Arc Cosine of n,  between 0 and 180°.   Angle resolution in 1/64000 degrees. 
@ATAN* [n] Arc Tangent of n, between -90° and +90°.  Angle resolution in 1/64000 degrees  
@COM[n] 1’s Complement of n 
@ABS[n] Absolute value of n 
@FRAC[n] Fraction portion of n 
@INT[n] Integer portion of n 
@RND[n] Round of n (Rounds up if the fractional part of n is .5 or greater) 
@SQR[n] Square root of n (Accuracy is +/-.004) 



RIO-471x0 Chapter 5 Application Programming ● 69 

@IN[n] Return digital input at general input n (where n starts at 0) 
@OUT[n] Return digital output at general output n (where n starts at 0) 
@AN[n] Return analog input at general input n (where n starts at 0) 
@AO[n] Return analog output at general output n (where n starts at 0) 

 

*Note:  These functions are multi-valued.   An application program may be used to find the correct band. 

Functions may be combined with mathematical expressions.  The order of execution of mathematical 
expressions is from left to right and can be over-ridden by using parentheses. 

Examples: 

V1=@ABS[V7] The variable, V1, is equal to the absolute value of variable V7. 
V2=5*@SIN[POS] The variable, V2, is equal to five times the sine of the variable, POS. 
V3=@IN[1] The variable, V3, is equal to the digital value of input 1. 

 

Variables 

For applications that require a parameter that is variable, the RIO-47xx0 board provides 126 variables. The 
RIO-47xx2 increases this to 254 total available variables.  These variables can be numbers or strings.  A 
program can be written in which certain parameters, such as I/O status or particular I/O bit, are defined as 
variables.  The variables can later be assigned by the operator or determined by program calculations.  
Example: 

SB Red Uses variable “Red” in SB command 
input1=_@IN[1] Assigns value of digital input 1 status to variable “input1” 

 

Programmable Variables 
The RIO allows the user to create up to 126 variables.  Each variable is defined by a name, which can be up 
to eight characters.  The name must start with an alphabetic character, however, and numbers are permitted in 
the rest of the name.  Spaces are not permitted.  Variable names should not be the same as RIO instructions.  
For example, RS is not a good choice for a variable name. 

Examples of valid and invalid variable names are: 

Valid Variable Names 

 STATUS1 

 TEMP1 

 POINT 

Invalid Variable Names 

 REALLONGNAME ; Cannot have more than 8 characters 

 123   ; Cannot begin variable name with a number 

 STAT Z   ; Cannot have spaces in the name 



  

70 Chapter 5 Application Programming  RIO-471x0 

Assigning Values to Variables: 

Assigned values can be numbers, internal variables and keywords, functions, RIO board parameters and 
strings; the range for numeric variable values is 4 bytes of integer (231) followed by two bytes of fraction (+/-
2,147,483,647.9999). 

Numeric values can be assigned to programmable variables using the equal sign.   

Any valid RIO functions can be used to assign a value to a variable.  For example, s1=@ABS[V2] or 
s2=@IN[1].  Arithmetic operations are also permitted. 

To assign a string value, the string must be in quotations.  String variables can contain up to six characters 
that must be in quotation.  

Examples: 

INTWO=_TI2 Assigns returned value from TI2 command to variable INTWO. 
INPUT=@IN[1] Assigns logical value of input 1 to variable INPUT 
V2=V1+V3*V4 Assigns the value of V1 plus V3 times V4 to the variable V2. 
Var="CAT" Assign the string CAT to variable Var 

 

Displaying the value of variables at the terminal 

Variables may be sent to the screen using the format, variable=.  For example, V1=   , returns the value of the 
variable V1.  V1=? or MG V1 are also valid ways of displaying a variable. 

 

Operands 

Operands allow status parameters of the RIO to be incorporated into programmable variables and 
expressions.  Most RIO commands have an equivalent operand - which are designated by adding an 
underscore (_) prior to the command (see command reference). 

Examples of Internal Variables: 
IN1=@IN[1] Assigns value of input 1 to the variable IN1. 
JP #LOOP,@AN[0]<2 Jump to #LOOP if analog input 0 is less than 2 
JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1. 

 

Operands can be used in an expression and assigned to a programmable variable, but they cannot be assigned 
a value.  For example: _TI0=1 is invalid. 

Special Operands (Keywords) 
The RIO provides a few additional operands that give access to internal variables that are not accessible by 
standard RIO commands. 

 

 Operand  Function 
_BN *Returns serial # of the board. 
_DA *Returns the number of arrays available 
_DL *Returns the number of available labels for programming 



RIO-471x0 Chapter 5 Application Programming ● 71 

_DM *Returns the available array memory 
_UL *Returns the number of available variables 
TIME Free-Running Real Time Clock (Resets with power-on).   

Note: TIME does not use an underscore character (_) as other keywords. 
 

*Note: All these keywords have corresponding commands except for TIME.  

Examples of Keywords: 

V1=_DA Assign V1 the number of available array names 
V3=TIME Assign V3 the current value of the time clock 

 

Arrays 

For storing and collecting numerical data, the RIO-47xx0 provides array space for 400 elements. This 
number is increased to 1000 array elements on the RIO-47xx2.  The arrays are one-dimensional, and up to 6 
different arrays may be defined.  Each array element has a numeric range of 4 bytes of integer (231) followed 
by two bytes of fraction (+/-2,147,483,647.9999).  Arrays can be used to capture real-time data, such as the 
bit status of a particular I/O bank.   

