
Engineer To Engineer Note EE-162 
 

a 
 

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers
 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed 
Converters (like those on the AD9860/2) over the External Memory Bus 
Contributed by Jeff Sondermeyer, Jeritt Kent, Martin Kessler, and Rick Gentile June 5, 2003 

Introduction 
In the 1970’s and 80’s high speed mixed signal designs 
were often constrained by digital circuitry limitations, not 
analog. High-speed parallel converters (>10MSPS), for 
example, have been available from industry leaders like 
Analog Devices Inc. (NYSE: ADI), since the 1970’s. More 
and more applications are demanding intensive real-time 
algorithms. In addition, higher sample rates (14 bits at 
greater than 50MSPS) are available from both analog-to-
digital converters (ADCs) and digital-to-analog converters 
(DACs). These factors mandate faster programmable 
general-purpose (GP) digital signal processors (DSPs) to 
handle the challenges presented by these high-speed 
designs. Until recently, most designers were forced to 
interface high-speed parallel converters to Application 
Specific ICs (ASICs) or fast Field Programmable Gate 
Arrays (FPGAs). Devices like these are capable of 
resolving the many required simultaneous parallel digital 
operations but are often inflexible and can be prohibitively 
expensive.  

Now, with the new Blackfin® processor architecture, ADI 
has a family of programmable GP processors that 
combines 16-bit fixed-point DSP and 32-bit RISC 
processing with a unified instruction set model. The first 
instantiation of this family, the ADSP-BF535 Blackfin 
processor can process the sustained input/output (I/O) and 
core throughputs required to process data from many of 
these converters. In particular, the ADSP-BF535 Blackfin 
processor’s core can be clocked at 300MHz. Depending on 
the core clock frequency, a maximum I/O or system clock 
(SCLK) of 133MHz can be achieved. This SCLK should 
not to be confused with the serial clock for the Serial 
Peripheral Interface (SPI). 

Advantages of using a GP DSP 
One of the biggest advantages of GP programmable 
processors is that these solutions are typically much lower 

in cost than their closest digital processing counterparts, 
FPGAs and ASICs. Additionally, GP DSP design cycles 
are much shorter which allows for a faster time to market. 
Some companies must hire or consult professionals with 
specialized skills to design FPGAs/ASICs. Companies may 
even be forced to send their intellectual property (IP) out-
of-house involving certain risks in confidentiality 
(hardware, firmware, and software). On the other hand, GP 
DSP code can be converted to Read-Only-Memory-based 
(ROM) or be masked into a DSP, like the ADSP-BF53x, 
which further protects IP. Finally, GP processors are fully 
programmable, unlike an ASIC implementation, where 
every change requires a costly redesign (time and money). 
These factors, alone, are driving many engineers to 
reconsider GP DSP as the solution of choice, especially as 
GP DSPs approach “Pentium class” core rates. 

Generally speaking, the Blackfin processor needs to be 
clocked minimally an order of magnitude (10X) faster than 
the converter’s sample rate to guarantee sufficient data 
processing bandwidth. Obviously, the amount of 
processing bandwidth needed is dependent upon the 
processors interface capabilities which is, in turn, 
influenced by several other factors including: block 
processing versus sample processing, the existence of a 
Direct Memory Access (DMA) controller, multi-ported 
memory, and whether external FIFOs are used. 
Fortunately, the first instantiation of ADI’s Blackfin 
processor family, the ADSP-BF535, has a full DMA 
controller that operates independent of the core with multi-
ported Level 1 (L1) and Level 2 (L2) memories. The 
combination of core speed, an independent DMA 
controller, and a large multi-ported on-board memory 
(308K bytes) allows the ADSP-BF535 to perform efficient 
block processing at high data rates. For example, if the 
Revision 2.2-compliant, 33MHz, 32-bit Peripheral 
Component Interconnect (PCI) interface is used (not 
shown in this application), transfer bandwidths can be 
achieved that approach 132MB/sec.  

 

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property 
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however 
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes. 
 



 a 
Unlike the ADSP-BF531/BF532/BF533 Blackfin 
processors, which have a dedicated Parallel Peripheral 
Interface (PPI) to connect directly to high-speed 
converters, the ADSP-BF535 does not. However, the 
External Bus Interface Unit (EBIU) of the ADSP-BF535 
provides interfaces to asynchronous (ASYNC) external 
memories. If the PCI bus must be used for other system 
communications, the EBIU is the only available parallel 
interface to connect the ADSP-BF535 to a high-speed 
converter. Combining the DSP-mastered, asynchronous 
control of this port with the synchronous, continuous data 
stream of converters provides a challenge for system 
designers.  

This application note will cover one particular hardware 
implementation utilizing a low pin count, low cost 
Programmable Array Logic (PAL), Complex 
Programmable Logic Device (CPLD), or FPGA. This logic 
will perform the control functions between the AD9860/2 
Mixed Signal Front-End (MxFE) and the ASYNC 
external memory bus of the ADSP-BF535. Although the 
DSP code will not be discussed in this note, the assembly 
code is included in the Appendix as a reference. The 
application depicted in Figure 1 below is for an Orthogonal 
Frequency Division Multiplexed (OFDM) wireless 
portable terminal. Please note that the ADC and DAC were 
time-shared (Time Division Multiplexed or TDM) over the 
ASYNC interface of the DSP. (The information given here 
applies equally to other parallel high-speed ADCs and 
DACs.) 

This engineering note assumes that the reader has prior 
knowledge of the ADSP-BF535 and the AD9860/2. If you 
are unfamiliar with the ADSP-BF535, please refer to the 
“ADSP-BF535 Blackfin® Processor Hardware 
Reference”. The datasheet for the AD9860/2 can be found 
at www.analog.com 

Design Goals 
One of the early design goals for this project was to 
minimize the amount of external control logic necessary to 
interface the DSP and the converter(s). Driven by cost, 
engineering wanted to eliminate any FIFOs or memory 
within the external logic device. An additional constraint 
was to avoid routing the data buses through the logic 
thereby reducing the number of pins, package size, and 
cost of the logic device. The initial design shown in Figure 
1 combines all functions (including data latching) into a 
single logic device. However, production models of this 
design will utilize inexpensive tri-state-able latches driven 
by a logic device. These latches or buffers will multiplex 
(pack) the samples from the DSP memory interface to the 
12/14-bit DAC as well as buffer or de-multiplex (unpack) 
the 10/12-bit ADC samples to the DSP memory interface.  

Design Challenges 
One of the key factors in any mixed-signal/DSP design is a 
solid understanding of the trade-offs between the devices. 
The following discussion will illustrate the various 
tradeoffs that must be considered when interfacing 
ADCs/DACs to the ADSP-BF535. 

