

AN-117 APPLICATION NOTE

ONE TECHNOLOGY WAY ● P.O. BOX 9106 ● NORWOOD, MASSACHUSETTS 02062-9106 ● 617/329-4700

OP-42 Advanced SPICE Macro-Model

by Joe Buxton

INTRODUCTION

This application note describes the SPICE macro-model for the OP-42 high-speed, fast-settling precision operational amplifier. This model was tested with, and is compatible with PSpice* and HSPICE**. The schematic and net-list are included here so that the model can easily be used. This model can accommodate multiple frequency poles and multiple zeroes, which is an advanced concept that results in more accurate AC and transient responses necessary for simulating the behavior of today's high-speed op amps. For example, 8 poles and 2 zeroes are required to sufficiently simulate the OP-42, which this advanced model can easily accommodate.

Throughout the OP-42 macro-model, RC networks produce the multiple poles and zeroes which simulate the OP-42's AC behavior. Each stage contains a pole or a pole-zero pair. The stages are separated from each other by voltage-controlled current sources so that the pole and zero locations do not interact. The only nonlinear elements in the entire model are two pchannel JFETs which comprise the input stage. Limiting the model to almost entirely linear circuit elements significantly reduces simulation time and simplifies model development.

MODEL DESCRIPTION

The schematic (Figure 1) and net-list (Figure 2) describe the complete OP-42 model. This model breaks up the OP-42 into many distinct stages as described below:

INPUT STAGE

To correctly model the behavior of the OP-42, the model uses a differential pair of p-channel JFETs biased with a 1mA current source (Figure 1a). To keep this stage as simple as possible only those parameters necessary to the JFET model are specified, that is the threshold voltage VTO, the transconductance coefficient BETA, and the gate p-n saturation current IS, which is scaled to give the proper input bias current. All other JFET parameters are left at the model default values, most of which

As for non-ideal behaviors of the input stage, such as V_{OS} , I_{OS} , and C_{IN} , these are modelled with external circuit elements. For example, no gate capacitance is specified for the JFET model, therefore a capacitor, C_{IN} , is added across the inputs. Furthermore, since in this model the input JFETs are perfectly matched, V_{OS} and I_{OS} error sources are added using an external voltage

source and current source, respectively. Lastly, the drain resistors $\rm R_3$ and $\rm R_4$ are chosen to be 1/gm of the JFETs to give a gain of unity in the input stage. $\rm C_2$ is added to create one of the secondary poles in the model.

GAIN STAGE

The open-loop gain of the OP-42 is achieved entirely in the gain stage (Figure 1b), and all other stages have unity gain. The two voltage-controlled current sources, G_1 and G_2 , have scaled transconductances that, when combined with R_5 and R_6 , yield an open-loop gain of 250,000. This stage also uses C_3 and C_4 to create the dominant pole at 45Hz and to model the amplifier slew rate. Lastly, the diodes, D_1 and D_2 , and voltage sources V_2 and V_3 , are necessary to clamp the voltage of node 9 below the power supplies. Because the next stage (Figure 1c) has unity gain and its voltage-controlled current sources are controlled by node 9, it too is clamped, at node 11, below the power supplies. The same is true for the subsequent stages, including the output at node 32, such that their voltages are clamped below the power supplies.

POLE-ZERO STAGES

All of the pole-zero stages (Figures 1c-g, i) have unity gain, which is a result of the gm of the voltage-controlled current sources being the reciprocal of the resistors. The RC networks are used to model the secondary poles and zeroes of the OP-42.

COMMON-MODE STAGE

The common-mode voltage that is used to create the CM error is created by the two input resistors, $\rm R_1$ and $\rm R_2$. This voltage is referenced by $\rm G_{13}$ and $\rm G_{14}$ in the common-mode stage (Figure 1h). The transconductances of these two sources are scaled such that, in combination with $\rm R_{21}$ and $\rm R_{22}$, the $\rm V_{CM}$ is attenuated by the CMRR of 96dB. This error voltage is then inserted as an offset voltage in the input stage by $\rm E_{OS}$. The inductors, $\rm L_1$ and $\rm L_2$, mimic the pole in the CMR vs. frequency response of the OP-42.

OUTPUT STAGE

The output stage (Figure 1j) is modelled as an ideal output with an output resistance, $\rm R_{28}$ in parallel with $\rm R_{29}$. An inductor, $\rm L_3$, is added to model the rising output impedance of the emitter-follower output stage with frequency. The voltage sources $\rm V_6$ and $\rm V_7$, and diodes $\rm D_5$ and $\rm D_6$, combine to limit the voltage across the resistors, thus limiting the output current, $\rm I_{OUT}$ to 30mA.

