目 录

—	概述
1.1	简介
1. 2	规格
1.3	模板布局
1.4	尺寸标注
<u> </u>	安装
2. 1	跳线器和连接器
2. 2	跳线器和连接器的设置
2. 3	安全事项
2. 4	以太网连接器(CN1)
2. 5	IDE 硬盘驱动器连接器(CN4)
2. 6	软驱连接器(CN5)
2 7	LCD 连接器(CN7)
2.8	键盘和PS/2鼠标连接器(KBMS1)
2.9	电源LED和键盘锁(CN8)
2. 10	红外线连接器(CN9)
2. 11	数字量I/O连接器(CN10)
2. 12	网络和硬盘LED指示灯(CN13)
2. 13	蜂鸣器或外部扬声器(CN14)
2. 14	LCD 连接器(CN15)
2. 15	电源连接器(CN16,CN17)
2.16	VGA和打印机连接器(CN18,CN21)
2. 17	COM2扁平电缆接口(CN19)
2. 18	串口 (CN22、CN23)
2. 19	AT96 总线连接器(U47)
2. 20	APCI总线COMPACT PCI连接器信号定义
2. 21	Reset switch(SW1)
2. 22	DOC地址设置(JP2)
2. 23	CMOS清除跳线器(JP3)
2. 24	LCD 板电压设置(JP4)
2. 25	LCD SHF/ASHF 时钟选择(JP5)
2. 26	WATCHDOG跳线器(JP11)
2. 27	EEPROM写保护跳线器(JP14)
2. 28	电子盘内存地址和I/O地址以及设置其盘号为A:或B:跳线器(JP15)
2. 29	电子盘使能跳线器(JP16)
2. 30	电子盘芯片选择跳线器(JP17)
2. 31	CPU频率选择跳线器(JP18)
2. 32	COM2 RS-232/422/485 选择跳线器 (JP19)
2. 33	DiskOnChip插座(U20)

- 2. 34 FLASH电子盘插座(U71, 2. 35 U59)
- 三 AWARD设置
- 3.1 系统测试和初始化
- 3.2 Award BIOS设置
- 3.3 标准COMS设置
- 3.4 BIOS特征设置
- 3.5 CHIPSET特征设置
- 3.6 电源管理设置
- 3.7 PCI配置设置
- 3.8 下载默认设置
- 3.9 密码设置
- 3. 10 IDE硬盘自动检测
- 3.11 硬盘低级格式化
- 3.12 存盘退出
- 3.13 不存盘退出
- 四 平板/CRT控制显示驱动程序和实用程序
- 4.1 软件驱动
- 4.1.1 硬件配置
- 4.1.2 重要事项
- 4.1.3 准备工作
- 4. 2 Windows 95
- 4. 3 Windows 3.1
- 4.4 实用软件
- 4.4.1 CHIPSDSP实用程序
- 4. 4. 2 CHIPSCPL实用程序
- 五 以太网软件的配置
- 附录A:看门狗定时例程 附录B:4KB串行EEPROM 附录C:SSD的使用说明 附录D:资源分配表 附录E:FLASH 盘工具软件使用说明
- 附录F:磁盘文件说明

概述

本节提供了APCI5094的背景信息。

- 包括: •规格
 - 模板布局
 - 尺寸标注
- <u>1.1 简介</u>

APC15094是一块高集成化486单板计算机,具有在板平板/CRT SVGA控制器和PCI Ethernet接口。它具有所有工业计算机的功能,除了软驱、硬盘外,还包括显示,电子盘等 功能。这就意味着APC15094是嵌入式应用中最好的解决办法。

在板COMPACT PCI总线、AT96总线为用户的I/O扩展提供了各种可能。

在板平板/CRT SVGA 控制器应用了CHIPS 65550套片,内含2MB的视频存储器(在板1MB)。 该芯片组运用PCI总线,允许32位图形频率高达33MHz。具有强大的显示功能,该套片支持 各种各样的LCD形式,包括TFT、STN、B/W和EL。

在板Ethernet Realtek RTL 8029AS PCI 总线Ethernet控制器支持远程引导ROM功能。

APC15094支持M-Systems公司DiskOnChip 2000(可选), DiskOnChip 2000是新一代高 性能的单片Flash盘。它提供了一个不需要任何总线,插槽和连接器的Flash盘(作为扩展 BIOS)。DiskOnChip的容量可从2MB到144MB,是标准的DIP插座。同时,APC15094还提供1MB 的FLASH电子盘,电子盘可以在线改写,也可以跳线写保护。并且可以直接启动DOS,电子 盘的驱动程序和系统BIOS连接在一起,只要在CMOS SETUP 中设定电子盘为使能,就可使用 电子盘。

APC15094的另一个特性是包括了高速的本地总线IDE控制器。该控制器支持(通过ATA PI0)模式3和模式4的硬盘,允许数据传输速率超过11MB/秒。至少可连接两个IDE驱动器,包括大硬盘,CD-ROM驱动器,磁带驱动器或其他IDE驱动器。内嵌增强式IDE控制器提供了一个4层协议,32位灵活的写缓冲器和一个4层协议,32位的读缓冲器用以提高IDE性能。

1.2 规格

标准APCI5094功能

CPU: AMD5×86-P75 (486DX5-133) SQFP

BIOS: Award 128KB FLASH BIOS

芯片: ALI 1487/1489

超级I/O芯片: WINBOND83977TF

二级高速缓存: 板上128KB的二级高速缓存。

RAM存储器: 32MB焊接。

增强型IDE硬盘驱动器接口:支持至少两个硬盘驱动器,BIOS自动检测,支持PIO 模式4和总线控制器,20×2插座,2.54mm的间距。

软驱接口: 支持至少两个软驱, 5.25″(360KB和1.2MB)和/或3.5″(720KB,1.44MB和 2.88MB)。17×2插座, 2.54mm的间距。

多模式并口:配置为LPT1,LPT2,LPT3或不配置,支持SPP、ECP和EPP。13×2 插座,2.54mm的间距。

串口: 一个RS-232和一个RS-232/422/485串口。串口配置为COM1、COM2或个别 不配置。

键盘/鼠标连接器:8脚接口支持标准PS2键盘和PS/2鼠标。

实时时钟/日历: Dallas DS-1687A,由锂电池供电,可保存数据高达10年。

看门狗定时器:可以产生系统复位,IRQ15,NMI。软件选择超时间隔(0.25~63.75秒, 0.25秒/步)。

支持Windows 3.1, Windows 95。

DMA通道:7

中断级别: 15

电源管理: I/O并口驱动器支持省电和休眠/等待/悬挂模式。APM 1.1适应式。

平板VGA接口

芯片: C&T65550

显存: 2MB在板

显示形式:支持CRT和平板(TFT,DSTN,MONO和EL)显示。可以同时显示CRT和平板。

图形分辨率: 高达1024×768@64K颜色。

以太网接口

芯片: Realtek RTL8029AS PCI 以太网控制器

以太网接口:板上RJ-45连接器。软件驱动可选。支持引导ROM盘功能。

DOC接口

32脚DIP插座支持M-Systems公司DiskOnChip 2000系列,存储器容量可从2MB到 144MB。

FLASH 电子盘接口

本板支持1MB FLASH 电子盘。此电子盘可引导DOS和固化应用程序。

数字I/O接口

4 个TTL数字输入位&4个 Open Collector数字输出位。

(口地址: 294H, 位: 0, 1, 2, 3)

扩展槽

PC/104连接器:为16位总线扩展而设的104脚连接器。

总线接口

一个AT96总线接口和一个COMPACT PCI总线接口。

机械性能和环境

电源电压: +5V(4.75V到5.25V)

- 电源功耗: +5V@4A
- 工作温度: -15℃到60°C

模板尺寸: 233mm×160mm

重量: 0.6Kg

<u>1.3 接线板布局</u>

接线板布局如图1所示

1.4 模板尺寸

模板尺寸如图2所示

二 安装

该节说明了安装APCI5094硬件的过程,包括设置跳线和周边的连接,开关和指示灯。 在使用前请仔细阅读本节。

2.1 跳线器和连接器

在板上的连接器可连接外部设备,诸如硬盘驱动器,键盘或软驱。此外,模板上还有 一些跳线器以供按照自己的应用来配置系统。

下表列出了板上跳线器和连接器的功能:

跳线器和连接器	
名称	功能
CN1	以太网连接器
CN4	硬盘连接器
CN5	
KBMS1	PS/2键盘/PS2鼠标连接器
CN7	LCD连接器(D型头)
CN8	电源LED/键盘锁
CN9	红外线连接器
CN10	数字式I/O连接器
CN12	CPLD编程连接器,用户不能使用。
CN13	网络和硬盘LED指示灯连接器
CN14	蜂鸣器和扬声器连接器
CN15	LCD连接器(扁平电缆)
CN16	电源连接器
CN17	辅助电源连接器
CN18和CN21	VGA和打印机连接器
CN19	COM2连接器(扁平电缆)
CN22	COM1连接器(D型头)
CN23	COM2连接器(D型头)
JP2	DOC地址设置
JP3	CMOS清除跳线器
JP4	LCD电压选择
JP5	LCD SHF/ASHF时钟选择
JP11	WATCHDOG设置跳线
JP14	EEPROM写保护跳线器
JP15	电子盘内存地址和I/O口设置跳线器
JP16	电子盘使能跳线器
JP17	电子盘使用芯片(FLASH或EPROM)跳线器
JP18	CPU频率选择跳线器(100M/133M)
JP19	COM2状态设置
J10	Compact PCI 连接器
J11	Compact PCI 连接器2
U20	Disk-On-Chip插座
U71和U59	电子盘PLCC封装插座,可支持32脚FLASH或EPROM芯
	片,其中U71为第一片,是系统盘插座。
SL1	PC104 连接器
SL2	
SW1	电源接头

