

High Speed, High Accuracy, 14-Bit, 16-Bit, and 18-Bit PulSAR[®] ADCs

At any speed, in any package size, at any price, and over a wide input voltage range, Analog Devices' industry-leading portfolio of 14-bit, 16-bit, and 18-bit SAR ADCs makes it easy to select the best converter for your application.

High Performance PulSAR ADCs—Uncompromised Speed of 3 MSPS

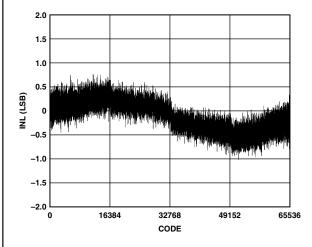
Applications requiring high performance data conversion, such as instrumentation, imaging, and vibration analysis in industrial, medical, and communications markets are driving the demand for ADC solutions that deliver greater precision and speed, at less power, that reduce overall systems cost. Analog Devices' industry-leading PuISAR family of SAR converters provides a range of solutions that addresses the needs of these markets.

Key Features

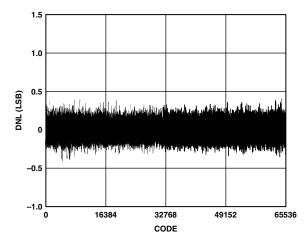
- 16-bit resolution, no missing codes
- Throughput: 3 MSPS
- 1 LSB INL/DNL typ
- S/(N+D): 90 dB typ @ 100 kHz (V_{REF} = 2.5 V)
- THD: -100 dB typ @ 100 kHz
- SPI[®]-/QSPI[™]-/MICROWIRE[™]-/DSPcompatible
- On-board, low drift reference with buffer and temperature sensor
- · Single 2.5 V supply operation
- Power dissipation: 70 mW typ @ 3 MSPS
- 48-lead LQFP, 48-lead LFCSP

Key Benefits

- No compromises, i.e., high speed, high accuracy, low power solution
- Integrated reference
- Lower cost per channel—high speed implies fewer ADCs per channel, and high accuracy relieves expensive PGA


Applications

- · Medical imaging
- Communications
- · Data acquisition equipment
- · Automatic test equipment
- Instrumentation


AD7621—Unequalled SAR ADC Precision and Speed

The AD7621 is a 16-bit, 3 MSPS, charge redistribution SAR, fully differential analogto-digital converter that offers 1 LSB of INL (typ), no missing codes, plus 90 dB SNR. This combination of speed and accuracy is achieved while consuming just 70 mW at 3 MSPS. The SAR architecture ensures that there are no pipeline delays, making it ideal for multiple channel applications, therefore lowering overall cost per channel. The part contains a high speed, 16-bit sampling ADC, an internal conversion clock, an internal reference buffer, error correction circuits, and both serial and parallel system interface ports. The 16-bit accuracy decreases the need for an expensive PGA in front of the ADC, and the AD8021 is a custom-compensated operational amplifier recommended to solve any gain/bandwidth challenges.

High Performance PulSAR ADCs—Uncompromised 18-Bit Resolution

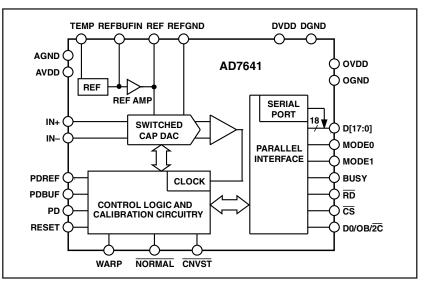
In high speed data acquisition, medical imaging, and automatic test equipment, designers need to convert fast moving signals at the highest level of accuracy. To achieve a simpler design process, greater cost efficiencies, and improved user experience, Analog Devices' 18-bit PulSAR ADCs are the solution as they provide the necessary combination of speed, accuracy, and integration.

