
W4.0
Product Release Bulletin

 Revision 1.0, January 2005

Part Number
82-000420-06

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, the CROSSCORE logo, Blackfin, SHARC,
TigerSHARC, EZ-KIT Lite, and VisualDSP++ are registered trademarks
of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 4.0 Product Release Bulletin iii

CONTENTS

PREFACE

Purpose of This Document .. ix

Intended Audience .. ix

Manual Contents ... x

Technical or Customer Support ... xi

Supported Processors ... xi

Product Information .. xii

MyAnalog.com ... xii

Processor Product Information .. xii

Related Documents ... xiii

Online Technical Documentation ... xiv

Accessing Documentation From VisualDSP++ xv

Accessing Documentation From Windows xv

Accessing Documentation From the Web xvi

Printed Manuals ... xvi

VisualDSP++ Documentation Set ... xvi

Hardware Tools Manuals .. xvi

Processor Manuals .. xvi

Data Sheets ... xvii

CONTENTS

iv VisualDSP++ 4.0 Product Release Bulletin

Notation Conventions .. xvii

INTRODUCTION

Product Release Description .. 1-2

VisualDSP++ 4.0 System Requirements ... 1-3

Platform and Processor Support .. 1-3

VISUALDSP++ 4.0 MAJOR CHANGES

New Processor Support ... 2-2

Installer Changes .. 2-2

License Changes ... 2-3

ICE Test ... 2-3

Changes Common to All Compilers .. 2-4

Multiline Strings Disabled by Default 2-4

Extended I/O Support ... 2-4

Support for Silicon Revisions in the Libraries 2-4

Header File time.h .. 2-6

New Section Used for C++ Virtual Function Tables 2-7

Order of Side-Effects Changed in "Undefined" Expressions 2-8

".o" No Longer Supported as a Suffix for Object Files 2-8

Compiler and Library for Blackfin Processors 2-8

Long Double Now a 64-Bit Floating-Point Data Type 2-8

Variable Size for Double Data Type ... 2-9

Smaller, Faster Stdio Library .. 2-10

Parameters to main() Initialized Differently 2-10

VisualDSP++ 4.0 Product Release Bulletin v

CONTENTS

Overlay/DMA Managers Must Ensure Loop Counters
Are Zero ... 2-10

System Register Read/Write Built-In Functions Have
Different Prototypes ... 2-11

New noncache_code Section Needed 2-11

Instrumented Profiling Not Supported in a Multithreaded
Environment .. 2-11

Single- and Dual-Core Processors Use Different Library
Builds ... 2-12

Default CRTs Changed .. 2-12

Compiler and Library for TigerSHARC Processors 2-14

Stack Must Be in Internal Memory .. 2-14

Changes to the I/O Library .. 2-14

C/C++ Run-Time Library Naming Conventions 2-14

Compiler and Library for SHARC Processors 2-15

IDDE Changes ... 2-15

Loader Changes .. 2-16

Linker Changes ... 2-16

NEW FEATURES AND ENHANCEMENTS

VisualDSP++ IDDE .. 3-2

New Processor Support .. 3-2

New ICE Features ... 3-2

New Installation Options ... 3-3

New “Authorize Script” Option ... 3-3

Assembler ... 3-4

CONTENTS

vi VisualDSP++ 4.0 Product Release Bulletin

Assembler Feature Macros ... 3-4

.SEPARATE_MEM_SEGMENTS Directive 3-5

Special Assembler Operators .. 3-5

New Features Common to All Compilers 3-6

New Switches .. 3-6

New Pragmas .. 3-7

New Built-In Functions to Control Branch Prediction 3-11

New -Og Switch for Optimizing and Debugging 3-12

Support for Gathering Cycle-Counts 3-12

Bank Type Qualifiers ... 3-13

Predefined Compiler Macros ... 3-13

Compiler and Library for Blackfin Processors 3-14

C/C++ Compiler Command-Line Switches 3-15

Workaround <workaroundid>[,<workaroundid> ...] 3-16

Endian-Swapping Intrinsics ... 3-16

System Built-In Functions ... 3-17

Misaligned Data Built-In Functions 3-18

Long Double Floating Point Type .. 3-19

Run-Time Libraries and Start-Up Files 3-21

New C Library Functions .. 3-21

New DSP Run-Time Library Functions 3-22

CRT Generation ... 3-23

Assembly Annotations ... 3-23

New Clipping Fractional Shift Functions 3-24

VisualDSP++ 4.0 Product Release Bulletin vii

CONTENTS

Compiler and Library for TigerSHARC Processors 3-24

Compiler Command-Line Switch .. 3-25

New Math Built-In Functions .. 3-25

New TigerSHARC-Specific Pragma .. 3-25

Miscellaneous Changes .. 3-26

Compiler and Library for SHARC Processors 3-26

Access to System Registers ... 3-26

Predefined Compiler Macros .. 3-27

Switch Table Placement Control .. 3-28

New Default Run-Time Headers .. 3-28

Linker and Utilities ... 3-30

Modified Link Page in Project Options Dialog Box 3-31

Support for Specifying Two Buffers in Different Memory
Segments .. 3-32

Linker Command-Line Switches .. 3-32

Updated List of LDF Keywords ... 3-32

External Execution Packing in SHARC Processors 3-34

Expert Linker Features ... 3-35

Adding a Memory Segment ... 3-36

Managing Output Section Properties 3-36

Managing Packing Properties ... 3-39

Managing Overlay Properties ... 3-40

Managing Shared Memory Properties 3-41

Memory Initializer Utility .. 3-43

Migration of LDFs From Previous Versions of VisualDSP++ ... 3-44

CONTENTS

viii VisualDSP++ 4.0 Product Release Bulletin

Data Section for C++ Virtual Tables 3-44

Blackfin-Specific Features ... 3-45

New Features Requiring .LDF Support 3-45

New Features in the VisualDSP++ 4.0 Default
Template LDFs .. 3-46

TigerSHARC C/C++ Run-Time Library Naming
Conventions .. 3-48

Loaders and Splitter .. 3-49

Blackfin Loader Features ... 3-49

SHARC Loader Features ... 3-50

VDK .. 3-50

OBSOLETE OR REMOVED FEATURES

Discontinued Processor Support .. 4-2

VisualDSP++ IDDE ... 4-2

Assembler and Preprocessor .. 4-2

Compiler and Library for SHARC Processors 4-2

Compiler and Library for TigerSHARC Processors 4-3

Linker .. 4-4

VCSE ... 4-4

VDK .. 4-4

VisualDSP++ 4.0 Product Release Bulletin ix

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
digital signal processing (DSP) applications.

Purpose of This Document
This document briefly describes the new features and enhancements pro-
vided by VisualDSP++ 4.0 release that supports the following Analog
Devices, Inc. processor families—SHARC® (ADSP-21xxx) processors,
TigerSHARC® (ADSP-TSxxx) processors, and Blackfin® (ADSP-BFxxx)
processors.

It also describes the differences (obsolete features and functions) between
VisualDSP++ 4.0 and previous VisualDSP++ releases.

For details, refer to the VisualDSP++ 4.0 manuals listed in “Related Doc-
uments” and online Help.

Intended Audience
This publication is primarily intended for programmers who are upgrad-
ing from the previous releases of VisualDSP++ development software and
who want an overview of the changes to VisualDSP++ 4.0.

Manual Contents

x VisualDSP++ 4.0 Product Release Bulletin

Manual Contents
This manual consists of:

• Chapter 1, “Introduction”
Describes VisualDSP++ 4.0 and its benefits, provides the minimal
system requirements for running the product, and lists the
supported processors.

• Chapter 2, “VisualDSP++ 4.0 Major Changes”
Describes major changes in VisualDSP++ 4.0 compared to
VisualDSP++ 3.5 release.

• Chapter 3, “New Features and Enhancements”
Describes what is new in the VisualDSP++ 4.0 IDDE, assembler,
compiler, linker, loader, and documentation. Also describes the
new features in the Expert Linker (EL) and the VisualDSP++
Kernel (VDK).

• Chapter 4, “Obsolete or Removed Features”
Describes the removed/obsolete features in VisualDSP++ 4.0 (com-
pared to the previous VisualDSP++ software release) as they pertain
to code generation tool chain: commands, switches, operators,
directives, pragmas, keywords, macros, and library functions.

VisualDSP++ 4.0 Product Release Bulletin xi

Preface

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
dsptools.support@analog.com

• E-mail processor questions to
dsp.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
VisualDSP++ 4.0 release for Blackfin (ADSP-BFxxx), SHARC
(ADSP-21xxx), and TigerSHARC (ADSP-TSxxx) processors. For more
information, refer to “Platform and Processor Support” on page 1-3.

Product Information

xii VisualDSP++ 4.0 Product Release Bulletin

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products: analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
E-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
E-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

VisualDSP++ 4.0 Product Release Bulletin xiii

Preface

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see these
publications:

• VisualDSP++ 4.0 Getting Started Guide

• VisualDSP++ 4.0 User’s Guide

• VisualDSP++ 4.0 Assembler and Preprocessor Manual

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfin
Processors

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for
TigerSHARC Processors

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for SHARC
Processors

• VisualDSP++ 4.0 Linker and Utilities Manual

• VisualDSP++ 4.0 Loader Manual

Product Information

xiv VisualDSP++ 4.0 Product Release Bulletin

• VisualDSP++ 4.0 Kernel (VDK) User’s Guide

• VisualDSP++ 4.0 Quick Installation Reference Card

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary

Online Technical Documentation
Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest using the
Search function of VisualDSP++ Help system. For easy printing, supple-
mentary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

Access the online documentation from the VisualDSP++ environment,
Windows® Explorer, or the Analog Devices Web site.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

VisualDSP++ 4.0 Product Release Bulletin xv

Preface

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder of VisualDSP++
environment. The .PDF files are located in the Docs folder of your
VisualDSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Open your VisualDSP++ installation CD-ROM and double-click
any file that is part of the VisualDSP++ documentation set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

Product Information

xvi VisualDSP++ 4.0 Product Release Bulletin

Accessing Documentation From the Web

Download manuals in PDF format at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

VisualDSP++ 4.0 Product Release Bulletin xvii

Preface

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

Notation Conventions

xviii VisualDSP++ 4.0 Product Release Bulletin

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description

VisualDSP++ 4.0 Product Release Bulletin 1-1

1 INTRODUCTION

This chapter describes the product, VisualDSP++, and the requirements
for running its latest revision, 4.0. It also lists the supported processors
and some of the benefits provided by this release.

The information is organized as follows.

• “Product Release Description” on page 1-2

• “VisualDSP++ 4.0 System Requirements” on page 1-3

• “Platform and Processor Support” on page 1-3

Product Release Description

1-2 VisualDSP++ 4.0 Product Release Bulletin

Product Release Description
VisualDSP++ is Analog Devices project management and development
environment for Digital Signal Processing (DSP) applications. Visu-
alDSP++ 4.0 successfully integrates a graphical user interface and code
generation and debugging tools, enabling programmers to move easily
between editing, building, debugging, and deployment of final products.

The VisualDSP++ 4.0 CD-ROM supplies the code generation tool chain
comprised of the processor-specific software necessary for completing a
DSP-based project: simulator, assembler, C/C++ compiler and libraries,
linker, loader, splitter, and utilities. Analog Devices also provides Visu-
alDSP++ Kernel (VDK).

The product CD-ROM also includes an evaluation suite of the EZ-KIT
Lite® software, which provides an easy method for initial evaluation of a
target processor system and allows application prototyping.

The successor to VisualDSP++ 3.5, this software release incorporates a
number of new features and enhancements, as described in Chapter 3,
“New Features and Enhancements”.

VisualDSP++ 4.0 Product Release Bulletin 1-3

Introduction

VisualDSP++ 4.0 System Requirements
To install and run VisualDSP++ 4.0, your computer must provide the
following software, configuration, and system resources.