Defining Arrays 

An array is defined with the command DM.  The user must specify a name and the number of entries to be 
held in the array.  An array name can contain up to eight characters, starting with an uppercase alphabetic 
character.  The number of entries in the defined array is enclosed in [ ]. 

Example: 

DM IOSTAT[100] Defines an array names IOSTAT with 100 entries  
DA *[] Frees array space using Deallocate command 

 

Assignment of Array Entries 

Like variables, each array element can be assigned a value.  Assigned values can be numbers or returned 
values from instructions, functions and keywords.   

Array elements are addressed starting at count 0.  For example, the first element in the OUTPUT array 
(defined with the DM command, DM OUTPUT[7]) would be specified as OUTPUT[0]. 

Values are assigned to array entries using the equal sign.  Assignments are made one element at a time by 
specifying the element number with the associated array name. 

NOTE:  Arrays must be defined using the command, DM, before assigning entry values. 

Examples: 

DM OUTPUT[10] Dimension Output Array 
OUTPUT[1]=3 Assigns the second element of the array, OUTPUT, the value of 

3. 
OUTPUT[1]= Returns array element value 
OUTPUT[9]=_TI0 Assigns the 10th element of the array, OUTPUT, the value for 

bank 0 digital inputs 
data [2]=@COS[POS]*2 Assigns the third element of the array “data” the cosine of the 

variable POS multiplied by 2. 



  

72 Chapter 5 Application Programming  RIO-471x0 

TIMER[1]=TIME Assigns the second element of the array timer the returned value 
of the TIME keyword. 

 

Using a Variable to Address Array Elements  

An array element number can also be a variable.  This allows array entries to be assigned sequentially using a 
counter. 

For example: 

Instruction Interpretation 
#A Begin Program 
COUNT=0;DM POS[10] Initialize counter and define array 
#LOOP Begin loop 
WT 10 Wait 10 msec 
INPUT[COUNT]=_TI0 Record bank 0’s input bit value into array element 
INPUT[COUNT]= Report input bit value 
COUNT=COUNT+1 Increment counter 
JP #LOOP,COUNT<10 Loop until 10 elements have been stored 
EN End Program 

 

The above example records 10 input bit values for bank 0 at a rate of one value per 10 msec.  The values are 
stored in an array named INPUT.  The variable, COUNT, is used to increment the array element counter.  
The above example can also be executed with the automatic data capture feature described below. 

Uploading and Downloading Arrays to On Board Memory 

Arrays may be uploaded and downloaded using the QU and QD commands. 

 QU array[],start,end,delim 

 QD array[],start,end 

where array is an array name such as A[]. 

Start is the first element of array (default=0) 

End is the last element of array (default=last element) 

Delim specifies whether the array data is separated by a comma (delim=1) or a carriage return (delim=0). 

The file is terminated using <control>Z, <control>Q, <control>D or \. 

Automatic Data Capture into Arrays 

The RIO provides a special feature for automatic capture of data such as inputs or outputs.  Up to four types 
of data can be captured and stored in four arrays.  The capture rate or time interval may be specified.  
Recording can be done as a one-time event or as a circular continuous recording. 

 Command Summary - Automatic Data Capture 

 Command  Description 
RA  n[],m[],o[],p[] Selects up to four arrays for data capture.  The arrays must be defined 

with the DM command. 



RIO-471x0 Chapter 5 Application Programming ● 73 

RD 
type1,type2,type3,type4 

Selects the type of data to be recorded, where type1, type2, type3, and 
type 4 represent the various types of data (see table below). The order of 
data type is important and corresponds with the order of n,m,o,p arrays 
in the RA command. 

RC n,m The RC command begins data collection.  Sets data capture time interval 
where n is an integer between 1 and 8 and designates 2n msec between 
data.  m is optional and specifies the number of elements to be captured.  
If m is not defined, the number of elements defaults to the smallest array 
defined by DM.  When m is a negative number, the recording is done 
continuously in a circular manner.  _RD is the recording pointer and 
indicates the address of the next array element.  n=0 stops recording. 

RC? Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in 
progress 

 

Data Types for Recording: 

 Data type  Description 
_TIn Inputs at bank n (0 or 1) 
_OPn Output bank n status (0 or 1) 
_AFn Analog input status (0-7) 
_AOn Analog output status (0-7) 

 

Operand Summary - Automatic Data Capture 

_RC Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in 
progress 

_RD Returns address of next array element. 
 

Deallocating Array Space 

Array space may be deallocated using the DA command followed by the array name.  DA*[0] deallocates all 
the arrays. 

 



  

74 Chapter 5 Application Programming  RIO-471x0 

Input of Data (Numeric and String) 

Input of Data 

The command, IN, is used to prompt the user to input numeric or string data.  Using the IN command, the 
user may specify a message prompt by placing a message in quotations.  When the RIO executes an IN 
command, it will wait for the input of data.  The input data is assigned to the specified variable or array 
element.  

Note:  The IN command is only valid when communicating through RS232.  This command will not work 
through the Ethernet. 

An Example for Inputting Numeric Data 

 #A 

 IN "Enter output number", OUT 

 EN 
In this example, the message “Enter output number” is displayed on the computer screen.  The RIO board 
waits for the operator to enter a value.  The operator enters the numeric value that is then assigned to the 
variable, OUT. 

Inputting String Variables 

String variables with up to six characters may input using the specifier, {Sn} where n represents the number 
of string characters to be input.  If n is not specified, six characters will be accepted.  For example, IN "Enter 
X,Y or Z", V{S} specifies a string variable of up to six characters to be input. 

