

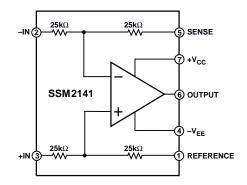
High Common-Mode Rejection Differential Line Receiver

SSM2141

FEATURES

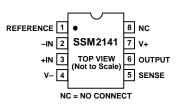
High Common-Mode Rejection DC: 100 dB typ 60 Hz: 100 dB typ 20 kHz: 70 dB typ 40 kHz: 62 dB typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/µs typ Wide Bandwidth: 3 MHz typ Low Cost Complements SSM2142 Differential Line Driver

APPLICATIONS Line Receivers Summing Amplifiers Buffer Amplifiers–Drives 600 Ω Load


GENERAL DESCRIPTION

The SSM2141 is an integrated differential amplifier intended to receive balanced line inputs in audio applications requiring a high level of noise immunity and optimum common-mode rejection. The SSM2141 typically achieves 100 dB of common-mode rejection (CMR), whereas implementing an op amp with four off-the-shelf precision resistors will typically achieve only 40 dB of CMR—inadequate for high-performance audio.

The SSM2141 achieves low distortion performance by maintaining a large slew rate of 9.5 V/ μ s and high open-loop gain. Distortion is less than 0.002% over the full audio bandwidth. The SSM2141 complements the SSM2142 balanced line driver. Together, these devices comprise a fully integrated solution for equivalent transformer balancing of audio signals without the problems of distortion, EMI fields, and high cost.


Additional applications for the SSM2141 include summing signals, differential preamplifiers, and 600 Ω low distortion buffer amplifiers. For similar performance with G = 1/2, see SSM2143.

FUNCTIONAL BLOCK DIAGRAM

PIN CONNECTIONS

8-Pin Plastic Mini-DIP (P Suffix) Narrow Body SO (S Suffix)

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

$$\label{eq:second} \begin{split} & SSM2141-SPECIFICATIONS \\ & ELECTRICAL CHARACTERISTICS \ (@V_{S} = \pm 18 \ V, \ T_{A} = +25^{\circ}C, \ unless \ otherwise \ noted) \end{split}$$

Parameter	Symbol	Conditions	Min	SSM214 Typ	11 Max	Units
OFFSET VOLTAGE	V _{OS}	V _{CM} = 0 V	-1000	25	1000	μV
GAIN ERROR		No Load, $V_{IN} = \pm 10$ V, $R_S = 0$ Ω		0.001	0.01	%
INPUT VOLTAGE RANGE	IVR	(Note 1)	±10			V
COMMON-MODE REJECTION	CMR	$V_{CM} = \pm 10 \text{ V}$	80	100		dB
POWER SUPPLY REJECTION RATIO	PSRR	$V_{\rm S} = \pm 6 \text{ V to } \pm 18 \text{ V}$		0.7	15	μV/V
OUTPUT SWING	Vo	$R_{\rm L} = 2 \ {\rm k}\Omega$	±13	±14.7		V
SHORT-CIRCUIT CURRENT LIMIT	I _{SC}	Output Shorted to Ground	+45/-15			mA
SMALL-SIGNAL BANDWIDTH (-3 dB)	BW	$R_L = 2 k\Omega$		3		MHz
SLEW RATE	SR	$R_L = 2 k\Omega$	6	9.5		V/µs
TOTAL HARMONIC DISTORTION	THD	$ \begin{array}{l} R_L = 100 \; k\Omega \\ R_L = 600 \; \Omega \end{array} $		0.001 0.01		%
CAPACITIVE LOAD DRIVE CAPABILITY	CL	No Oscillation		300		pF
SUPPLY CURRENT	I _{SY}	No Load		2.5	3.5	mA

NOTES

¹Input Voltage Range Guaranteed by CMR test.