Key Features

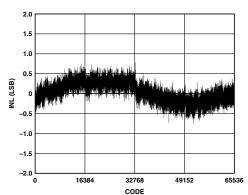
- 18-bit resolution, no missing codes
- Throughput: 2 MSPS
- 2 LSB INL typ, 1 LSB DNL typ
- S/(N+D): 92.5 dB typ @ 100 kHz ($V_{REF} = 2.5 V$)
- THD: -101 dB typ @ 100 kHz
- SPI-/QSPI-/MICROWIRE-/DSP-compatible
- 2.048 V internal reference
- Single 2.5 V supply operation
- Power dissipation: 75 mW typ @ 2 MSPS with internal reference
- 48-lead LQFP, 48-lead LFCSP

Key Benefits

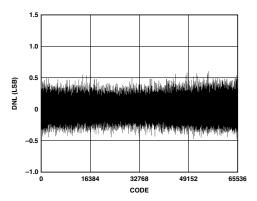
- No compromises, i.e., high speed, high accuracy, low power solution
- Integrated reference


Applications

- Medical imaging
- High end data acquisition
- · Automatic test equipment
- · Spectrum analysis


AD7641—World's Fastest SAR ADC at 18-Bits and 2 MSPS

The AD7641 has raised the top speed for 18-bit SAR ADCs to 2 MSPS. Typical INL is ± 2 LSB with 18-bits no missing codes, guaranteed over temperature. The AD7641 also offers 92.5 dB of SNR and -101 dB of THD, both specified at 100 kHz. This combination of outstanding ac and dc performance supports customers' needs in converting signals at speed and with accuracy. The increase in resolution over 16-bit ADCs allows most designers to eliminate expensive programmable gain amplifiers from their systems. Other features include serial and parallel interfaces, 2.5 V internal reference, fully differential inputs, and three-way, power-down capability. The AD7641 is available in both 48-lead LQFP and 48-lead chip scale packages.


AD7641 Block Diagram

AD7641 INL

AD7641 DNL

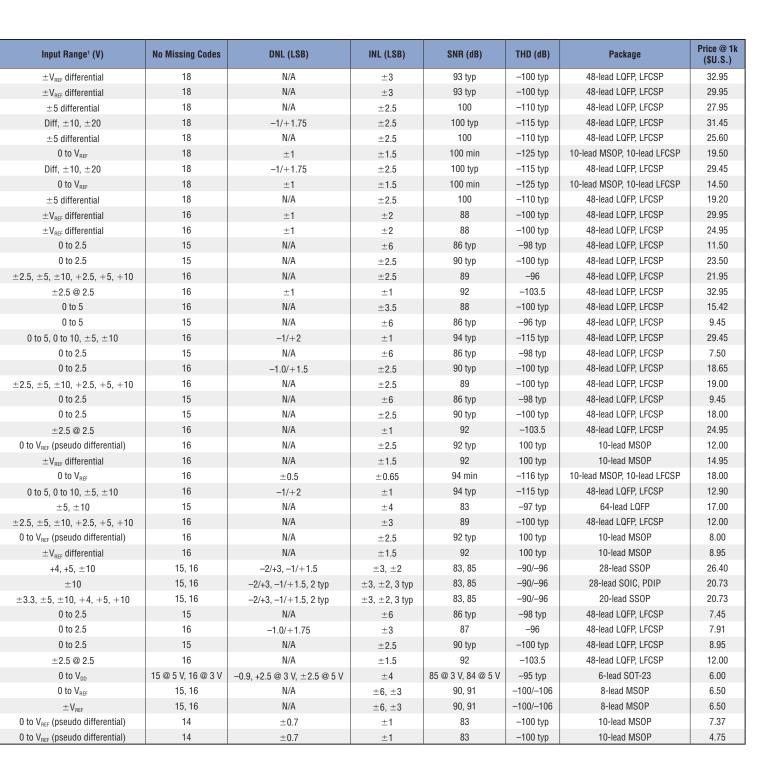
The AD7641 allows low level signals to be converted with minimal front-end analog and filter calibration, reducing design work and cost, and dramatically improving time to market.