 

Output of Data (Numeric and String) 

Numerical and string data can be output from the RIO board using several methods.  The message command, 
MG, can output string and numerical data.  Also, the RIO can be commanded to return the values of variables 
and arrays, as well as other information using the interrogation commands, such as V1=? and TZ. 

Sending Messages 

Messages may be sent using the message command, MG.  This command sends specified text and numerical 
or string data from variables or arrays to the screen. 

Text strings are specified in quotes and variable or array data is designated by the name of the variable or 
array.  For example: 

MG "The Final Value is", RESULT 

In addition to variables, functions and commands, responses can be used in the message command.  For 
example: 

 MG "The input is", @IN[1] 

Formatting Messages 

String variables can be formatted using the specifier, {Sn} where n is the number of characters, 1 thru 6.  For 
example: 

 MG STR {S3} 



RIO-471x0 Chapter 5 Application Programming ● 75 

This statement returns 3 characters of the string variable named STR. 

Numeric data may be formatted using the {Fn.m} expression following the completed MG statement.  
{$n.m} formats data in HEX instead of decimal. The actual numerical value will be formatted with n 
characters to the left of the decimal and m characters to the right of the decimal.  Leading zeros will be used 
to display specified format. 

For example: 

 MG "The Final Value is", RESULT {F5.2} 

If the value of the variable RESULT is equal to 4.1, this statement returns the following:  

The Final Value is 00004.10 

If the value of the variable RESULT is equal to 999999.999, the above message statement returns the 
following:  

The Final Value is 99999.99 

The message command normally sends a carriage return and line feed following the statement.  The carriage 
return and the line feed may be suppressed by sending {N} at the end of the statement.  This is useful when a 
text string needs to surround a numeric value. 

Example: 

#A 

FNAME=“John” 

LNAME=“Smith” 

MG “The name is ”, FNAME{S3} {N} 

MG “ ”,LNAME{S6} 

EN 
When #A is executed, the above example will appear on the screen as: 

 The name is John Smith 

Using the MG Command to Configure Terminals 

The MG command can be used to configure a terminal.  Any ASCII character can be sent by using the format 
{^n} where n is any integer between 1 and 255. 

Example: 

 MG {^07} {^255} 

sends the ASCII characters represented by 7 and 255 to the bus. 

Summary of Message Functions: 

 Function Description 
" " Surrounds text string 
{Fn.m} Formats numeric values in decimal n digits to the right of the decimal 

point and m digits to the left 
{$n.m} Formats numeric values in hexadecimal 
{^n} Sends ASCII character specified by integer n 
{N} Suppresses carriage return/line feed 
{Sn} Sends the first n characters of a string variable, where n is 1 thru 6. 



  

76 Chapter 5 Application Programming  RIO-471x0 

{Zn.m} Formats values like {Fn.m} except leading zeroes are removed 
{En} Outputs message to Ethernet handle n where n is A,B or C 
{P1} Outputs message to Serial port 
{M} Sends Email message (see MA, MD, MS commands) 

 

Displaying Variables and Arrays  
Variables and arrays may be sent to the screen using the format, variable= or array[x]=.  For example, V1=   
, returns the value of V1. 

Removing Leading Zeros from Response 

The leading zeros on data returned as a response to interrogation commands or variables and arrays can be 
removed by the use of the command, LZ.  The default value for LZ is 1, meaning that the leading zeroes do 
not get printed out unless LZ0 command is entered. 

Example - Using the LZ command 

LZ0 Disables the LZ function 
MG@IN[0] Print input status of bank 1 
0000000001.0000 

 

Response from Interrogation Command 
(With Leading Zeros) 

LZ1 Enables the LZ function 
MG@IN[0] Print input status of bank 1 
1.0000 Response from Interrogation Command 

(Without Leading Zeros) 
 

Formatting Variables and Array Elements 
The Variable Format (VF) command is used to format variables and array elements.  The VF command is 
specified by: 

 VF m.n 

where m is the number of digits to the left of the decimal point (0 thru 10), and n is the number of digits to 
the right of the decimal point (0 thru 4). 

A negative sign for m specifies hexadecimal format.  The default format for VF is VF 10.4 

Hex values are returned preceded by a $ and in 2's complement. 

:V1=10 Assign V1 
:V1= Return V1 
0000000010.0000 Default format 
:VF2.2 Change format 
:V1= Return V1 
10.00 New format 
:VF-2.2 Specify hex format 
:V1= Return V1 
$0A.00 Hex value 
:VF1 Change format 
:V1= Return V1 
9 Overflow 

 



RIO-471x0 Chapter 5 Application Programming ● 77 

Local Formatting of Variables 

VF command is a global format command that affects the format of all relevant returned values and 
variables.  Variables may also be formatted locally.  To format locally, use the command, {Fn.m} or {$n.m} 
following the variable name and the ‘=’ symbol.  F specifies decimal and $ specifies hexadecimal.  n is the 
number of digits to the left of the decimal, and m is the number of digits to the right of the decimal.  For 
example: 

 

Examples: 

:V1=10 Assign V1 
:V1= Return V1 
0000000010.0000 Default Format 
:V1={F4.2} Specify local format 
0010.00 New format 
:V1={$4.2} Specify hex format 
$000A.00 Hex value 
:V1="ALPHA" Assign string "ALPHA" to V1 
:V1={S4} Specify string format first 4 characters 
ALPH  

 

The local format is also used with the MG command (see page 75). 

 

Programmable I/O 

As described earlier, the RIO has 16 digital inputs, 16 digital outputs, 8 analog inputs and 8 analog outputs.  
The paragraphs below describe the commands that are used for I/O manipulation and interrogation.   