The OFDM modulation scheme for this design drove the 
converter sample rate for this application to be 
15.36MSPS. The AD9860/2 has a dual 10/12-bit, 64MSPS 
ADC as well as a dual 12/14-bit, 128MSPS DAC. Unlike 
ADI’s SHARC® DSPs that have a DMA-Request and 
DMA-Grant (i.e. DMA can be mastered from external 
device), the ADSP-BF535 Blackfin processor only has one 
set of internal memory DMA channels (MemDMA), which 
must be mastered from the DSP. In addition, when the 
ADSP-BF535 ASYNC interface is connected to devices 
that do contain FIFOs or memory, all latencies must be 
understood. Every time the MemDMA relinquishes the bus 
after a burst of eight (8) transfers, it requires ten (10) 
SCLK cycles to begin the next transfer.  

Future Blackfin processor derivatives will have 
programmable priority levels for the DMA controller as 
well as a dedicated high-speed parallel interface with 
DMA-Request and DMA-Grant signaling. With a 
dedicated PPI on future Blackfin processor products, the 
ASYNC memory interface will not be required to connect 
to parallel converters. 

This approach assumes that the memory interface is 
dedicated to the converters. Multiplexing external 
SRAM/SDRAM memory with the converter(s) would be 
difficult and is not recommended, especially considering 
that there is only one MemDMA, and it would need to be 
shared. The existence of a large on-board L2 memory 
(256K bytes) minimizes the need for any external memory. 
However, multiplexing the parallel converter(s) with a 
Flash or EPROM for boot purposes is permissible.  

This design uses a TDM time-slice approach for sharing 
the external bus between the ADCs and the DACs. 
Simultaneous access is not possible with the ADSP-BF535 
because, as mentioned previously, there is only one 
memory interface that either does a read or a write, and 
there is only one set of MemDMA channels (source and 
destination). 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 2 of 24 

The ADSP-BF535 will support a maximum SCLK of 
133MHz (peak DMA bandwidth). At this rate, and with no 
external FIFO, the MemDMA could sustain a transfer (32 
bit word) rate of 133M/10 (nine cycles are required for bus 
acquisition plus one to make the next transfer) or 13.3M 
words/second. Note, however, that the SCLK of the 
ADSP-BF535 is derived from the core clock (CCLK). 
Here, there are four available divide ratios: 2, 2.5, 3, and 4. 

http://www.analog.com/


 a 
As a result, one possible combination of CCLK and divisor 
that will allow a 133MHz SCLK is CCLK = 266MHz and 
CCLK/SCLK = 2. If the core must run at 300MHz, the 
highest SCLK that can be obtained is 120MHz 
(divisor=2.5) to stay under the maximum 133MHz. Now, 
since the ASYNC memory interface is 32 bits wide, one 
can pack up to two 16-bit samples (in this case I and Q) 
into each word. This effectively halves the word rate that 
the DSP must process (with a 15.36MSPS converter 
sample rate, the DSP will “see” 7.68MSPS). The highest 
external converter sample rate, though, that the MemDMA 
will support under these conditions is 2 * 120/10 = 
24MSPS. Furthermore, the SCLK must be an integer 
multiple of the converter sample rate to ensure proper 
phase alignment between converter timing and DSP timing 
and eliminate the need for any external FIFOs. So, if the 
120MHz SCLK must be evenly divisible by the sample 
rate, the highest even divisor of 120 is 12. Therefore, the 
highest converter sample rate that the ADSP-BF535 will 
support is 2 * 12M = 24MSPS. Again, the DSP will only 
process half of this rate, 12MSPS, and this is, in fact, equal 
to the maximum rate that the MemDMA can sustain, 12M 
words/second. Note that higher sample rates can be 
processed by the ADSP-BF535 by including small external 
FIFOs between the converter(s) and the EBIU. 

It is again noted that this application dictated a 15.36MSPS 
converter sample rate driven by OFDM requirements. To 
obtain a SCLK that is an integer multiple of this converter 
sample rate, then, one must choose a Phase Locked Loop 
(PLL) Multiplier that is an integer multiple, in turn, of one 
of the four available divisor ratios (2, 2.5, 3, or 4). The 
maximum CCLK allowed is 276.48MHz (using a PLL 
multiplier of 18). This, in turn, limits the SCLK to the 
integer multiple 276.48/3 = 92.16MHz (a divide ratio of 2 
would give an SCLK over the 133MHz maximum). Under 
these constraints, the maximum sustained rate that the 
MemDMA can support is 92.16/10 = 9.21 words/second.  

DMA Considerations 
Careful consideration must be given to the combined, 
required, “sustained” DMA performance. Since the 
MemDMA is a shared resource over the DMA bus (DAB), 
other DMA activity is arbitrated on this bus. This 
application required a 10Mbit/second serial channel on a 
SPORT that also must arbitrate for the DAB. This will 
consume an additional 625K words/second at 16 bits/word 
of DMA bandwidth. The ADSP-BF535 Blackfin processor 
supports a total of 133M words/second peak DMA 
bandwidth, and the SPORT has higher arbitration priority 
over the MemDMA (see Table 1). Given this, the SPORT 
DMA should effectively utilize the ten-cycle (10) delay 
previously discussed and allow most, if not all, of the 
9.21M words/seconds to be used by the MemDMA. There 

are 9.21M – 7.68M (15.36/2) = 1.53M words/second of 
additional bandwidth which should provide enough margin 
for a sustained 7.68MSPS. 

DAB Master Arbitration Priority 
SPORT0 RCV DMA Controller 0 - highest 
SPORT1 RCV DMA Controller 1 
SPORT0 XMT DMA Controller 2 
SPORT1 XMT DMA Controller 3 
USB DMA Controller 4 
SPI0 DMA Controller 5 
SPI1 DMA Controller 6 
UART0 RCV Controller 7 
UART1 RCV Controller 8 
UART0 XMT Controller 9 
UART1 XMT Controller 10 
Memory DMA Controller 11 - lowest 

Table 1: Arbitration Priority 

Analysis of the DMA engine within the ADSP-BF535 
reveals a few other considerations. While the DMA engine 
supports two types of DMA transfers: descriptor-based and 
autobuffer-based, the ADSP-BF535 MemDMA controller 
does not support autobuffer-based DMA. Therefore, 
descriptor-based transfers must be used. The descriptor 
fetch from L1/L2 memory involves two (2) five-word 
block moves, one for the source descriptor and another for 
the destination descriptor. Additionally, the MemDMA has 
a 16-entry 32-bit FIFO that is filled from the source and 
emptied from the destination. If both descriptors are loaded 
simultaneously, this requires 39 SCLK cycles (worst case) 
from L2. The destination descriptor load has priority over 
the source load to avoid overrunning the FIFO.  Thus, in 
this example, the amount of time required to load both 
descriptors simultaneously is 1/92.16M * 39 = 423 
nanoseconds. The DMA engine descriptor load 
performance is best when the descriptors are loaded from 
L2 memory. If the descriptors are located in L1 memory, 
there are additional delays. The source plus destination 
descriptors’ load time from L1 is 65 SCLK cycles worst 
case. To effectively process data at these sample rates, 
ping-pong buffers are normally used (this design utilizes 
two (2) 1024-word buffers). This technique allows data to 
be filled into one buffer while the core processes the other 
buffer. See the Appendix for the Blackfin assembly code 
that utilizes the MemDMA to pull data in from an ADC 
and “ping-pongs” between two internal buffers. As a 
reference, the complete VisualDSP++ 3.1 project is 
available from ADI. 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 3 of 24 

There are two phases of operation that must be analyzed. 
First, samples must be received from the ADC into the 
DSP (receiver TDM phase) and secondly, samples must be 



 a 
transmitted from the DSP to the DAC (transmitter TDM 
phase). 

