
a

ADSP-21000 FamilyADSP-21000 FamilyADSP-21000 FamilyADSP-21000 FamilyADSP-21000 Family

Application Handbook VolumeApplication Handbook VolumeApplication Handbook VolumeApplication Handbook VolumeApplication Handbook Volume
11111

ADSP-21000 FamilyADSP-21000 FamilyADSP-21000 FamilyADSP-21000 FamilyADSP-21000 Family
Application Handbook Volume 1Application Handbook Volume 1Application Handbook Volume 1Application Handbook Volume 1Application Handbook Volume 1
 1994 Analog Devices, Inc.
ALL RIGHTS RESERVED

PRODUCT AND DOCUMENTATION NOTICE: Analog Devices reserves the right to change this product
and its documentation without prior notice.

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any infringement of patents,
or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under the patent rights of Analog Devices.

SHARC, EZ-ICE and EZ-LAB are trademarks of Analog Devices, Inc.
MS-DOS and Windows are trademarks of Microsoft, Inc.

PRINTED IN U.S.A.

Printing History
FIRST EDITION 5/94

For marketing information or Applications Engineering assistance, contact your local
Analog Devices sales office or authorized distributor.

If you have suggestions for how the ADSP-2100 Family development tools or
documentation can better serve your needs, or you need Applications Engineering
assistance from Analog Devices, please contact:

Analog Devices, Inc.
DSP Applications Engineering
One Technology Way
Norwood, MA 02062-9106
Tel: (617) 461-3672
Fax: (617) 461-3010
e-mail: dsp_applications@analog.com

The System IC Products Division runs a Bulletin Board Service that can be reached at
speeds up to 14,400 baud, no parity, 8 bits data, 1 stop bit, dialing (617) 461-4258.
This BBS supports: V.32bis, error correction (V.42 and MNP classes 2, 3, and 4), and
data compression (V.42bis and MNP class 5)

The System IC Products Division Applications Group maintains an Internet FTP site. Login
as anonymous using your email address for your password. Type (from your UNIX
prompt):

ftp ftp.analog.com (or type: ftp 137.71.23.11)

For additional marketing information, call (617) 461-3881 in Norwood MA, USA.

LiteratureLiteratureLiteratureLiteratureLiterature
ADSP-21000 FAMILY MANUALSADSP-21000 FAMILY MANUALSADSP-21000 FAMILY MANUALSADSP-21000 FAMILY MANUALSADSP-21000 FAMILY MANUALS

ADSP-21020 User’s Manual
ADSP-21000 SHARC Preliminary Users Manual
Complete description of processor architectures and system interfaces.

ADSP-21000 Family Assembler Tools & Simulator Manual
ADSP-21000 Family C Tools Manual
ADSP-21000 Family C Runtime Library Manual
Programmer’s references.

ADSP-21020 EZ-ICE Manual
ADSP-21020 EZ-LAB Manual
User’s manuals for in-circuit emulators and demonstration boards.

SPECIFICATION INFORMATIONSPECIFICATION INFORMATIONSPECIFICATION INFORMATIONSPECIFICATION INFORMATIONSPECIFICATION INFORMATION

ADSP-21020 Data Sheet
ADSP-2106 SHARC Preliminary Data Sheet
ADSP-21000 Family Development Tools Data Sheet

ContentsContentsContentsContentsContents

CHAPTER 1 INTRODUCTION

1.1 USAGE CONVENTIONS ... 1
1.2 DEVELOPMENT RESOURCES ... 1
1.2.1 Software Development Tools ... 1
1.2.2 Hardware Development Tools .. 2
1.2.2.1 EZ-LAB .. 2
1.2.2.2 EZ-ICE ... 2
1.2.3 Third Party Support .. 2
1.2.4 DSPatch ... 3
1.2.5 Applications Engineering Support ... 3
1.2.6 ADSP-21000 Family Classes ... 4
1.3 ADSP-21000 FAMILY: THE SIGNAL PROCESSING