• Intel Pentium processor (or compatible), 500 MHz or better

• Windows® XP or 2000 only

Note: Windows NT, 98, and ME are not supported.

• At least 750 MB of available hard drive space

• At least 256 MB of RAM

• CD-ROM drive

• Internet Explorer 4.01 or later

Platform and Processor Support
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++ 4.0 release.

TigerSHARC (ADSP-TSxxx) Processors
The name “TigerSHARC” refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203

Platform and Processor Support

1-4 VisualDSP++ 4.0 Product Release Bulletin

SHARC (ADSP-21xxx) Processors
The name “SHARC” refers to a family of high-performance, 32-bit,
floating-point processors. VisualDSP++ currently supports the following
SHARC processors:

Blackfin (ADSP-BFxxx) Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors:

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062

ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261

ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21363

ADSP-21364 ADSP-21365 ADSP-21366 ADSP-21367

ADSP-21368 ADSP-21369

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)

ADSP-BF533 ADSP-BF535 (formerly ADSP-21535)

ADSP-BF534 ADSP-BF537

ADSP-BF536 ADSP-BF539

ADSP-BF538 ADSP-BF566

ADSP-BF561 AD6532

VisualDSP++ 4.0 Product Release Bulletin 2-1

2 VISUALDSP++ 4.0 MAJOR
CHANGES

This chapter summarizes major changes in VisualDSP++ 4.0 compared
with the VisualDSP++ 3.5 release.

The chapter details:

• “New Processor Support” on page 2-2

• “Installer Changes” on page 2-2

• “License Changes” on page 2-3

• “ICE Test” on page 2-3

• “Changes Common to All Compilers” on page 2-4

• “Compiler and Library for Blackfin Processors” on page 2-8

• “Compiler and Library for TigerSHARC Processors” on page 2-14

• “Compiler and Library for SHARC Processors” on page 2-15

• “IDDE Changes” on page 2-15

• “Loader Changes” on page 2-16

• “Linker Changes” on page 2-16

Please note that new features and enhancements are listed in Chapter 3,
and all obsolete and removed features are listed in Chapter 4.

New Processor Support

2-2 VisualDSP++ 4.0 Product Release Bulletin

New Processor Support
The following is the list of new processors supported in VisualDSP++ 4.0.

SHARC (ADSP-21xxx) Processors:

Blackfin (ADSP-BFxxx) Processors:

Installer Changes
Emulator and EZ-KIT Lite device drivers are now copied to the
VisualDSP++ installation directory and the installer makes Windows
aware of this location. Thus, the original distribution media is no longer
needed to install the emulator drivers when your hardware is connected to
your computer. Upon uninstallation, the driver may be removed from your
system, negatively impacting any remaining installation of VisualDSP++.
Should this occur, use the Maintain this installation's Touch this
installation feature (VisualDSP++ 4.0), or perform a repair installation
(VisualDSP++ 3.5 and earlier).

ADSP-21366 ADSP-21367 ADSP-21368 ADSP-21369

ADSP-BF536 ADSP-BF537

ADSP-BF538 ADSP-BF539

ADSP-BF566 ADSP-BF534

VisualDSP++ 4.0 Product Release Bulletin 2-3

VisualDSP++ 4.0 Major Changes

License Changes
In VisualDSP++ 4.0, three types of licenses are available: TST (evalua-
tion), KIT (evaluation), and ADI (permanent).

A TST (test drive) license provides unlimited (unrestricted) access to
VisualDSP++ for emulation and simulation. You must register the
software to receive a TST serial number, which expires 90 days after
installation. After the 90 days, the software is inoperable.

A KIT license provides 10 days to register and validate the installation.
Once validated, the KIT licence extends to 90 (ninety) days of a full
evaluation in total. At the end of the evaluation period, unless you have
added a permanent license, simulator and emulator connections become
prohibited and the size of the user program is limited.

An ADI license provides 30 (thirty) days to register and validate the
installation for a permanent use. If you fail to register and validate your
installation during the 30-day evaluation period, your copy of
VisualDSP++ 4.0 becomes inoperable.

ICE Test
ICETest is no longer a stand-along utility. Comparable functionality is
now available as part of the ICE configurator, which is no longer required
to establish a debug target for Blackfin (ADSP-BF537, ADSP-BF561) and
TigerSHARC (ADSP-TS101, ADSP-TS201) EZ-KIT Lites.

Changes Common to All Compilers

2-4 VisualDSP++ 4.0 Product Release Bulletin

Changes Common to All Compilers
This section summarizes changes common to all compilers.

Multiline Strings Disabled by Default
In VisualDSP++3.5, multiline strings were accepted as part of
gcc-compatibility. For VisualDSP++4.0, multiline strings are disabled by
default, although the previous behavior may be restored with the new
-multiline switch. The new -no-multiline switch explicitly specifies the
default behavior.

Extended I/O Support
Three additional fields have been added to the DevEntry struct defined
in the device.h header file. These facilitate a mechanism by which devices
can claim the three standard streams, stdin, stdout, and stderr on
registration. Projects that use a non-default I/O configuration which
declare structs of this type may need to be modified to include the three
additional fields. See the section "Extending I/O Support To New
Devices" in the compiler manual for full details.

Support for Silicon Revisions in the Libraries
VisualDSP++ now includes libraries built for different silicon revisions of
the supported processors. Located in <dir>, the libraries are built without
any workarounds enabled. Within the VisualDSP\<family>\lib directory
there are subdirectories named <processor>_rev_<revision> that contain
libraries built for the specific revision, with the appropriate workarounds
for that specific silicon revision enabled.

VisualDSP++ 4.0 Product Release Bulletin 2-5

VisualDSP++ 4.0 Major Changes

One single library directory may support more than one specific silicon
revision. A set of libraries is included that supports all suitable
workarounds valid for any of the revisions of a particular target. For
Blackfin these libraries are located in the top-level lib directory (along
with the non-workaround libraries) and have a “y” suffix to identify them.

Processor revisions are selected for a VisualDSP++ IDDE project from a
menu available in the main project-options window. If you are using the
tools from a command line, select a silicon revision target with the
-si-revision switch.

The -si-revision switch (refer to compiler manuals) can be used to
specify a silicon revision; VisualDSP++ will use the appropriately-built
library when linking the application for the specified silicon revision.

The -si-revision switch supports two special revisions:

• “any” may be used to build applications that need to run on all
revisions of the target processor; all known workarounds for the
target processor will be enabled.

• “none” indicates that no silicon revisions should be enabled during
building. No anomaly workarounds will be applied.

By default, when -si-revision is not specified on the command line, the
libraries built with workarounds enabled for the most recently-supported
version of the processor are linked against.

The meaning of the -workaround all switch has changed as a result, and
normally -si-revision any should be used instead. This is because,
depending on your platform, the -workaround all switch may include
some workarounds that are not necessary for any silicon revision of the
target, whereas -si-revision any will include only workarounds that are
required for at least one silicon revision of the target.

Changes Common to All Compilers

2-6 VisualDSP++ 4.0 Product Release Bulletin

Header File time.h
Earlier releases of VisualDSP++ did not support the time.h header file,
which defines the C standard's data types, functions, and macros for
manipulating date and time. The time.h header file is now fully supported
in this release, apart from:

• Time zones

• The Daylight Saving flag (tm_isdst) in the structure struct tm

• The time function always returns -1, to indicate that the current
calendar time is not available

The time.h header file sets the macro CLOCKS_PER_SEC to the number of
processor cycles per second; usually, however, the processor speed is a
property of a particular chip and it is therefore strongly recommended that
the value of this macro is verified independently before it is used by an
application. The macro is set by one of the following (in descending order
of precedence):

• From the compile-time switch -DCLOCKS_PER_SEC=<definition>

• Via the System Services Library (Blackfin only)

• From the Processor speed (MHz) box in the VisualDSP++ Project
Options dialog box, Compile tab, Processor category

• Via the header file cycles.h

Further details about this header file and also about additional facilities
for benchmarking an application are available in the compiler manual.

VisualDSP++ 4.0 Product Release Bulletin 2-7

VisualDSP++ 4.0 Major Changes

New Section Used for C++ Virtual Function Tables
When virtual functions are used in C++ applications, the compiler gener-
ates read-only tables to implement method inheritance. Previous releases
of VisualDSP++ have placed these tables into the default data section. The
compiler now places these tables into their own section, so that they can
be more easily mapped to read-only memory, or be positioned appropri-
ately on a multicore or multiprocessor system. The section names used
are:

Existing C++ applications that use custom LDFs should be updated to
map these sections accordingly. They can be mapped to read-only
memory, and need not be contiguous.

A new compiler switch, -section vtbl=<secname>, will direct the com-
piler to place virtual-function tables into the specified section <secname>.
This switch can be used to obtain the previous behavior, for example:

ccblkfn -proc ADSP-BF533 -c++ -section vtbl=data1 prog.cpp

It can also be used when building multiple applications in the same
memory space (such as for dual-core systems) in order to keep the
virtual-function tables for each application separate.

Family Section Name

SHARC seg_vtbl

TigerSHARC vtbl

Blackfin vtbl

Compiler and Library for Blackfin Processors

2-8 VisualDSP++ 4.0 Product Release Bulletin

Order of Side-Effects Changed in "Undefined"
Expressions

The ANSI C Standard defines the order of expression evaluation to be
undefined in statements such as:

i = ++i + 1;

Use of such statements, where an object (i) is modified more than once
between sequence points, is bad programming and can lead to obscure
program failures.

In VisualDSP++ 4.0, the compiler evaluates such expressions differently,
both in order to improve performance and to meet user expectations.

The compiler now issues discretionary warning cc1639 when such unde-
fined sequences are detected.

".o" No Longer Supported as a Suffix for Object
Files

Object files are now required to have “.doj” suffix.

Compiler and Library for Blackfin
Processors

This section summarizes changes to the Blackfin compiler and library.

Long Double Now a 64-Bit Floating-Point Data Type
Previous releases of VisualDSP++ have only supported 32-bit
floating-point data types, as float and double. Long double was
supported as an undocumented alias for double.

VisualDSP++ 4.0 Product Release Bulletin 2-9

VisualDSP++ 4.0 Major Changes

For VisualDSP++ 4.0, the long double data type is a 64-bit
double-precision IEEE-754 floating-point data type.

The new library libf64ieee*.dlb provides the emulation support for this
new data type, and must be added to any customized LDFs.

Variable Size for Double Data Type
Previous releases of VisualDSP++ have supported the double data type as a
32-bit single-precision floating-point type. VisualDSP++ 4.0 retains this
as a default, and also adds the option of supporting double as a 64-bit
double-precision floating-point type, using the -double-size-64 switch
(refer to the compiler manual). The default behavior may be explicitly
specified via the -double-size-32 switch.

Object files are marked to indicate whether they have been built with
double as a 32- or 64-bit data type, and the two kinds of object file may
not be linked together in a single application. The -double-size-any
switch may be used when building an object that has no reliance on
floating-point types; such an object may be linked into 32-bit
floating-point applications or into 64-bit floating-point applications.

Existing object files from earlier releases of VisualDSP++ may be linked
with 32-bit floating-point objects created by VisualDSP++ 4.0. If objects
from earlier releases of VisualDSP++ are linked with 64-bit floating-point
objects created by VisualDSP++ 4.0, a warning will be produced, because
there is a potential mismatch in floating-point sizes.

Compiler and Library for Blackfin Processors

2-10 VisualDSP++ 4.0 Product Release Bulletin

Smaller, Faster Stdio Library
The default I/O library used by VisualDSP++ 4.0 is a smaller, faster
library than the one used in previous releases. The new I/O library is not
as full-featured as the library used in previous releases. All commonly used
functionality is present, but some features, such as wide-character I/O, are
omitted. If such features are required, the -full-io switch can be used to
specify the older library from previous releases. The functional differences
between the two libraries are documented in Chapter 3 of the compiler
manual.