Receiver TDM Phase 

During the receive phase (i.e. data from the ADC), the data 
movement is in this direction: ADC → EBIU (source) → 
MemDMA → FIFO → L1/L2 (destination).  At the 
15.36MHz converter sample rate, a new 32-bit sample 
arrives at the DSP every 1/7.68M = 130.2 nanoseconds. As 
seen from the descriptor load time latency, 423 
nanoseconds, something must be done to avoid 
overrunning the DSP and losing samples. Fortunately, the 
converters are attached to an external bus, and the address 
bus is not being used.  Thus, when moving samples into 
the DSP, one can setup the source descriptor with the 
maximum transfer count, 65536 words, and destination 
descriptor with intended ping-pong buffer transfer size, 
1024 words. In this way, upon interrupt from the core 
every 1024 words, only the destination descriptor is 
reloaded, and the load time is reduced to 20 SCLKs * 
1/92.16M = 217 nanoseconds. As previously mentioned, 
this design utilizes a TDM scheme in which the ADC and 
DAC occupy time slices. The multiplex rate is a variable 5-
8 milliseconds. Since the ADC and DAC data is 
interleaved, at a worst case, the interface changes from 
receiver to transmitter and vice versa every 8 milliseconds. 
Therefore, 65536 words * 130.2 nanoseconds or 8.5 
milliseconds is adequate time, and the source descriptor 
only needs to be setup once at the beginning of each 
receiver TDM phase. Finally, the 16-entry MemDMA 
FIFO “hides” the destination descriptor load time because 
the source is still filling the FIFO while the destination 
descriptor is being loaded from memory. In a worst-case 
scenario, the MemDMA FIFO will only accumulate a few 
samples of data before the descriptor is reloaded. Then, 
these samples are burst into memory. So, the need for an 
external FIFO on the receiver side is eliminated and no 
samples are lost. 

Transmitter TDM Phase 
During the transmit phase (i.e. DAC), data movement is in 
the opposite direction: L2/L1 (source) → MemDMA → 
FIFO → EBIU (destination) → DAC. Unlike the previous 
mode, the source descriptor must be updated every 1024 
words. This will require 20 SCLK cycles or 217 
nanoseconds. However, since the MemDMA (9.21M 
words/second) is running slightly faster than the sample 
rate (7.68M words/second), this should maintain 16 
samples in the MemDMA FIFO, which will feed the DAC 
while the descriptor loads. The destination descriptor 
transfer count can be fixed at 65536 words. Again, no 
external FIFO is required and no samples are lost. 

Logic Overview and Timing 
In avoiding the need for FIFOs in the external logic, it is 
still important to synchronize the converter clocks to the 
DSP SysCLKSCLK. Depending on the sample rate, this 
limits the available ADSP-BF535 clocking options. 
Minimally, SCLK must be evenly divisible by the 
converter sample rate, and CCLK may need to be evenly 
divisible by the converter sample rate as well (there is only 
one non-integer divisor, 2.5, and this may not be useable in 
some cases). External latches or buffers must be used to 
align the data from the converters with the timing of the 
DSP (See Figures 2 and 3 for sample skew and delay).  
The four-wire DSP SPI port is directly connected to the 
AD9860/2 SPI port. To ensure proper power sequencing 
and initialization, the DSP should reset the converter(s). In 
an effort to further reduce the pin count of the external 
logic, another option available on the AD9860/2 (not 
shown here) allows two (2) 10/12-bit ADC values to be 
time-multiplexed onto a single 10/12-bit RXDATA bus. 
This would eliminate one of the two (2) 10/12-bit buses, 
but it requires the external logic to de-multiplex the data 
before it is transmitted to the DSP.  

All data movement is controlled or mastered by the 
MemDMA within the Blackfin processor. When the ADC 
data is read (see Figure 2), the external logic must drive the 
data and the ARDY signal. The external logic must sample 
the /AOE pin to check when data can be driven to the 
ADSP-BF535. The /AOE signal indicates to the external 
logic that the DMA controller is ready to take data. The 
receiver three-state machine is shown at the bottom of 
Figure 2.  

When data is being sent out (see Figure 3) to the DAC, the 
external logic has to sample the /AWE signal and then 
drive ARDY. /AWE indicates to the external logic when 
the DMA controller is ready with new data. The 
transmitter four-state machine is shown at the bottom of 
Figure 3. 

Conclusions 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 4 of 24 

Even though the ADSP-BF535 Blackfin processor was not 
specifically designed to interface to high-speed parallel 
converters, this engineering note provides a low-cost 
“FIFO-free” solution for interfacing to both ADCs and 
DACs with sample rates up to 24MSPS if the core is 
constrained to run at 300MHz. If the ADSP-BF535 core 
can be clocked specifically at 264MHz, then the highest 
converter sample rate is limited only by the maximum 
SCLK that the ADSP-BF535 can support (133MHz) and 
the inter-burst 10-cycle MemDMA latency: 2 * 133M/10 = 
26.6MHz. 



 a 
In summary, the following table is included as a set of 
rules specific to the ADSP-BF535 Blackfin processor: 

The Ten Commandments of 
Interfacing to the ADSP-BF535 

1) The ADSP-BF535’s maximum allowed core frequency 
is 300MHz. 

2) ADSP-BF535's maximum allowed system clock 
(SCLK) is 133MHz. 

3) ADSP-BF535's MemDMA has a worst-case ten-cycle 
(10) reacquisition latency every time the DMA bus is 
relinquished. 

4) ADSP-BF535's SCLK shalt be derived from CCLK, 
and there are four available divide ratios between 
CCLK and SCLK (2, 2.5, 3, and 4). 

5) If the ADSP-BF535's core shalt run at the maximum 
(300MHz), then the maximum SCLK is 120MHz. See 
Commandments 1, 2, and 4. 

6) The maximum ADSP-BF535 MemDMA rate is 
133M/10 = 13.3Mwords/sec. See Commandments 2 
and 3. 