SOLUTION ... 4
1.3.1 Why DSP? ... 4
1.3.2 Why Floating-Point?.. 4
1.3.2.1 Precision .. 4
1.3.2.2 Dynamic Range .. 5
1.3.2.3 Signal-To-Noise Ratio ... 5
1.3.2.4 Ease-Of-Use .. 5
1.3.3 Why ADSP-21000 Family? ... 5
1.3.3.1 Fast & Flexible Arithmetic .. 6
1.3.3.2 Unconstrained Data Flow ... 6
1.3.3.3 Extended IEEE-Floating-Point Support 6
1.3.3.4 Dual Address Generators ... 6
1.3.3.5 Efficient Program Sequencing ... 6
1.4 ADSP-21000 FAMILY ARCHITECTURE OVERVIEW 7
1.4.1 ADSP-21000 Family Base Architecture..................................... 7
1.4.2 ADSP-21020 DSP.. 8
1.4.3 ADSP-21060 SHARC ... 10

v

2 – 22 – 22 – 22 – 22 – 2

ContentsContentsContentsContentsContents

vi

CHAPTER 2 TRIGONOMETRIC, MATHEMATICAL &
TRANSCENDENTAL FUNCTIONS

2.1 SINE/COSINE APPROXIMATION ... 15
2.1.1 Implementation .. 16
2.1.2 Code Listings .. 18
2.1.2.1 Sine/Cosine Approximation Subroutine 18
2.1.2.2 Example Calling Routine .. 21
2.2 TANGENT APPROXIMATION .. 22
2.2.1 Implementation .. 22
2.2.2 Code Listing-Tangent Subroutine ... 24
2.3 ARCTANGENT APPROXIMATION ... 27
2.3.1 Implementation .. 27
2.3.2 Listing-Arctangent Subroutine .. 29
2.4 SQUARE ROOT & INVERSE SQUARE ROOT

APPROXIMATIONS ... 33
2.4.1 Implementation .. 34
2.4.2 Code Listings .. 35
2.4.2.1 SQRT Approximation Subroutine 36
2.4.2.2 ISQRT Approximation Subroutine 38
2.4.2.3 SQRTSGL Approximation Subroutine 40
2.4.2.4 ISQRTSGL Approximation Subroutine 42
2.5 DIVISION.. 44
2.5.1 Implementation .. 44
2.5.2 Code Listing-Division Subroutine .. 44
2.6 LOGARITHM APPROXIMATIONS ... 46
2.6.1 Implementation .. 47
2.6.2 Code Listing ... 49
2.6.2.1 Logarithm Approximation Subroutine 49
2.7 EXPONENTIAL APPROXIMATION ... 52
2.7.1 Implementation .. 53
2.7.2 Code Listings-Exponential Subroutine................................... 55
2.8 POWER APPROXIMATION.. 57
2.8.1 Implementation .. 59
2.8.2 Code Listings .. 62
2.8.2.1 Power Subroutine .. 62
2.8.2.2 Global Header File ... 68
2.8.2.3 Header File.. 69
2.9 REFERENCES... 69

2 – 32 – 32 – 32 – 32 – 3

ContentsContentsContentsContentsContents

vii

CHAPTER 3 MATRIX FUNCTIONS

3.1 STORING A MATRIX ... 72
3.2 MULTIPLICATION OF A M×N MATRIX

BY AN N×1 VECTOR .. 73
3.2.1 Implementation .. 73
3.2.2 Code Listing—M×N By N×1 Multiplication 75
3.3 MULTIPLICATION OF A M×N MATRIX

BY A N×O MATRIX .. 77
3.3.1 Implementation .. 77
3.3.2 Code Listing—M×N By N×O Multiplication......................... 79
3.4 MATRIX INVERSION... 81
3.4.1 Implementation .. 82
3.4.2 Code Listing—Matrix Inversion .. 84
3.5 REFERENCES... 88

CHAPTER 4 FIR & IIR FILTERS

4.1 FIR FILTERS ... 90
4.1.1 Implementation .. 91
4.1.2 Code Listings .. 96
4.1.2.1 Example Calling Routine .. 96
4.1.2.2 Filter Code .. 98
4.2 IIR FILTERS .. 100
4.2.1 Implementation .. 101
4.2.1.1 Implementation Overview ... 101
4.2.1.2 Implementation Details .. 102
4.2.2 Code Listings .. 106
4.2.2.1 iirmem.asm ... 106
4.2.2.2 cascade.asm .. 108
4.3 SUMMARY ... 111
4.4 REFERENCES... 111

CHAPTER 5 MULTIRATE FILTERS

5.1 SINGLE-STAGE DECIMATION FILTER..................................... 114
5.1.1 Implementation .. 114
5.1.2 Code Listings—decimate.asm ... 117
5.2 SINGLE-STAGE INTERPOLATION FILTER 122
5.2.1 Implementation .. 122