*IGURE 1: OP-42 SPICE Macro-Model Schematic and Node List

```
* POLE AT 53 MHZ
OP-42 MACRO-MODEL © PMI 1989
                                                                        R19
                                                                                               1E6
                                                                               19

    SUBCKT OP-42 1 2 99 50 32

                                                                        R20
                                                                               19
                                                                                    50
                                                                                               1E6
                                                                                               3E-15
3E-15
                                                                        C13
                                                                                    99
                                                                               19
* INPUT STAGE & POLE AT 15.9 MHZ
                                                                        Č14
                                                                               19
                                                                                    50
                                                                        Ğii
                                                                                               18 26 1E-6
                                                                               99
                                                                                    19
                       5E11
                      5E11
707.36
707.36
                                                                        Ğ12
                                                                               19
                                                                                               26 18 1E-6
R2
R3
            50
                                                                        *COMMON-MODE GAIN NETWORK WITH ZERO AT 100 KHZ
R4
       6
            50
CIN
                       5E-12
                                                                        R21
                                                                                               1E6
C2
      5
            6
                       7.08E-12
                                                                               20
21
23
99
                                                                                    23
99
                                                                                               1E6
                                                                        R22
       99
                       1E-3
11
            4
                                                                                               1.5915
                                                                        L1
                       2E-12
IOS
            2
                                                                                    50
20
                                                                        Ī2
                                                                                               1.5915
                       POLY(1) 20 26 0.3E-3 1
EOS
                                                                                               3 26 1.58E-11
                                                                        G13
J1
       5
            2
                       JX
                                                                        Ğ14
                                                                               20
                                                                                               26 3 1.58E-11
                       JX
J2
       6
                 4
                                                                        *POLE AT 79.6 MHZ
* SECOND STAGE & POLE AT 45 HZ
                                                                               25
25
25
25
99
                                                                        R24
                                                                                               1E6
                       176.84E6
R5
R6
C3
C4
G1
G2
                                                                        R25
C15
C16
G15
                                                                                               1E6
                                                                                    50
                       176.84E6
            50
                                                                                               2E-15
2E-15
                                                                                    99
            99
                       20E-12
                                                                                    50
                       20E-12
POLY(1) 5 6 3.96E-3 1.4137E-3
POLY(1) 6 5 3.96E-3 1.4137E-3
            50
                                                                                    25
                                                                                               19 26 1E-6
       99
            9
                                                                               25
                                                                                               26 19 1E-6
                                                                        G16
                                                                                    50
            50
V2
V3
       99
            8
                                                                         *OUTPUT STAGE
       10
            50
                       DX
DX
D1
                                                                               26
26
27
27
                                                                        R26
                                                                                               111.1E3
D2
       10
                                                                                               111.1E3
90
                                                                        R27
                                                                                    50
                                                                        R28
                                                                                    99
                                                                                               90
90
2.5E-7
25 27 11.1111E-3
27 25 11.1111E-3
99 25 11.1111E-3
25 50 11.1111E-3
0.7
0.7
* POLE-ZERO PAIR AT 1.80 MHZ/2.20 MHZ
                                                                         R29
                                                                                     50
                                                                               27
30
                                                                        L3
                                                                                     32
R7
                                                                        G17
                                                                                     50
R8
                       1Ë6
            50
       11
                                                                        G18
G19
G20
                                                                               31
27
                                                                                     50
R9
       11
            12
                       4.5E6
                                                                                     99
R10
C5
C6
G3
                       4.5E6
            13
       11
12
                                                                               50
                                                                                     27
                       16.1E-15
            99
                                                                         V6
                                                                               28
                                                                                     27
       13
            50
                       16.1E-15
                                                                               27
25
                                                                         Ÿ7
                                                                                     29
                                                                                               0.7
                       9 26 1E-6
26 9 1E-6
       99
            11
                                                                         D5
                                                                                     28
                                                                                               DX
Ğ4
            50
       11
                                                                                               DX
DX
DX
DY
                                                                         D6
D7
                                                                               29
99
                                                                                     25
30
* POLE-ZERO PAIR AT 1.80 MHZ/2.20 MHZ
                                                                         D8
                                                                                99
                                                                                     31
                                                                                     30
                                                                         D9
R11
                       1E6
       14
14
14
            99
R12
R13
                                                                         D10
                                                                               50
                                                                                     31
                                                                                               DY
            50
                       1E6
                       4.5E6
4.5E6
            15
                                                                         * MODELS USED
R14
C7
       14
            16
                       16.1E-15
16.1E-15
       15
16
            99
                                                                         •MODEL JX PJF(BETA=999.3E-6 VTO=-2.000 IS=8E-11)
C8
            50
                                                                         •MODEL DX D(IS=1E-15)
•MODEL DY D(IS=1E-15
                       11 26 1E-6
26 11 1E-6
G5
       99
14
            14
                                                                                         D(IS=1E-15 BV=50)
            50
G6
                                                                         •ENDS OP-42
* POLE AT 53 MHZ
R15
                       1E6
             99
       17
17
                       1E6
R16
            50
C9
            99
                       3E-15
C10
       17
                       3E-15
            50
                       14 26 1E-6
G7
       99
Ġ8
            50
                       26 14 1E-6
* POLE AT 53 MHZ
R17
R18
C11
             50
                        1E6
       18
            99
                        3E-15
       18
C12
             50
                        3E-15
       18
Ğ9
       99
             18
                       17 26 1E-6
Ğ10
       18
             50
                       26 17 1E-6
```

FIGURE 2: OP-42 SPICE Net-List

FIGURE 4: Gain-Phase Plots, Closed-Loop Gain of -1 (a. Actual Response, b. Simulated Model Response)

FIGURE 5: Large-Signal Transient Response (a. Actual, b. Model)

FIGURE 6: Small-Signal Transient Response (a. Actual, b. Model)