Digital Outputs 
The most common method of changing the state of digital outputs is by using the set bit ‘SB’ and clear bit 
‘CB’ commands.  The following table shows an example of the SB and CB commands. 

Instruction Interpretation 
SB2 Sets bit 2 
CB1 Clears bit 1  

 

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a variable, 
array, input or expression.  Any non-zero value results in a set bit. 

Instruction Interpretation 
OB1,POS Set Output 1 if the variable POS is non-zero.  Clear Output 1 if 

POS equals 0. 
OB2,@IN [1] Set Output 2 if Input 1 is high.  If Input 1 is low, clear Output 2. 
OB3,@IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high. 
OB2,COUNT [1] Set Output 2 if element 1 in array COUNT is non-zero. 

 

The output port can be set by specifying the OP (Output Port) command.  This instruction allows a single 
command to define the state of the entire output bank, where 20 is bit 0, 21 is bit 1 and so on.  A 1 designates 
that the output is on. 



  

78 Chapter 5 Application Programming  RIO-471x0 

For example: 

Instruction Interpretation 
OP6 Sets bits 1 and 2 of bank 0 high.  All other bits on bank 0 are 0.  (21 + 22 = 6) 
OP0,0 Clears all bits of bank 0 and 1 
OP0,7 Sets output bits 0, 1 and 2 to one (20 + 21 + 22 ) on bank 1. Clears all bits on 

bank 0. 
 

The state of the digital outputs can be accessed with the @OUT[n] where n is the output number (Ex: 
MG@OUT[1] displays the state of output number 1). 

Digital Inputs 

The digital inputs are accessed by using the @IN[n] function or the TI n command.  The @IN[n] function 
returns the logic level of a specified input, n, where ‘n’ is the input bit number.  The IQ command determines 
the active level of each input.  The TI n command gives the input status of an entire bank, where ‘n’ is the 
bank number, 0 or 1.  The AI command is a trip-point that pauses program execution until the specified 
combination of inputs is high or low. 

Example – Using Inputs to control program flow 

Instruction Instruction 
JP #A,@IN[1]=0 Jump to A if input 1 is low 
MG@IN[2] Display the state of input 2 
AI 7&-6 Wait until input 7 is high and input 6 is low 

 

Analog Inputs 
Analog inputs are accessed with the @AN[n] function where n is the number assigned to the analog input 
channel.  The returned value will be a voltage reading with 12 bit resolution (16bit optional on RIO-47120).  
The standard voltage range is 0 to +5VDC on the RIO-47100.  The voltage input range is configurable on the 
RIO-47120 using the AQ command. 

Note:  When analog input values are accessed from the Data Record or from the Record Array function, the 
returned value will be an integer number that represents the analog voltage.  For a RIO-47100, the equation 
used to determine the decimal equivalent of the analog voltage is as follows: 

N= (((V-Vlo)*4095)/(Vhi-Vlo))*8 

Where N is the integer equivalent of the analog voltage, V is the expected analog voltage, Vlo is the lowest 
voltage in the total range (0V for the standard analog input module) and Vhi is the highest voltage in the total 
range (5V for the standard module).  The data range for N is 0-32760. 

These integer values will also be returned when accessing the analog inputs by the API calls in C/C++ or 
Visual Basic.  

The AQ command also configures the analog inputs to be either 8 single ended (default) or 4 differential 
inputs. 

The AA command is a trippoint that halts program execution until the specified voltage on an analog input is 
reached.  The third field of the AA command controls whether the trippoint will be satisfied when going 
higher or lower than the voltage.  With a command such as AA 1,4.5,0 - if the specified voltage is exceeded 
prior to arrival at the AA command, the program will continue to execute without a pause.  Analog inputs are 
useful for reading special sensors such as temperature, tension or pressure.  The range of AA is dependant on 
the AQ setting.  Here are some examples of using the Analog inputs: 

Instruction Instruction 



RIO-471x0 Chapter 5 Application Programming ● 79 

JP #C,@AN[1]>2 Jump to A if analog input number 1 is greater than 2 volts 
MG@AN[2] Display the analog voltage reading on input 2 
AA 1,4.5,0 Wait until the voltage on input 1 goes above 4.5V 
AA 1,3.2,1 Wait until the voltage on input 1 goes below 3.2V 

 

Analog Outputs 
Analog output voltage is set with the AO command.  The AO command has the format AO m,n where m is 
the output pin and n is the voltage assigned to it.  The analog output voltage is accessed with the @AO[n] 
function where n is the analog output channel.  Analog output modules come with a resolution of 12 bits 
(16bit optional).  The standard voltage range is 0 to +5VDC for the RIO-47100.  The Analog Output voltage 
range is configurable using the DQ command when using the RIO-47120.  Use the ID command to see the 
model number of the RIO. 

Note:  When analog output values are accessed from the Data Record or from the Record Array function, the 
returned value will be an integer number that represents the analog voltage.  For a RIO-47100, the equation 
used to determine the decimal equivalent of the analog voltage is as follows: 

N= ((V-Vlo)*4095)/(Vhi-Vlo) 

Where N is the integer equivalent of the analog voltage, V is the expected analog voltage, Vlo is the lowest 
voltage in the total range (0V for the standard analog input module) and Vhi is the highest voltage in the total 
range (5V for the standard module). 

These integer values will also be returned when accessing the analog inputs by the API calls in C/C++ or 
Visual Basic. 