2 – 42 – 42 – 42 – 42 – 4

ContentsContentsContentsContentsContents

viii

5.2.2 Code Listing—interpol.asm ... 124
5.3 RATIONAL RATE CHANGER (TIMER-BASED) 129
5.3.1 Implementation .. 129
5.3.2 Code Listings—ratiobuf.asm ... 133
5.4 RATIONAL RATE CHANGER

(EXTERNAL INTERRUPT-BASED).. 138
5.4.1 Implementation .. 138
5.4.2 Code Listing—rat_2_int.asm.. 139
5.5 TWO-STAGE DECIMATION FILTER.. 143
5.5.1 Implementation .. 143
5.5.2 Code Listing—dec2stg.asm .. 145
5.6 TWO-STAGE INTERPOLATION FILTER 150
5.6.1 Implementation .. 150
5.6.2 Code Listing—int2stg.asm ... 151
5.7 REFERENCES... 156

CHAPTER 6 ADAPTIVE FILTERS

6.1 INTRODUCTION .. 157
6.1.1 Applications Of Adaptive Filters .. 157
6.1.1.1 System Identification ... 158
6.1.1.2 Adaptive Equalization For Data Transmission 159
6.1.1.3 Echo Cancellation For Speech-Band

Data Transmission ... 159
6.1.1.4 Linear Predictive Coding of Speech Signals 160
6.1.1.5 Array Processing .. 160
6.1.2 FIR Filter Structures .. 160
6.1.2.1 Transversal Structure .. 161
6.1.2.2 Symmetric Transversal Structure 162
6.1.2.3 Lattice Structure ... 163
6.1.3 Adaptive Filter Algorithms .. 164
6.1.3.1 The LMS Algorithm... 164
6.1.3.2 The RLS Algorithm.. 165
6.2 IMPLEMENTATIONS .. 167
6.2.1 Transversal Filter Implementation .. 168
6.2.2 LMS (Transversal FIR Filter Structure)................................. 168
6.2.2.1 Code Listing—lms.asm ... 169
6.2.3 llms.asm—Leaky LMS Algorithm (Transversal) 171
6.2.3.1 Code Listing ... 171
6.2.4 Normalized LMS Algorithm (Transversal) 173
6.2.4.1 Code Listing—nlms.asm... 174
6.2.5 Sign-Error LMS (Transversal) .. 176

2 – 52 – 52 – 52 – 52 – 5

ContentsContentsContentsContentsContents

ix

6.2.5.1 Code Listing—selms.asm ... 177
6.2.6 Sign-Data LMS (Transversal) ... 179
6.2.6.1 Code Listing—sdlms.asm ... 180
6.2.7 Sign-Sign LMS (Transversal) .. 183
6.2.7.1 Code Listing—sslms.asm ... 183
6.2.8 Symmetric Transversal Filter Implementation LMS 185
6.2.8.1 Code Listing—sylms.asm ... 186
6.2.9 Lattice Filter LMS With Joint Process Estimation 189
6.2.9.1 Code Listing—latlms.asm .. 191
6.2.10 RLS (Transversal Filter) .. 194
6.2.10.1 Code Listing—rls.asm ... 195
6.2.11 Testing Shell For Adaptive Filters ... 199
6.2.11.1 Code Listing—testafa.asm .. 199
6.3 CONCLUSION... 202
6.4 REFERENCES... 203

CHAPTER 7 FOURIER TRANSFORMS

7.1 COMPUTATION OF THE DFT ... 206
7.1.1 Derivation Of The Fast Fourier Transform 207
7.1.2 Butterfly Calculations ... 208
7.2 ARCHITECTURAL FEATURES FOR FFTS 210
7.3 COMPLEX FFTS .. 211
7.3.1 Architecture File Requirements ... 211
7.3.2 The Radix-2 DIT FFT Program .. 212
7.3.3 The Radix-4 DIF FFT Program ... 213
7.3.4 FFTs On The ADSP-21060 .. 214
7.3.5 FFT Twiddle Factor Generation... 214
7.4 INVERSE COMPLEX FFTs ... 215
7.5 BENCHMARKS ... 216
7.6 CODE LISTINGS ... 217
7.6.1 FFT.ACH—Architecture File ... 217
7.6.2 FFTRAD2.ASM—Complex Radix2 FFT 218
7.6.3 FFTRAD4.ASM—Complex Radix-4 FFT 225
7.6.4 TWIDRAD2.C—Radix2 Coefficient Generator 232
7.6.5 TWIDRAD4.C—Radix4 Coefficient Generator 234
7.7 REFERENCES... 236