Parameters to main() Initialized Differently
If support for argc/argv is enabled (refer to Chapter 1, “Support for
argc/argv,” in the compiler manual), the argc and argv parameters are
now initialized in line with traditional UNIX conventions: the first token
in the argument string is stored in argv[0], the second in argv[1], and so
on. In previous releases, argv[0] was initialized to the empty string.

Overlay/DMA Managers Must Ensure Loop
Counters Are Zero

In previous releases, the compiler ensured that loop counters were always
zeroed on exit from a hardware loop. For performance reasons, this is no
longer the case. If your application uses overlays, or uses DMA to move
different blocks of code into a common area for execution, you must
ensure that loop counters are zeroed each time code is moved. This is nec-
essary so that different code blocks do not encounter a live “end of loop”
address that was set up by a previously-resident block of code.

VisualDSP++ 4.0 Product Release Bulletin 2-11

VisualDSP++ 4.0 Major Changes

System Register Read/Write Built-In Functions Have
Different Prototypes

The built-in functions for reading and writing system registers have
different prototypes from previous releases; they now read and write
unsigned values instead of signed values. The modified prototypes for
these functions are documented in Chapter 1 of the compiler manual
under the section “System Built-In Functions.”

New noncache_code Section Needed
The new section noncache_code is for executable items that may not be
placed into the SRAM/Cache part of L1 Instruction Memory. This change
applies to the run-time library support for:

• C++ Exception-handling

• Memory Initialization on ADSP-BF535 and AD6532 processors

• Use of _l1_memcpy and _memcpy_l1 (refer to the description of
these functions in Chapter 3 of the compiler manual)

In the above cases, executing code may need to change the SRAM/Cache
attributes temporarily. Code executing from within the SRAM/Cache part
of L1 instruction memory cannot change these attributes, hence the
requirement for the new section.

Instrumented Profiling Not Supported in a
Multithreaded Environment

Instrumented profiling is not supported in a multithreaded environment,
and, therefore, the -threads switch will give an error if any of the -p, -p1
or -p2 switches is also specified.

Compiler and Library for Blackfin Processors

2-12 VisualDSP++ 4.0 Product Release Bulletin

Single- and Dual-Core Processors Use Different
Library Builds

In VisualDSP++ 3.5, the majority of libraries in the LDF for the
ADSP-BF561 processor were the same libraries used by the single-core
ADSP-BF532 processor. As a result of providing silicon revision-specific
versions of libraries for each processor, this is no longer the case. Existing
projects that use ADSP-BF561 processor and have a custom LDF should
change the LDF to use libraries with a “561” suffix, rather than a “532”
suffix.

Default CRTs Changed
The default C Run-Time Header (CRT) file is different from the CRT
included in the VisualDSP++ 3.5 base release. All the changes listed below
were introduced as part of updates to the base VisualDSP++ 3.5 release:

• In the base release, the processor speed was automatically raised to
the fastest supported speed. Now, this is controlled by the
___clk_ctrl global variable, and the default is to leave the
processor speed unchanged. The <sys/pll.h> file defines this
default state.

• The CRT now ensures that the ITEST_COMMAND and DTEST_COMMAND
registers contain “Read” commands. If some event has to save these
registers, manipulate the cache and restore the registers, this
ensures that the restoration does not execute a Write command,
writing garbage to a random address.

This problem could potentially occur with C++ exception
handling, memory initialization on ADSP-BF535 and AD6532
processors, and if using the _l1_memcpy or _memcpy_l1 routines.

VisualDSP++ 4.0 Product Release Bulletin 2-13

VisualDSP++ 4.0 Major Changes

• The unused entries in the Event Vector Table are initialized with a
pointer to the “unknown exception occurred” handler, which raises
an Emulation event. This makes it easier to see when unexpected
events have occurred, which are usually a result of programming
errors.

• The control variable ___cplb_ctrl is not read until after
_mi_initialize() has completed, in case the control variable's
value needs to be initialized from read-only memory first.

• Library routine _mc_data_initialize() is called for all dual-core
processors, to initialize the per-core data-storage records.

• When the processor's priority is lowered to the minimum supervi-
sor level (IVG15), some higher-priority events may still be flagged
as pending. This situation can occur if the application is restarted
while servicing an interrupt. To avoid this occurrence, instead of
waiting in user mode for the IVG15 event to take effect, the CRT
keeps returning from events until no more higher-priority events
are pending. At this point, the IVG15 event can occur, and the
CRT will continue from the “supervisor_mode” label as before.

• The DAG port preferences are set in the opposite manner. This
action has no effect on functionality or performance; the change is
merely to bring the library's behavior in line with existing
documentation from Analog Devices.

• The environment variable array is now defined separately in the
library.

Compiler and Library for TigerSHARC Processors

2-14 VisualDSP++ 4.0 Product Release Bulletin

Compiler and Library for TigerSHARC
Processors

This section summarizes changes to the TigerSHARC compiler and
library.

Stack Must Be in Internal Memory
The stack is placed in internal memory by the LDFs, and must not be
moved to external memory.

Changes to the I/O Library
Changes have been made internally to the stdio run-time library
(libio.dlb) to make it both smaller and faster with respect to the format-
ting of floating-point values. As a consequence, you may notice a minor
difference in your output, particularly for applications that are built with
the -double-size-32 switch and that print floating-point values with a
precision of more than six digits.

C/C++ Run-Time Library Naming Conventions
The C/C++ run-time support libraries for TigerSHARC no longer have
either the _NP or _w suffixes. These suffixes should be removed from any
custom LDFs as the -si-revision switch has been extended to select
libraries appropriate for specific silicon revisions of the hardware. The use
of -si-revision any will select a set of libraries that are suitable for use
on any silicon revision.

VisualDSP++ 4.0 Product Release Bulletin 2-15

VisualDSP++ 4.0 Major Changes

Compiler and Library for SHARC
Processors

Changes have been made internally to the stdio run-time library
(libio.dlb) to make it both smaller and faster with respect to the format-
ting of floating-point values. As a consequence, you may notice a minor
difference in your output, particularly for applications that are built with
the switch -double-size-32 and that print floating-point values with a
precision of more than six digits.

IDDE Changes
By default, the IDDE now uses terse output when building project and
displays only the file name as the build progresses.

To revert to the historical behavior (full command-line output), go to the
Settings->Preferences->Project dialog box and select Verbose build
output.

When creating a new project, you are no longer prompted for VDK
support. To create a project with VDK support, select multi-threaded
application using VDK when initially creating the project.

Loader Changes

2-16 VisualDSP++ 4.0 Product Release Bulletin

Loader Changes
The following loader changes from 3.5 to 4.0 apply to Blackfin processors.

• Support for silicon revision 0.3 for the ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 processors by
default from silicon revision 0.2.

• The use of fixed values to fill the address field of the executable
byte count block header. The values are: 0xFF800000 for silicon
revise 0.2 for ADSP-BF531/2/3 and 0xFF800040 for 8-bit output
and 0xFF800060 for 16-bit output for silicon revise 0.3 for
ADSP-BF531/2/3. Those values used to be all zeros in the 3.5
release.

• No zero padding for 16-bit output for silicon revision 0.3 for the
ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors.

• Support for multiple initialization blocks.

Linker Changes
The default .LDF files for Blackfin processors provided with VisualDSP++
4.0 contain several changes to support new features of the tools.

• VisualDSP++ 3.5 projects that contain customized .LDF files can be
safely used within VisualDSP++ 4.0 without the need to update
their .LDF file.

• Projects with customized .LDF files from earlier versions of
VisualDSP++ should be updated. The modifications applied to the
previous .LDF file should be migrated into a copy of the default
.LDF file provided with VisualDSP++ 4.0.

For more information, see “Migration of LDFs From Previous Versions of
VisualDSP++” on page 3-44.

VisualDSP++ 4.0 Product Release Bulletin 3-1

3 NEW FEATURES AND
ENHANCEMENTS

VisualDSP++ 4.0 has a number of new features and enhancements
designed to increase productivity and shorten application development
cycles. This chapter describes the new features and enhancements
introduced in VisualDSP++ 4.0.

The information is presented as follows.

• “VisualDSP++ IDDE” on page 3-2

• “Assembler” on page 3-4

• “New Features Common to All Compilers” on page 3-6

• “Compiler and Library for Blackfin Processors” on page 3-14

• “Compiler and Library for TigerSHARC Processors” on page 3-24

• “Compiler and Library for SHARC Processors” on page 3-26

• “Linker and Utilities” on page 3-30

• “Loaders and Splitter” on page 3-49

• “VDK” on page 3-50

VisualDSP++ IDDE

3-2 VisualDSP++ 4.0 Product Release Bulletin

VisualDSP++ IDDE
The VisualDSP++ 4.0 Integrated Development and Debugging
Environment (IDDE) introduces:

• “New Processor Support”

• “New ICE Features”

• “New Installation Options”

• “New “Authorize Script” Option”

For more information about VisualDSP++ IDDE, refer to the
VisualDSP++ 4.0 User’s Guide and online Help.

New Processor Support
The following new processors are supported in VisualDSP++ 4.0.

• Blackfin processors: ADSP-BF536, ADSP-BF537, ADSP-BF538,
ADSP-BF539, and ADSP-BF566

• SHARC processors: ADSP-21366, ADSP-21367, ADSP-21368,
and ADSP-21369

For more information on these processors, refer to a hardware reference
and data sheet of an appropriate processor.

New ICE Features
The ICE Configurator is now available from the IDDE's Create Session
dialog box. It continues to be available as a stand-alone tool.

The ability of the ICE to set registers to a specific value on reset and
before a program load is now supported for Blackfin and TigerSHARC
processors but not for SHARC processors.

VisualDSP++ 4.0 Product Release Bulletin 3-3

New Features and Enhancements

A traditional application of this feature is to initialize SDRAM values
immediately before loading an application. This feature is on by default
and, by default, initializes SDRAM to the values required for EZ-KIT Lite
operation. (Note that this feature was added in an Update to
VisualDSP++ 3.5.)

Watchpoint support has been added for the Blackfin architecture. (Note:
this feature was added in an update to VisualDSP++ 3.5.)

New Installation Options
VisualDSP++ 4.0 may be installed in multiple discrete locations on the
same machine. Likewise, an existing installation of VisualDSP++ 4.0 can
be cloned, creating a copy of that installation in a different directory.
Because the “Maintain this installation” option of the Start menu,
available on a per-installation basis, different instances of VisualDSP++
4.0 may have different updates installed. To effect this functionality,
Updates downloaded from Analog Devices' Web site cannot be executed
directly. A new Start menu item, Maintain this installation, is now used to
install Updates to VisualDSP++.

The installer also has the ability to install “in situ” on a set of files, perhaps
retrieved from a version control system. This is an advanced installation
option, detailed in a separate EE-Note from Analog Devices, Inc.

New “Authorize Script” Option
If Norton Antivirus' “Script Blocking” feature is enabled, when you add
startup code to your project via the Project Wizard or New System
Component dialog boxes, Norton Antivirus displays a Malicious script
detected dialog box. The IDDE runs a script to generate the startup code
to let you safely ignore this warning. In the dialog box, choose Authorize
this script and click OK, and you will not see the warning again.

Assembler

3-4 VisualDSP++ 4.0 Product Release Bulletin

Assembler
VisualDSP++ 4.0 continues to support the following assembler drivers:

• For SHARC processors – easm21k.exe assembler driver

• For TigerSHARC processors – easmts.exe assembler driver

• For Blackfin processors – easmblkfn.exe assembler driver

The VisualDSP++ 4.0 Assembler and Preprocessor Manual and online Help
now combine all assembler and preprocessor feature descriptions under
appropriate main topics.

Assembler Feature Macros
New assembler feature macros for VisualDSP++ 4.0 are:

Blackfin Processors

-D__ADSPBF536__=1
-D__ADSP21536__=1

Present when running easmblkfn -proc ADSP-BF536
with ADSP-BF536 processor.