2. 2 跳线器和连接器的设置

设置跳线器

你可以通过跳线器的设置来配置模板以适应你的应用。跳线器是最简单的电气开关。它由两个 金属脚和一个金属帽(一般由塑料壳保护)组成,可将金属帽跨接在脚上用以连接。"打开(OPEN)" 指去掉金属帽。有时跳线器为三脚,标注为1,2,3。在这种情况下你只能连接脚1和2或2和3。

跳线器设置图解描述如下:

上图左侧图表示两脚跳线器的 1、2 脚短接;中间图表示三脚跳线器的 1、2 脚短接;右侧图表示三 脚跳线器的 2、3 脚短接。

2.3 安全事项

注意: 在接触 CPU 模板前应使人体接地以消除静电。电子设备对静电非常敏感。在任何时候都需使用静电环。不使用时将模板放在可屏蔽静电的袋中。

2. 4 以太网连接器(CN1)

以太网的连接是通过一条适配电缆连接到 APCI5094 的 9 芯插座(CN1)上的。对于 10Base-T RJ-45 的操作而言,适配电缆要求 CN1 是标准的 RJ-45 插座。

以太网连接器	
管脚	信号
1	TX+
2	TX-
3	RX+
4	N/C
5	N/C
6	RX-
7	N/C
8	N/C
9	GND

2. 5 IDE 硬盘驱动器连接器(CN4)

你可以在 APCI5094 的内部控制器上挂两个增强型 IDE 硬盘。模板可连接一个 40 脚的扁平背 负式电缆。这根电缆具有间距为 2.54mm 的 40 脚扁平电缆插头。

连接硬盘

通常,电缆的第1脚为红色或蓝色线,而其它的线为灰色。

1.连接电缆的一端到 CN4,确认电缆的红线(或蓝线)连接的是 CN4 的第一脚,该脚在板上 已标出。

2.电缆的另一端连接到增强型 IDE 硬盘上,缆线一一对应。

与软盘不同的是,你可以对电缆插头任意地进行连接。如果你安装两个硬盘驱动器,就需要通过改 变驱动器上的跳线来设定一个为主盘,另一个为从盘。如果只安装一个驱动器,那么设置它为主盘。 **管脚定义**

IDE 连接器 (CN4)					
管脚	信号	管脚	信号		
1	Reset	2	GND		
3	D7	4	D8		
5	D6	6	D9		
7	D5	8	D10		
9	D4	10	D11		
11	D3	12	D12		
13	D2	14	D13		
15	D1	16	D14		
17	D0	18	D15		
19	GND	20	NC		
21	NC	22	GND		
23	IOW	24	GND		
25	IOR	26	GND		
27	IORDY	28	NC		
29	NC	30	GND		
31	IRQ 14	32	-I/O CS16		
33	A1	34	NC		
35	A0	36	A2		
37	CS0	38	CS1		
39	-ACT	40	GND		
41	+5V	42	+5V		
43	NC	44	GND		

下表中列出了管脚号及其相应信号:

2.6 软驱连接器(CN5)

你可以在APCI5094的板上控制器上挂两个软驱。软驱可以是5.25"(360KB和1.2KB)和/或3.5 " (720KB, 1.44MB, 2.88MB)。

APCI5094 CPU可连接一个34脚菊花链式驱动器连接电缆。电缆的一端是34脚扁平电缆插 头。有两个软驱插头,一个在中间,另一个在一端。每个插头包括一个34脚的扁平电缆插 头(通常用于3.5"驱动器)和一个打印电路板插头(通常用于5.25"驱动器)。

连接软驱

1.将34脚扁平电缆插头插入CN5连接器。

2. 电缆的另一端插在软驱上。你可以仅用一个插头。电缆上有扭曲的插头连接的是A: 盘, 3. 另一个连接的是B: 盘。

管脚定义

下表列出了CN5连接器的管脚定义:

软驱连接器(CN5)						
管脚	信号	管脚	信号			
1~33(奇)	GND	2	High density			
4	+5V	6	High density			
8	Index	10	Motor enable A			
12	Driver select B	14	Driver select A			
16	Motor enable B	18	Direction			
20	Step pulse	22	Write data			
24	Write enable	26	Track 0			
28	Write protect	30	Read data			
32	Select head	34	Disk change			

2.7 LCD 连接器(CN7)

LCD连接器是一个44脚的D型头,其信号定义如下图所示。同时,CN15(简距为2MM的扁 平电缆连接器)也是LCD连接器,CN5的管脚和CN7的管脚是一一对应的。

Pin	Signal	Pin	Signal
1	+12 V DC	2	+12 V DC
3	GND	4	GND
5	Vcc(+5V/+3.3V)	6	Vcc(+5V/+3.3V)
7	ENA VEE	8	GND
9	P0	10	P1
11	P2	12	P3
13	P4	14	P5
15	P6	16	P7
17	P8	18	P9
19	P10	20	P11
21	P12	22	P13
23	P14	24	P15
25	P16	26	P17
27	P18	28	P19
29	P20	30	P21
31	P22	32	P23
33	GND	34	GND
35	SHFCLK	36	FLM (V SYS)
37	Μ	38	LP (H SYS)
39	GND	40	ENABKL
41	NC	42	SHFCLK /ASHFCLK
43	NC	44	NC

2. 8 键盘和PS/2鼠标连接器(KBMS1)

主板上提供了一个键盘连接器,支持PS/2键盘和PS/2鼠标。在许多情况下,尤其是在嵌入式应用中,键盘是不需要的。标准的PC/AT BIOS在系统复位后的上电自检中,当键盘不存在时会报错或失败。主板BIOS前期设置菜单允许你选择"系统键盘"是"存在"还是"不存在"。这样在嵌入式系统应用中键盘不存在时POST(上电自检)不会引起系统停机。 PS/2 Keyboard & Mouse (KBMS1)

Pin	Signal	Pin	Signal
1	KB DATA	7	MŠ DATA
2	N/C	8	N/C
3	GND	9	GND
4	KB Vcc	10	MS Vcc
5	KB CLOCK	11	MS CLOCK
6	N/C	12	N/C

2.9 电源LED和键盘锁(CN8)

你可以连接一个LED来显示CPU卡在工作。CN8的脚1提供了LED 的电源;脚3是地。 你可以用一个开关(或一个锁)来锁住键盘。在这种状态下,PC对任何输入均无反应。 当你不想让别人改变或停止运行程序时这一性能十分有用。只需连接开关的第4和5脚。管 脚定义如下所示:

有源LED和键盘锁(CN8)					
管脚	功能				
1	LED 电源				
2	NC				
3	GND				
4	键盘锁				
5	GND				

2. 10 红外线连接器(CN9)

保留红外线连接器(CN9)

管脚	功能	
1	Vcc	
2	FIR_RX	
3	IR_RX	
4	GND	
5	IR_TX	

<u>2. 11 数字式I/O连接器(CN10)</u>

APCI5094上的数字式I/O接口提供了4 个TTL输入位和4 个Open-Collector输出位。下表列出了CN10的管脚定义:

数字式I/O(D	数字式I/O(DIO)连接器(CN10)						
管脚	功能						
1	TTL输入位0						
2	OC输出位0						
3	TTL输入位1						
4	OC输入位 1						
5	TTL输入位 2						
6	OC输出位2						
7	TTL输入位 3						
8	OC输出位3						
9	+5V						
10	GND						

2. 12 网络和硬盘LED指示灯(CN13)

以太网连接信号LED(CN13, 1-2) 持续点亮LED显示了APCI5094及其相应的HUB间的连接正常。 以太网有效信号LED(CN13, 3-4) 闪烁的LED显示了APCI5094正在传送或接收数据。 HDD LED(CN13, 5-6) 闪烁的LED显示了APCI5094正在访问硬盘。 下表列出了CN13的管脚定义:

LED显示/硬件复位(CN13)				
管脚	信号			
1	LAN 连接			
2	+5V			
3	LAN 有效			
4	+5V			
5	HDD LED			
6	+5V			
7	保留			
8	GND			

2. 13 蜂鸣器或外部扬声器(CN14)

CPU 卡有自己的蜂鸣器。你可以不使用内部的蜂鸣器而连接一个外部的扬声器到CN14上。 外部扬声器有效的时候,内部蜂鸣器自动无效。各引脚功能如下:

蜂鸣器或外部扬声器(CN14)												
*蜂鸣	器			外部扬声器								
1	2	3	4	1	2	3	4	1	2	3	4	
۰.	•	9	•		•	•	•	•	•	•	0)
				1								

*默认值

蜂鸣器或外部扬声器(CN14)				
管脚	功能			
1	Vcc			
2	扬声器输出			
3	蜂鸣器输入			
4	扬声器输出			

2. 14 LCD 连接器 (CN15)

该模板具有一个LCD 连接器 (CN15),可允许你连接各种各样的平板显示器。下表列出了 CN15 的管脚定义:

LCD i	LCD 连接器 (CN15)				
管脚	信号	管脚	信号		
1	+12Vdc	2	+12Vdc		
3	GND	4	GND		
5	Vcc (+5V/+3.3V)	6	Vcc(+5V/+3.3V)		
7	ENA VEE	8	GND		
9	PO	10	P1		
11	P2	12	P3		
13	P4	14	P5		
15	P6	16	P7		
17	P8	18	P9		
19	P10	20	P11		
21	P12	22	P13		
23	P14	24	P15		
25	P16	26	P17		
27	P18	28	P19		
29	P20	30	P21		
31	P22	32	P23		
33	GND	34	GND		
35	SHFCLK	36	FLM(V SYS)		
37	М	38	LP(H SYS)		
39	GND	40	ENABKL		
41	NC	42	nSHFCLK/ ASHFCLK		
43	NC	44	NC		