The AO command can also be used to set the analog voltage on ModBus devices over Ethernet 

Instruction Instruction 
AO 7,1.5 Set the output voltage on output 7 to 1.5V 
MG@AO[2] Display the analog voltage reading on output 2 



  

80 Appendix  RIO-471x0 

 

Appendix 

Electrical Specifications 

Input/Output 

  Digital I/O    See Chapter 4. 

  DAC Output Current   4mA max output per channel 

  47120: +/-12V out   10mA max output 

 

Power Requirements  

 18-36 VDC     Typical: 2.5 Watts 

Max: 4 Watts 

Performance Specifications 

RIO-47xx0 

Variable Range: +/-2 billion 
Variable Resolution: 1 ⋅ 10-4 
Variable Size 126 variables 
Array Size: 400 elements, 6 array names 
Max Program Labels: 62 
Program Size: 200 lines x 40 characters 

 

RIO-47xx2 

Variable Range: +/-2 billion 
Variable Resolution: 1 ⋅ 10-4 
Variable Size 256 variables 
Array Size: 1000 elements, 6 array names 
Max Program Labels: 126 
Program Size: 400 lines x 40 characters 

 



RIO-471x0 Appendix ● 81 

Certifications 

The RIO-471xx is certified for the following when the product or package is marked. 

ETL 

 

CE 
CE marked EMC Directive 2004/108/EC 

ROHS 
 ROHS Compliant 

Connectors on the RIO 

44 pin D-Sub Connector – RIO-471xx 

Pin Label Description Pin Label Description Pin Label Description 

1 DI15 Digital Input 15 16  No Connect / INC1B ¹ 31 DI14 Digital Input 14 

2 DI12 Digital Input 12 17 DI13 Digital Input 13 32 DI11 Digital Input 11 

3 DI9 Digital Input 9 18 DI10 Digital Input 10 33 DI8 Digital Input 8 

4 N/C No Connect 19 INC1 Input Common DI[8-15] 34 N/C No Connect / INC0B ¹ 

5 DI6 Digital Input 6 20 DI7 Digital Input 7 35 DI5 Digital Input 5 

6 DI3 Digital Input 3 21 DI4 Digital Input 4 36 DI2 Digital Input 2 

7 DI0 Digital Input 0 22 DI1 Digital Input 1 37 INC0 Input Common DI[0-7] 

8 OP1B² 
+5-24V Output Power 
Supply for DO[8-15]² 23 N/C No Connect 38 DO15 Digital Output 15 

9 DO13 Digital Output 13 24 DO14 Digital Output 14 39 DO12 Digital Output 12 

10 DO10 Digital Output 10 25 DO11 Digital Output 11 40 DO9 Digital Output 9 

11 OP1A³ 
Output Power Ground 
for DO[8-15]³  26 DO8 Digital Output 8 41 N/C No Connect 

12 DO7 Digital Output 7 27 OP0B 
Output Power GROUND 
for DO[0-7] 42 DO6 Digital Output 6 

13 DO4 Digital Output 4 28 DO5 Digital Output 5 43 DO3 Digital Output 3 

14 DO1 Digital Output 1 29 DO2 Digital Output 2 44 DO0 Digital Output 0 

15 OP0A 
+12-24V  Output Power 
Supply for  DO[0-7] 30 OP0A 

+12-24V  Output Power 
Supply for  DO[0-7]       

¹Note: INC0B and INC1B are only valid when INC jumpers are used. 

² When ordered with -08-15 SOURCE this pin will actually be Output Power Ground for DO[8-15] 

³ When ordered with -08-15 SOURCE this pin will actually be +5-24V Output Power Supply for DO[8-15] 



  

82 Appendix  RIO-471x0 

 

26 pin D-Sub Connector – RIO-471xx 

Pin Label Description Pin Label Description Pin Label Description 

1 N/C No Connect 10 N/C No Connect 19 N/C No Connect 

2 
 N/C 
+12V 

47100: No Connect 
47120:  +12V out (10mA) 11 N/C No Connect 20 

 N/C 
-12V 

47100: No Connect 
47120:  -12V out (10mA) 

3 AI7 Analog Input 7 12 GND Ground 21 AI6 Analog Input 6 

4 AI4 Analog Input 4 13 AI5 Analog Input 5 22 AI3 Analog Input 3 

5 AI1 Analog Input 1 14 AI2 Analog Input 2 23 AI0 Analog Input 0 

6 GND Ground 15 GND Ground 24 AO7 Analog Output 7 

7 AO5 Analog Output 5 16 AO6 Analog Output 6 25 AO4 Analog Output 4 

8 AO2 Analog Output 2 17 AO3 Analog Output 3 26 AO1 Analog Output 1 

9 GND GND 18 AO0 Analog Output 0    

 

 

Screw Terminals – RIO-472xx 
Label Description Label Description 

18-36 18-16VDC logic power input DI10 Digital Input 10 

RET Return side of logic power input DI11 Digital Input 11 

AGND Analog Ground DI12 Digital Input 12 

AGND Analog Ground DI13 Digital Input 13 

AI0 Analog Input 0 DI14 Digital Input 14 

AI1 Analog Input 1 DI15 Digital Input 15 

AI2 Analog Input 2 OP0A +12-24V  Output Power Supply for  DO[0-7] 

AI3 Analog Input 3 OP0B Output Power GROUND for DO[0-7] 