2 – 62 – 62 – 62 – 62 – 6

ContentsContentsContentsContentsContents

x

CHAPTER 8 GRAPHICS

8.1 3-D GRAPHICS LINE ACCEPT/REJECT.................................... 237
8.1.1 Implementation .. 239
8.1.2 Code Listing ... 240
8.2 CUBIC BEZIER POLYNOMIAL EVALUATION 244
8.2.1 Implementation .. 245
8.2.2 Code Listing ... 246
8.3 CUBIC B-SPLINE POLYNOMIAL EVALUATION................... 248
8.3.1 Implementation .. 248
8.3.2 Code Listing ... 250
8.4 BIT BLOCK TRANSFER ... 253
8.4.1 Implementation .. 253
8.4.2 Code Listing ... 255
8.5 BRESENHAM LINE DRAWING .. 257
8.5.1 Implementation .. 257
8.5.2 Code Listing ... 259
8.6 3-D GRAPHICS TRANSLATION, ROTATION, & SCALING . 262
8.6.1 Implementation .. 262
8.6.2 Code Listing ... 265
8.7 MULTIPLY 4×4 BY 4×1 MATRICES (3D GRAPHICS

TRANSFORMATION) .. 267
8.7.1 Implementation .. 267
8.7.2 Code Listing ... 268
8.8 TABLE LOOKUP WITH INTERPOLATION 270
8.8.1 Implementation .. 270
8.8.2 Code Listing ... 272
8.9 VECTOR CROSS PRODUCT ... 274
8.9.1 Implementation .. 274
8.9.2 Code Listing ... 275
8.10 REFERENCES... 277

CHAPTER 9 IMAGE PROCESSING

9.1 TWO-DIMENSIONAL CONVOLUTION.................................... 279
9.1.1 Implementation .. 280
9.1.2 Code Listing ... 283
9.2 MEDIAN FILTERING (3×3) ... 285
9.2.1 Implementation .. 285
9.2.2 Code Listing ... 286
9.3 HISTOGRAM EQUALIZATION... 288

2 – 72 – 72 – 72 – 72 – 7

ContentsContentsContentsContentsContents

xi

9.3.1 Implementation .. 289
9.3.2 Code Listing ... 290
9.4 ONE-DIMENSIONAL MEDIAN FILTERING 292
9.4.1 Implementation .. 292
9.4.2 Code Listings .. 294
9.5 REFERENCES... 298

CHAPTER 10 JTAG DOWNLOADER

10.1 HARDWARE .. 300
10.1.1 Details .. 301
10.1.2 Test Access Port Operations ... 305
10.1.3 Timing Considerations ... 308
10.2 SOFTWARE .. 310
10.2.1 TMS & TDI Bit Generation ... 311
10.2.2 Software Example .. 313
10.2.3 Summary: How To Make The EPROM 316
10.3 DETAILED TMS & TDI BEHAVIOR .. 316
10.3.1 Code Listings .. 320
10.3.2 pub21k.h.. 320
10.3.3 pub21k.c .. 322
10.3.4 s2c.c .. 324
10.3.5 c2b.c ... 326
10.3.6 b2b.c ... 330
10.3.7 stox.c .. 331
10.3.8 Loader Kernel ... 332
10.4 REFERENCE... 336

INDEX .. 337

FIGURES

Figure 1.1 ADSP-21020 Block Diagram ... 9
Figure 1.2 ADSP-21020 System Diagram .. 9
Figure 1.3 ADSP-21060 Block Diagram ... 12
Figure 1.4 ADSP-21060 System Diagram .. 13
Figure 1.5 ADSP-21060 Multiprocessing System Diagram 14

Figure 4.1 Delay Line ... 94

2 – 82 – 82 – 82 – 82 – 8

ContentsContentsContentsContentsContents

xii

Figure 6.1 System Identification Model .. 158
Figure 6.2 Transversal FIR Filter Structure... 161
Figure 6.3 Symmetric Transversal Filter Structure 162
Figure 6.4 One Stage Of Lattice FIR... 163
Figure 6.5 Generic Adaptive Filter .. 167