7) In order to obtain the fastest ADSP-BF535 SCLK 
(133MHz) and MemDMA transfer rate 
(13.3Mwords/sec), the core shalt not run at maximum, 
but at 266MHz with a CCLK/SCLK divide ratio of 2. 
"Only" 34 MIPs are not utilized!  

8) When not using external FIFOs, the ADSP-BF535's 
core shalt operate minimally at an order of magnitude 
(10X) greater than the greatest external interfacing 
converter sample rate to provide sufficient processing 
bandwidth. 

9) To eliminate the need for external FIFOs, the ADSP-
BF535's SCLK shalt be an integer multiple of the 
external interfacing converter sample rates to ensure 
proper phase alignment between converter timing and 
DSP timing. 

10) To halve the sample rate that the DSP must process, the 
external logic shalt pack up to two 16-bit samples into 
each 32-bit word. 

 

 

 

 

 

 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 5 of 24 

 



 a 

 

������

�����	
��
��
����

���

���

���

��

�������
	�
�

��������	�
�

���

������

������

������


�������

���������� �������

��������� ���

����

����

���

���� 

���� 

��� 

���������� ��	
���
�����


����

	
!"���#$


�!	%�����

�����

����

����	�

������
������

&���'


�!	%�����

( 

( 

�
)�

�
)�

"!%*�����


��#$

"!%*�����

	!*(��#$

"!%*�����

"!%*��#$

	
!"���#$

+),


	
!"���#$

������

������

������

������

������


��,� ��,� ��,� ��,�

��,�� ��,�� ��,��

	!*(�����

"!%*�����

����
� �����


�!	%��#$
��������

"!%*��#$

	!	&

	
!"���#$

	!*(��#$

�������"!%*��#$

����-�"%!(*��#$
�./���-0�!
%��#$

����


����


���

�12234

�54678��3//934�

)
*)
����859:;��3<7=3/

��,��

0�!
%��#$

 

Figure 1: External Logic 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 6 of 24 



����

����

���

����

����

���

���

���� �

�36,1'




#:9>

(

�36,1' �35>
��==3//

�

�:8/3=167<3��35>��==3//�24:?���������,'56@���0*%
)�

	
!"%��#$

�������

������

������


�565
�����	
��
��
��(�

���565�������	�
�

����	�

0�!
%��#$

��"%!(*��#$

���565
������	�
�

"!%*��#$

"!%*��#$

#:9>

(

"!%*�����

"!%*�����

�565
�����	
��
��
��(�

�

�35>
��==3//

� �

#:9>

(



A������9:BC�72�)���--9:B�D�)���--9:B���16'16�����,��C��������--@7;@�E
����)���--9:B�E

�5A������@7;@C� � ����� ����������FA������9:B

	A������9:B�G1/3�5/.8=@4:8:1/�=9354AC���5?'93�����565���

(A������9:BC��3?'-
C��������--9:B�E�

6413 259/3

6413

259/3

259/3

6413


 � 	 ( 
 �

�/3������
�9354

�54678��3//934�

)
*)
����859:;��3<7=3/


 � 	 ( � % " * 0 

 

 
� 
 � 	 ( � % " * 0 



 
�


 � 	 ( �

 

 a 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 

Figure 2: Receive Timing and State Machine 

External Memory Bus (EE-162) Page 7 of 24 



�./��� 0�!
%��#$

�"%!(*��#$����

���


 � 	 ( � % " * 0 

 

 
�

����

���

���

���� �

�36,1'




�4763��==3//

"

#:9>

(

�36,1'




�4763��==3//

"

�:8/3=167<3��4763��==3//�6:���������,'56@���0*%
)�

	
!"���#$

������

������

������


�565
����
���� �565
����
����

���565
����
	�
�

"!%*��#$

����	�

"!%*�����

�"!%*�����

	!*(��#$

�54678��3//934�

)
*)
����859:;��3<7=3/

���565
����
	�
�

������� "!%*��#$


 �

#:9>

(

#:9>

%


A�)���--9:B�E

�A�)���--9:B�E�.3/���5?'93�������58>�����	�

	A��16'16�83B���������58>��������:83�=.=93�52634���������@7;@�>363=63>�

6413

259/3

�2�)���--9:B�58>�)���--@7;@��


 � 	 ( � % " * 0 



 
�

����

 

 a 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 

Figure 3: Transmit Timing and State Machine 

External Memory Bus (EE-162) Page 8 of 24 



 a 
Appendix 

#include <defBF535.h> 
#define RX_DMA_LENGTH_SOURCE  65535 
#define RX_DMA_LENGTH_DESTINATION 1023 
#define TX_DMA_LENGTH_SOURCE  1023 
#define TX_DMA_LENGTH_DESTINATION 65535 
 
#define RX_MODE 1 
#define TX_MODE 2 
#define PR_MODE 4 
#define PT_MODE 8 
 
#define IO_PORT_ADDR 0x28000000  //Bank2 od asych mem, AMS2 effective 
/*SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS*/ 
/*Program Section*/ 
.section program;     
 
/* Init operating mode, stay in supervisor */ 
SetupOpMode: 
 /* int 15 point to user program */ 
 p0.l  = EVT15 & 0xffff; 
 p0.h  = (EVT15 >> 16) & 0xffff; 
 r0  = MainProc(Z); 
 r0.h  = MainProc; 
 [p0]  = r0; 
  
 /* Enable int 15 */ 
 p0.l  = IMASK & 0xffff; 
 p0.h  = (IMASK >>16) & 0xffff; 
 r0.l  = W[p0]; 
 r1.l  = EVT_IVG15; 
 r0  = r0 | r1; 
 W[p0] = r0.l; 
 
 /* Create int 15 */ 
 raise 15; 
 
 p0.l = DeadLoop; 
 p0.h = DeadLoop; 
 reti = p0; 
 rti; 
 nop; 
 nop; 
 
DeadLoop: 
 nop; 
 jump DeadLoop; 
 
MainProc: 
    
 call InitRegs; 
 
 /* Initialize Stack */ 
 SP   =UserStack (Z); 
 SP.h  =UserStack; 
  
 /* Enable interrupt,still in superviser mode */ 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 9 of 24 



 a 
 [--sp] =reti; 
 
 call SetupEvtHandler; 
 
 call SetupCoreTimer; 
 
 /* Setup EBIU */ 
 call SetupEBIUAsynchMem; 
 
 /* Init Mode as TX, 0-RX, 1-TX, 2-PR, 3-PT */ 
 p0.l  = SysMode; 
 p0.h  = SysMode; 
 r0.l  = RX_MODE; 
 W[p0] = r0.l; 
 
 /* Setup DMA */ 
 call InitCommonDMA; 
 call SetupRXDMA; 
 