-D__ADSPBF537__=1
-D__ADSP21537__=1

Present when running easmblkfn -proc ADSP-BF537
with ADSP-BF537 processor.

-D__ADSPBF538__=1
-D__ADSP21538__=1

Present when running easmblkfn -proc ADSP-BF538
with ADSP-BF538 processor.

-D__ADSPBF539__=1
-D__ADSP21539__=1

Present when running easmblkfn -proc ADSP-BF539
with ADSP-BF539 processor.

-D__ADSPBF566__=1 Present when running easmblkfn -proc ADSP-BF566
with ADSP-BF566 processor.

SHARC Processors

-D__ADSP21366__=1
-D__2136x__=1

Present when running easm21k -proc ADSP-21366
with ADSP-21366 processors

-D__ADSP21367__=1
-D__2136x__=1

Present when running easm21k -proc ADSP-21367
with ADSP-21367 processors

VisualDSP++ 4.0 Product Release Bulletin 3-5

New Features and Enhancements

.SEPARATE_MEM_SEGMENTS Directive
Used with TigerSHARC processors ONLY.

The .SEPARATE_MEM_SEGMENTS directive allows you to specify two buffers
which the linker places into different memory segments. For example,

.SECTION data1;

.VAR buf1;

.VAR buf2;

.EXTERN buf3;

.SEPARATE_MEM_SEGMENTS(buf1, buf2)

.SEPARATE_MEM_SEGMENTS(buf1, buf3)

For more information, refer to the VisualDSP++ 4.0 Linker and Utilities
Manual.

Special Assembler Operators
The assembler supports these new special assembler operators:

-D__ADSP21368__=1
-D__2136x__=1

Present when running easm21k -proc ADSP-21368
with ADSP-21368 processors

-D__ADSP21369__=1
-D__2136x__=1

Present when running easm21k -proc ADSP-21369
with ADSP-21369 processors

HI(expression)
LO(expression)

Extracts the most significant 16 bits of the expression.
Extracts the least significant 16 bits of the expression.

Note: These operators are used with the Blackfin assembler
ONLY, where HI/LO replaces the ADDRESS() operator. The
expression in the HI and LO operators can be either symbolic or
constant.

New Features Common to All Compilers

3-6 VisualDSP++ 4.0 Product Release Bulletin

New Features Common to All Compilers
New features common to all compilers are:

• “New Switches” on page 3-6

• “New Pragmas” on page 3-7

• “New Built-In Functions to Control Branch Prediction” on
page 3-11

• “New -Og Switch for Optimizing and Debugging” on page 3-12

• “Support for Gathering Cycle-Counts” on page 3-12

• “Bank Type Qualifiers” on page 3-13

• “Predefined Compiler Macros” on page 3-13

This section summarizes new pragmas and other new features common to
all compilers.

New Switches
Table 3-1 describes the new switches that are common to all compilers.

Table 3-1. New C/C++ Switches Common to All Compilers

Switch Name Description

-no-implicit-inclusion C++ mode only. Prevents implicit inclusion of source
file when processing corresponding header file.

-Og Optimization mode with enhanced debugging
information. See “New -Og Switch for Optimizing and
Debugging” on page 3-12.

-progress-rep-func Issues a remark when starting to compile a new
function.

VisualDSP++ 4.0 Product Release Bulletin 3-7

New Features and Enhancements

New Pragmas
• #pragma align accepts keywords

In addition to specifying the alignment of a following variable or
field by using a numeric value, #pragma align accepts a keyword to
indicate the required alignment:

-progress-rep-gen-opt Issues a remark at the start of each generic optimizer
stage.

-progress-rep-mc-opt Issues a remark at the start of each machine-level
optimizer stage.

-section <id> Tells the compiler to use sectname as the section to
store generated information in. See “New Section
Used for C++ Virtual Function Tables” on page 2-7,
and “Switch Table Placement Control” on page 3-28.

-structs-do-not-overlap Tells the compiler that it is safe to use the simpler,
faster semantics of memcpy rather than the more strict
memmove.

Keyword Alignment Boundary Specified

_WORD 32 bit

_LONG 64 bit

_QUAD 128 bit

Table 3-1. New C/C++ Switches Common to All Compilers (Cont’d)

Switch Name Description

New Features Common to All Compilers

3-8 VisualDSP++ 4.0 Product Release Bulletin

• New pragma alignment_region, for aligning multiple variables

#pragma align applies to the immediately following variable only.
A single alignment can be specified for a group of variables with the
new alignment_region pragma. This pragma specifies an align-
ment, as does the align pragma, but unlike the align pragma,
alignment_region is persistent until the terminating
alignment_region_end pragma. Refer to alignment_region in
compiler manual for details.

• New pragmas section and default_section

The section() keyword (refer to section() in the compiler
manual, formerly “Placement Support Keyword” in the 3.5
manual) is now also available as a pragma. The following are
equivalent:

section("mysec") int foo;

#pragma section("mysec")

int foo;

The pragma form has an advantage over the keyword, as several
pragmas can be specified in sequence.

The pragma form also accepts one or more qualifiers to specify the
attributes of the section, for example:

#pragma section("mybsz", ZERO_INIT)

int bar;

The section pragma applies to the immediately-following declara-
tion. In contrast, the default_section pragma is persistent, and
allows you to specify the sections used by the compiler when no
section pragma or keyword is present.

VisualDSP++ 4.0 Product Release Bulletin 3-9

New Features and Enhancements

The following example places both imin() and imax() into section
fastmem, but does not affect baz (which goes into a data section,
not a code section):

#pragma default_section(CODE, "fastmem")

int baz;

int imin(int a, int b) { return a<b? a : b; }

int imax(int a, int b) { return a>b? a : b; }

The default_section pragma also accepts qualifiers to indicate the
attributes of the specified section. Refer to the #pragma section in
compiler manual for more details.

• New pragmas for specifying memory attributes (Blackfin and
TigerSHARC processors only)

The new memory bank pragmas allow you to specify attributes of
memory banks, such as whether they are internal or external, and
how many cycles a read or write is expected to require. The
compiler can then use these attributes during optimization. For
example, the compiler is more likely to inline a call to a function in
slow memory from a function in fast memory than the other way
around.

Memory banks can be assigned to data items, to functions (that is,
the memory where the function's code resides) and to the stack.
Attributes can then be assigned to memory banks. Refer to
“Memory Bank Pragmas” in the compiler manual for more details.

New Features Common to All Compilers

3-10 VisualDSP++ 4.0 Product Release Bulletin

• New pragma diag, to control compiler error and warning levels

The new diag pragma allows you to change the compiler's warning
settings during compile-time. For example, you can turn off some
warnings temporarily, or promote their severity to errors. This can
be useful if you have a particular header file that triggers a lot of
warnings that you know can be safely ignored, but where you do
not want to turn off those warnings for the compilation of the
whole module. In such cases you could do:

#pragma diag(push)

#pragma diag(suppress: <number of warning to suppress>)

#include <trusted_header_file.h>

#pragma diag(pop)

See the section about #pragma diag for more details.

• New pragma no_implicit_inclusion, to control C++ template
instantiation

When the compiler includes a .h header file while compiling a C++
module, the compiler normally automatically includes the header
file's corresponding .c or .cpp file too, if it exists. This feature is
called implicit inclusion, and is used to assist in template
instantiation.

Sometimes, implicit inclusion is not desirable. In such cases, it can
be disabled by adding the following to the header file:

#pragma no_implicit_inclusion

VisualDSP++ 4.0 Product Release Bulletin 3-11

New Features and Enhancements

• New pragma noreturn, to specify control flow

#pragma noreturn can be specified on a function's declaration or
definition to inform the compiler that the function will never
return. The compiler can use this to omit any code that follows a
call to the function, as that code is unreachable. This pragma can
be used to reduce the overall size of the application, as it allows the
compiler to delete code and data that might otherwise appear to be
in use.

New Built-In Functions to Control Branch Prediction
The compiler supports two new built-in functions:

• int expected_true(int);

• int expected_false(int);

These can be used in conditions to indicate to the compiler which way
you expect the condition to be evaluated. As a result, the compiler can
ensure that the most commonly executed path is the most efficient. For
example:

if (expected_true(buffer_valid(buffer)))

if (expected_false(send_msg(buffer)==FAILED))

abort_msg();

Refer to the “Compiler Performance Built-in Functions” section in the
compiler manual.

New Features Common to All Compilers

3-12 VisualDSP++ 4.0 Product Release Bulletin

New -Og Switch for Optimizing and Debugging
The new -Og switch provides a mid-way point between optimization and
debugging:

Support for Gathering Cycle-Counts
VisualDSP++ now supports a uniform means of gathering cycle counts
and benchmarking algorithms and applications. Two alternative header
files, cycle_counts.h and cycles.h, provide macro definitions that can be
used to determine the processor cycles used by a code-sequence.

The macros defined by the cycle_counts.h header file represent a basic
and relatively unobtrusive method for counting processor cycles. The set
of macros defined by the cycles.h header file on the other hand are more
expensive (in terms of both memory and cycles) but they also have the
capability of accumulating statistics that are suited to recording the
performance of a section of code that is executed repeatedly.

Refer to “Measuring Cycle Counts” in the compiler manual for a full
description of the two header files and for an alternative method of
benchmarking using the time.h header file.

Switches Code Produced

-O Heavily optimized. No debug support.

-g Full debug support. No optimization.

-O -g Preference given to optimization.

-Og Preference given to debugging.

VisualDSP++ 4.0 Product Release Bulletin 3-13

New Features and Enhancements

Bank Type Qualifiers
The bank(“string”) keyword can be used in data declarations to indicate
that the data resides in a particular memory bank. For any given function,
three banks are automatically defined. These default banks are:

• “__data” for global “static” or “extern” variables

• “__stack” for local variables of “auto” storage class

• “__code” for the function’s instructions

Each memory bank can have different performance characteristics. A
different bank can be selected with pragmas. For more information, see
“New Pragmas” on page 3-7.

Predefined Compiler Macros
The new predefined compiler macro is __VERSIONNUM__. It defines
__VERSIONNUM__ as a numeric variant of __VERSION__ constructed from the
version number of the compiler. Eight bits are used for each component in
the version number and the most significant byte of the value represents
the most significant version component. As an example, a compiler with
version 7.0.1.5 defines __VERSIONNUM__ as 0x07000105.

Compiler and Library for Blackfin Processors

3-14 VisualDSP++ 4.0 Product Release Bulletin

Compiler and Library for Blackfin
Processors

For Blackfin processors, the most notable new features and enhancements
of the C/C++ compiler and library are:

• “C/C++ Compiler Command-Line Switches” on page 3-15

• “Workaround <workaroundid>[,<workaroundid> ...]” on
page 3-16

• “Endian-Swapping Intrinsics” on page 3-16

• “System Built-In Functions” on page 3-17

• “Misaligned Data Built-In Functions” on page 3-18

• “Long Double Floating Point Type” on page 3-19

• “Run-Time Libraries and Start-Up Files” on page 3-21

• “New C Library Functions” on page 3-21

• “New DSP Run-Time Library Functions” on page 3-22

• “CRT Generation” on page 3-23

• “Assembly Annotations” on page 3-23

• “New Clipping Fractional Shift Functions” on page 3-24

For detailed information on these features, refer to the VisualDSP++ 4.0
C/C++ Compiler and Library Manual for Blackfin Processors and online
Help.

VisualDSP++ 4.0 Product Release Bulletin 3-15

New Features and Enhancements

C/C++ Compiler Command-Line Switches
This section summarizes C/C++ compiler command-line switches
introduced or enhanced in VisualDSP++ 4.0. Table 3-2 lists and briefly
describes each new or enhanced switch.