AI4 Analog Input 4 DO0 Digital Output 0 

AI5 Analog Input 5 DO1 Digital Output 1 

AI6 Analog Input 6 DO2 Digital Output 2 

AI7 Analog Input 7 DO3 Digital Output 3 

INC0A Input common DI[0-7] DO4 Digital Output 4 

INC0B No connect for standard configuration DO5 Digital Output 5 

DI0 Digital Input 0 DO6 Digital Output 6 

DI1 Digital Input 1 DO7 Digital Output 7 

DI2 Digital Input 2 OP1A +12-24V  Output Power Supply for  DO[8-15] 

DI3 Digital Input 3 OP1B Output Power GROUND for DO[8-15] 

DI4 Digital Input 4 DO8 Digital Output 8 

DI5 Digital Input 5 DO9 Digital Output 9 

DI6 Digital Input 6 DO10 Digital Output 10 

DI7 Digital Input 7 DO11 Digital Output 11 

INC1A Input common DI[8-15] DO12 Digital Output 12 

INC1B No connect for standard configuration DO13 Digital Output 13 

DI8 Digital Input 8 DO14 Digital Output 14 

DI9 Digital Input 9 DO15 Digital Output 15 

 



RIO-471x0 Appendix ● 83 

¹J2 RS-232 Port:  DB-9 Pin Male 

Standard connector and cable, 9Pin.   

Pin Signal 

1 No Connect 
2 TXD 
3 RXD 
4 No Connect 
5 Ground 
6 No Connect 
7 CTS 
8 RTS 
9 No Connect 

Note: A straight-thru serial cable should be used to connect the RIO to a standard PC serial port 
(pin1 to pin1, pin2 to pin 2, etc…) 

 

J1 Ethernet Port: 10/100 Base-T (RJ-45) 

Pin Signal 
1 TXP 
2 TXN 
3 RXP 
4 PoE+ 
5 PoE+ 
6 RXN 
7 PoE- 
8 PoE- 

 

J5 Power: 2 pin Molex for 18-36VDC (if not using Power over Ethernet) 
Note: The part number listed below is the connector that is found on the controller. For more information see 
the Molex website.  http://www.molex.com/ 
 

Pin Signal 
 1 GND (Ground) 
 2 18-36VDC 

 

Molex Part Number Pin Part Number (x2) Type 
39-31-0020 44476-3112 2 Position 

 

http://www.molex.com/


  

84 Appendix  RIO-471x0 

Jumper Description for RIO 

 

Jumper Label Function (If jumpered) 
JP5  MRST Master Reset enable.  Returns RIO to factory default settings 

and erases EEPROM. Requires power-on or RESET to be 
activated. 

 UPGD Used to upgrade controller firmware when resident firmware is 
corrupt. 

 19.2 Set baud Rate to 19.2k  (default without jumper is 115k) 
 OPT 10BaseT Ethernet Communication 

 
Jumper Label Function (If jumpered) 
JP6 AUX                

(4 jumpers) 
Power for board comes from 2pin Molex Connector (18-36V DC)  

JP7 PoE                  
(4 jumpers) 

Power for board comes from Power over Ethernet (No power cable 
is necessary – Ethernet cable with PoE Switch is required) 

 
Jumper Label Function (If jumpered) 
JP102 INC Connects INC0 & INC1 to +5V and INC0B & INC1B to GND  
JP102 OUTC Connects OP1A to GND and OP1B to +5V 

 



RIO-471x0 Appendix ● 85 

RIO Dimensions 

RIO-471xx 

 



  

86 Appendix  RIO-471x0 

RIO-472xx 

 

 



RIO-471x0 Appendix ● 87 

Accessories and Options 

Product Description 
RIO-47100   Remote I/O controller with 0-5V analog I/O; 12bit   
RIO-47120  Remote I/O controller with ±10V analog I/O; 12bit  
RIO-47120-16  Remote I/O controller with ±10V analog I/O; 16bit  

ICS-48026-M  26-pin D high-density male to screw terminals.  
Use 1 for each RIO-471x0 to break out analog signals   

ICS-48044-M  44-pin D high-density male to screw terminals.   
Use 1 for each RIO-471x0 to break out analog signals   

CABLE-44M-1M  44-pin D high-density male cable to discrete wires. 
Use 1 for each RIO-471x0 to break out analog signals
-1M = 1 meter length. Order -2M for 2 meter length        

CABLE-26M-1M  26-pin D high-density male cable to discrete wires. 
Use 1 for each RIO-471x0 to break out analog signals   

 

 



  

88 Appendix  RIO-471x0 

List of Other Publications 

"Step by Step Design of Motion Control Systems" 

 by Dr. Jacob Tal 

"Motion Control Applications" 

 by Dr. Jacob Tal 

"Motion Control by Microprocessors" 

 by Dr. Jacob Tal 

 

Contacting Us 

Galil Motion Control 
270 Technology Way 
Rocklin, CA 95765 

Phone:  916-626-0101 
Fax:  916-626-0102 
E-Mail Address: support@galilmc.com 
URL: www.galilmc.com 



RIO-471x0 Appendix ● 89 

 

Training Seminars 

Galil, a leader in motion control with over 500,000 controllers working worldwide, has a 
proud reputation for anticipating and setting the trends in motion control.  Galil 
understands your need to keep abreast with these trends in order to remain resourceful and 
competitive.  Through a series of seminars and workshops held over the past 15 years, 
Galil has actively shared their market insights in a no-nonsense way for a world of 
engineers on the move.  In fact, over 10,000 engineers have attended Galil seminars.  The 
tradition continues with three different seminar, each designed for your particular skill set--
from beginner to the most advanced. 

 

MOTION CONTROL MADE EASY 

WHO SHOULD ATTEND 

Those who need a basic introduction or refresher on how to successfully implement servo 
motion control systems. 