Now Choosing an SAR ADC Without Compromising Accuracy, Speed, or Cost Is As Simple As Choosing Analog Devices

Our portfolio of 14-bit, 16-bit, and 18-bit SAR (successive approximation register) ADCs has grown to include over 40 models-it's the largest in the industry.

The AD7621 is the fastest 16-bit SAR ADC, providing a 3 MSPS sampling rate and 2 LSB of integral nonlinearity error (INL). For applications that require more than 16-bit accuracy, we offer a new 18-bit family of ADCs with sampling rates of up to 2 MSPS (provided by the AD7641).

A new group of low power, small package converters is led by the AD7690—the smallest 18-bit ADC, in a 10-lead, 3 mm imes 3 mm LFCSP package, with a sampling rate of 400 kSPS.


No matter what your ADC requirement might be-speed, accuracy, low power, small package, or the best price—Analog Devices has the perfect 14-bit, 16-bit, or 18-bit converter for you.

Features	Part Number	Resolution (Bits)	Sampling Rate (kHz)	Interface	Channels	Voltage Supply	Power (mW) Max	Voltage Reference
 Low power: 1.5 mW 	AD7641	18	2000	18P, S	1	2.5 V (3 V, 5 V logic)	100 typ	Yes
at 2.7 V operation	AD7643	18	1250	18P, S	1	2.5 V (3 V, 5 V logic)	100 typ	Yes
(AD7683)	AD7674	18	800	18P, S	1	5 V (3 V, 5 V logic)	126	Buffer only
 Input ranges: 	AD7634	18	670	18P, S	1	±16.5 V, (3 V, 5 V logic)	100 typ	Yes
Unipolar	AD7679	18	570	18P, S	1	5 V (3 V, 5 V logic)	103	Buffer only
Bipolar	AD7690	18	400	S	1	5 V	20	No
· ·	AD7631	18	250	18P, S	1	\pm 16.5 V, (3 V, 5 V logic)	50 typ	Yes
True differential	AD7691	18	250	S	1	2.7 V to 5 V	12.5	No
Both serial and parallel	AD7678	18	100	18P, S	1	5 V (3 V, 5 V logic)	26	Buffer only
interfaces on the same	AD7621	16	3000	16P, S	1	2.5 V (3 V, 5 V logic)	100 typ	Yes
ADC	AD7623	16	1333	16P, S	1	2.5 V (3 V, 5 V logic)	100 typ	Yes
 SPI/QSPI/ 	AD7653	16	1000	16P, S	1	5 V (3 V, 5 V logic)	145	Yes
MICROWIRE/DSP	AD7667	16	1000	16P, S	1	5 V (3 V, 5 V logic)	145	Yes
 Internal conversion clock 	AD7671	16	1000	16P, S	1	5 V (3 V, 5 V logic)	125	No
in most models	AD7677	16	1000	16P, S	1	5 V (3 V, 5 V logic)	130	No
Applications	AD7654 ²	16	1000	16P, S	4	5 V (3 V, 5 V logic)	135	No
High speed data	AD7655 ²	16	1000	16P, S	4	5 V (3 V, 5 V logic)	135	No
acquisition	AD7612	16	750	16P, S	1	±15 V, (3 V, 5 V logic)	165 typ	Yes
Process control and	AD7650	16	570	16P, S	1	5 V (3 V, 5 V logic)	115	No
industrial equipment	AD7664	16	570	16P, S	1	5 V (3 V, 5 V logic)	115	No
	AD7665	16	570	16P, S	1	5 V (3 V, 5 V logic)	107	No
CT scanners	AD7652	16	500	16P, S	1	5 V (3 V, 5 V logic)	90	Yes
 MRI equipment 	AD7666	16	500	16P, S	1	5 V (3 V, 5 V logic)	90	Yes
 Test and measurement 	AD7676	16	500	16P, S	1	5 V (3 V, 5 V logic)	74	No
systems	AD7686	16	500	S	1	2.7 V to 5 V	20 typ	No
 Optical networking 	AD7688	16	500	S	1	2.7 V to 5 V	44 typ	No
equipment	AD7693	16	500	S	1	5 V	20	No
 Battery-operated 	AD7610	16	250	16P, S	1	±15 V, (3 V, 5 V logic)	75 typ	Yes
systems	AD7656	16	250	16P, S	6	5 V (3 V, 5 V logic)	60 typ	Yes
Network analyzers	AD7663	16	250	16P, S	1	5 V (3 V, 5 V logic)	41	No
Motor control	AD7685	16	250	S	1	2.7 V to 5 V	15	No
	AD7687	16	250	S	1	2.7 V to 5 V	20 typ	No
Scanners	AD974	16	200	S	4	5 V	120	Yes
Industry Firsts	AD976A	16	200	16P	1	5 V	100	Yes
Highest resolution:	AD977A	16	200	S	1	5 V	100	Yes
18 bits at 2 MSPS	AD7651	16	100	16P, S	1	5 V (3 V, 5 V logic)	45	Yes
(AD7641)	AD7660	16	100	16P, S	1	5 V (3 V, 5 V logic)	25	No
Highest accuracy:	AD7661	16	100	16P, S	1	5 V (3 V, 5 V logic)	45	Yes
1 LSB at 1 MSPS	AD7675	16	100	16P, S	1	5 V (3 V, 5 V logic)	25	No
(AD7677)	AD7680	16	100	S	1	3 V to 5 V	10	No
Smallest package:	AD7683	16	100	S	1	2.7 V to 5 V	6	No
$3 \text{ mm} \times 3 \text{ mm} \text{ LFCSP}$	AD7684	16	100	S	1	2.7 V to 5 V	6	No
(AD7690)	AD7946	14	500	S	1	2.7 V to 5 V	25	No
(1000)	AD7942	14	250	S	1	2.7 V to 5 V	12.5	No
			-IN can vary from -0.1 to		/) when referred		.2.0	.10