Table 3-2. C/C++ Compiler Command-Line Switches (Blackfin)

Switch Name Description

-cplbs Instructs the compiler to assume that CPLBs are
active

-decls-<weak|strong> Determines whether uninitialized global variables
should be treated as definitions or declarations

-double-size-any Indicate that the resulting object can link against any
double-size object.

-double-size-{32|64} Selects 32- or 64-bit IEEE format for double.
The -double-size-32 is the default mode.

-extra-loop-loads Allows the compiler to read off the start or end of
memory areas, within loops, to aid performance

-full-io Links with the Dinkumware I/O library

-guard-vol-loads Disables interrupts during volatile loads

-jump-<constdata|data|code> Determines which section the compiler uses to store
jump-tables that are generated for C “switch”
statements.

-no-annotate Disables the annotation of assembly files

-no-full-io Links with the Analog Devices I/O library. Enabled
by default.

Compiler and Library for Blackfin Processors

3-16 VisualDSP++ 4.0 Product Release Bulletin

Workaround <workaroundid>[,<workaroundid> ...]
The -workaround switch supports the following new workarounds.

Refer to the compiler manual for more details.

Endian-Swapping Intrinsics
The following two intrinsics are available for changing data from
big-endian to little-endian, or vice versa.

#include <ccblkfn.h>

int byteswap4(int);

short byteswap2(int);

-sdram Instructs the compiler to assume that at least bank 0
of external SDRAM will be present and enabled

-workaround <workaround> Enables code generator workaround for specific
hardware errata; detailed in the following section.

WorkaroundID Anomaly identifier

wb-dcache 05-00-0165

wt-dcache 05-00-0164

signbits 05-00-0127

killed-mmr-write 05-00-0157

Table 3-2. C/C++ Compiler Command-Line Switches (Blackfin)

Switch Name Description

VisualDSP++ 4.0 Product Release Bulletin 3-17

New Features and Enhancements

Since Blackfin processors use a little-endian architecture, these intrinsics
are useful when communicating with big-endian devices, or when using a
protocol that requires big-endian format. For example,

struct bige_buffer {
int len;
char data[MAXLEN];

} buf;
int i, len;
buf = get_next_buffer();
len = byteswap4(buf.len);
for (i = 0; i < len; i++)

process_byte(buf.data[i]);

System Built-In Functions
The System Register Values built-in functions are enhanced to include
64-bit data types.

System Register Values

unsigned int sysreg_read(int reg);

void sysreg_write(int reg, unsigned int val);

unsigned long long sysreg_read64(int reg);

void sysreg_write64(int reg,unsigned long long val);

These functions get (read) or set (write) the value of a system register.
In all cases, reg is a constant from the file <sysreg.h>.

Compiler and Library for Blackfin Processors

3-18 VisualDSP++ 4.0 Product Release Bulletin

Misaligned Data Built-In Functions
The following intrinsic functions exist to allow the user to explicitly
perform loads from misaligned memory locations and stores to misaligned
memory locations. These functions always generate expanded code to read
and write from such memory locations, regardless of whether the access is
aligned or not.

#include <ccblkfn.h>

short misaligned_load16(void *);

short misaligned_load16_vol(volatile void *);
void misaligned_store16(void *, short);
void misaligned_store16_vol(volatile void *, short);

int misaligned_load32(void *);
int misaligned_load32_vol(volatile void *);
void misaligned_store32(void *, int);
void misaligned_store32_vol(volatile void *, int);

long long misaligned_load64(void *);
long long misaligned_load64_vol(volatile void *);
void misaligned_store64(void *, long long);
void misaligned_store64_vol(volatile void *, long long);

Note that there are also volatile variants of these functions. Because of the
operations required to read from and write to such misaligned memory
locations, no assumptions should be made regarding the atomicity of these
operations.

VisualDSP++ 4.0 Product Release Bulletin 3-19

New Features and Enhancements

Long Double Floating Point Type
The Blackfin compiler now supports 64-bit double-precision
floating-point data types, such as the long double data type. The long
double data type, being a floating-point type, has several attributes in
common with the 32-bit float data type:

• Being an emulated type, it is not as efficient as the integer and
fractional types that are supported natively by the Blackfin
architecture.

• There are two flavors of emulation library. By default,
VisualDSP++ links with the “fast” version which provides
IEEE-compliant behavior, apart from some relaxed checks for NaN
values as inputs. There is also a fully-compliant library flavor,
which supports the full IEEE behavior at the expense of some
performance.

• The two library flavors are selectable with the -fast-fp and
-ieee-fp switches.

The size of the double data type is now selectable, through the following
switches:

Switch Double Data Type

-double-size-32 32-bit single-precision

-double-size-64 64-bit double-precision

-double-size-any (double type not used)

Compiler and Library for Blackfin Processors

3-20 VisualDSP++ 4.0 Product Release Bulletin

By default, the double data type is a 32-bit single-precision type, as it was
for VisualDSP++ 3.5. That is, double is the same size as the float data
type. The -double-size-32 switch can be used to select this default case
explicitly.

The -double-size-64 switch makes the double data type a 64-bit
double-precision type. That is, double is the same size as the long double
data type.

Because the -double-size switches change the size and representation of
the double data type, it is not safe to mix modules that have been
compiled with different double data types, and the linker will issue a
linkage error if this is attempted. For library routines that make no use of
the double data type, the -double-size-any switch may be used to
indicate that the module can be linked with double-size-32 or
double-size-64 modules without conflict.

Note that the double data type is the only type that is affected by the
-double-size switches: the float data type is always a 32-bit
single-precision data type, and the long double data type is always a
64-bit double-precision data type.

The run-time libraries have been upgraded to support the dual sizes of the
double type and also the new size and properties of the long double data
type. Thus, for every library function that supports the float data type,
there is a library function that also supports the double and long double
data types.

In the run-time libraries, floating-point functions whose name end with f
are generally functions that operate on the float data type; functions
whose name end with d operate on the long double data type, and names
of floating-point functions that do not end with either f or d generally
operate on the double data type. All these new library functions are
documented in the compiler manual.

VisualDSP++ 4.0 Product Release Bulletin 3-21

New Features and Enhancements

Run-Time Libraries and Start-Up Files
Several additional variants of the run-time libraries and binary files are
supplied with VisualDSP++ that have been specifically built for the new
Blackfin processors that are now supported. These new files are installed
in the VisualDSP++ subdirectory Blackfin\lib, and are identified by one
of the following suffixes in their filename:

New C Library Functions
The C run-time library has been extended with the addition of some new
functions and enhanced functionality.

The new functions are fully documented in the VisualDSP++ 4.0
C/C++ Compiler and Library Manual for Blackfin Processors.

Filename Suffix Description

534 Compiled only for ADSP-BF534 processor

536 Compiled only for ADSP-BF536 processor

537 Compiled only for ADSP-BF537 processor

538 Compiled only for ADSP-BF538 processor

539 Compiled only for ADSP-BF539 processor

566 Compiled only for ADSP-BF566 processor

Library Function Description

heap_space_unused Returns the total free space in bytes for the heap with index idx.

l1_memcpy,
memcpy_l1

Copies instructions from L1 Instruction Memory to data memory,
and from data memory to L1 Instruction Memory.

space_unused Returns the total free space in bytes for the heap with index 0.

Compiler and Library for Blackfin Processors

3-22 VisualDSP++ 4.0 Product Release Bulletin

For VisualDSP++ 4.0, the C run-time library now supports the following
long long int library functions.

New DSP Run-Time Library Functions
Two new functions have been added to the DSP run-time library; these
new functions are identified in the following table.

The DSP run-time library contains the function iir_fr16, which repre-
sents a direct form II implementation of an infinite impulse response (IIR)
filter. The function however makes the assumption that the A0 coefficient
is greater than both A1 and A2 for all stages, and this assumption can be
too restrictive for some applications.

Library Function Description

atoll Converts a string to a long long int

llabs Absolute value of a long long int

lldiv Long long division returning quotient and remainder

llmax Maximum of two long long ints

llmin Minimum of two long long ints

llclip Clipped value of two long long ints

llcountones Count bits set in a long long int

strtoll String to long long int conversion

strtoull String to unsigned long long int conversion

Library Function Description

iirdf1_fr16 Direct form I infinite response filter

coeff_iirdf1_fr16 Convert coefficients for DF1 IIR

VisualDSP++ 4.0 Product Release Bulletin 3-23

New Features and Enhancements

The iirdf1_fr16 library function is an alternative function that imple-
ments a direct form I IIR. It does not have the same restriction as the
iir_fr16 function but it does require that the filter coefficients are first
transformed by the library function coeff_iirdf1_fr16.

The two new library functions are fully documented in Chapter 4 of the
Blackfin compiler manual.

CRT Generation
VisualDSP++4.0 includes support for automatically configuring the C
Run-Time header (CRT) through the Project Creation Wizard. This
wizard allows you to have a customized CRT for your project that avoids
the need for run-time checks to see whether certain support functions,
such as cache configuration, are necessary.

Refer to the Project Creation Wizard in the VisualDSP++ 4.0 User’s
Guide for more details.

Assembly Annotations
VisualDSP++4.0 introduces assembly annotation to the Blackfin
compiler. The compiler augments the generated assembly listing by
including:

• A header, giving the amount of stack space the function requires,
and listing the registers used by the function.

• Loop tracing, showing where each source-level loop appears in the
assembly output, how much processor capacity the loop exercises
(in terms of multi-issue slots), and how the loop has been
optimized.

Compiler and Library for TigerSHARC Processors

3-24 VisualDSP++ 4.0 Product Release Bulletin

The loop annotations are particularly useful because the compiler
optimizer applies transformations such as vectorization, unrolling, and
unroll-and-jam. Loops may be duplicated to provide vectorized and
non-vectorized versions (selected at runtime), and loops may be entirely
unrolled into linear code, or deleted as unreachable. All these transforma-
tions are recorded in the assembly annotations, allowing you to see how
the optimizer has transformed your source code.

Refer to the section about assembly annotations in the Blackfin compiler
manual for more details.

New Clipping Fractional Shift Functions
VisualDSP++ 4.0 introduces new fractional shift built-in functions that
behave as expected when the shift magnitude is outside of a normal shift
range. The ETSI shift functions call these by default. Refer to the section
about fract built-ins in the Blackfin compiler manual for more details.

Compiler and Library for TigerSHARC
Processors

For TigerSHARC processors, the most notable new features and enhance-
ments of the C/C++ compiler are:

• “Compiler Command-Line Switch” on page 3-25

• “New Math Built-In Functions” on page 3-25

• “New TigerSHARC-Specific Pragma” on page 3-25

• “Miscellaneous Changes” on page 3-26

For more information about these features, refer to the VisualDSP++ 4.0
C/C++ Compiler Manual for TigerSHARC Processors and online Help.

VisualDSP++ 4.0 Product Release Bulletin 3-25

New Features and Enhancements

Compiler Command-Line Switch
VisualDSP++ 4.0 includes the following new TigerSHARC-specific
switch:

-fp-div-lib

This switch specifies that a call to the run-time library support routine be
made for floating-point divides rather than for planting in-line code.

New Math Built-In Functions
The new RECIPS and RSQRTS built-in functions are added to the set of
built-in functions.

New TigerSHARC-Specific Pragma
The VisualDSP++ 4.0 C/C++ compiler supports a number of new prag-
mas. Pragmas are implementation-specific directives that modify the
compiler’s behavior. The new TigerSHARC-specific pragma is described
briefly in Table 3-3.

RECIPS
Instruction:

Rs = RECIPS Rm
Builtins:

float __builtin_recip (float);
Example:

float r, a;
r = __builtin_recip (a);

Description:
r corresponds to Rsd
a corresponds to Rmd

RSQRTS
Instruction:

Rs = RSQRTS Rm
Builtins:

float __builtin_rsqrt (float);
Example:

float r, a;
r = __builtin_rsqrt (a);

Description:
r corresponds to Rsd
a corresponds to Rmd

Compiler and Library for SHARC Processors

3-26 VisualDSP++ 4.0 Product Release Bulletin

Miscellaneous Changes
The TigerSHARC stack can only be in internal memory, to allow
interrupts to context-save safely.