Figure 7.1 Flow Graph Of Butterfly Calculation 208
Figure 7.2 32-Point Radix-2 DIT FFT .. 209

Figure 8.1 Cubic Bezier Polynomial .. 244
Figure 8.2 Register Assignments For Cubic Bezier Polynomial 245
Figure 8.3 Cubic B-Spline Polynomial... 248
Figure 8.4 Register Assignments For Cubic B-Spline Polynomial 249
Figure 8.5 BitBlt .. 253
Figure 8.6 Register Usage For BitBlt .. 253

Figure 9.1 3x3 Convolution Matrix .. 281
Figure 9.2 3x3 Convolution Operation .. 281
Figure 9.3 Histogram Of Dark Picture .. 288
Figure 9.4 Histogram Of Bright Picture .. 289
Figure 9.5 Median Filter Algorithm... 293

Figure 10.1 System Diagram ... 301
Figure 10.2 Block Diagram .. 302
Figure 10.3 Prototype Schematic .. 303
Figure 10.4 Prototype Board Layout ... 304
Figure 10.5 JTAG Test Access Port States ... 305
Figure 10.6 Worst-Case Data Setup To Clock Time 309
Figure 10.7 TMS & TDI Timing From RESET Through Start

Of First Scan Of DR ... 317
Figure 10.8 TMS & TDI Timing From End Of First Scan To

Start Of Second Scan ... 318
Figure 10.9 Other TMS & TDI Timing ... 319

TABLES

Table 1.1 ADSP-21060 Benchmarks (@ 40 MHz).................................... 11

Table 6.1 Transversal FIR LMS Performance & Memory
Benchmarks For Filters Of Order N 202

Table 6.2 LMS Algorithm Benchmarks For
Different Filter Structures ... 202

Table 6.3 LMS vs. RLS Benchmark Performance 203

2 – 92 – 92 – 92 – 92 – 9

ContentsContentsContentsContentsContents

xiii

Table 10.1 Parts List .. 304
Table 10.2 JTAG States Used By The Downloader 306
Table 10.3 Downloader Operations ... 307
Table 10.4 Source Code Description & Usage .. 310
Table 10.5 Bitstream/EPROM Byte Relationship 311
Table 10.6 TMS Values For State Transitions ... 312
Table 10.7 TDI Values For IRSHIFT & DRSHIFT 312
Table 10.8 kernel.ach - Architecture File Used With kernel.asm......... 313
Table 10.9 kernel.stk - Stacked-format spl21k Output 314
Table 10.10 kernel.s0 - pub21k Output Used To Burn

Downloader EPROM .. 315

LISTINGS

Listing 2.1 sin.asm ... 20
Listing 2.2 sintest.asm... 21
Listing 2.3 tan.asm .. 26
Listing 2.4 atan.asm .. 32
Listing 2.5 sqrt.asm ... 37
Listing 2.6 isqrt.asm .. 39
Listing 2.7 sqrtsgl.asm .. 41
Listing 2.8 isqrtsgl.asm ... 43
Listing 2.9 Divide..asm ... 45
Listing 2.10 logs.asm... 51
Listing 2.11 Exponential Subroutine .. 57
Listing 2.12 pow.asm .. 67
Listing 2.13 asm_glob.h .. 68
Listing 2.14 pow.h ... 69

Listing 3.1 MxNxNx1.asm ... 76
Listing 3.2 MxNxNxO.asm .. 80
Listing 3.3 matinv.asm ... 87

Listing 4.1 firtest.asm.. 97
Listing 4.2 fir.asm .. 99
Listing 4.3 Filter Specifications From FDAS ... 102
Listing 4.4 iirmem.asm ... 108
Listing 4.5 cascade.asm .. 110

Listing 5.1 decimate.asm .. 121
Listing 5.2 interpol.asm .. 128
Listing 5.3 ratiobuf.asm .. 137

2 – 102 – 102 – 102 – 102 – 10

ContentsContentsContentsContentsContents

xiv

Listing 5.4 rat2int.asm .. 142
Listing 5.5 dec2stg.asm... 149
Listing 5.6 int2stg.asm .. 155

Listing 6.1 lms.asm.. 170
Listing 6.2 llms.asm .. 173
Listing 6.3 nlms.asm ... 176
Listing 6.4 selms.asm .. 179
Listing 6.5 sdlms.asm ... 182
Listing 6.6 sslms.asm .. 185
Listing 6.7 sylms.asm.. 188
Listing 6.8 latlms.asm ... 193
Listing 6.9 rls.asm.. 198
Listing 6.10 testafa.asm .. 201