 /* Setup PF pin, PF0,1,2,3 output */ 
 r0.l=0x000f; 
 p0.l = FIO_DIR & 0xffff; 
 p0.h = FIO_DIR >> 16; 
 p1.l = FIO_FLAG_S & 0xffff; 
 p1.h = FIO_FLAG_S >> 16; 
 p2.l = FIO_FLAG_C & 0xffff; 
 p2.h = FIO_FLAG_C >> 16; 
 W[p0] = r0; 
 
 /* Enable MemDMA sys int . Manual has something wrong, it is clear to  
     enable interrupt*/ 
 i1.L = SIC_IMASK & 0xffff; 
 i1.H = SIC_IMASK >> 16; 
 r3  = [i1]; 
 bitclr(r3, 19); 
 [i1] = r3; 
 csync; 
 
 /* Enable core timer interrupt & MemDMA write int */ 
 i1.L = IMASK & 0xffff; 
 i1.H = IMASK >> 16; 
 r3 =  0x2040 (Z);      
 [ i1 ] = r3; 
 csync; 
  
 /* Start RX DMA operation */ 
 call StartRXDMA; 
  
 /* Start core timer */ 
 i0.l = TCNTL & 0xffff; 
 i0.h = TCNTL >> 16; 
 r4 = 0x0007 (Z); 
 
 r5=0x1; 
 
 /* Testing DMA */ 
LoopA: 
 p1.l = RXReadDMADp1; 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 10 of 24 



 a 
 p1.h = RXReadDMADp1; 
 
DMA_WAIT1: 
 R6 = W[P1]; 
 cc = bittst(R6,15); 
 IF cc JUMP DMA_WAIT1; 
 nop; 
 bitset(r6,15); 
 W[p1] = R6; 
 nop; 
 p1.l = RXWriteDMADp1; 
 p1.h = RXWriteDMADp1; 
 R6 = W[P1]; 
 bitset(r6,15); 
 W[p1] = R6; 
 nop; 
 
 p1.l = RXReadDMADp2; 
 p1.h = RXReadDMADp2; 
 
DMA_WAIT2: 
 R6 = W[P1]; 
 cc = bittst(R6,15); 
 IF cc JUMP DMA_WAIT2; 
 nop; 
 bitset(r6,15); 
 W[p1] = R6; 
 nop; 
 nop; 
 p1.l = RXWriteDMADp2; 
 p1.h = RXWriteDMADp2; 
 R6 = W[P1]; 
 bitset(r6,15); 
 W[p1] = R6; 
 nop; 
 jump LoopA; 
 
_EHANDLER:            // Emulation Handler 0 
 RTE; 
 
_RHANDLER:            // Reset Handler 1 
 RTI; 
 
_NHANDLER:            // NMI Handler 2 
 RTN; 
 
_XHANDLER:            // Exception Handler 3 
 
off1: 
 nop; 
 nop; 
 Jump off1; 
 RTX; 
 
_HWHANDLER:           // HW Error Handler 5 
off2: 
 nop; 
 nop; 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 11 of 24 



 a 
 Jump off2; 
 RTI; 
 
_THANDLER:            // Timer Handler 6 
 
 [--sp] = p1; 
 [--sp] = p2; 
 [--sp] = r5; 
 
 p1.l = FIO_FLAG_S & 0xffff; 
 p1.h = FIO_FLAG_S >> 16; 
 
 p2.l = TimerToggle ; 
 p2.h = TimerToggle ; 
 
 r5 = W[p2](Z); 
 
 bittgl(r5,0); 
 W[p2] = r5.l; 
 
 CC = r5 == 0x1; 
 IF CC JUMP on; 
 p1.l = FIO_FLAG_C & 0xffff; 
 p1.h = FIO_FLAG_C >> 16; 
on:  
 r5 = 0x0001; 
 W[p1]=r5; 
 
 r5 = [sp ++]; 
 p2 = [sp ++]; 
 p1 = [sp ++]; 
 
 RTI; 
 
_RTCHANDLER:  // IVG 7 Handler (RTC) 
 RTI; 
 
_I8HANDLER:  // IVG 8 Handler 
 RTI; 
 
_I9HANDLER:  // IVG 9 Handler 
 RTI; 
 
_I10HANDLER:  // IVG 10 Handler 
 RTI; 
 
_I11HANDLER:  // IVG 11 Handler 
 RTI; 
 
_I12HANDLER:  // IVG 12 Handler 
 RTI; 
 
_I13HANDLER:  // IVG 13 Handler 
 [--sp] = p0; 
 [--sp]  = r0; 
 [--sp] = r1; 
 
 /* Clear MemWDMA interrupt reg */ 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 12 of 24 



 a 
 p0.l = MDR_DI & 0xffff; 
 p0.h = (MDR_DI >> 16) & 0xffff; 
 r0.l = W[p0]; 
 W[p0] = r0.l; 
 
 /*=======*/ 
 p0.l = SysMode; 
 p0.h = SysMode; 
 r0.l = W[p0]; 
 cc= bittst(r0, 1); 
 if cc Jump TXProcessing; 
 
RXProcessing: 
 p0.l  = RXDMACount; 
 p0.h  = RXDMACount; 
    r0  = [p0]; 
 r0  += 1; 
 [p0]  = r0; 
 
 p0.l = FIO_FLAG_C & 0xffff; 
 p0.h = FIO_FLAG_C >> 16; 
 
 cc = bittst(r0,22); 
 if cc jump RXLedOff; 
 
 p0.l = FIO_FLAG_S & 0xffff; 
 p0.h = FIO_FLAG_S >> 16; 
 
RXLedOff: 
 r1  = 0x0002; 
 W[p0] = r1; 
 
 cc = bittst(r0,0); 
 if cc jump  RXOddFrame; 
 
 p0.l  = RXReadDMADp2; 
 p0.h  = RXReadDMADp2; 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
 p0.l  = RXWriteDMADp2; 
 p0.h  = RXWriteDMADp2; 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
 jump  MemDMAISREnd; 
 
RXOddFrame: 
 p0.l  = RXReadDMADp1; 
 p0.h  = RXReadDMADp1; 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
 p0.l  = RXWriteDMADp1; 
 p0.h  = RXWriteDMADp1; 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 13 of 24 



 a 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
MemDMAISREnd: 
  
 r1 = [sp++]; 
 r0 = [sp++]; 
 p0 = [sp++]; 
 rti; 
 
TXProcessing: 
 p0.l  = TXDMACount;      
 p0.h  = TXDMACount; 
 r0  = [p0]; 
 r0  += 1; 
 [p0]  = r0; 
 
 p0.l = FIO_FLAG_C & 0xffff; 
 p0.h = FIO_FLAG_C >> 16; 
 
 cc = bittst(r0,22); 
 if cc jump TXLedOff; 
 
 p0.l = FIO_FLAG_S & 0xffff; 
 p0.h = FIO_FLAG_S >> 16; 
 