Compiler and Library for SHARC
Processors

For SHARC processors, the most notable new compiler’s features and
enhancements of the C compiler are in the following areas:

• “Access to System Registers” on page 3-26

• “Predefined Compiler Macros” on page 3-27

• “Switch Table Placement Control” on page 3-28

• “New Default Run-Time Headers” on page 3-28

For more information about these features, refer to the VisualDSP++ 4.0
C/C++ Compiler Manual for SHARC Processors and online Help.

Access to System Registers
The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes, and addresses not normally accessible
from C source. These functions are specific to individual architectures.

Table 3-3. New ADSP-TSxxx Compiler Pragma

Pragma New or Enhanced Functions

#pragma separate_mem_segments (var1, var2) This pragma specifies that the two
variables var1 and var2 should be
placed into different memory
segments.

VisualDSP++ 4.0 Product Release Bulletin 3-27

New Features and Enhancements

For ADSP-2136x processors, in addition to the header files def21363.h,
def21364.h and def21365.h, the def21366.h, def21367.h, def21368.h and
def21369.h header files provide symbolic names for the individual bits in
the system registers.

Predefined Compiler Macros
The enhanced and new macros are:

Macro Description

__2136x__ cc21k defines __2136x__ as 1 when compiling for the
ADSP-21363, ADSP-21364, ADSP-21365 processors as well as new
ADSP-21366, ADSP-21367, ADSP-21368, or ADSP-21369
processors.

__ADSP21366__ cc21k defines __ADSP21366__ as 1 when you compile with the
-proc ADSP-21366 command-line switch.

__ADSP21367__ cc21k defines __ADSP21367__ as 1 when you compile with the
-proc ADSP-21367 command-line switch.

__ADSP21368__ cc21k defines __ADSP21368__ as 1 when you compile with the
-proc ADSP-21368 command-line switch.

__ADSP21369__ cc21k defines __ADSP21369__ as 1 when you compile with the
-proc ADSP-21369 command-line switch.

__SIMDSHARC__ When compiling for ADSP-2116x, ADSP-2126x and
ADSP-2136x processors, cc21k defines __SIMDSHARC__ as 1.
The __SIMDSHARC__ define is used to identify processors that
are capable of executing SIMD code.

__VERSIONNUM__ The preprocessor defines __VERSIONNUM__ as a numeric variant of
__VERSION__ constructed from the version number of the compiler.
Eight bits are used for each component in the version number and
the most significant byte of the value represents the most significant
version component. As an example, a compiler with version 7.0.1.5
would define __VERSIONNUM__ to be the value 0x07000105.

Compiler and Library for SHARC Processors

3-28 VisualDSP++ 4.0 Product Release Bulletin

Switch Table Placement Control
The new compiler switch -section switch=<secname> directs the
compiler to place switch tables (used to implement C/C++ 'switch'
expressions) in the named section. By default, switch tables are placed in
seg_dmda.

See also “New Section Used for C++ Virtual Function Tables” on
page 2-7 and “New Switches” on page 3-6.

New Default Run-Time Headers
New default run-time headers from the appropriate ...lib directory are:

A VisualDSP++ installation for ADSP-213xx processors includes
additional default C and C++ start-up files for the new ADSP-21366,
ADSP-21367, ADSP-21368, and ADSP-21369 processors. These new
binaries are installed in the subdirectory . . .\213xx\lib and are
described in Table 3-4.

ADSP-21366 213xx\lib\366_hdr.doj

ADSP-21367 213xx\lib\367_hdr.doj

ADSP-21368 213xx\lib\368_hdr.doj

ADSP-21369 213xx\lib\369_hdr.doj

Table 3-4. C and C++ Start-Up Files for ADSP-21366/7/8/9 Processors

Description Library Name Comments

C run-time library libc36x.dlb
libc36xmt.dlb

C++ run-time library libcpp.dlb
libcppmt.dlb

C++ run-time support library libcpprt.dlb
libcpprtmt.dlb

VisualDSP++ 4.0 Product Release Bulletin 3-29

New Features and Enhancements

C++ run-time library with
exception handling

libcppeh.dlb
libcppehmt.dlb

C++ run-time support library with
exception handling

libcpprteh.dlb
libcpprtehmt.dlb

C++ exception handling support
library

libeh.dlb
libehmt.dlb

DSP run-time library libdsp36x.dlb

I/O run-time library libio.dlb
libiomt.dlb

I/O run-time library with no sn
support for alternative device
drivers or printf(“%a”)

libio_lite.dlb
libio_litemt.dlb

C start-up file – calls set-up
routines and main()

366_hdr.doj
367_hdr.doj
368_hdr.doj
369_hdr.doj

ADSP-21366 processor only
ADSP-21367 processor only
ADSP-21368 processor only-
ADSP-21369 processor only

C++ start-up file – calls set-up
routines and main()

366_cpp_hdr.doj
367_cpp_hdr.doj
368_cpp_hdr.doj
369_cpp_hdr.doj

366_cpp_hdr_mt.doj
367_cpp_hdr_mt.doj
368_cpp_hdr_mt.doj
369_cpp_hdr_mt.doj

ADSP-21366 processor only
ADSP-21367 processor only
ADSP-21368 processor only
ADSP-21369 processor only

ADSP-21366 processor only
ADSP-21367 processor only
ADSP-21368 processor only
ADSP-21369 processor only

Table 3-4. C and C++ Start-Up Files for ADSP-21366/7/8/9 Processors

Description Library Name Comments

Linker and Utilities

3-30 VisualDSP++ 4.0 Product Release Bulletin

Linker and Utilities
The VisualDSP++ 4.0 linker and utility programs are upgraded to operate
more efficiently on Blackfin, TigerSHARC and SHARC processors.

For the linker and utilities, the most notable new features and enhance-
ments are:

• “Modified Link Page in Project Options Dialog Box” on page 3-31

• “Support for Specifying Two Buffers in Different Memory Seg-
ments” on page 3-32

• “Linker Command-Line Switches” on page 3-32

• “Updated List of LDF Keywords” on page 3-32

• “External Execution Packing in SHARC Processors” on page 3-34

• “Expert Linker Features” on page 3-35

• “Memory Initializer Utility” on page 3-43

• “Migration of LDFs From Previous Versions of VisualDSP++” on
page 3-44

For more information, refer to the VisualDSP++ 4.0 Linker and Utilities
Manual and online Help.

VisualDSP++ 4.0 Product Release Bulletin 3-31

New Features and Enhancements

Modified Link Page in Project Options Dialog Box
Within VisualDSP++, the Link page of the Project Options dialog box is
modified to have more flexibility in specifying tool settings for project
builds. The Link item in the options tree presents several different pages
of link options (see Figure 3-1).

You can access four sub-pages—General, LDF Preprocessing,
Elimination, and Processor. Almost every setting option has a
corresponding compiler command-line switch. For more information,
refer to the VisualDSP++ 4.0 Linker and Utilities Manual and online
Help.

Figure 3-1. Main Link Tab with General Settings

Linker and Utilities

3-32 VisualDSP++ 4.0 Product Release Bulletin

Support for Specifying Two Buffers in Different
Memory Segments

On TigerSHARC processors, the linker is enhanced to support efficient
programming using the .SEPARATE_MEM_SEGMENTS assembler directive. This
directive (or the compiler’s #pragma separate_mem_segments) specifies
two buffers directing the linker to place the buffers into different memory
segments.

For example:

.SECTION data1;

.VAR buf1;

.VAR buf2;

.EXTERN buf3;

.SEPARATE_MEM_SEGMENTS(buf1, buf2)

.SEPARATE_MEM_SEGMENTS(buf1, buf3)

The set of available memory segments for each buffer is defined by using
the linker’s “one-to-many” feature—mapping the input section(s) that
contain the buffer into multiple memory segments.

For more information, refer to Chapter 2 of the VisualDSP++ 4.0 Linker
and Utilities Manual. See also “Pragmas” in Chapter 1 of the VisualDSP++
4.0 C/C++ Compiler and Library Manual for TigerSHARC Processors for
more information.

Linker Command-Line Switches
Table 3-5 lists linker command-line switches that are unique for either
Blackfin, TigerSHARC or SHARC processors.

Updated List of LDF Keywords
Table 3-6 lists .LDF file keywords that apply to all supported processors
(in Blackfin, SHARC and TigerSHARC processor families).

VisualDSP++ 4.0 Product Release Bulletin 3-33

New Features and Enhancements

Table 3-5. Linker Command-Line Switches

Switch Description

-ek secName Specifies a section name in which elimination should not take
place

-ip Fills fragmented memory with individual data objects that fit.
Note: Not used with Blackfin processors.

-jcs21 and -jcs21+ Converts out-of-range short calls and jumps to the longer form.
Note: Blackfin processors only.

Table 3-6. LDF File Keywords Summary

ABSOLUTE ADDR ALGORITHM

ALIGN ALL_FIT ARCHITECTURE

BEST_FIT BM1 BOOT

DEFINED DM1 ELIMINATE

ELIMINATE_SECTIONS END FALSE

FILL FIRST_FIT INCLUDE

INPUT_SECTION_ALIGN INPUT_SECTIONS KEEP

KEEP_SECTIONS LENGTH LINK_AGAINST

MAP MEMORY MEMORY_SIZEOF

MPMEMORY NUMBER_OF_OVERLAYS OUTPUT

OVERLAY_GROUP OVERLAY_ID OVERLAY_INPUT

OVERLAY_OUTPUT PACKING PLIT

PLIT_SYMBOL_ADDRESS PLIT_SYMBOL_OVERLAYID PM1

PROCESSOR RAM RESOLVE

RESOLVE_LOCALLY ROM SEARCH_DIR

SECTIONS SHARED_MEMORY SHT_NOBITS

SIZE SIZEOF SROM1

Linker and Utilities

3-34 VisualDSP++ 4.0 Product Release Bulletin

External Execution Packing in SHARC Processors
The .PACKING() LDF command supports better data packing and memory
management in VisualDSP++ 4.0. The following is the improved descrip-
tion of external execution packing functionality.

The only two processors that require packed memory for external
execution are the ADSP-21161N and the ADSP-21065L chips. The
ADSP-21161N processor supports 48-, 32-, 16-, and 8-bit-wide external
memory. The ADSP-21065L processor supports 32-bit external memory
only.

Previous to VisualDSP++ 3.5, it was required to use “packing” commands
in the .LDF file to cause the code to be placed properly. In VisualDSP++
3.5 and latter releases, the VisualDSP++ tools are enhanced to perform
packing automatically.

START TYPE VERBOSE

WIDTH XREF

1 Supported on ADSP-21xxx processors only.

Table 3-6. LDF File Keywords Summary (Cont’d)

VisualDSP++ 4.0 Product Release Bulletin 3-35

New Features and Enhancements

In order for the VisualDSP++ to execute packing directly from external
memory on ADSP-21065L and ADSP-21161N processors, VisualDSP++
tools “pack” the code into the external memory providing the following
conditions are met:

• Ensure the “type” of the external memory is PM (Program
Memory)

• Ensure the data width matches the “real/actual” memory width:
ADSP-21065L processor – 32 bits; ADSP-21161N processor – 48,
32, 16 and 8 bits

• If the .LDF file has the PACKING() command for the particular
section, remove the command

When defining memory segments (required for external memory), the
“type” of a memory section is recommended to be:

• PM – code or 40-bit data (data requires PX register to access)

• DM – all other sections

Width should be the “actual/physical” width of the external memory.

Expert Linker Features
The Expert Linker provides a GUI-based means of supplying the link
commands currently supplied to the linker in a Linker Description File
(.LDF). For more information, refer to the corresponding chapter of the
VisualDSP++ 4.0 Linker and Utilities Manual and online Help.