Listing 7.1 FFT.ACH ... 217
Listing 7.2 fftrad2.asm .. 224
Listing 7.3 fftrad4.asm .. 231
Listing 7.4 twidrad2.c ... 233
Listing 7.5 twidrad4.c ... 235

Listing 8.1 accej.asm.. 243
Listing 8.2 bezier.asm ... 247
Listing 8.3 B-spline.asm.. 252
Listing 8.4 bitblt.asm... 256
Listing 8.5 bresen.asm .. 261
Listing 8.6 transf.asm .. 266
Listing 8.7 mul44x41.asm ... 270
Listing 8.8 tblllkup.asm .. 273
Listing 8.9 xprod.asm ... 277

Listing 9.1 CONV3x3.ASM .. 284
Listing 9.2 med3x3.asm .. 287
Listing 9.3 histo.asm ... 292
Listing 9.4 Fixed-Point 1-D Median Fillter .. 296
Listing 9.5 Floating-Point 1-D Median Fillter ... 298

Listing 10.1 pub21k.h.. 322
Listing 10.2 pub21k.c .. 323
Listing 10.3 s2c.c .. 325
Listing 10.4 c2b.c ... 329
Listing 10.5 b2b.c ... 331
Listing 10.6 stox.c .. 331
Listing 10.7 Loader Kernal ... 335

11111

11111

This applications handbook is intended to help you get a quick start in
developing DSP applications with ADSP-21000 Family digital signal
processors.

This chapter includes a summary of available resources and an
introduction to the ADSP-21000 Family architecture. (Complete
architecture and programming details are found in each processor’s data
sheet, the ADSP-21060 SHARC User’s Manual, and the ADSP-21020 User’s
Manual.) The next eight chapters describe commonly used DSP algorithms
and their implementations on ADSP-21000 family DSPs. The last chapter
shows you how to build a bootstrap program downloader using the
ADSP-21020 built-in JTAG port.

1.11.11.11.11.1 USAGE CONVENTIONSUSAGE CONVENTIONSUSAGE CONVENTIONSUSAGE CONVENTIONSUSAGE CONVENTIONS
• Code listings, assembly language instructions and labels, commands

typed on an operating system shell command line, and file names are
printed in the Courier font.

• Underlined variables are vectors: V

1.21.21.21.21.2 DEVELOPMENT RESOURCESDEVELOPMENT RESOURCESDEVELOPMENT RESOURCESDEVELOPMENT RESOURCESDEVELOPMENT RESOURCES
This section discusses resources available from Analog Devices to help
you develop applications using ADSP-21000 Family digital signal
processors.

1.2.11.2.11.2.11.2.11.2.1 Software Development ToolsSoftware Development ToolsSoftware Development ToolsSoftware Development ToolsSoftware Development Tools
A full set of software tools support ADSP-21000 family program
development, including an assembler, linker, simulator, PROM splitter,
and C Compiler. The development tools also include libraries of assembly
language modules and C functions. See the ADSP-21000 Family Assembler
Tools & Simulator Manual, the ADSP-21000 Family C Tools Manual, and the
ADSP-21000 Family C Runtime Library Manual for complete details on the
development tools.

IntroductionIntroductionIntroductionIntroductionIntroduction

11111

22222

IntroductionIntroductionIntroductionIntroductionIntroduction

1.2.21.2.21.2.21.2.21.2.2 Hardware Development Tools Hardware Development Tools Hardware Development Tools Hardware Development Tools Hardware Development Tools
Analog Devices offers several systems that let you test your programs on
real hardware without spending time hardware prototyping, as well as
help you debug your target system hardware.

1.2.2.11.2.2.11.2.2.11.2.2.11.2.2.1 EZ-LABEZ-LABEZ-LABEZ-LABEZ-LAB
EZ-LAB® evaluation boards are complete ADSP-210xx systems that
include memory, an audio codec, an analog interface, and expansion
connectors on a single, small printed-circuit board. Several programs are
included that demonstrate signal processing algorithms. You can
download your own programs to the EZ-LAB from your IBM-PC
compatible computer.

EZ-LAB connects with EZ-ICE (described in the next section) and an IBM-
PC compatible to form a high-speed, interactive DSP workstation that lets
you debug and execute your software without prototype hardware.