Specifications subject to change without notice

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 18 V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
OFFSET VOLTAGE	V _{OS}	$V_{\rm CM} = 0 \ {\rm V}$	-2500	200	2500	μV
GAIN ERROR		No Load, $V_{IN} = \pm 10$ V, $R_S = 0$ Ω 0.002 0.02		0.02	%	
INPUT VOLTAGE RANGE	IVR	(Note 1)	±10			V
COMMON-MODE REJECTION	CMR	$V_{CM} = \pm 10 \text{ V}$	75	90		dB
POWER SUPPLY REJECTION RATIO	PSRR	$V_{\rm S} = \pm 6 \text{ V to } \pm 18 \text{ V}$		1.0	20	μV/V
OUTPUT SWING	Vo	$R_L = 2 k\Omega$	±13	±14.7		V
SLEW RATE	SR	$R_L = 2 k\Omega$		9.5		V/µs
SUPPLY CURRENT	I _{SY}	No Load		2.6	4.0	mA

NOTES

¹Input Voltage Range Guaranteed by CMR test.

Specifications subject to change without notice

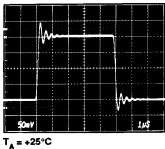
SSM2141

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage ±18 V
Input Voltage ¹ Supply Voltage
Output Short-Circuit Duration Continuous
Storage Temperature Range
P Package $-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (Soldering, 60 sec) +300°C
Junction Temperature +150°C
Operating Temperature Range40°C to +85°C

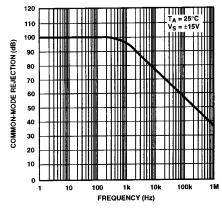
Package Type	$\theta_{JA}{}^2$	θ _{JC}	Units
8-Pin Plastic DIP (P)	103	43	°C/W

NOTES

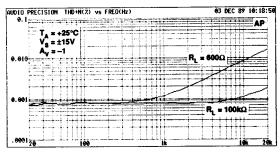

 $^1\mathrm{For}$ supply voltages less than $\pm\,18$ V, the absolute maximum input voltage is equal to the supply voltage.

 $^2\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for P-DIP package.

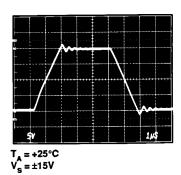
ORDERING GUIDE

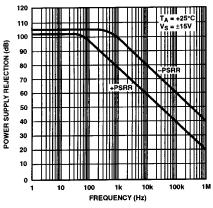

Model	Operating Temperature	Package	Package
	Range	Description	Option
SSM2141P SSM2141S	$\begin{array}{l} XIND \ (-40^{\circ}C \leq T_A \leq +85^{\circ}C) \\ XIND \ (-40^{\circ}C \leq T_A \leq +85^{\circ}C) \end{array}$		N-8 SO-8