Linker and Utilities

3-36 VisualDSP++ 4.0 Product Release Bulletin

Adding a Memory Segment

Using Expert Linker, you can add memory segments to the memory map.
This procedure assumes that the Expert Linker window (Memory Map
pane) is open. To add a memory segment:

1. Right-click in the Memory Map pane.

2. Choose New and then choose Memory Segment. The Memory
Segment Properties dialog box appears. In Name, type a name for
the memory segment.

3. Specify the following attributes:

• Start address

• End Address

• Size (hexadecimal)

• Width

• ROM/RAM

• Internal/External (memory location)

• Memory Space – Not available for Blackfin and
TigerSHARC processors because these processors employ a
unified memory space.

4. Click OK.

Managing Output Section Properties

Use the Output Section tab (Figure 3-2) to change the output section’s
name or to set the overflow. The enhanced dialog box introduces new
options—Initialization (for selecting the initialization qualifier for an
output section) and Contiguity of Input Sections.

VisualDSP++ 4.0 Product Release Bulletin 3-37

New Features and Enhancements

To specify output section properties:

1. Right-click an output section (for example, PROGRAM_DXE or
CODE_DXE) in the Memory Map pane.

2. Choose Properties to open the Output Section Properties dialog
box (Figure 3-2).

To pin objects to an output section, right-click the object in the
Memory Map pane and choose Pin to Output Section.

Figure 3-2. Output Section Properties Dialog Box – Output Section Tab

Linker and Utilities

3-38 VisualDSP++ 4.0 Product Release Bulletin

3. Complete the dialog box as follows.

Name – Type a name for the output section.

Overflow – Select an output section into which the selected output
section will overflow. All output sections are listed. Select None for
no overflow. This setting appears in the Placement box.

Before linking the project, the Placement box indicates the output
section’s address and size as “Not available”. After linking is
done, the box displays the output section’s actual address and size.

Initialization – Choose the initialization qualifier for an output
section. The choices are:

• None: No initialization qualifier is specified for this output
section.

• No initialization: No data initialization will happen for this
output section.

• Initialize to zero: The memory space for this section will be
initialized to zero at either “load” or “runtime”, if invoked
with the linker’s -meminit switch. If the -meminit switch is
not used, the memory is initialized at “load” time when the
.DXE file is loaded via VisualDSP++ IDDE, or boot-loaded
by the boot kernel. If the memory initializer is invoked, the
C/C++ run-time library (CRTL) will process embedded
information to initialize the memory space during the
CRTL initialization process.

• Initialize at runtime: If the linker is invoked with the
-meminit switch, this section will be filled at runtime. If the
-meminit switch is not specified, the section is filled at
“load” time.

VisualDSP++ 4.0 Product Release Bulletin 3-39

New Features and Enhancements

Contiguity of Input Sections – Choose whether code or data in an
output section should be mapped contiguously. The choices are:

• Display linker warning if section is not mapped
contiguously

• Force contiguous placement of sections

• Suppress linker warning about non-contiguous placement

4. Specify the Packing and Alignment (with Fill value) properties as
needed.

Managing Packing Properties

Use the Packing tab to specify the packing format that the linker employs
to place bytes into memory. The enhanced packing properties’ selection
procedure is:

1. Right-click a memory segment in the Memory Map pane.

2. Choose Properties and click the Packing tab.

3. In Packing method, select a method.

4. In Number of bytes (if Custom is selected), specify the number of
bytes to be reordered at one time. This value does not include the
number of null bytes inserted into memory.

No packing Specifies no packing. Number of bytes and Packing order are
grayed out.

Custom Permits the selection of number of bytes and packing order.

other choices- Specifies the number of bytes and packing order of the selected
method. The list of packing methods is derived from the included
packing .h file. Packing method information (number of bytes and
packing order) appears, but you cannot change it.

Linker and Utilities

3-40 VisualDSP++ 4.0 Product Release Bulletin

5. In Packing order, specify byte packing by selecting a byte and
performing one of these actions:

• Click the keyboard’s Up arrow or Down arrow key.

• Drag and drop it to a new location.

• Insert a null byte by clicking on Insert.

• Delete a null byte by selecting the null byte and clicking
Delete.

6. Click OK.

Managing Overlay Properties

Use the Overlay tab to add/choose the output file for the overlay, its “live”
memory, and its linking algorithm. The enhanced description of the
overlay properties’ selection is:

1. Right-click an overlay object in the Memory Map pane.

2. Choose Properties and click the Overlay tab.

3. Use the Output file name box to specify the name of the overlay
file (.OVL).

4. The Live Memory drop-down list contains all output sections or
memory segments within one output section. The “live” memory is
where the overlay is stored before it is swapped into memory.

5. The Overlay linking algorithm box permits one overlay
algorithm—ALL_FIT. Expert Linker does not currently allow
changes to this setting. When ALL_FIT is used, the linker tries to fit
all of the mapped objects into one overlay.

VisualDSP++ 4.0 Product Release Bulletin 3-41

New Features and Enhancements

6. The Placement box provides the following information:

• Live Address – The starting address of the overlay

• Run Address – The starting address where the overlay is
swapped into memory at runtime

• Size – The overlay’s size

7. Click the Packing tab to specify byte packing order.

The Browse button is only available after the overlay build and when the
symbols are available. Clicking Browse opens the Browse Symbols dialog
box. You can choose the address for the symbol group or let the linker
choose the address.

Managing Shared Memory Properties

You can specify the path and name of the file used by shared memory.
This procedure assumes the Expert Linker window is open.

To specify shared memory properties:

1. In the Memory Map pane, click the Shared Memory tab (located
at the bottom of dialog box).

2. Right-click anywhere on the Memory Map pane.
Note: Do not right-click on a memory segment, output section,
input section, or overlay.

3. Choose Properties. The Shared Memory page of the Shared
Memory Properties dialog box appears (see Figure 3-3).

4. In Output file name, specify the name of the output file for the
shared memory.

5. In Processors sharing this memory, select the processors that share
the file whose name appears in Output file name. Selecting a
processor links its executable file against this shared memory file.

Linker and Utilities

3-42 VisualDSP++ 4.0 Product Release Bulletin

6. Optionally, click the Elimination tab and specify options.

7. Click OK.

Figure 3-3. Shared Memory Tab Sample

VisualDSP++ 4.0 Product Release Bulletin 3-43

New Features and Enhancements

Memory Initializer Utility
The Memory Initializer (MemInit.exe) has been added as a separate
utility. The Memory Initializer’s main function is to generate a single
initialization stream and save it in a section in the output executable file
(.DXE). You can invoke this utility from the VisualDSP++ IDDE as well as
from its own, linker’s or compiler’s command line.

The Memory Initializer may be used with processor systems where the
RAM memory needs to be initialized with the code and data resided in the
ROM memory before the execution of the application code begins. This is
generally true for a processor system running in NO-BOOT mode.

The initialization stream generated by the Memory Initializer is consumed
by a dedicated Run-Time Library (RTL) routine. Following a system
reset, the RTL routine searches the initialization stream and initializes the
processor’s RAM memory with the data in the initialization stream before
the call to main(), the starting point of the application code.

In creating initialization stream, the Memory Initializer can, in most cases,
effectively reduce the overall size of an executable file by combining
contiguous, identical initialization into a single block. For example, a
large zero-initialized array in an executable file can be compressed to a
single small data block by the Memory Initializer.

Refer to Chapter 7, “Memory Initializer” of the VisualDSP++ 4.0 Linker
and Utilities Manual and online Help for more information.

Linker and Utilities

3-44 VisualDSP++ 4.0 Product Release Bulletin

Migration of LDFs From Previous Versions of
VisualDSP++

The default .LDF files for Blackfin provided with VisualDSP++ 4.0
contain several changes to support new features of the tools, and
enhancements to provide a better default template. VisualDSP++ 3.5
projects containing customized .LDF files can be safely used within
VisualDSP++ 4.0 without the need to update their .LDF file. However,
some new features provided with VisualDSP++ 4.0 will not be supported
as they require changes to existing .LDF files. These features are listed
below.

Projects containing customized .LDF files from earlier versions of
VisualDSP++ should be updated. The modifications applied to the
previous .LDF file should be migrated into a copy of the default .LDF file
provided with VisualDSP++ 4.0.

Data Section for C++ Virtual Tables

The virtual tables are now placed in a separate data section, seg_vtbl for
SHARC processors and vtbl for Blackfin and TigerSHARC processors.
The default LDFs supplied with VisualDSP++ 4.0 handle this task, but
customized LDFs must be amended (see the default LDFs for details).
Refer to “New Section Used for C++ Virtual Function Tables” on
page 2-7 for more information.

The “Assembler Feature Macros” on page 3-4 discusses new assembler
macros.

VisualDSP++ 4.0 Product Release Bulletin 3-45

New Features and Enhancements

Blackfin-Specific Features

The following new features apply to Blackfin processors.

New Features Requiring .LDF Support

64-Bit Floating-Point Support – VisualDSP++ 4.0 provides
software-based support for 64-bit long double and double types. The
support routines for these types are provided in the new libf64ieee*.dlb
libraries. These libraries must be included in the list of libraries linked
into the application in order to use the new data types.

Fast I/O Support – VisualDSP++ 4.0 provides a reduced functionality but
faster implementation of the C I/O run-time library. This implementation
is not complete and does not have wide character support. All features
implemented within the reduced library are standard-compliant.

When projects are loaded from earlier versions of VisualDSP++, the
project options will be configured to use this new fast I/O library while
the LDF will not contain the correct configuration for enabling this
feature. Projects with imported .LDF files should enable the Full I/O
option from the Project Options>Compile>Processor (1) page. Support
for the new I/O mechanism can be imported into existing projects by
ensuring that libio precedes libc in the definition of the LIBS macro
within the project LDF.

Project Configuration Wizard, CRT Generation – The new Project
Configuration Wizard provides support for the generation of customized
startup code within a project. This option requires a .LDF file based on the
default template LDF provided with VisualDSP++ 4.0. The feature is not
supported for projects from earlier revisions of VisualDSP++ which
contain a customized .LDF file.

Non-Cached Code Section – When using the memory initialization tool
for BF535, or C++ Exceptions for any platform, or directly calling
l1_memcpy or memcpy_l1, the section noncached_code is required in the
LDF (see “New noncache_code Section Needed” on page 2-11).

Linker and Utilities

3-46 VisualDSP++ 4.0 Product Release Bulletin

New Features in the VisualDSP++ 4.0 Default Template LDFs

Improved Placement of Data – The default LDFs provided with
VisualDSP++ 4.0 contain several improvements to the ordering and
placement of data. Where valid, data is placed into external memory once
the internal sections have been filled. This feature is not supported for
dual core processors, in order to ensure that shared and private data
remain separate.

USE_SDRAM macro – The default LDFs contain a memory mapping,
guarded by the USE_SDRAM link-time macro, which makes all the
theoretical SDRAM space available to the application.

This macro differs from the USE_CACHE macro by not allocating space in
internal memory for caching activities. Note that this configuration makes
available all the potential SDRAM memory range. Ensure that your
hardware has suitable SDRAM installed.

PARTITION_EZKIT_SDRAM macro – The default LDFs contain a memory
mapping, guarded by the PARTITION_EZKIT_SDRAM link-time macro, which
sections the SDRAM space to provide an optimal configuration of the
memory space:

The External Bus Interface Unit's (EBUI) SDRAM Controller
(SDC) provides access to the four external banks of SDRAM that
can be supported. As well as supporting up to four external banks,
the SDC also provides support for accessing four internal banks
within each of the external SDRAM banks. The SDC allows for
multiple internal banks to remain open in parallel, which can offer
improved performance—for example, executing instructions from
one external bank to access data in another internal bank.