TXLedOff: 
 r1  = 0x0004; 
 W[p0] = r1; 
 
 cc = bittst(r0,0); 
 if cc jump  TXOddFrame; 
 
 p0.l  = TXReadDMADp2; 
 p0.h  = TXReadDMADp2; 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
 p0.l  = TXWriteDMADp2; 
 p0.h  = TXWriteDMADp2; 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
 jump  MemDMAISREnd; 
 
TXOddFrame: 
 p0.l  = TXReadDMADp1; 
 p0.h  = TXReadDMADp1; 
 r0  = W[p0]; 
 bitset(r0,15); 
 W[p0] = r0; 
 
 p0.l  = TXWriteDMADp1; 
 p0.h  = TXWriteDMADp1; 
 r0  = W[p0]; 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 14 of 24 



 a 
 bitset(r0,15); 
 W[p0] = r0; 
 
 Jump MemDMAISREnd;  
 
_I14HANDLER: 
 RTI; 
 
_I15HANDLER: 
 RTI; 
 
///////////////////// 
/* Subroutine area */ 
///////////////////// 
/*-----------------------------------------/ 
 Init all register 
 Because the reset might not reset  
 the register into a legal value  
/----------------------------------------*/ 
InitRegs: 
 /* Initialize all register file */ 
 R0 = 0; R1 = 0; R2 = 0; R3 = 0;  
 R4 = 0; R5 = 0; R6 = 0; R7 = 0;   
 P0 = 0; P1 = 0; P2 = 0; P3 = 0; P4 = 0; P5 = 0;   
 I0 = 0 (X); I1 = 0 (X); I2 = 0 (X); I3 = 0 (X);    
 M0 = 0 (X); M1 = 0 (X); M2 = 0 (X); M3 = 0 (X); 
 L0 = 0 (X); L1 = 0 (X); L2 = 0 (X); L3 = 0 (X); 
 B0 = 0 (X); B1 = 0 (X); B2 = 0 (X); B3 = 0 (X); 
 rts; 
 
/*-----------------------------------------/ 
 Setup all the interrupt handler  
/----------------------------------------*/ 
SetupEvtHandler:  
 /*===================================*/ 
 /* Setup Event Vectors and Handlers */ 
 R0 = 0; 
 p0.l = EVT0 & 0xffff; 
 p0.h = EVT0 >> 16; 
  
 p0 +=4; 
 
 // Reset Handler (Int1) 
 R0 = _RHANDLER (Z); 
 R0.H = _RHANDLER;    
 [ P0 ++ ] = R0; 
 
 // NMI Handler (Int2) 
 R0 = _NHANDLER (Z); 
 R0.H = _NHANDLER;    
 [ P0 ++ ] = R0; 
 
 // Exception Handler (Int3) 
 R0.L = _XHANDLER; 
 R0.H = _XHANDLER;    
 [ P0 ++ ] = R0; 
  
 // IVT4 isn't used, Reserved 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 15 of 24 



 a 
 [ P0 ++ ] = R0;   
 
 // HW Error Handler (Int5) 
 R0 = _HWHANDLER (Z); 
 R0.H = _HWHANDLER;   
 [ P0 ++ ] = R0; 
  
 // Core Timer Handler (Int6) 
 R0 = _THANDLER (Z); 
 R0.H = _THANDLER;   
 [ P0 ++ ] = R0; 
  
 // IVG7 Handler, (RTC, USB, PCI) 
 R0 = _RTCHANDLER (Z);    
 R0.H = _RTCHANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG8 Handler (SPORT0,1-RX/TX ) 
 R0 = _I8HANDLER (Z);   
 R0.H = _I8HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG9 Handler (SPI0,1) 
 R0 = _I9HANDLER (Z);   
 R0.H = _I9HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG10 Handler (UART0,1 --RX/TX )  
 R0 = _I10HANDLER (Z);  
 R0.H = _I10HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG11 Handler (Timer 0,1,2) 
 R0 = _I11HANDLER (Z);  
 R0.H = _I11HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG12 Handler (Programmable flag A/B) 
 R0 = _I12HANDLER (Z);  
 R0.H = _I12HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG13 Handler (Memory DMA ) 
 R0 = _I13HANDLER (Z);  
 R0.H = _I13HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG14 Handler (Software Interrrupt 0) 
 R0 = _I14HANDLER (Z);  
 R0.H = _I14HANDLER;   
 [ P0 ++ ] = R0; 
 
 // IVG15 Handler (Software Interrupt 1) 
 R0 = _I15HANDLER (Z);  
 R0.H = _I15HANDLER;   
 [ P0 ++ ] = R0; 
 
 // ??????????? 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 16 of 24 



 a 
 P0 = EVT_OVERRIDE & 0xffff; 
 P0.H = EVT_OVERRIDE >> 16; 
 R0 = 0; 
 [ P0 ] = R0; 
 
 /*===================================*/ 
 rts; 
 
/*-----------------------------------------/ 
 Setup all the interrupt handler  
/----------------------------------------*/ 
SetupCoreTimer: 
 /* Setup core timer */ 
 i0.l = TCNTL & 0xffff; 
 i0.h = TCNTL >> 16;  
 m0=4; 
 r0=0x5 (Z); 
 [i0++m0] = r0;  //Ctimer Control reg 
 csync; 
 
 r1.l=0x0000; 
 r1.h=0x0004; 
 [i0++m0]=r1;  //Ctimer period 
 csync; 
  
 r2 = 0x0080 (Z); 
 [i0++m0]=r2;  //Ctimer scale 
 csync; 
 
 [i0]=r1;   //Ctimer count 
 csync; 
  
 rts; 
 
  
/*----------------------------------------------* 
 * Name  : SetupEBIUAsynchMem 
 * Function : Setup EBIU 's Aych memory for 
     ADC/DAC data 
 * Register  : 
 *  In:  None   
 *  Out:  None 
 *  Used:      
 * Author  : Jeff Sondermeyer 
 *  Create Date : 01/11/2002 
 * Modified :  
 *----------------------------------------------*/ 
SetupEBIUAsynchMem: 
 p0.l = EBIU_AMBCTL0 & 0xffff; 
 p0.h = (EBIU_AMBCTL0 >> 16) & 0xffff; 
  
 // Bank 0: Ardy =0, ArdyPol =0,  BTT =01(1), BST =01(1), BHT =10 (2),  
  // BRAT =0001 (1), BWAT = 0100(4). 
 r0.l = 0xffc7; //0x4194;  
  
 //Keep Default value for bank     
 r0.h = 0xffc2;   
 [p0] = r0; 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 17 of 24 



 a 
 SSYNC; 
 
 p0.l = EBIU_AMBCTL1 & 0xffff; 
 p0.h = (EBIU_AMBCTL1 >> 16) & 0xffff; 
 