TIME: 4 hours (8:30 am-12:30 pm) 

 

ADVANCED MOTION CONTROL 

WHO SHOULD ATTEND 

Those who consider themselves a "servo specialist" and require an in-depth knowledge of 
motion control systems to ensure outstanding controller performance.  Also, prior 
completion of  "Motion Control Made Easy" or equivalent is required.  Analysis and design 
tools as well as several design examples will be provided. 

TIME: 8 hours (8:00 am-5:00 pm) 

 

PRODUCT WORKSHOP 

WHO SHOULD ATTEND 

Current users of Galil motion controllers.  Conducted at Galil's headquarters in Rocklin, 
CA, students will gain detailed understanding about connecting systems elements, system 
tuning and motion programming.  This is a "hands-on" seminar and students can test their 
application on actual hardware and review it with Galil specialists. 

TIME: Two days (8:30 am-5:00 pm) 

 



  

90 Appendix  RIO-471x0 

WARRANTY 

All products manufactured by Galil Motion Control are warranted against defects in 
materials and workmanship.  The warranty period for all products is 18 months except for 
motors and power supplies which have a 1 year warranty.  

In the event of any defects in materials or workmanship, Galil Motion Control will, at its 
sole option, repair or replace the defective product covered by this warranty without 
charge.  To obtain warranty service, the defective product must be returned within 30 days 
of the expiration of the applicable warranty period to Galil Motion Control, properly 
packaged and with transportation and insurance prepaid.  We will reship at our expense 
only to destinations in the United States. 

Any defect in materials or workmanship determined by Galil Motion Control to be 
attributable to customer alteration, modification, negligence or misuse is not covered by 
this warranty. 

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO 
WARRANTIES EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH 
PRODUCTS, AND SHALL NOT BE LIABLE OR RESPONSIBLE FOR ANY 
INCIDENTAL OR CONSEQUENTIAL DAMAGES. 

COPYRIGHT (2008) 

The software code contained in this Galil product is protected by copyright and must not be 
reproduced or disassembled in any form without prior written consent of Galil Motion 
Control, Inc. 



RIO-471x0 Index ● 91 

Index 

Absolute Value ............................................56, 62 
Address ..............................................................80 
Arithmetic Functions .......................47, 55, 60, 63 
Array ................................2, 47, 51, 55, 60, 70, 73 
Automatic Subroutine ........................................57 
Baud Rate.........................................................6, 9 
Bit-Wise.............................................................60 
Circular Record Array........................................65 
Code...................................................................63 
Command Summary ....................................64, 65 
Communication 

Baud Rate....................................................6, 9 
Handshake.......................................................9 
Serial Ports ..................................................5, 6 

Conditional jump ...................................47, 52, 71 
Cosine ................................................................64 
Cycle Time 

Clock .............................................................64 
Debugging..........................................................51 
Digital Input.................................................62, 71 
Digital Output ..............................................62, 70 
Download.....................................................47, 65 
Edit Mode ..........................................................52 
Error Code .........................................................63 
Formatting..........................................................67 
Function .................................................47, 53, 55 
Functions 

Arithmetic ...................................47, 55, 60, 63 
Hardware............................................................70 

Output of Data...............................................67 
I/O 

Digital Input ............................................62, 71 
Digital Output .........................................62, 70 
Output of Data...............................................67 

Input Interrupt ....................................................53 
Input of Data ......................................................67 
Internal Variable ..........................................55, 63 
Interrogation.......................................................67 
Interrupt .......................................................48, 53 
Jumpers ................................................................9 
Keyword ................................................55, 60, 63 
Label 

Special Label ................................................48 
Logical Operator................................................54 
Masking 

Bit-Wise........................................................60 
Math Function 

Absolute Value .......................................56, 62 
Bit-Wise........................................................60 
Cosine ...........................................................64 
Logical Operator ...........................................54 
Sine ...............................................................62 

Mathematical Expression ............................60, 62 
Memory ..................................... 47, 51, 54, 64, 65 

Array........................... 2, 47, 51, 55, 60, 70, 73 
Download................................................47, 65 

Message .......................................................51, 61 
Modbus. 11, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 

26, 27, 28, 29, 30, 31, 32, 33, 34, 36 
Multitasking.......................................................50 
Operand 

Internal Variable .....................................55, 63 
Operators 

Bit-Wise........................................................60 
Output of Data ...................................................67 
Program Flow ..............................................47, 52 

Interrupt ........................................................53 
Stack .............................................................71 

Programmable....................................................70 
Serial Port ........................................................5, 6 
Sine....................................................................62 
Special Label .....................................................48 
Stack ..................................................................71 

Zero Stack.....................................................71 
Status .................................................................63 

Interrogation .................................................67 
Stop Code ..........................................................63 
Subroutine..........................................................48 

Automatic Subroutine ...................................57 
Terminal ......................................................63, 68 
Time 

Clock.............................................................64 
Time Interval .....................................................65 
Trigger ...............................................................47 



  

92 Index  RIO-471x0 

Variable 
Internal ....................................................55, 63 

Zero Stack..........................................................71 

  


	Contents
	Chapter 1 Overview
	Introduction
	Part Numbering Overview
	RIO-47xx0 vs. RIO-47xx2
	Microcomputer Section
	Communication


	 Chapter 2 Getting Started
	RIO-471xx
	RIO-472xx
	Installing the RIO Board
	Step 1. Configure Jumpers
	Power Input Jumpers (AUX vs PoE)
	Master Reset and Upgrade Jumper
	Setting the Baud Rate on the RIO