VisualDSP++ 4.0 Product Release Bulletin 3-47

New Features and Enhancements

The ADSP-BF533 processor allows for four internal banks within a
single external bank to remain open at the same time. The
ADSP-BF561 processor allows for four internal banks across the
four external banks to remain open at the same time. The default
Linker Description Files (LDF) for the ADSP-BF533 and
ADSP-BF561 processors now contain an optional enhanced setup
that provides SDRAM partitioning in the manner above.

For the ADSP-BF533 processor, you enable the configuration by
defining the link-time macros USE_CACHE and
PARTITION_EZKIT_SDRAM. The configuration makes use of the first
external SDRAM bank, which is the SDRAM configuration for the
ADSP-BF533 EZ-KIT Lite.

The memory is partitioned as follows:

E0I0: Heap (8MB)

E0I1: Data (8MB)

E0I2: Data/Bsz (8MB)

E0I3: Program (8MB)

Linker and Utilities

3-48 VisualDSP++ 4.0 Product Release Bulletin

For ADSP-BF561 EZ-KIT Lite the configuration is enabled by
defining the link-time macro USE_CACHE to the linker. The
configuration makes use of the first and second external SDRAM
banks, both of which are populated by 32MB SDRAM for the
ADSP-BF561 EZ -Kit Lite. The memory is partitioned as follows:

For the ADSP-BF561 processor, enabling the USE_CACHE link-time
macro moves the heap from L2 memory to L3/SDRAM. The L2
space is then made available for additional program/data.

TigerSHARC C/C++ Run-Time Library Naming Conventions

The C/C++ run-time support libraries for TigerSHARC no longer have
either the _NP or _w suffixes. These suffixes should be removed from any
custom LDFs as the -si-revision switch has been extended to select
libraries appropriate for specific silicon revisions of the hardware. Using
-si-revision any selects a set of libraries that are suitable for use on any
silicon revision.

E0I0: Core A Heap

E0I1: Core A Data

E0I2: Core A Data/Bsz

E0I3: Core A Program

E1I0: Core B Heap

E1I1: Core B Data

E1I2: Core B Data/Bsz

E1I3: Core B Program + Shared area for both cores

VisualDSP++ 4.0 Product Release Bulletin 3-49

New Features and Enhancements

Loaders and Splitter
The loader program (elfloader.exe) for Blackfin, TigerSHARC and
SHARC processors has been enhanced and modified to support new
features and new processors. For details, see the VisualDSP++ 4.0 Loader
Manual.

Blackfin Loader Features
New Blackfin loader features are:

• Support for the ADSP-BF534, ADSP-BF536, ADSP-BF537,
ADSP-BF538, ADSP-BF539, and ADSP-BF566 (silicon revision
0.0) processors.

• Support for boot modes of UART and TWI (Two Wire Interface)
for the ADSP-BF534, ADSP-BF536, ADSP-BF537 processors.

• A new switch -pFlag from which the loader accepts a 4-bit strobe
value from 0 to 15 for the ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, BF536, ADSP-BF537, and
ADSP-BF538 processors. The default value is 0.

• Support for the special last block for the ADSP-BF537 processor
for the TWI boot made. The loader uses the data from 0xFF903F00
to 0xFF903FFF to make a last block. That space is reserved for the
boot kernel to use as a data buffer during the boot processing.

VDK

3-50 VisualDSP++ 4.0 Product Release Bulletin

SHARC Loader Features
The SHARC loader has been updated to support these processors:

• ADSP-2126x processors: ADSP-21261, ADSP-21266,
ADSP-21267

• ADSP-2136x processors: ADSP-21363, ADSP-21364,
ADSP-21365, ADSP-21366, ADSP-21367, ADSP-21368, and
ADSP-21369

VDK
The following new features and enhancements have been added to VDK
for the VisualDSP++ 4.0 release:

• Support for C++ exception handling.

• Support for writing ISRs in C/C++. Previous releases restricted the
writing of VDK ISRs to assembly code.

• The use of common (with the run-time libraries) user modifiable
startup code. Previous releases had non-modifiable startup code
included in the VDK libraries. Due to this change all existing VDK
LDF files must be updated for use in VisualDSP++ 4.0, and also
the definitions of multiple heaps must be updated (see the VDK
MultipleHeaps examples in the installation).

VisualDSP++ 4.0 Product Release Bulletin 4-1

4 OBSOLETE OR REMOVED
FEATURES

This chapter describes the features that have been deprecated or removed
in VisualDSP++ 4.0. Read this chapter if you are upgrading from the
previous software release.

Existing project files (.DPJ) can be imported into the new release.
However, once the project file is imported, you are not able to bring the
project back into VisualDSP++ 3.5. Similarly, new projects created with
VisualDSP++ 4.0 cannot be used by earlier versions of the tools.

This chapter contains listings of obsolete or removed features:

• “Discontinued Processor Support” on page 4-2

• “VisualDSP++ IDDE” on page 4-2

• “Assembler and Preprocessor” on page 4-2

• “Compiler and Library for SHARC Processors” on page 4-2

• “Compiler and Library for TigerSHARC Processors” on page 4-3

• “Linker” on page 4-4

• “VCSE” on page 4-4

• “VDK” on page 4-4

You may want to consult the cover letter that accompanies the product
installation CD for the last-minute information concerning this release.

Discontinued Processor Support

4-2 VisualDSP++ 4.0 Product Release Bulletin

Discontinued Processor Support
VisualDSP++ 4.0 does not provide support for ADSP-21xx (ADSP-218x
and ADSP-219x) processors. Therefore, refer to VisualDSP++ 3.5 user
documentation and the online Help if you need information on how to
develop and run DSP projects on ADSP-21xx processors. VisualDSP++ 3.5
continues to be available for 21xx developers.

VisualDSP++ IDDE
Support for the Summit-ICE, ADI-ICE PAC, and Mountain-ICE have
been removed in VisualDSP++ 4.0.

Assembler and Preprocessor
In the VisualDSP++ 4.0 preprocessor for TigerSHARC and SHARC
processors, the following command-line switch was deprecated:

Compiler and Library for SHARC
Processors

Table 4-1 lists the C/C++ SHARC compiler command-line switches that
have been deprecated or removed.

Switch Description

-cpredef Deprecated; replaced with the -cstring switch

VisualDSP++ 4.0 Product Release Bulletin 4-3

Obsolete or Removed Features

Refer to Chapter 3, “New Features and Enhancements,” for more
information about the changes to the C/C++ compiler and run-time
libraries.

Compiler and Library for TigerSHARC
Processors

Table 4-2 lists the C/C++ TigerSHARC compiler switches that were
either renamed or became obsolete in VisualDSP++ 4.0.

Table 4-1. Obsolete/Deprecated C/C++ Compiler Common Switches

Switch Name Description

-21xxx All -21xxx switches are deprecated, use the
proc -ADSP-21xxx switch instead

-vcse-add <filename> Removed

-vcse-cname <component name> Removed

-vcse-enforce Removed

-vcse-names <filename> Removed

-no-dollar Removed

-no-inline Removed

-no-restrict Removed; use -no-extra-keywords
instead

-swf-screening Removed

-restrict Removed; now the default mode

-traditional Removed

-xml Removed

Linker

4-4 VisualDSP++ 4.0 Product Release Bulletin

Linker
In VisualDSP++ 4.0, this command-line switch has been removed:

VCSE
In VisualDSP++ 4.0, VisualDSP++ Component Software (VCSE) is not
supported. All VCSE-related features in the assembler, compiler, and
linker have been removed.

VDK
In VisualDSP++ 4.0, the API VDK::GetThreadType has been removed.

Table 4-2. Obsolete/Deprecated C/C++ Compiler Switches

Switch Name Description

-TS101|201 Removed; use -proc (processor) switch instead

-dollar Removed

-inline Removed

-vcse-add <filename> Removed

-vcse-cname <component name> Removed

-vcse-enforce Removed

-vcse-names <filename> Removed

Switch Description

-Ovcse Enabled VCSE method call optimization

	Preface
	Purpose of This Document
	Intended Audience
	Manual Contents
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction
	Product Release Description
	VisualDSP++ 4.0 System Requirements
	Platform and Processor Support

	2 VisualDSP++ 4.0 Major Changes
	New Processor Support
	Installer Changes
	License Changes
	ICE Test
	Changes Common to All Compilers
	Multiline Strings Disabled by Default
	Extended I/O Support
	Support for Silicon Revisions in the Libraries
	Header File time.h
	New Section Used for C++ Virtual Function Tables
	Order of Side-Effects Changed in "Undefined" Expressions
	".o" No Longer Supported as a Suffix for Object Files

	Compiler and Library for Blackfin Processors
	Long Double Now a 64-Bit Floating-Point Data Type
	Variable Size for Double Data Type
	Smaller, Faster Stdio Library
	Parameters to main() Initialized Differently
	Overlay/DMA Managers Must Ensure Loop Counters Are Zero
	System Register Read/Write Built-In Functions Have Different Prototypes
	New noncache_code Section Needed
	Instrumented Profiling Not Supported in a Multithreaded Environment
	Single- and Dual-Core Processors Use Different Library Builds
	Default CRTs Changed

	Compiler and Library for TigerSHARC Processors
	Stack Must Be in Internal Memory
	Changes to the I/O Library
	C/C++ Run-Time Library Naming Conventions

	Compiler and Library for SHARC Processors
	IDDE Changes
	Loader Changes
	Linker Changes

	3 New Features and Enhancements
	VisualDSP++ IDDE
	New Processor Support
	New ICE Features
	New Installation Options
	New “Authorize Script” Option

	Assembler
	Assembler Feature Macros
	.SEPARATE_MEM_SEGMENTS Directive
	Special Assembler Operators

	New Features Common to All Compilers
	New Switches
	New Pragmas
	New Built-In Functions to Control Branch Prediction
	New -Og Switch for Optimizing and Debugging
	Support for Gathering Cycle-Counts
	Bank Type Qualifiers
	Predefined Compiler Macros

	Compiler and Library for Blackfin Processors
	C/C++ Compiler Command-Line Switches
	Workaround <workaroundid>[,<workaroundid> ...]
	Endian-Swapping Intrinsics
	System Built-In Functions
	Misaligned Data Built-In Functions
	Long Double Floating Point Type
	Run-Time Libraries and Start-Up Files
	New C Library Functions
	New DSP Run-Time Library Functions
	CRT Generation
	Assembly Annotations
	New Clipping Fractional Shift Functions

	Compiler and Library for TigerSHARC Processors
	Compiler Command-Line Switch
	New Math Built-In Functions
	New TigerSHARC-Specific Pragma
	Miscellaneous Changes

	Compiler and Library for SHARC Processors
	Access to System Registers
	Predefined Compiler Macros
	Switch Table Placement Control
	New Default Run-Time Headers

	Linker and Utilities
	Modified Link Page in Project Options Dialog Box
	Support for Specifying Two Buffers in Different Memory Segments
	Linker Command-Line Switches
	Updated List of LDF Keywords
	External Execution Packing in SHARC Processors
	Expert Linker Features
	Adding a Memory Segment
	Managing Output Section Properties
	Managing Packing Properties
	Managing Overlay Properties
	Managing Shared Memory Properties

	Memory Initializer Utility
	Migration of LDFs From Previous Versions of VisualDSP++
	Data Section for C++ Virtual Tables
	Blackfin-Specific Features
	New Features Requiring .LDF Support
	New Features in the VisualDSP++ 4.0 Default Template LDFs

	TigerSHARC C/C++ Run-Time Library Naming Conventions

	Loaders and Splitter
	Blackfin Loader Features
	SHARC Loader Features

	VDK

	4 Obsolete or Removed Features
	Discontinued Processor Support
	VisualDSP++ IDDE
	Assembler and Preprocessor
	Compiler and Library for SHARC Processors
	Compiler and Library for TigerSHARC Processors
	Linker
	VCSE
	VDK