 // Bank 2: Ardy =1, ArdyPol =1,  BTT =01(1), BST =00(3), BHT =11 (3),  
 // BRAT =1111 (15), BWAT = 1111(15). 
 r0.l = 0xffc7;  
  
 //Keep Default value for bank     
 r0.h = 0xffc2;   
 [p0] = r0; 
 SSYNC; 
  
 p0.l = EBIU_AMGCTL & 0xffff;   
 p0.h = (EBIU_AMGCTL >> 16) & 0xffff; 
 
 //Clockout: Enabled, Bank0,1,2,3: enabled; 32 bits data path enabled 
 r0 = 0x0007 (z);  
 W[p0] = r0;  
 SSYNC;   
 
 RTS; 
 
/*----------------------------------------------* 
 * Name  : InitCommonDMA 
 * Function : Initialize some common stuff for DMA. 
     For ex: DP BASE address, End DMA DP etc. 
 * Register  : 
 *  In:  None   
 *  Out:  None 
 *  Used:  
 * Author  : Jeff Sondermeyer 
 *  Create Date : 01/11/2002 
 * Modified :  
 *----------------------------------------------*/ 
InitCommonDMA: 
 
 //Initialize RXDMA count and TX DMA count 
 p0.l  = RXDMACount; 
 p0.h  = RXDMACount; 
    r0  = 0; 
 [p0++] = r0; //RX 
 [p0]  = r0; //TX 
 
 //Init ending dp, all DMA DP point to this after transaction; 
 p0.l = DMAEndDp; 
 p0.h = DMAEndDp; 
 r0.l = 0; 
 W[p0] = r0.l; 
 
 //Init Descriptor base pointer register */ 
 r0.l  = RXReadDMADp1; 
 r0.h  = RXReadDMADp1; 
 P0.L  = DB_NDBP & 0xFFFF; 
 P0.H  = (DB_NDBP >> 16) & 0xFFFF;  
 W[p0] = r0.h; 
 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 18 of 24 



 a 
 RTS; 
 
/*----------------------------------------------* 
 * Name  : SetupRXDMA 
 * Function : Setup RX MemDMA for get data 
     From ADC 
 * Register  : 
 *  In:  None   
 *  Out:  None 
 *  Used:  
 * Author:  Jeff Sondermeyer 
 *  Create Date: 01/11/2002 
 * Modified:   
 *----------------------------------------------*/ 
SetupRXDMA: 
 
 /* Source DMA */  
 //Read Descripter1 Setup 
 p0.l  = RXReadDMADp1; 
 p0.h  = RXReadDMADp1; 
 
 //Configuration, 32bit, int disable 
 r0.l  = 0x8009;   
 W[p0] = r0.l; 
 r0.l  = RX_DMA_LENGTH_SOURCE; 
 W[p0+0x2] = r0; 
 r0.l  = IO_PORT_ADDR  & 0xffff; 
 r0.h  = (IO_PORT_ADDR >> 16) & 0xffff; 
 [p0+0x4] = r0; 
 r0.l  = RXReadDMADp2; 
 W[p0+0x8] = r0; 
 
 //Setup Next DP pointer 
 r0  = p0; 
 P0.L  = MDR_DND & 0xFFFF; 
 P0.H  = (MDR_DND >> 16) & 0xFFFF;  
 W[p0] = r0.l; 
 
 //Read Descripter2 Setup 
 p0.l  = RXReadDMADp2; 
 p0.h  = RXReadDMADp2; 
 
 //Configuration, 32bit, int disable 
 r0.l  = 0x8009; 
 W[p0] = r0.l; 
 r0.l  = RX_DMA_LENGTH_SOURCE; 
 W[p0+0x2] = r0; 
 r0.l  = IO_PORT_ADDR & 0xffff; 
 r0.h  = (IO_PORT_ADDR >> 16) & 0xffff; 
 [p0+0x4] = r0; 
 r0.l  = RXReadDMADp1; 
 W[p0+0x8] = r0; 
 
 /* Destination DMA */ 
 // Write descriptor1 Setup  
 p0.l  = RXWriteDMADp1; 
 p0.h  = RXWriteDMADp1; 
 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 19 of 24 



 a 
 //Configuration, 32bit, int enabled on completion 
 r0.l  = 0x800b; 
 W[p0] = r0.l; 
 r0.l  = RX_DMA_LENGTH_DESTINATION; 
 W[p0+0x2] = r0; 
 r0.l  = RXDMABufferA; 
 r0.h  = RXDMABufferA; 
 [p0+0x4] = r0; 
 r0.l  = RXWriteDMADp2; 
 W[p0+0x8] = r0; 
 
 //Setup Next DP pointer 
 r0  = p0; 
 P0.L  = MDW_DND & 0xFFFF; 
 P0.H  = (MDW_DND >> 16) & 0xFFFF;  
 W[p0] = r0.l; 
 
 // Write descriptor2 Setup  
 p0.l  = RXWriteDMADp2; 
 p0.h  = RXWriteDMADp2; 
 
 //Configuration, 32bit, int enabled on completion 
 r0.l  = 0x800b; 
 W[p0] = r0.l; 
 r0.l  = RX_DMA_LENGTH_DESTINATION; 
 W[p0+0x2] = r0; 
 r0.l  = RXDMABufferB; 
 r0.h  = RXDMABufferB; 
 [p0+0x4] = r0; 
 r0.l  = RXWriteDMADp1; 
 W[p0+0x8] = r0; 
 
 RTS; 
 
/*----------------------------------------------* 
 * Name  : StartRXDMA 
 * Function : Start RX MemDMA for get data 
     From ADC 
 * Register  : 
 *  In:  None   
 *  Out:  None 
 *  Used:  
 * Author  : Jeff Sondermeyer 
 *  Create Date : 01/11/2002 
 * Modified :  
 *----------------------------------------------*/ 
 
StartRXDMA: 
 // Enable Destination 
 P0.L  = MDW_DCFG & 0xFFFF; 
 P0.H  = (MDW_DCFG >> 16) & 0xFFFF;  
 R0   = W[P0]; 
 BITSET(R0,0); 
 W[p0] = R0.l; 
 
 // Enable source 
 P0.L  = MDR_DCFG & 0xFFFF; 
 P0.H  = (MDR_DCFG >> 16) & 0xFFFF;  

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 20 of 24 



 a 
 R0   = W[P0]; 
 BITSET(R0,0); 
 W[p0] = r0.l; 
 RTS; 
 
/*----------------------------------------------* 
 * Name  : SetupTXDMA 
 * Function : Setup TX MemDMA to send data 
     to DAC 
 * Register  : 
 *  In:   None   
 *  Out:  None 
 *  Used:   
 * Author  : Jeff Sondermeyer 
 *  Create Date : 01/17/2002 
 * Modified :  
 *----------------------------------------------*/ 
SetupTXDMA: 
 