EZ-LAB is also available bundled with the software development tools in
the EZ-KIT packages. Each member of the ADSP-21000 family is
supported by its own EZ-LAB.

1.2.2.21.2.2.21.2.2.21.2.2.21.2.2.2 EZ-ICEEZ-ICEEZ-ICEEZ-ICEEZ-ICE
EZ-ICE® in-circuit emulators give you an affordable alternative to large
dedicated emulators without sacrificing features. The EZ-ICE software
runs on an IBM-PC and gives you a debugging environment very similar
to the ADSP-210xx simulator. The EZ-ICE probe connects to the PC with
an ISA plug-in card and to the target system through a test connector on
the target. EZ-ICE communicates to the target processor through the
processor’s JTAG test access port. Your software runs on your hardware at
full speed in real time, which simplifies hardware and software
debugging.

1.2.31.2.31.2.31.2.31.2.3 Third Party Support Third Party Support Third Party Support Third Party Support Third Party Support
Several third party companies also provide products that support ADSP-
21000 family development; contact Analog Devices for a complete list.
Here are a few of the products available as of this writing:

• Spectron SPOX Real-time Operating System
• Comdisco Signal Processing Worksystem
• Loughborough Sound Images/Spectrum Processing PC Plug-in Board
• Momentum Data Systems Filter Design Software (FDAS)
• Hyperceptions Hypersignal Workstation

33333

11111IntroductionIntroductionIntroductionIntroductionIntroduction

1.2.41.2.41.2.41.2.41.2.4 DSPatchDSPatchDSPatchDSPatchDSPatch
DSPatch is Analog Devices award-winning DSP product support
newsletter. Each quarterly issue includes

• applications feature articles
• stories about customers using ADI DSPs in consumer, industrial and

military products
• new product announcements
• product upgrade announcements

and features as regular columns

• Q & A—tricks and tips from the Application Engineering staff
• C Programming—a popular series of articles about programming DSPs

with the C language.

1.2.51.2.51.2.51.2.51.2.5 Applications Engineering SupportApplications Engineering SupportApplications Engineering SupportApplications Engineering SupportApplications Engineering Support
Analog Devices’ expert staff of Applications Engineers are available to
answer your technical questions.

• To speak to an Applications Engineer, Monday to Friday 9am to 5pm
EST, call (617) 461-3672.

• You can send email to dsp_applications@analog.com .

• Facsimiles may be sent to (617) 461-3010.

• You may log in to the DSP Bulletin Board System [8:1:N:1200/2400/
4800/9600/14,400] at (617) 461-4258, 24 hours a day.

• The files on the DSP BBS are also available by anonymous ftp, at
ftp.analog.com (132.71.32.11) , in the directory /pub/dsp .

• Postal mail may be sent to “DSP Applications Engineering, Three
Technology Way, PO Box 9106, Norwood, MA, 02062-2106.”

Technical support is also available for Analog Devices Authorized
Distributers and Field Applications Offices.

11111

44444

IntroductionIntroductionIntroductionIntroductionIntroduction

1.2.61.2.61.2.61.2.61.2.6 ADSP-21000 Family ClassesADSP-21000 Family ClassesADSP-21000 Family ClassesADSP-21000 Family ClassesADSP-21000 Family Classes
Applications Engineering regularly offers a course in ADSP-21000 family
architecture and programming. Please contact Applications Engineering
for a schedule of upcoming courses.

1.31.31.31.31.3 ADSP-21000 FAMILY: THE SIGNAL PROCESSING SOLUTIONADSP-21000 FAMILY: THE SIGNAL PROCESSING SOLUTIONADSP-21000 FAMILY: THE SIGNAL PROCESSING SOLUTIONADSP-21000 FAMILY: THE SIGNAL PROCESSING SOLUTIONADSP-21000 FAMILY: THE SIGNAL PROCESSING SOLUTION

1.3.11.3.11.3.11.3.11.3.1 Why DSP?Why DSP?Why DSP?Why DSP?Why DSP?
Digital signal processors are a special class of microprocessors that are
optimized for computing the real-time calculations used in signal
processing. Although it is possible to use some fast general-purpose
microprocessors for signal processing, they are not optimized for that task.
The resulting design can be hard to implement and costly to manufacture.
In contrast, DSPs have an architecture that simplifies application designs
and makes low-cost signal processing a reality.