2. 15 电源连接器(CN16, CN17)

电源连接器(CN16 CN17)信号定义如下图所示,此电源连接器是为了不使用母板也可以用 PC电源测试APCI5094 CPU板。

PIN	SIGNAL
1	N/C
2	+5V
3	+12V
4	-12V
5	GND
6	GND
7	GND
8	GND
9	-5V
10	+5V
11	+5V
12	+5V

2. 16 VGA和打印机 连接器(CN18, CN21)

并口 (CN18)

通常并口是用来连接打印机的。APCI5094板包括板上并行通信口CN18,CN18是一个DB25 芯电缆插座。

并行通信口 (CN8)				
管脚	信号	管脚	信号	
1	Strobe	14	-Auto feed	
2	Data 0	15	-Error	
3	Data 1	16	-Init printer	
4	Data 2	17	-Select input	
5	Data 3	18	GND	
6	Data 4	19	GND	
7	Data 5	20	GND	
8	Data 6	21	GND	
9	Data 7	22	GND	
10	-Acknowledge	23	GND	
11	Busy	24	GND	
12	Paper empty	25	GND	
13	+Select			

APCI5094 CPU卡的PCI总线的SVGA 连接器(CN21)支持黑白显示器及高色彩图形分辨显示器。

SVGA i	SVGA 连接器 (CN21)				
管脚	信号	管脚	信号		
1	红	9	Key(空脚)		
2	绿	10	同步返回(GND)		
3	蓝	11	监示器ID号(未用)		
4	未用	12	监示器ID号(未用)		
5	GND	13	垂直同步		
6	GND	14	水平同步		
7	GND	15	未用		
8	GND	16	NC		

2. 17 COM2扁平电缆接口(CN19)

主板上提供了2个串行通信口:1个RS-232和1个RS-232/422/485。可以用来连接串行设备(鼠标,打印机等等)。

COM2 RS232/422/485串行通信口(CN19)

	管脚	信号	管脚	信号
COM2	1	DCD2 (422TXD-/485DATA-)	2	DSR2
	3	RXD2 (422TXD+485DATA+)	4	RTS2
	5	TXD2 (422RXD+)	6	CTS2
	7	DTR2 (422RXD-)	8	RI2
	9	GND		NC

<u>2. 18 串口 (CN22、CN23)</u>

主机提供了两个串行通讯口。APCI5094板包括板上串行通信口CN22和CN23,CN22和CN23

是DB9芯电缆插座。下表列出了CN22和CN23 的管脚定义: COM1 (CN22)

Pin	Signal	Pin	Signal
1	DCD1	6	DSR1
2	RXD1	7	RTS1
3	TXD1	8	CTS1
4	DTR1	9	RI1
5	GND	10	N/C

COM2(CN23)

Pin	Signal	Pin	Signal
1	DCD2	6	DSR2
2	RXD2	7	RTS2
3	TXD2	8	CTS2
4	DTR2	9	RI2
5	GND	10	N/C

2.19 AT 96 pin CONN.(U47)

主机提供了1个AT96总线插头(U47),U47是一个3X32芯插头,其引脚定义如下表。

PIN	Α	В	С
1	GROUND	SBHE	IOCHCK
2	RESET	MEMCS16	SD7
3	+5VOLT	LA23	SD6
4	IRQ9	IOCS16	SD5
5	-12VLOT	LA22	SD4
6	DRQ2	IRQ10	SD3
7	-5VOLT	LA21	SD2
8	OWS	IRQ11	SD1
9	POWER 12V	LA20	SD0
10	GROUND	IRQ12	IOCHRDY
11	SNEMW	NC	AEN
12	SMEMR	IRQ15	SA19
13	IOW	NC	SA18
14	IOR	NC	SA17
15	DACK3	NC	SA16
16	DRQ3	DACK0	SA15
17	DACK1	MEMR	SA14
18	DRQ1	DRQ0	SA13
19	REF	MEMW	SA12
20	CLK	DACK5	SA11
21	IRQ7	SD8	SA10
22	IRQ6	DRQ5	SA9
23	IRQ5	SD9	SA8
24	IRQ4	DACK6	SA7
25	IRQ3	SD10	SA6
26	IRQ2	DRQ6	SA5
27	TC	SD11	SA4
28	ALE	SD12	SA3
29	+5VOLT	SD13	SA2
30	OSC	SD14	SA1
31	GROUND	SD15	SA0
32	DRQ7	MASTER	DACK

_2.20 APCI总线COMPACT PCI连接器信号定义

主机提供了1个COMPACT PCI总线插头(J10、J11), J10是一个5X25芯插头, J11是一个5X22 芯插头, 其引脚定义如下表。

, О. IШ X ()	24 JUN 4							
22	GND	NC	NC	NC	NC	NC	GND	
21	GND	NC	NC	NC	NC	NC	GND	
20	GND	NC	NC	NC	NC	NC	GND	
19	GND	NC	NC	NC	NC	NC	GND	
18	GND	NC	NC	NC	NC	NC	GND	
17	GND	NC	NC	NC	NC	NC	GND	
16	GND	NC	NC	NC	NC	NC	GND	
15	GND	NC	NC	NC	NC	NC	GND	J11
14	GND	NC	NC	NC	NC	NC	GND	
13	GND	NC	NC	NC	NC	NC	GND	
12	GND	NC	NC	NC	NC	NC	GND	
11	GND	NC	NC	NC	NC	NC	GND	
10	GND	NC	NC	NC	NC	NC	GND	
9	GND	NC	NC	NC	NC	NC	GND	
8	GND	NC	NC	NC	NC	NC	GND	
7	GND	NC	NC	NC	NC	NC	GND	
6	GND	NC	NC	NC	NC	NC	GND	
5	GND	NC	NC	NC	NC	NC	GND	
4	GND	NC	NC	NC	NC	NC	GND	
3	GND	CLK4	GND	GNT3#	REQ4#	GNT4#	GND	
2	GND	CLK2	CLK3	NC	GNT2#	REQ3#	GND	
1	GND	CLK1	GND	REQ1#	GNT1#	REQ2#	GND	
25	GND	5V	NC	NC	3.3V	5V	GND	
24	GND	AD[1]	5V	NC	AD[0]	NC	GND	
23	GND	3.3V	AD[4]	AD[3]	5V	AD[2]	GND	
22	GND	AD[7]	GND	3.3V	AD[6]	AD[5]	GND	
21	GND	3.3V	AD[9]	AD[8]	NC	C/BE[0]#	GND	
20	GND	AD[12]	GND	NC	AD[11]	AD[10]	GND	
19	GND	3.3V	AD[15]	AD[14]	GND	AD[13]	GND	
18	GND	SERR#	GND	3.3V	PAR	C/BE[1]#	GND	14.0
17	GND	3.3V	NC	NC	GND	PERR#	GND	J10
16	GND	DEVSEL#	GND	NC	STOP#	LOCK#	GND	
15	GND	3.3V	FRAME#	IRDY#	GND	TRDY#	GND	
12-14		KEY AR	ĒA					
11	GND	AD[18]	AD[17]	AD[16]	GND	C/BE[2]#	GND	
10	GND	AD[21]	GND	3.3V	AD[20]	AD[19]	GND	
9	GND	C/BE[3]#	IDSEL	AD[23]	GND	AD[22]	GND	
8	GND	AD[26]	GND	NC	AD[25]	AD[24]	GND	
7	GND	AD[30]	AD[29]	AD[28]	GND	AD[27]	GND	
6	GND	REQ#	GND	3.3V	CLK	AD[31]	GND	
5	GND	NC	NC	RST#	GND	GNT#	GND	
4	GND	NC	GND	NC	NC	NC	GND	
3	GND	INTA#	INTB#	INTC#	5V	INTD#	GND	
2	GND	NC	5V	NC	NC	NC	GND	
1	GND	5V	-12V	NC	+12V	5V	GND	
PIN	Z	A	В	С	D	E	F	

2.21 Reset switch (SW1)

主机提供了一个复位按钮SW1,它的定义如下。

引脚	信号
1	GND
2	DRST

2.22 DOC地址设置(JP2)

DiskOnChip 2000 在上位内存区占有8KB的窗口,范围从CE000到CFFFF。你必须确认 它不和其他设备的内存地址相冲突。JP2控制DOC的内存地址选择。

DOC	地址设置	置(JP2)							
	*CE00)		D000			D400		
2	4	6	2	4	6	2	4	6	
•	•	•	•	•	•	•	•	•	
	•			•			•	•	
	•	•						•	
1	3	5	1	3	5	1	3	5	
	D800			DC00			E000		
2	4	6	2	4	6	2	4	6	
•	0	0		•	•		•	•	
_	•	•							
				•	•		•	•	
1	3	5	1	3	5	1	3	5	

因为DC00和E000这两个地址分别被显示BIOS和系统BIOS所占用,所以用户最好不要选择 这两个地址,否则会发生地址冲突。一般情况下,选择缺省值CE00作为DOC的地址。 *默认值

2. 23 CMOS清除跳线器(JP3)

你可以通过设置JP3来选择是否清除CMOS。如下配置:

CMO	CMOS清除跳线器(JP3)							
*Nori	mal			Clear	CMOS			
1	2	3	1	2	3			
۰.	•	•	. • .	•	•			

*默认值

2.24 LCD 液晶屏电压设置(JP4)

你可以通过设置JP4来选择LCD 连接器(CN15, CN7)驱动电压。配置如下:

LCD	LCD 板电压设置 (JP4)								
	3.3V			*5V					
1	2	3	1	2	3				
۰.	•	•	•	•	•				

*默认值

2.25 LCD SHF/ASHF 时钟选择(JP5)

你可以通过设置JP5来选择LCD 控制信号。下图所示为有用操作。

LCD S	LCD SHF/ASHF 时钟选择(JP5)							
*SHF (CLK FRO	M C&T65550		ASHF CLK				
1	2	3	1	2	3			
	•	•	۰.	•	•			

*默认值

2.26 WATCHDOG跳线器(JP11)

你可以通过设置JP11来选择WDT的设置。下图所示为有用操作。

WATCHDOG跳线器(JP11)

1-2短	接软件	不能关闭 WDT	2-3 短接允许软件关闭WDT
1	2	3	1 2 3
. • .	0	•	

<u>2.27 EEPROM写保护跳线器(JP14)</u>

你可以通过设置JP14来选择是否采用EEPROM写保护方式。下图所示为有用操作。

EEPROM写保护跳线器(JP14)								
*Write protect Normal								
1 2	3	1	2	3				
	•	÷.	•	•				
	3	1	2 •	3				

*默认值

2.28 电子盘内存地址和I/O地址跳线器(JP15)以及设置其盘号为A:或B:

你可以通过设置JP15来选择FLASH电子盘内存地址和I/O地址信号并且可以设置FLASH电子盘为A盘或为B盘。下图所示为有用操作。

C8000	CA000	*CC000
3 • • 4	3 9 9 4	3 • • 4
1 🖸 💿 2		1 💽 💿 2

26C/26D *22C/22D		2DC/2DD
7 \star \star 8	7 \bullet \bullet 8	7 \bullet \bullet 8
⁵ • • ⁶	5 \bullet \bullet 6	5 💿 💿 6

Setting I	Flashdisk	Set	ting	Flas	hdisk
is A DI	SK	is	В	DISK	
11	1 2	11	0	0	12
9	10	9	~	Ä	10
•	•		U.		

*默认值

C8000和CA000为显示BIOS,用户最好不要选用。

2.29 电子盘使能跳线器 (JP16)

你可以通过设置JP16来选择电子盘使能控制信号。下图所示为有用操作。

电子盘的	电子盘使能跳线器(JP16)								
*Enable	*Enable Flash Disk Disable Flash Disk								
2 4	6	8		2	4	6	8		
	•	•			•	•	•		
	•	•		۰.	•	•	Θ		
1 3	5	7		1	3	5	7		

*默认值

2.30 电子盘芯片选择跳线器 (JP17)

你可以通过设置JP17来选择电子盘所用芯片。下图所示为有用操作。

电	电子盘芯片选择跳线器(JP17)										
*1]	MB I	Flash		1MB	EPRO	DM		1MB	Fla	sh	
1	2	3	4	1	2	3	4	1	2	3	4
	0	•	•	. • .	•	•	•	•	0	0	•

*默认值

注:如选择1M的FLASH盘,JP17的1-2短接,3-4短接。如选择1M的EPROM盘,JP17的2-3 短接。

2.31 CPU频率选择跳线器(JP18)

你可以通过设置JP18来选择CPU频率。下图所示为有用操作。

CPU切	CPU频率选择跳线器(JP18)								
Am486DX4-100 *Am486DX5-133									
1	2	3	1	2	3				

*默认值

2.32 COM2 RS-232/422/485 选择跳限器(JP19)

板上串口COM2可配置为RS-232, RS-422或RS-485。

设置如下:

*RS232			RS422		RS485			
1	2	3	1	2	3	1	2	3
	•	•		•	۲		0	•

2.33 DiskOnChip插座(U20)

DiskOnChip 2000系列产品提供了标准32脚DIP封装的单片固态flash盘。DiskOnChip 2000是一种没有活动部件的固态盘,这就使其减少了功耗并增加了可靠性。DiskOnChip 2000 是一个很小的即插即用的Flash盘。它应用十分方便并且节约开支。

DiskOnChip 2000系列产品可用容量从2MB到72MB,未格式化。为了管理好该盘, DiskOnChip 2000包含了M-Systems公司Flash文件系统专用软件TrueFFS。DiskOnChip 2000 封装与标准的32脚EPROM芯片兼容。

2.34 FLASH电子盘插座(U71, U59)

APCI5094支持1MB FLASH或EPROM电子盘,采用两片512KB的FLASH芯片或 EPROM芯片。U71为第一片,作为MSDOS系统文件及应用程序的存放区。U59为第二片, 作为应用程序的存放区。如果用户的应用程序很小,也可只插U71,而不插U59。此时,用 户的系统文件和应用程序的总和不能超过512KB。电子盘的二进制映象文件的生成和在线 FLASH盘的更新见附录E。

三 Award BIOS设置

该节描述了如何配置APCI5094的BIOS。 3.1 系统设置和初始化 常规测试和初始化模板硬件。如果在测试中遇到错误,你将听到短的哔哔声或在显示 器上看到错误信息。有两种错误:致命和非致命。系统常常在非致命错误出现后继续操作。 非致命错误信息通常在屏幕上和下面语句一起出现:

press <F1> to RESUME

记下错误信息并按下F1键继续操作。

系统配置确认

常规检查当前系统的配置也就是检查存储在模板上CMOS存储器里的值。如果这些值 不匹配,则出现错误信息。这时你需要运行BIOS设置程序来重新设定在存储器里的配置信 息。

在三种情况下你需要改变COMS设置:

- 1. 第一次启动系统。
- 2. 为了系统而改变过硬件。
- 3. CMOS掉电,配置信息被删除。

3. 2 Award BIOS setup (Award BIOS 设置)

进入设置

机器上电时立即按下进入主菜单(如下所示)。

ROM PCI/ISA BIOS (2A4KDAK9) CMOS SETUP LITULITY				
AWARD SOFTWARE, INC.				
STANDARD CMOS SETUP	PASSWARD SETTING			
BIOS FEATURE SETUP	IDE HDD AUTO DETECTION			
CHIPSET FEATURE SETUP	HDD LOW LEVEL FORMAT			
POWER MANAGEMENT SETUP	SAVE & EXIT SETUP			
PCI CONFIGURATION SETUP	EXIT WITHOUT SAVING			
LOAD BIOS DEFAULTS				
LOAD SETUP DEFAULTS				
Esc : Quit : Select Item F10 : Save & Exit Setup (Shift)F2 : Change Color				
Time, Date, Hard Disk Typesymbol 188 \f "Symbol" \s 10.5斜				

Award的BIOS ROM具有一个内置的设置实用菜单,可让用户修改基本系统配置。信息存放在DS1687-A中,因此当掉电时,信息仍可保存。

Setup屏幕上具有在线帮助:按下F1进入帮助。

3. 3 Standard COMS setup (标准COMS 设置)

当你从主菜单中选择STANDARD CMOS SETUP 操作时,屏幕上将显示如下菜单。标 准设置菜单可以使用户对日期、时间、硬驱、软驱、显示和存储器进行配置。按F1可获得 帮助。

ROM PCI/ISA BIOS (24 STANDARD CMOS SET	A4KDAK9) UP
AWARD SOFTWARE,	INC.
Date (IIIII: dd: yy): Moli. Nov 29 1999	
11me(nn: mm: ss) : 15: 49: 55	
CYLS. HEADS PR	ECOMP LANDZONE SECTORS MODE
Driver C: User (4310b) 524 255	0 8353 63 LBA
Driver D: None $(0b)$ 0 0	0 0 0
Driver A: 1.44M, 3.5 in.	
Driver B: None	
	Base Memory : 640K
LCD&CRT: Both	Extended Memory : 31744K
Panel : 640X480 18BIT TFT	Other Memory : 384K
Halt On : All Errors	Total Memory : 32768K
Esc : Quit : Select Item	PU/PD/+/- : Modify
F1 : Help (Shift)F2 : Ch	nange Color

日期和时间配置(Data and Time Configuration)

在Standard setup 中选择Data 和Time。显示每一项的当前值,用键盘键入新值。

硬盘驱动器C,硬盘驱动器D(Hard C, Hard D)

选项为User/Auto/None,当选择User方式时,用户可以选择硬盘的柱面,头和扇区;若 为Auto方式时,则自动寻找;None方式表示无此硬盘。

软驱A,软驱B (Floppy A, Floppy B)

选择适当的规格来配置系统所连接的软驱: 360KB 5.25″, 1.2MB 5.25″, 720KB 3.5″, 1.44MB 3.5″和2.88MB 3.5″。

LCD&CRT

在显示选择条中,你可以用PageUp / PageDown 键来选择Both,LCD,CRT或Auto。 **Pannel:**

Pannel选项允许用户选择LCD BIOS来配置LCD 型号。有8种LCD 型号可供用户选择作为LCD 显示模式:

Brand name	Model name	Format
Sharp	LX 15×80	1024×768 DSTN
Sharp	LM 64183P	640×480 MONO
Sharp	LM 64C35P	640×480 DSTN
Sharp	LM 12S40	800×600 DSTN
NEC	NL 6448AC33-10	640×480 TFT(12 bits)
Toshiba	LTM 10C209A	640×480(18 bits)TFT

NEC	NL 8060AC26-04	800×600 TFT
Sharp	14×03	1024×768 TFT(36 bits)