¹ Input range: differential implies that +IN and -IN can vary from -0.1 to V_{DD} (or within 2 V of V_{DD}) when referred to AGND.

Pseudo differential implies that the –IN input can only vary ± 100 mV typically.

 $^{\rm 2}$ 2 \times 2 channel simultaneous sampling.

PulSAR ADCs for High Voltage Applications—iCMOS™ Technology

Analog Devices' industrial CMOS (*i*CMOS) manufacturing process has enabled the introduction of a wide range of high performance analogto-digital converters, offering major advantages over traditional, power hungry, limited performance solutions. *i*CMOS ADCs address the needs of industrial, medical, and instrumentation applications by delivering products that achieve new performance standards and combine high resolution and speed, high voltage capability, flexibility, and high levels of integration.

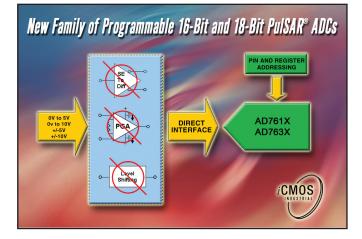
Key Features

- 16-bit/18-bit resolution
- Multiple programmable input ranges
- · Sampling rates up to 750 kSPS
- <10 ppm INL
- 100 dB SNR
- Parallel and serial interface
- 48-lead LQFP, 48-lead LFCSP

Key Benefits

- · No level shifting or gain stages
- Unipolar differential
- Bipolar differential

Applications


- · High speed data acquisition
- Industrial process control
- Precision monitoring systems
- Programmable logic controllers
- Medical instruments

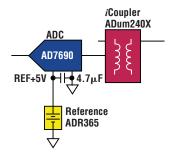
The AD7612 16-bit SAR ADC operates at speeds of 750 kSPS—up to $6 \times$ faster than competitive sampling rates. Software-selectable input ranges eliminate the need for front-end circuitry, reducing component costs and board space.