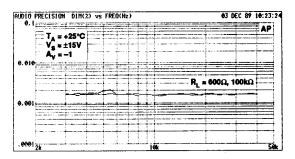
Typical Performance Characteristics

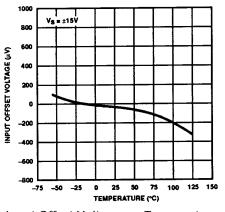


 $V_{s}^{2} = \pm 15V$

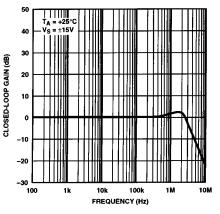

Small Signal Transient Response


Common-Mode Rejection vs. Frequency

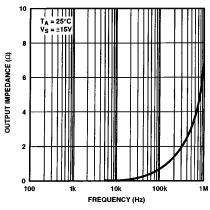

Total Harmonic Distortion vs. Frequency

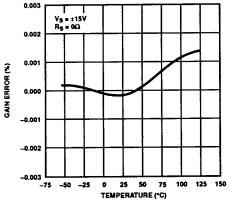


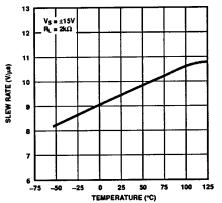
Power Supply Rejection vs. Frequency

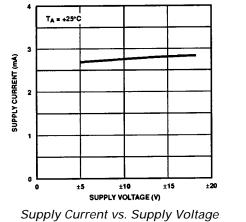


Dynamic Intermodulation Distortion vs. Frequency

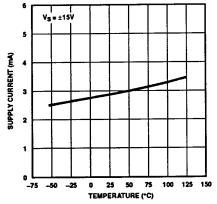

SSM2141–Typical Performance Characteristics


Input Offset Voltage vs. Temperature

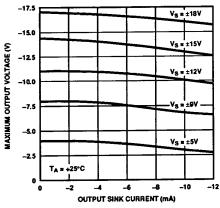

Closed-Loop Gain vs. Frequency


Closed-Loop Output Impedance vs. Frequency

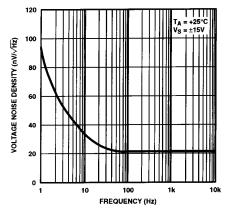
Gain Error vs. Temperature

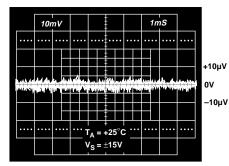


Slew Rate vs. Temperature

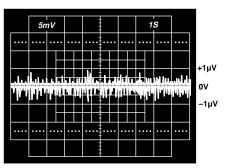


17.5 V5 = ±18V 15.0 isv Vs = MAXIMUM OUTPUT VOLTAGE (V) 12.5 Vs = ±12V 10.0 7.5 5.0 Vs = ± 2.5 TA +25°C 0 24 0 6 12 18 30 OUTPUT SOURCE CURRENT (mA)

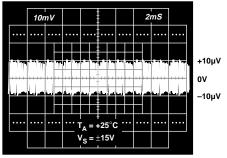

Maximum Output Voltage vs. Output Current (Source)


Supply Current vs. Temperature

Maximum Output Voltage vs. Output Current (Sink)



Voltage Noise Density vs. Frequency


NOTE: EXTERNAL AMPLIFIER GAIN = 1000; THEREFORE, VERTICAL SCALE = 10µV/DIV.

Voltage Noise from 0 kHz to 1 kHz

0.1 TO 10Hz PEAK-TO-PEAK NOISE

Low Frequency Voltage Noise

NOTE: EXTERNAL AMPLIFIER GAIN = 1000; THEREFORE, VERTICAL SCALE = 10µV/DIV.

Voltage Noise from 0 kHz to 10 kHz

APPLICATIONS INFORMATION

The SSM2141 represents a versatile analog building block. In order to capitalize on fast settling time, high slew rate, and high CMR, proper decoupling and grounding techniques must be employed. For decoupling, place 0.1 μ F capacitor located within close proximity from each supply pin to ground.

Slew Rate Test Circuit

SSM2141

MAINTAINING COMMON-MODE REJECTION

In order to achieve the full common-mode rejection capability of the SSM2141, the source impedance must be carefully controlled. Slight imbalances of the source resistance will result in a degradation of DC CMR—even a 5 Ω imbalance will degrade CMR by 20 dB. Also, the matching of the reactive source impedance must be matched in order to preserve the CMRR over frequency.

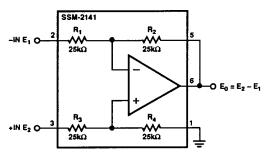


Figure 1. Precision Difference Amplifier. Rejects Common-Mode Signal = $\frac{[E_1+E_2]}{2}$ by 100 dB

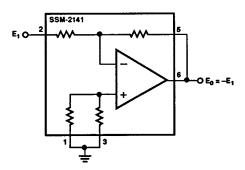


Figure 2. Precision Unity Gain Inverting Amplifier

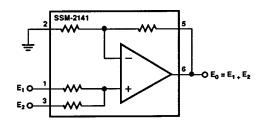


Figure 3. Precision Summing Amplifier

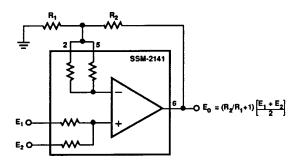
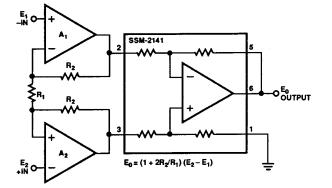
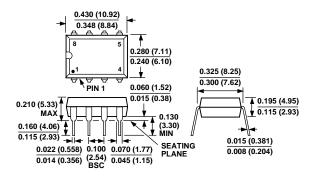
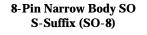
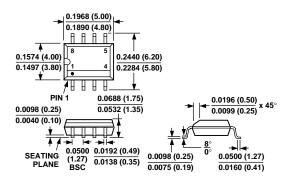


Figure 4. Precision Summing Amplifier with Gain


Figure 5. Suitable Instrumentation Amplifier Requirements can be Addressed by Using an Input Stage Consisting of A_1 , A_2 , R_1 and R_2


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Pin Epoxy Mini-DIP P-Suffix (N-8)