<u>3. 4 BIOS features setup(BIOS 特性设置)</u>

从主菜单中选择BIOS FEATURES SETUP操作, 屏幕上将显示如下菜单。所显示的配置 是基于出厂时的SETUP DEFAULTS设置的。

ROM PCI/ISA BIOS (2A4KDAK9)					
BIOS FEATURES SETU	BIOS FEATURES SETUP				
AWARD SOFTWARE,	INC.				
Virus Warning: DisabledCPU Internal Cache: EnabledExternal Cache: DisabledQuick Power On Self Test: EnabledBoot Sequence: A, CSwap Floppy Driver: DisabledBoot Up Floppy Seek: DisabledBoot Up Numlock Status: OnBoot Up System Speed: HighGate A20 Option: NormalMemory Parity Check: DisabledSecurity Option: Setup	Video BIOS Shadow: Enabled C8000—CFFFF Shadow: Disabled D0000—D7FFF Shadow: Disabled D8000—DFFFF Shadow: Disabled VGA Display Priority : PCI Slot				
PS/2 mouse function control: Enabled	ESC : Quit : Select Item F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift)F2 : Color F6 : Load BIOS Defaults F7 : Load Setup Defaults				

Virus Warning(病毒警告)

当Virus Warning被允许时,Award BIOS将监控引导区并且使得硬盘驱动器的分区表不被修改。如果出现修改企图,BIOS将暂停系统并且显示如下错误信息。然后,你可以在破坏发生前运行一个反病毒程序来找出或除去问题。

! WARNING !

Disk boot sector is to be modified

 $Type " \ Y " \ to \ accept \ write \ or " \ N " \ to \ abort \ write$

Award software, Inc.

CPU Internal Cache/External Cache (CPU内部/外部高速缓冲存储器)

在这两项中,如果为enabled,可以提高存储器访问速度。然而它是依赖于CPU/chipset 的设计。

Quick Power On Self Test (快速上电自检)

该项可提高上电自检(POST)速度,如果设置为Enabled,BIOS将在POST时缩短或跳 过一些检查项。

Boot Sequence (引导顺序)

该项决定了操作系统最先寻找哪个驱动器。

Swap Floppy Drive (交换软驱)

该项允许你交换软驱,使得在DOS下驱动器A:和驱动器B:可以交换。默认值为 Disabled。

Boot Up Floppy Seek (引导时的软盘寻道)

在POST时,BIOS将确定软驱是40磁道还是80磁道。360KB的软驱是40磁道而760KB, 1.2MB和1.44MB的软驱都是80磁道的。

Boot Up NumLock Status (引导时NumLock的状态)

该项允许你确定在与IBM可兼容的扩展键盘上数字键区的默认值。

Boot Up System Speed (引导系统速度)

允许确定引导速度。选项为High/Slow。

Gate A20 Option (通道A20选项)

该项允许你选择如何操作A20通道。通道A20是用来寻址1MB以上内存的命令。起初, A20是通过键盘上的一个键来操作的。现在,键盘仍然提供这种支持,而更普遍更迅速的操 作是用系统套片提供的对A20的支持。选项为Normal和Fast。

Security Option (安全选项)

该项允许你限制对系统的访问。选项为System:在引导前要求密码,Setup:仅仅在访问setup utility时要求密码。

Video BIOS Shadow(视频BIOS影像)

决定是否将视频显示卡BIOS拷贝到系统DRAM中以便提高显示速度以及由于系统性能的要求而拷贝。然而,这是可以依靠套片的设计来选择的。默认值为Enabled。

Shadowing Address Ranges (影像地址范围)

从C8000-CBFFF Shadow到DC000-DFFFF Shadow是影像其他扩展模板ROMs的地址范 围。如果在你的系统中安装了一些具有ROMs的扩展模板,你就必须知道它们所用的地址范 围以便明确地对其进行影像。默认设置为Disabled。

<u>3.5 CHIPSET features setup(套片特性设置)</u>

选择主菜单里的CHIPSET FEATURES SETUP操作,屏幕将显示如下。所显示的配置是 厂家的SERUP DEFAULTS 设置值。

ROM PCI	/ISA BIOS (2	A4KDAK9)
CHIPSE	ET FEATURES SH	ETUP
AWARD	SOFTWARE,	INC.
Auto Configuration	: Enabled	Solid State Disk : Disabled
AT-BUS Clock	: CLK/4	KBC input clock : 8 MHz
DRAM Read Timing	: Normal	Onboard FDC Controller : Enabled
DRAM Write Timing	: Normal	Onboard Serial Port 1 : 3F8/IRO4
SRAM Read Timing	: 3-1-1-1	Onboard Serial Port 2 : 2F8/IRQ3
SRAM Write Timing	: 0 Wait	UART Mode Select : Normal
C C		
Hidden Refresh	: Disabled	Onboard Parallel Port : 378/IRQ7
ISA I/O Recovery	: Disabled	Parallel Port Mode : SPP
Fast-Back-to-Back	: Disabled	
On-Chip Local Bus IDE	: Enabled	
IDE Buffer for DOS &	Win : Disabled	
IDE HDD Block Mode	: Enabled	
IDE Primary Master PIO	: Auto	ESC : Quit : Select Item
IDE Primary Slave PIO	: Auto	F1 : Help PU/PD/+/- : Modify
		F5 : Old Values (Shift)F2 : Color
		F6 : Load BIOS Defaults
Boot ROM	: Disabled	F7 : Load Setup Defaults

这一部分内容允许你基于所安装套片的具体特性来配置系统。套片控制了总线速度和 访问系统内存资源,如DRAM和外部高速缓存。它也同样可以连接传统的ISA总线和PCI总 线。需要说明的是这些设置基本上不需要修改。因为这些默认设置为你的系统提供了最好 的操作环境。只有当运用你的系统时发现数据丢失才需要改变设置。

Solid State Disk 电子盘使能选项,如果你要使用电子盘,此选项必需设置为 ENABLED。

由于一些选项的复杂性和技术性,在此不再描述。

<u>3. 6 Power management setup</u>(电源管理设置)

选择主菜单里的POWER MANAGEMENT SETUP选项,屏幕将显示如下菜单。所显示的配置是厂家的SETUP DEFAULTS 设置值。

ROM PCI/ISA BIOS (2A4KDAK9) POWER MANAGEMENT SETUP				
AWAI	RD SOFTWARE, INC.			
Power Management PM Control by APM Video off Option Video off Method MODEM Use IRQ **PM Timers** HDD Power Down Doze Mode Standby Mode Suspend Mode	 : Disable : Yes : Susp, Stby-> off : DPMS Support : 3 : Disable : Disable : Disable : Disable : Disable : Disable 	IRQ5(LPT 2): ONIRQ6(Floppy Disk): ONIRQ7(LPT 1): ONIRQ8(RTC Alarm): OFFIRQ9(IRQ2 Redir): ONIRQ10(Reserved): OFFIRQ11(Reserved): OFFIRQ12(PS/2 Mouse): ONIRQ13(Coprocessor): OFFIRQ14(Hard Disk): ONIRQ15(Reserved): OFF		
PM Events				
VGA	: OFF			
FDD(3FXh)	: ON			
LPT & COM	: LPT/COM	ESC : Quit : Select Item		
HDD(1FXh)	: OFF	F1 : Help PU/PD/+/- : Modify		
NMI	: OFF	F5 : Old Values (Shift)F2 : Color		
IRQ3 (COM 2)	: UN	F6 : Load BIOS Defaults		
IRQ4 (COM 1)	: ON	F7 : Load Setup Defaults		

Power Management (电源管理)

电源管理项使你可以当计算机不在使用时通过设置系统为最大电源节省模式而使计算 机处于节电状态。电源管理设计了4个系统状态,依此顺序执行:

Normal→Doze→Standby→Suspend

Power Management (PM) 中有四个选项:

Disabled 关闭PM

Max Saving 在一分钟系统休止状态后启动最大电源节省设置的最大电源节省模式

Min Saving 在一个小时系统休止状态后启动中级电源节省设置的较小电源节省模式

User Defined 你可以手动设置电源节省选择

PC control by APM (APM对PC的控制)

设置为Yes, Microsoft Windows里的Advanced Power Management特性控制电源管理操作。默认值为No。

Video Off Option(视频关闭选项)

用户可以选择4种不同的模式来关闭视频。这些模式是计算机PM模式的一种功能。选 项为All Modes→Off, Always On, Suspend→Off和Susp, Stby→Off。

PM Mode	Monitor Behavior
All Modes	Off
-	Always On
Suspend	Off
Susp, Stby	Off

下表概括了四种PM模式与监视器动作的联系:

例如,如果你选择了Suspend→Off,那么如果当计算机处于Suspend PM模式下时监视器将 关闭。

Video Off Method (视频关闭方法)

该项通过控制如何使电源管理监视器无效来管理监视器电源节省。默认值为设置屏幕 无效并关闭垂直和水平扫描以及要求监视器具有"绿色"特性。如果你没有这种型号的监 视器,请用Blank选项。DPMS(显示电源管理系统)BIOS来控制具有DPMS特性的视频显 示模板。

V/H SYNC+Blank	(默认)
BLANK	(没有绿色的显示器,较少节省)
DPMS	(显示模板必须支持DPMS)

Modem Use IRQ

如果你在系统中安装了一个modem,你必须输入它所用的IRQ以便APM可以控制它。 HDD Power Down(HDD 关电)

当该项有效时和在选择系统休止时间后,硬盘关电而其他的设备仍有效。

Doze Mode (Doze 模式)