 /* Source DMA */  
 //Read Descripter1 Setup 
 p0.l  = TXReadDMADp1; 
 p0.h  = TXReadDMADp1; 
 
 //Configuration, 32bit, int disable 
 r0.l  = 0x8009;   
 W[p0] = r0.l; 
 r0.l  = TX_DMA_LENGTH_SOURCE; 
 W[p0+0x2] = r0; 
 r0.l  = TXDMABufferA; 
 r0.h  = TXDMABufferA; 
 [p0+0x4] = r0; 
 r0.l  = TXReadDMADp2; 
 W[p0+0x8] = r0; 
 
 //Setup Next DP pointer 
 r0  = p0; 
 P0.L  = MDR_DND & 0xFFFF; 
 P0.H  = (MDR_DND >> 16) & 0xFFFF;  
 W[p0] = r0.l; 
 
 //Read Descripter2 Setup 
 p0.l  = TXReadDMADp2; 
 p0.h  = TXReadDMADp2; 
 
 //Configuration, 32bit, int disable 
 r0.l  = 0x8009; 
 W[p0] = r0.l; 
 r0.l  = TX_DMA_LENGTH_SOURCE; 
 W[p0+0x2] = r0; 
 r0.l  = TXDMABufferB; 
 r0.h  = TXDMABufferB; 
 [p0+0x4] = r0; 
 r0.l  = TXReadDMADp1; 
 W[p0+0x8] = r0; 
 
 /* Destination DMA */ 
 // Write descriptor1 Setup  

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 21 of 24 



 a 
 p0.l  = TXWriteDMADp1; 
 p0.h  = TXWriteDMADp1; 
 
 //Configuration, 32bit, int enabled on completion 
 r0.l  = 0x800f; 
 W[p0] = r0.l; 
 r0.l  = TX_DMA_LENGTH_DESTINATION; 
 W[p0+0x2] = r0; 
 r0.l  = IO_PORT_ADDR  & 0xffff; 
 r0.h  = (IO_PORT_ADDR >> 16) & 0xffff; 
 [p0+0x4] = r0; 
 r0.l  = TXWriteDMADp2; 
 W[p0+0x8] = r0; 
 
 //Setup Next DP pointer 
 r0  = p0; 
 P0.L  = MDW_DND & 0xFFFF; 
 P0.H  = (MDW_DND >> 16) & 0xFFFF;  
 W[p0] = r0.l; 
 
 // Write descriptor2 Setup  
 p0.l  = TXWriteDMADp2; 
 p0.h  = TXWriteDMADp2; 
 
 //Configuration, 32bit, int enabled on completion 
 r0.l  = 0x800f; 
 W[p0] = r0.l; 
 r0.l  = TX_DMA_LENGTH_DESTINATION; 
 W[p0+0x2] = r0; 
 r0.l  = IO_PORT_ADDR & 0xffff; 
 r0.h  = (IO_PORT_ADDR >> 16) & 0xffff; 
 [p0+0x4] = r0; 
 r0.l  = TXWriteDMADp1; 
 W[p0+0x8] = r0; 
 
 RTS; 
 
/*----------------------------------------------* 
 * Name  : StartTXDMA 
 * Function : Start TX MemDMA to send data to DA 
 * Register  : 
 *  In:  None   
 *  Out:  None 
 *  Used:  
 * Author:  Jeff Sondermeyer 
 *  Create Date: 01/11/2002 
 * Modified:   
 *----------------------------------------------*/ 
 
StartTXDMA: 
 // Enable Dest 
 P0.L  = MDW_DCFG & 0xFFFF; 
 P0.H  = (MDW_DCFG >> 16) & 0xFFFF;  
 R0   = W[P0]; 
 BITSET(R0,0); 
 W[p0] = R0.l; 
 
 // Enable source 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 22 of 24 



 a 
 P0.L  = MDR_DCFG & 0xFFFF; 
 P0.H  = (MDR_DCFG >> 16) & 0xFFFF;  
 R0   = W[P0]; 
 BITSET(R0,0); 
 W[p0] = r0.l; 
 RTS; 
  
/*SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS*/ 
/*Start code Section*/ 
.section start_from_here; 
 r0  = SetupOpMode(Z); 
 r0.h  = SetupOpMode; 
 p0  = r0; 
 csync; 
 jump  (p0); 
 nop; 
 nop; 
 
/*SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS*/ 
/*Stack  Section*/ 
.section ustack;    
.align 4; 
.var UserStackSpace0[1000]; 
UserStack: 
.var UserStackSpace1[4]; 
 
/*SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS*/ 
/*Data Section*/ 
 
// L2 bank 2 */ 
.section L2_B2_data; 
/* MemDMA descriptor buffer */ 
//First RX  
.align 4; 
.BYTE2 RXReadDMADp1[5]; 
.align 4; 
.BYTE2 RXWriteDMADp1[5]; 
 
//First TX 
.align 4; 
.BYTE2 TXReadDMADp1[5]; 
.align 4; 
.BYTE2 TXWriteDMADp1[5]; 
 
//END 
.align 4; 
.BYTE2 DMAEndDp[1]; 
.BYTE2 TimerToggle[1]; 
.align 4; 
.BYTE4 RXDMACount[1]; 
.BYTE4 TXDMACount[1]; 
.align 4; 
.BYTE2 SysMode[1]; 
 
// L2 Bank 3 */ 
.section L2_B3_data; 
/* MemDMA descriptor buffer */ 
//Second RX 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 23 of 24 



 a 
.align 4; 
.BYTE2 RXReadDMADp2[5]; 
.align 4; 
.BYTE2 RXWriteDMADp2[5]; 
 
//Second TX 
.align 4; 
.BYTE2 TXReadDMADp2[5]; 
.align 4; 
.BYTE2 TXWriteDMADp2[5]; 
 
// L1 B bank, sub bank 0 */ 
.section L1_B0_data; 
.align 4; 
TXDMABufferA: 
.BYTE4 RXDMABufferA[1024]; 
 
// L1 B bank, sub bank 1 */ 
.section L1_B1_data; 
.align 4; 
TXDMABufferB: 
.BYTE4 RXDMABufferB 

 

 

 

 Document History 

Version Description 

June 05, 2003 Updated to new Blackfin naming convention and reformatting. 
Ported example code from VisualDSP++ 2.0 to VisualDSP++ 3.1 

February 12, 2002 Initial Release 

 

 

Interfacing the ADSP-BF535 Blackfin® Processor to High-Speed Converters (like those on the AD9860/2) over the 
External Memory Bus (EE-162) Page 24 of 24 


	Introduction
	Advantages of using a GP DSP
	Design Goals
	Design Challenges
	DMA Considerations
	Receiver TDM Phase
	Transmitter TDM Phase
	Logic Overview and Timing
	Conclusions
	The Ten Commandments of Interfacing to the ADSP-BF535
	Appendix
	Document History