AD761x and AD763x—Unmatched Flexibility

Data acquisition systems typically utilize level shifting and gain to accommodate various bipolar and unipolar analog input ranges. This front-end signal conditioning method is both a time and cost consuming activity. The AD761x (16-bit) and AD763x (18-bit) SAR ADCs, offer sampling rates up to 750 kSPS, software-selectable unipolar input ranges of 0 V to 5 V and 0 V to 10 V, and bipolar input voltage ranges of ± 5 V and ± 10 V. These devices eliminate the need for front-end analog circuitry, dramatically reducing component cost and board space, while providing greater standards of performance. The software-selectable input voltage ranges allow the designer to change inputs on-the-fly, providing a more flexible solution. With both the AD761x and AD763x families of ADCs, all of the switching is done via internal registers, thus eliminating data latency. This results in faster conversion rates of up to $6 \times$ over existing designs.

Performance in a Small Package—Enabling Portable Medical Applications

Advances in integrated circuit technology have expanded the capabilities of modern medical equipment, for both patient monitoring and medical imaging. To enable these applications, Analog Devices offers a range of high precision analog components including ADCs, DACs, amplifiers, clocks, switches, and digital signal isolators that excel in all key dimensions, i.e., there is no room for trade-offs in performance and portability.


Key Features

- 18-bit resolution, no missing codes
- Throughput: 400 kSPS (AD7690), 250 kSPS (AD7691)
- Accuracy: 1 LSB typ, 1.5 LSB max
- Dynamic range: 102 dB @ 400 kSPS
- Power dissipation: 20 mW @ 400 kSPS
- 10-lead MSOP, 10-lead LFCSP

Applications

- · Battery-powered equipment
- · Data acquisition systems
- Digital voltage meters
- Instrumentation
- · Medical instruments

AD7690 in Electrocardiogram System

About the AD7690 18-Bit PulSAR ADC in 10-lead MSOP

The AD7690 PulSAR ADC delivers uncompromised performance in a small footprint. It is the first 18-bit ADC to fit in the 10-lead MSOP package. It is also the most linear 18-bit ADC with a 7 ppm INL maximum specification. The AD7690 is a successive approximation ADC which operates from a single 5 V power supply and has a versatile SPI serial interface port. It delivers 400 kSPS data rates and dissipates just 20 mW at its highest throughput rate. The SNR of 102 dB allows low level signals to be converted with minimal front-end analog signal conditioning, and the ADA4941-1 is a recommended single-supply differential 18-bit ADC driver. This unique combination of speed, performance, low power, and small package has been designed specifically for applications where board space is at a premium, and speed and accuracy cannot be sacrificed.

Where it matters in medical applications ...

Medical diagnostics and patient monitoring systems require precision analog-todigital conversion. The 18-bit resolution, low power, and 400 kSPS sample rate of the AD7690 meets this requirement, as the serial output is easily isolated from the rest of the system with an *i*Coupler[®] device. The increased demand for portability of these systems is driving the need to maintain performance at lower power and in a small footprint. Consumer medical products also require a price sensitive, offthe-shelf solution to reduce time to market. The AD7691 provides a pin-compatible 250 kSPS solution, and the AD7688 is a 16-bit pin-for-pin solution, enabling flexible system performance upgrades with minimal impact on manufacturability. The AD7690's compact 3 mm × 5 mm MSOP package, 3 mm × 3 mm LFCSP package, and low power of just 20 mW make it a natural fit for battery-powered and hand-held instrumentation applications. The device powers down at the end of each conversion, so the power scales linearly with the sampling rate, further enhancing battery life.

Recommended Voltage References and Op Amps

Take advantage of the industry's highest performing SAR ADCs using these recommended op amps and voltage references.