该项设置了系统进入Doze 模式后系统休止周期,最大限度电源节省状态。设置范围从 10秒到1小时,并且当电源管理处于User Define 模式时可以手动设置。默认值为Disable。 当系统进入电源节省模式时,电源管理将在disable时跳过下一个模式。

Standby Mode (Standby 模式)

该项设置了系统进入Standby 模式后系统休止周期,中等限度电源节省状态。设置范围 从10秒到1小时,并且当电源管理处于User Define 模式时可以手动设置。默认值为Disable。 当系统进入电源节省模式时,电源管理将在disable时跳过下一个模式。

Suspend Mode (Suspend 模式)

该项设置了系统进入Suspend 模式后系统休止周期,最大限度电源节省状态。设置范 围从10秒到1小时,并且当电源管理处于User Define 模式时可以手动设置。默认值为 Disable。当系统进入电源节省模式时,电源管理将在disable时跳过下一个模式。

PM Events (PM 事件)

PM事件是I/O事件,它可以避免系统进入电源节省模式或在一个模式里唤醒系统。有用的是,系统对任何配置为Enabled设备上发生的事件保持警惕,即使在系统处于掉电模式时仍然如此。

当一个I/O设备希望引起操作系统的注意时,它通过产生一个IRQ(中断请求)来发出 信号。当操作系统准备好对此请求作出响应时,系统会中断其他操作来执行该设备。以下 是可屏蔽的IRQ:

COM口有效 LPT口有效 HDD口有效 VGA有效 IRQ3(COM2) IRQ4(COM1) IRQ5(LTP2) IRQ6(软盘) IRQ7(LPT1) IRQ8(RTC警报) IRQ9(IRQ2 重定向) IRQ10(保留) IRQ11(保留) IRQ12(PS/2鼠标) IRQ13(协处理器) IRQ14(硬盘) IRQ15(保留)

<u>3.7 PCI configuration setup(PCI配置设置)</u>

从主菜单中选择PCI CONFIGURATION SETUP 选项, 屏幕将显示如下菜单。所显示的 配置是厂家的SETUP DEFAULTS 设置值。

ROM PCI/ISA BIOS (2A4KDAK9) PCI CONFIGURATION SETUP AWARD SOFTWARE, INC.					
PnPBIOSAuto-Config: DisabledSlot 1 UsingINT#: AUTOSlot 2 UsingINT#: AUTO	CPU to PCI Write Buffer : Disabled CPU to PCI Byte Merge : Disabled PCI to DRAM Buffer : Disabled				
1st Available IRQ : 10 2st Available IRQ : 11					
3st AvailableIRQ: 124st AvailableIRQ: 9PCI IRQ Actived By: Level	ESC : Quit : Select Item F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift)F2 : Color E6 : Load PLOS Defaults				
PCI IDE IRQ Map To : PCI-SLOT Primary IDE INT : A	F7 : Load Setup Defaults				

这一部分描述了当I/O设备和它的周边元件相连接的时候PCI(周边元件相互联系)总 线系统允许I/O设备的操作速度接近CPU的速度。该部分包括了一些技术性很强的条款,因 此只有一些很熟练的用户可以改变默认设置。

PnP BIOS Auto-Config

Award即插即用BIOS可自动配置所有具有引导和即插即用功能的设备。

然而,只有在你运行诸如WindowsTM 95的即插即用操作系统时才能工作。

Reset Configuration Data(复位配置数据)

该项允许你复位配置数据。

PCI IRQ Activated By (PCI IRQ 有效)

该项设置了PCI总线识别由一个设备提出的IRQ请求的方法。在所有环境下,你应该保 持默认配置,除非厂家建议修改。选项为Level/Edge。

PCI IDE IRQ Map To (PCI IDE IRQ 映射)

该项允许你配置你的系统以适应所用的IDE盘控制器型号。比较明显的不同在于所用的 插槽的型号。

如果你用PCI控制器来装配系统,改变该项可以允许你指定哪个插槽具有控制器和哪个

PCI中断(A,B,C,D)和被连接的硬件驱动器相联系。 该设置由硬盘驱动器自身指定,优于个别的分区。 选择PCI Auto 允许系统自动配置IDE盘系统。

3. 8 Load BIOS defaults/Load setup defaults (下载BIOS默认值/加载设置缺省值)

LOAD BIOS DEFAULTS直接从ROM中加载默认系统值。BIOS DEFAULTS 提供最稳定 的设置,虽然它们不提供最优的性能。而LOAD SETUP DEFAULTS ,从另一方面而言,提 供了最大的系统性能。如果由设置实用程序创建的设置损坏(并因此而不能使用),BIOS 默认值将在APCI5094上电时自动加载。

3.9 设置密码

PASSWARD SETTING为设置密码选项。

3. 10 IDE HDD Auto Detection

IDE HDD AUTO DETECTION为自动寻找硬盘选项。

3. 11 硬盘低级格式化

HDD LOW LEVEL FORMAT为硬盘低级格式化选项。

3.12 保存退出

SAVE & EXIT SETUP为保存退出选项。

3.13 不保存退出

EXIT WITHOUT SAVING为不保存退出选项。

四 平板/CRT控制显示驱动程序和实用程序

本节提供了如下信息:

- 驱动程序范例和安装
- 软件实用程序的安装和使用

4.1 软件驱动程序

该节描述了由Supporting CD-ROM提供的软件驱动程序的操作和安装。

板上VGA适配器是适用于CHIPS VGA平板/CRT控制器的且与IBM VGA 完全兼容。该 控制器提供了一些扩展功能以及较高的图形分辨率。如果你打算只在标准VGA模式下运用 VGA适配器,那么就不需要安装其他的驱动程序了。由于你的VGA 适配器是全兼容的, 因此它不需要任何特殊的驱动程序就可以运行在标准模式下。

附加的软件驱动程序的目的是为了利用CHIPS VGA Flat Panel/CRT控制器的扩展性能。

4.1.1 硬件配置

在软件包里提供的一些高图形分辨率驱动程序只能在特定的系统配置中才能运行。如 果一个程序不能正确显示,试试以下步骤:

3. 改变显示控制器为CRT模式,这样比平板或同时显示模式要好。一些高图形分辨率的驱动程序只能在CRT模式下正确运行。

- 如果你的系统不支持高图形分辨率模式,那么试试运用低图形分辨率模式。比如说,1024
 ×768模式不能在一些系统中工作,而800×600模式就可以。
- 4.1.2 重要事项

本手册里的命令要求你具备MS-DOS和IBM个人计算机的基本概念。当你试图安装驱动 程序或实用程序时,你应该:

•知道如何从CD-ROM上将一个文件拷贝到硬盘的一个目录下

•了解MS-DOS的目录结构

如果你对这些概念不太了解,在你进行安装前请参考DOS或OS/2用户指南以获取更多 信息。

4.1.3 准备工作

在你安装驱动程序前,确认程序的版本。Supporting CD-ROM包含了特定应用程序的几 个版本的驱动程序。为了正确操作你的驱动器,你必须安装适合你的应用程序的驱动器。

4. 2 Windows 95

这些驱动程序适用于Microsoft Windows。你必须通过Windows操作系统来安装它们。 驱动程序安装

- 6. 在VGA显示下安装Windows 95。点击Start按钮,进入Setting并点击Control Panel。选择Display图标并双击该图标。在Display Properties 窗口里,点击Setting项。然后点击Change Display Type。在Change Display Type窗口里,在Adapter Type下点击Change按钮。将出现Select Device 窗口。
- 7. 将Windows 95 Display Driver Diskette放入A驱动器中。在Select Device 窗口里,点击 Have Disk,按下<ENTER>, Chips and Technologies, Inc. Video Controller驱动程序 的名称将在Models列表框中高亮显示。选择Chips和Tech.65550 PCI(新)并点击OK安装 所选择的驱动程序。点击OK安装所选择的驱动程序。
- 8. 一旦安装完成, Change Display Type 窗口将重新出现。点击Close来关闭该窗口。然后 Display Properties 窗口将重新出现。点击Apply。重新启动系统使新设置有效。
- 4. 3 Windows 3.1

这些驱动程序适用于Microsoft Windows 3.1版本。你必须通过Windows操作系统来安装 它们。

驱动软件的安装

- 1. 在VGA显示下安装Windows。
- 2. 将Supporting CD-ROM放入CD-ROM驱动器中。在Windows Program Manager 里,从 Options菜单中选择File。然后从下拉菜单中,选择Run。在Command Line中提示,显示 文件内容。

按下<ENTER>键或点击OK开始安装。

"cd-rom:":你的CD-ROM驱动器的盘符

"model name": 产品的model号

找出Windows目录。对于适当的操作,驱动程序必须被安装在Windows子目录下。

9. 按下<ENTER>结束安装。一旦安装结束,你就可以在Control Panel下找到Chips CPL的 图标。该图标可以使你去选择和加载被安装的驱动程序。

从Windows改变显示驱动程序

从Windows改变显示驱动程序,从Main菜单选择Windows Setup图标。你会看到当前的 setup配置。从Option菜单选择Change System Setting。点击Display行末端的箭头。你会看 到显示驱动程序的列表。点击你要选择的驱动程序。然后点击OK按钮。跟着指示完成设置。

改变颜色系统

在你改变显示驱动程序后,你可能会注意到Windows所用的颜色系统看上去很奇怪。这 是因为不同的驱动程序有不同的默认颜色。你可以通过选择同样的或新的颜色系统来矫正。 首先从Main窗口选择Control Panel。然后选择Color图标。你将看到当前的颜色系统。选择 新的颜色系统并点击OK按钮。