	Step 2. Connecting Power to the RIO
	Step 3. Install the Communications Software 
	Step 4. Establish Communications between RIO and the Host PC
	Communicating to the RIO using Galil Software
	Using Non-Galil Communication Software
	Ethernet:
	Sending Test Commands to the Terminal after a successful Connection
	 RIO Web Server



	Chapter 3 Communication
	Introduction
	RS232 Port
	RS232 - Port 1
	RS-232 Configuration
	Handshaking Modes


	Ethernet Configuration
	Communication Protocols
	Jumper Configuration for 10BaseT
	Addressing
	Email from the RIO
	Communicating with Multiple Devices
	Handling Communication Errors
	Multicasting
	Unsolicited Message Handling
	Other Protocols Supported

	Modbus with the RIO
	Sending Modbus Packets
	Modbus Exceptions
	Function Code 1 ($01) - Read Coils
	Function Code 2 ($02) - Read Discrete Inputs
	Function Code 3 ($03) - Read Holding Registers
	Function Code 4 ($04) - Read Input Registers
	 Function Code 5 ($05) - Write Single Coil
	Function Code 6 ($06) - Preset Single Register
	Function Code 7 ($07) – Read Exception Status
	Function Code 15 ($0F) – Write Multiple Coils
	Function Code 16 ($10) – Write Multiple Registers
	 Analog IO Ranges

	Data Record
	QR and DR Commands
	RIO Data Record
	Explanation of Status Information
	Header Information – 
	General Status Information (1 Byte)
	ZC and ZD Commands



	 Chapter 4 I/O  
	Introduction
	Specifications
	44 pin D-Sub Connector (Digital I/O) – RIO-471xx
	26 pin D-Sub Connector (Analog I/O)
	Screw Terminals – RIO-472xx
	High Power Sourcing Outputs 
	Low Power Sinking Outputs 
	OUTC jumpers

	Digital Inputs
	INC  jumpers

	 Analog Outputs
	Analog Inputs
	 Analog Process Control Loop
	Pulse Counter Input

	Standard Options
	-DIN
	-NO DIN
	-08-15 SOURCE option
	-16Bit
	-422
	-0-7 or -8-15 SINK/SOURCE
	-HS
	-10V12-Bit
	-10V16-Bit


	 Chapter 5 Application Programming
	Overview
	Editing Programs
	Program Format
	Using Labels in Programs
	Special Labels
	Commenting Programs
	Using an Apostrophe to Comment
	Using REM Statements with the Galil Terminal Software


	Program Lines Greater than 40 Characters
	Line Continuation Character

	Lock Program Access using Password

	Executing Programs - Multitasking
	Debugging Programs
	Trace Commands
	Error Code Command
	RAM Memory Interrogation Commands
	Operands 
	Debugging Example:

	Program Flow Commands
	Interrupts
	Examples:
	Interrupt
	Event Trigger

	Conditional Jumps
	Command Format -  JP and JS 
	 Logical operators:
	Conditional Statements
	Multiple Conditional Statements
	Using the JP Command:

	Using If, Else, and Endif Commands
	Using the IF and ENDIF Commands
	Using the ELSE Command
	Nesting IF Conditional Statements
	Command Format -  IF, ELSE and ENDIF 
	Example using IF, ELSE and ENDIF:

	Stack Manipulation
	Auto-Start Routine
	Automatic Subroutines for Monitoring Conditions
	Example - Input Interrupt
	Example - Command Error
	Example - Command Error  w/Multitasking
	Example – Ethernet Communication Error


	Mathematical and Functional Expressions
	Mathematical Operators
	Bit-Wise Operators
	Functions

	Variables
	Programmable Variables
	Assigning Values to Variables:
	Displaying the value of variables at the terminal


	Operands
	Examples of Internal Variables:
	Special Operands (Keywords)
	Examples of Keywords:


	Arrays
	Defining Arrays
	Assignment of Array Entries
	Using a Variable to Address Array Elements 
	Uploading and Downloading Arrays to On Board Memory
	Automatic Data Capture into Arrays
	 Command Summary - Automatic Data Capture
	Data Types for Recording:
	Operand Summary - Automatic Data Capture

	Deallocating Array Space

	 Input of Data (Numeric and String)
	Input of Data
	Inputting String Variables


	Output of Data (Numeric and String)
	Sending Messages
	Formatting Messages
	Using the MG Command to Configure Terminals
	Summary of Message Functions:

	Displaying Variables and Arrays 
	Removing Leading Zeros from Response

	Formatting Variables and Array Elements
	Local Formatting of Variables


	Programmable I/O
	Digital Outputs
	Digital Inputs
	Analog Inputs
	Analog Outputs


	Appendix
	Electrical Specifications
	Input/Output
	Power Requirements 

	Performance Specifications
	RIO-47xx0
	RIO-47xx2

	Certifications
	ETL
	CE
	ROHS

	Connectors on the RIO
	44 pin D-Sub Connector – RIO-471xx
	26 pin D-Sub Connector – RIO-471xx
	Screw Terminals – RIO-472xx
	¹J2 RS-232 Port:  DB-9 Pin Male
	J1 Ethernet Port: 10/100 Base-T (RJ-45)
	J5 Power: 2 pin Molex for 18-36VDC (if not using Power over Ethernet)

	Jumper Description for RIO
	RIO Dimensions
	RIO-471xx
	RIO-472xx
	 

	 Accessories and Options
	 List of Other Publications
	Contacting Us
	Training Seminars
	 WARRANTY

	 Index