Part Number	Operating	Temperature	Initial Accuracy Pa	Package	Reference Voltage							
	Temperature	Coefficient		гаскаус	1.225	1.250	2.048	2.500	3.000	4.096	5.000	
	ADR12x -40°C to +125°C	25 ppm/°C	±0.24%	TS0T-23-6		ADR127A		ADR121A			ADR125A	
ADRIZX		9 ppm/°C	±0.12%	1301-23-0		ADR127B		ADR121B			ADR125B	
	ADR44x -40°C to +125°C	10 ppm/°C	±0.12%	SOIC-8,			ADR440A	ADR441A	ADR443A	ADR444A	ADR445A	
ADR44X		3 ppm/°C	±0.04%	MSOP-8			ADR440B	ADR441B	ADR443B	ADR444B	ADR445B	
AD1580	-40°C to	100 ppm/°C	$\pm 10 \text{ mV}$	SOT-23-3,	AD1580A							
+85°C	+85°C	50 ppm/°C	$\pm 1 \text{ mV}$	SC70-3	AD1580B							

Voltage References

Single-Ended-to-Differential Amplifiers Optimized for Driving PulSAR Converters

Driving high resolution differential ADCs has typically required a number of external components in addition to the amplifiers. Configured as easy to use, G = +2, single-ended-to-differential amplifiers, the ADA4941-1 and ADA4922-1 require no external components to drive 16-bit to 18-bit differential PulSAR ADCs. Both devices offer high input impedance, as well as ultralow noise and distortion, which are essential for driving today's high resolution ADCs.

Part –3 dB Bandwidth	Slew Rate	-		Harmonic Distortion		Noise (RTO) ¹			oply je (V)	Price	Comments	
Number	(MHz)	(V/μs)	(ns)	(%)	(dBc)	Freq (kHz)	(nV/\Hz)	(mA Typ)	Min	Max	(\$U.S.) ²	Comments
ADA4922-1	38	730	580	0.01	-109	5	12	9.4	5	26	3.59	G = 2
ADA4941-1	31	24.5	610	0.005	-110	100	10.2	2.3	2.7	12	2.39	Adjustable gain; G = 2 with no external components

¹Referred to output ²1k unit pricing

Operational Amplifiers for Driving PulSAR Converters

Part Number	art Number Sup		Range (V)	-3 dB	Slew	Settling Time		Harmonic	Distortion	Noise (RTI) ¹	Price
Single	Dual	Min	Max	Bandwidth Rate (MHz) (V/µs)		(ns)	(%)	(dBc)	Freq (kHz)	(nV/√Hz)	(\$U.S.) ²
ADA4841-1	ADA4841-2	2.7	12	80	12	175	0.1	-105	100	2.1	1.59/2.29
AD8021		4.5	24	190	140	28	0.01	-84	1000	2.1	1.29
AD8610	AD8620	10	26	25	50	600	0.01	_	_	6	3.37/6.74
AD829		9	36	120	150	65	0.1	-104 ³	30	1.7	2.50

¹Referred to input

²1k unit pricing

³THD (Total harmonic distortion)

Interesting Links

For up-to-date information about Analog Devices products, download our solutions bulletin newsletters. Each issue is packed with details of our newest offerings, design ideas, selection guides, free sample offers, and more. Visit *www.analog.com/bulletins*.

ADI online seminars provide the latest in-depth technical knowledge on our products, technologies, and applications. Visit *www.analog.com/onlineseminar* for both upcoming seminars and seminars on demand.

www.analog.com/pulsar

Order samples: www.analog.com/buyonline

©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Printed in the U.S.A. BR03378-2-6/06(E)

Analog Devices, Inc. Worldwide Headquarters Analog Devices, Inc. One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 U.S.A. Tel: 781.329.4700 (800.262.5643, U.S.A. only) Fax: 781.461.3113

Analog Devices, Inc. Europe Headquarters Analog Devices, Inc. Wilhelm-Wagenfeld-Str.6 80807 Munich Germany Tel: 49.89.76903.0 Fax: 49.89.76903.157

Analog Devices, Inc. Japan Headquarters Analog Devices, KK New Pier Takeshiba South Tower Building 1-16-1 Kaigan, Minato-ku, Tokyo, 105-6891 Japan Tel: 813.5402.8200 Fax: 813.5402.1064

Analog Devices, Inc. Southeast Asia Headquarters Analog Devices 22/F One Corporate Avenue 222 Hu Bin Road Shanghai, 200021 China Tel: 86.21.5150.3000 Fax: 86.21.5150.3222