4.4 软件实用程序

这一章描述了以下由Supporting CD-ROM提供的软件实用程序的操作和安装:

- CHIPSDSP
- CHIPSCPL
- 4.4.1 CHIPSDSP实用程序

实用程序是为Microsoft Windows 95而设计的。

安装实用程序

你可以在下面的路径里找到CHIPDSP.DLL:

cd-rom: \CD ROM \model name \driver \vga tools \chipsdsp

"cd-rom": CD-ROM驱动器的盘符

"model name": 产品的model号

该程序是一个用来选择显示形式和更新速度的Windows 95实用程序。当安装CHIPS Windows 95 显示驱动程序时自动安装该程序,它是一个**Display Properties Refresh**窗口。 **Display**图标在Control Panel组中。要执行**Display**图标,只需点击Start按钮,进入Settings, 点击Control Panel,然后双击**Display**图标。点击标题上的Refresh属性条。 如何运用实用程序

DISPLAY DEVICE (显示设备)允许你从下列显示设备中选择:

- CRT <ALT C>
- LCD(平板) <ALT I>

• CRT和LCD(平板) <ALT B>

REFRESH RATE(更新速度)允许你从下列更新速度中选择:

- ・组合
- 56Hz
- 60Hz
- 70Hz
- 72Hz
- 75Hz
- 85Hz

更新速度只能在CRT模式下有效。

注: 1.由所选择的监视器支持的更新速度才能显示并被选择。

2.上面所示的更新速度并不被所有的Chips产品所支持。

WINDOWS DEFAULT 允许你在Windows 95中返回为所选择的监视器所设置的默认更新速度。

4.4.2 CHIPSCPL 实用程序

该实用程序是为Microsoft Windows 3.1而设计的。

安装实用程序

CHIPSCPL.CPL是一个用来选择图形分辨率和颜色深度的Windows实用程序。当安装

CHIPS Windows 3.1线性驱动程序时自动安装Control Panel Applet 及其图标。Control Panel 图标在Main Windows 组中。执行control panel程序时,点击该图标。在Windows重新启动后 驱动器图形分辨率和色彩深度有效。

如何运用实用程序

SCREEN SIZE <ALT S>允许你选择下列图形分辨率:

- 640×480
- 800×600
- 1024×786
- 1280×1024

先选择图形分辨率, 会影响后面的色彩深度的选择。 COLOR <ALT 0>允许你选择下列颜色:

- 16 (4bpp)
- 256 (8bpp)
- 32K (15bpp)
- 64K (16bpp)
- 16M (24bpp)

先选择色彩深度,会影响图形分辨率的显示。

DPI <ALT P>允许你选择大或小字体。

DISPLAY <ALT D>允许你选择下列显示设备:

- CRT
- •LCD (平板)
- CRT和LCD平板

MONITOR SELECTION <ALT M>允许你选择所列的监视器。

REFRESH <ALT R>允许你选择下列更新速度:

- ・组合
- 56Hz
- 60Hz
- 70Hz
- 72Hz
- 75Hz

更新速度只能在CRT模式下有效。所选择的更新速度必须被所选择的监视器支持。 CURSOR-ANIMATION <ALT A>允许你选择动画光标。

BIG CURSOR <ALT G>允许你为平板LCD选择大光标。

Version <ALT V>显示当前驱动器的版本信息。

HELP <ALT H>显示如何运用Display Driver Control Panel的帮助信息。

注: 用户如果要使用此节所言的实用程序和驱动程序, 可以向本公司索要。

五 以太网软件配置

该节描述了如何配置板上以太网以满足你的应用要求。

<u>以太网软件配置</u>

板上以太网接口支持所有网络操作系统。I/O地址和中断可以通过AMIBIOS Setup方便

地进行配置。配置媒介类型,可以参考当前配置或运行诊断,请参考下列命令:

- 主板上电。确认RSET8029.EXE文件已装入工作盘。 1.
- 2. 在提示符后, 敲入RSET8029.EXE并按下<ENTER>。以太网配置程序将被显示。
- 3. 屏幕上显示了以太网接口所有的选项。用Up或Down键点亮你要改变的选项。 改变被选项目,按下<ENTER>,则出现有效选项的屏幕显示。点亮你的选项并按下 <ENTER>。每一个高亮选项都具有帮助信息,显示在屏幕底部。
- 在你选择所需配置之后,按下<ESC>键。系统提示你是否需要保存该配置。需 4. 要保存则按下"Y"。

以太网设置菜单提供了三个有用的诊断功能:

- 1. 运行EEPROM测试
- 运行板上诊断 2.
- 3. 运行网络诊断
- 每一个选项都显示了在任何诊断测试下的格式和结果。

附录A 看门狗定时器例程

下面的例程说明了使看门狗有效,设置和无效的编程步骤。

看门狗定时器例程

如何编制看门狗定时器

使看门狗定时器的暂停时间间隔有效: 1.

将要求的时间间隔输出到0x443口,看门狗定时器的步长是0.25秒。将输出到0x443 口的整数值与0.25相乘,所得的数据即为看门狗定时器的时间间隔。暂停时间间隔 是0.25秒~63.75秒。

定时器的值只要不为零,定时器就自动开始减1计数,计数器为0时,进入中断或复位。 例如:

outportb(0x443,36); //设置间隔时间为9秒并开始减计数

2. 设置暂停结果:

输出数据到0x444口。

- •0: 关闭看门狗
- •1,4:用户不能设定
- •2: 系统复位
- 3: NMI

例如:

//计数减到0时使系统复位

使看门狗定时器无效: 3. 输出数值"0"到0x444口。

outportb(0x444,2);

例如:

outportb(0x444,0); //看门狗定时器无效

4. 更新看门狗定时器:

将要求值输出到0x443口。定时器将更新为新值并开始减计数。 例如:

	outportb(0x443,10);	//设置暂停时间间]隔为2.5秒
	outportb(0x443,20);	//复位看门狗定时	才器为5秒
C语言的例程			
outportb(0x44	4,2);	//计数减到0时使	系统复位
outportb(0x44	3,10);	//设置暂停时间间	同隔为2.5秒
job1();		//执行你的操作,	确认该操作在2.5秒内完成
outportb(0x44	3,20);	//设置时间间隔为	5秒并更新看门狗定时器,否
		则系统将在暂住	亭后复位
job2();		//在5秒内完成的	另一个操作
outportb(0x44	4,0);	//看门狗定时器矛	E效
•••••			

附录B: 4KB串行EEPROM

APCI5094板上集成有4KB串行EEPROM,操作端口200H,便于用户保存重要的不经常 改动的数据,并为用户提供读写串行EEPROM的C语言子程序,只要调用子程序,即可对 EEPROM进行读写操作。EEPROM还设有防止写跳线器(JP14),保证EEPROM最高1K的 数据不被改写。

本板在出厂时附有对串行EEPROM读写的汇编语言和C语言程序原码,以便用户不用自 己编程就可读写串行EEPROM。

 对200H端口各位的操作定义如下,如果用户需要自己编写读写程序,请参考 ATMEL公司的AT24C32芯片手册。

```
200H , bit 0 \rightarrow 1 EEPROM clock high, bit 0 \rightarrow 0 EEPROM clock low
```

```
;; Write to 200H , bit 1 -> 1 set EEPROM data high, bit 1 -> 0 set EEPROM
;; data low
;; Write to 200H , bit 2 -> 0 disable output data to EEPROM, bit 2 -> 1
```

;; enable output to EEPROM

;;

;; read from 200H ,bit 0 -> EEPROM clock status

;; read from 200h ,bit 1 -> output to EEPROM data status

```
;; read from 200h ,bit 2 -> enable or disable to EEPROM output status
```

```
;; read from 200h , bit 3 -> EEPROM data when reading EEPROM
```

```
4. C语言的读写函数简介:
```

写函数 void byte_write(unsigned char data,unsigned char addr_hi, unsigned char addr_lo); 其中data: 是所写的数据 (字节);

- addr_hi: 是数据写入的高四位地址,00-0xf。
- addr_lo: 是数据写入的低八位地址,00—0xff。
- 页写函数 void page_write(unsigned char data[32],unsigned char addr_hi, unsigned char addr_lo);

其中data[32]: 是所写的数据(32个字节);

addr_hi: 是数据写入的高四位地址,00—0xf。 addr_lo: 是数据写入的低八位地址,00—0xff。应为32的倍数。

读函数 unsigned char byte_read(unsigned char addr_hi, unsigned char addr_lo);
 其中addr_hi: 是数据写入的高四位地址,00—0xf。
 addr_lo: 是数据写入的低八位地址,00—0xff。
 返回结果为读到的数据。

3. 在用户的C语言应用程序中,只需将本公司提供的eeprom.h作为头文件加入,便可直接 调用上述的读写函数,对EEPROM进行操作。

附录C: SSD的使用说明

SSD是双片FLASH盘, 封装形式为标准的32脚PLCC。U59和U71既可以插两片512KBx8的FLASH又可以插两片512KBx8的EPROM, 通过JP17进行选择。

SSD正常安装后,其操作与软盘相同,但不能用COPY命令写入,只能读。在主板上要安装SSD请按照以下步骤。

- (1) 把SSD(FLASH或EPROM)插入插座,请务必把SSD的1脚和插座1脚对齐
- (2) 确保SSD牢固地插在插座上

注意:如果安装不当,SSD将损坏

- (3) 设定SSD的存贮器地址及I/O地址(JP15的1-2空, 3-4空, 5-6短接, 7-8短接) 要使SSD为引导盘,你必须把操作系统文件装入SSD,请按照以下步骤:
- (1) 安装SSD(FLASH或EPROM)于CPU板的U59,U71。

(2)用cookrom.exe(本公司提供)把用户所需的操作系统和文件形成二进制映象文件并在 线写入FLASH中(见附录F)。

(3) 在BIOS设置中,设置硬盘NOT INSTALLED,软驱为1.44M

(4) 将BIOS FEATURES SETUP 中的启动顺序(BOOT SEQUENCE)设置为A, C。

(5) 将CHIPSET FEATURES SETUP 中的SOLID STATE DISK设置为ENABLED。

(6) JP15的9-10短接,重新启动后,系统将从SSD启动,SSD提示符为A:,由于SSD模拟 软驱的工作方式,因此此时软驱不能使用。如果要使用软驱,CHIPSET FEATURES SETUP 中的SOLID STATE DISK应设置为DISABLED或把电子盘设置为B盘。

如果用户工作在DOS操作系统下,并且用户的应用程序小于880K,则推荐用户采用 SSD。SSD可以写保护,比较可靠。不经常改动的数据可存放在EEPROM中。

如果用户程序比较大或采用WINDOWS操作系统,则建议用户采用DOC或硬盘。

附录D: 资源分配表

一. APCI5094系统存贮空间分配表:

存贮空间地址(HEX)	功能
0000000	系统常规内存
00A0000——00BFFFF	256K显示内存
00C000000CBFFF	48K的显示BIOS
00CC000-00CDFFF	750
00DC000-00DFFFF	330
00D000000DBFFF	开放给总线
00CE00000CFFFF	DOC2000
00E000000FFFFF	系统BIOS
1MB以上	系统扩展内存

二. PCI5094系统主要I/O地址分配表:

地址 (HEX)	I/O设备名
46E8	VGA
94	
102	
3CC	
3C2	
3CA	
3D4	
3D5	
3B4	
3B5	
3DA	
3BA	
3C4	
3C5	
3CE	
3CF	
3C0	
301	
306	
307	
308	
369	IDE
1FU - 1F7, 3F6	IDE
UK 170 177 276	
170 - 177, 370 2E0 2EE	SEDIAL DODT
2F8 - 2FF	SERIAL I ORI
378 - 37E	PARFLIFI PORT
OR	
278 - 27F	
OR	
3BC - 3BF	

200	EEPROM
443	WATCH DOG
444	
3F2	FLOPPY
3F4	
3F5	
3F7	
60	KEYBOARD
61	
62	
64	
66	
92	
3F0	SUPER I/O CONFIGURATION
3F1	ADDRESS
250	
251	
70	RTC
71	
CF8	PCI CONFIGURATION ADDRESS
CFC - CFF	
00 - 0F	8237 DMA
10 - 1F	
CO - CE	
DO - DE	
81 - 8F	
481 - 48B	
40 - 43	8254 TIMER
20 – 21	8259 PIC
AO - A1	
F0 - F1	COPRESSOR
80	POST PORT
22 - 23	ALI CONFIGURATION
B1	PORT B
22C –22D	Flash disk
294	数字I/O口
其它I/O地址	开放给AT96总线

三. PCI5094系统中断资源分配表:

系统定时器中断
键盘中断
8259级联
串口2
串口1
AT96总线中断
软盘控制器
并口1
实时时钟

IRQ9	AT96总线中断
IRQ10	AT96总线中断
IRQ11	AT96总线中断
IRQ12	PS/2鼠标, AT96总线中断
IRQ13	协处理器
IRQ14	硬盘控制器
IRQ15	AT96总线中断

附录E: FLASH 盘工具软件使 用说明

FLASH 格式化盘文件生成及在线改写工具COOKROM使用说明

COOKROM.EXE是针对于486DX系统所编制的工具软件,它可以根据用户的选择生成格式 化盘文件—bin文件,并将此文件在线改写入FLASH中。

COOKROM.EXE的源文件是由C语言编写的应用程序,可在PC机以及486DX系统上运行,值 得注意的是运行本软件时,同一目录下必须存在本公司提供的A33.dos、A50.dos和A622.dos 三种DOS版本的头文件。下面将对本软件的功能和使用进行逐一说明。

1. 主菜单:

本软件的主菜单共有三项: Make、Tools和Help。

Make(Alt+M)是主功能选项,包括Makebin(F1)、Makedisk(F2)和Quit(Alt+X)。makebin是格式化盘文件生成器,makedisk是FLASH在线改写器,Quit退出本程序。

Tools (Alt+T) 是辅功能选项,包括Free Size (F3)和Include File (F4)。Freesize 是对盘文件剩余空间的查询,Includefile是对盘文件所含文件的查询。

Help(Alt+H)包括软件的About...。

2. 格式化盘文件生成器Makebin:

Makebin可用功能键F1激活,其用户界面提供以下选项:

DOS Selection (DOS 3.3、DOS 5.0、DOS 6.22),确定用户在FLASH盘里使用何种DOS 版本。在这里将用到上面所提到的A33.dos、A50.dos、A622.dos三个头文件。

BIN File Name 要求用户输入生成的盘文件名(包括文件扩展名bin)。如果文件名不存在,将生成新文件,如果文件名存在,将在原盘文件中加入FLASH盘中所要添加的文件,注意FLASH盘最大空间为1MB。

File In Flash Disk 要求用户输入要加入盘文件中的文件名,可以直接在文本框中输入,也可以打开旁边的File Dialog文件选择器进行选择。注意,此文件的大小不能超过盘 文件的剩余空间,否则不能加入,会出现错误提示框。

各选项选择好后,按OK键或直接按回车键,将生成用户要求的格式化盘文件,生成后 屏幕显示此盘文件的剩余空间。如果要在一个盘文件中加入多个文件,可在盘文件名不变 的情况下,重复选择File In Flash Disk并按OK,即一次加入一个文件,直到要加入的文 件全部加入为止。

此软件对FLASH盘的DOS分区进行了重组(BOOT占1扇区、两个FAT共占12扇区、ROOT占3 扇区),旨在增加用户的可用空间。下表列出了不同DOS版本、不同盘大小的情况下,用户 的可用空间大小:

操作系统	用户可用空间	
DOS3.3	939KB	

DOS5.0	899KB	
DOS6.22	885KB	

3. FLASH在线改写器Makedisk:

Makedisk可用功能键F2激活,其用户界面提供以下选项:

Select FLASH Chip 要求用户选择FLASH芯片的类型。

Input BIN File Name 要求用户输入FLASH盘映象文件名。

各选项选择好后,按OK键或直接按回车键,将把用户选定的文件写入FLASH中。

4. 盘文件剩余空间查询Free Size:

Free Size可用功能键F3激活,其用户界面就是让用户输入要查询的盘文件名,然后按 OK键或直接按回车键,屏幕显示此盘文件的剩余空间。

5. 盘文件所含文件查询Include File:

Include File可用功能键F4激活,其用户界面就是让用户输入要查询的盘文件名,然 后按0K键或直接按回车键,屏幕显示此盘文件中包含的用户加入的文件名。

COOKROM.EXE工具软件提供了较好的用户界面和提示信息,使用户能够方便快捷的进行 FLASH的盘文件生成和在线改写。

但是由于COOKROOM.EXE工具软件为一集成环境,拷贝或删除文件时,需要把所有文件重新生成二进制文件后方可进行,不能够单独对某一文件进行删除和拷贝,这样在应用中会产 生一些不便,因此我们提供了以下三个工具软件,针对电子盘使用SST-28SF040芯片时,可以 对单个文件进行删除和拷贝或格式化电子盘.,

复制文件sstcopy.exe

此工具的作用是将一个文件拷贝到SSD中。其操作与DOS下的copy命令相似,不同的是 它不认通配符*和?,一次只能拷贝一个文件;其第二个参数(即SSD的盘符)可写可不写, 因为它指定向SSD中写文件。

注意: sstcopy只是将文件拷贝到SSD中,如果要将SSD中文件拷贝到其它盘,只能用copy 命令。

删除文件sstdel.exe

此工具的作用是将SSD中的一个文件删除。其操作与DOS下的del命令相似,不同的是 它不认通配符*和?,一次只能删除一个文件;文件的盘符可写可不写,因为它指定删除SSD 中的文件。

做系统盘sstsys.exe

此工具的作用是先将SSD格式化,然后将DOS操作系统传入,使之成为DOS启动盘。 使用此工具时必须将本公司提供的A33.dos、A50.dos、A622.dos三个文件放在同一个目录下。 sstsys要求一个且只一个参数,而且参数的值为**3、5或6**。如下:

sst	sys	3	表示传入DOS3.3系统
sstsys	5		表示传入DOS5.0系统
sstsvs	6		表示传入DOS6.22系统

附录F:磁盘文件使用说明

1. COOKROM.EXE SSD二进制文件生成及FLASH在线改写工具。具体操作见附录F。

- 2. EEPROM.H 串行EEPROM读写头文件,具体操作见附录B
- 3. A33.DOS MSDOS3.3操作系统映象文件
- 4. A50.DOS MSDOS5.0操作系统映象文件

- 5. A622.DOS MSDOS6.22操作系统映象文件
- 6. SSTSYS.EXE 电子盘芯片采用SST28SF040时,可用此程序格式化电子盘。
- 7. SSTCOPY.EXE 电子盘芯片采用SST28SF040时,可用此程序拷贝文件到电子盘。

8. SSTDEL.EXE 电子盘芯片采用SST28SF040时,可用此程序删除电子盘中的文件。

9. RSET8029.EXE 以太网设置及检测程序。