The kinds of algorithms used in signal processing can be optimized if they
are supported by a computer architecture specifically designed for them.
In order to handle digital signal processing tasks efficiently, a
microprocessor must have the following characteristics:

• fast, flexible computation units
• unconstrained data flow to and from the computation units
• extended precision and dynamic range in the computation units
• dual address generators
• efficient program sequencing and looping mechanisms

1.3.21.3.21.3.21.3.21.3.2 Why Floating-Point?Why Floating-Point?Why Floating-Point?Why Floating-Point?Why Floating-Point?
A processor’s data format determines its ability to handle signals of
differing precision, dynamic range, and signal-to-noise ratios. However,
ease-of-use and time-to-market considerations are often equally
important.

1.3.2.11.3.2.11.3.2.11.3.2.11.3.2.1 PrecisionPrecisionPrecisionPrecisionPrecision
The precision of converters has been improving and will continue to
increase. In the past few years, average precision requirements have risen
by several bits and the trend is for both precision and sampling rates to
increase.

55555

11111IntroductionIntroductionIntroductionIntroductionIntroduction

1.3.2.21.3.2.21.3.2.21.3.2.21.3.2.2 Dynamic RangeDynamic RangeDynamic RangeDynamic RangeDynamic Range
Traditionally, compression and decompression algorithms have operated
on signals of known bandwidth. These algorithms were developed to
behave regularly, to keep costs down and implementations easy.
Increasingly, the trend in algorithm development is to remove constraints
on the regularity and dynamic range of intermediate results. Adaptive
filtering and imaging are two applications requiring wide dynamic range.

1.3.2.31.3.2.31.3.2.31.3.2.31.3.2.3 Signal-To-Noise RatioSignal-To-Noise RatioSignal-To-Noise RatioSignal-To-Noise RatioSignal-To-Noise Ratio
Radar, sonar, and even commercial applications (like speech recognition)
require a wide dynamic range to discern selected signals from noisy
environments.

1.3.2.41.3.2.41.3.2.41.3.2.41.3.2.4 Ease-Of-UseEase-Of-UseEase-Of-UseEase-Of-UseEase-Of-Use
Ideally, floating-point digital signal processors should be easier to use and
allow a quicker time-to-market than DSPs that do not support floating-
point formats. If the floating-point processor’s architecture is designed
properly, designers can spend time on algorithm development instead of
assembly coding, code paging, and error handling. The following features
are hallmarks of a good floating-point DSP architecture:

• consistency with IEEE workstation simulations
• elimination of scaling
• high-level language (C, ADA) programmability
• large address spaces
• wide dynamic range

1.3.31.3.31.3.31.3.31.3.3 Why ADSP-21000 Family?Why ADSP-21000 Family?Why ADSP-21000 Family?Why ADSP-21000 Family?Why ADSP-21000 Family?
The ADSP-21020 and ADSP-21060 are the first members of Analog
Devices’ ADSP-21000 family of floating-point digital signal processors
(DSPs). The ADSP-21000 family architecture meets the five central
requirements for DSPs:

• Fast, flexible arithmetic computation units
• Unconstrained data flow to and from the computation units
• Extended precision and dynamic range in the computation units
• Dual address generators
• Efficient program sequencing

11111

66666

IntroductionIntroductionIntroductionIntroductionIntroduction

1.3.3.11.3.3.11.3.3.11.3.3.11.3.3.1 Fast & Flexible ArithmeticFast & Flexible ArithmeticFast & Flexible ArithmeticFast & Flexible ArithmeticFast & Flexible Arithmetic
The ADSP-210xx can execute all instructions in a single cycle. It provides
one of the fastest cycle times available and the most complete set of
arithmetic operations, including Seed 1/X, Seed 1/R(x), Min, Max, Clip,
Shift and Rotate, in addition to the traditional multiplication, addition,
subtraction and combined addition/subtraction. It is IEEE floating-point
compatible and allows either interrupt on arithmetic exception or latched
status exception handling.

1.3.3.21.3.3.21.3.3.21.3.3.21.3.3.2 Unconstrained Data FlowUnconstrained Data FlowUnconstrained Data FlowUnconstrained Data FlowUnconstrained Data Flow
The ADSP-210xx has a Harvard architecture combined with a 10-port, 16
word data register file. In every cycle, all of these operations can be
executed:

• the register file can read or write two operands off-chip
• the ALU can receive two operands
• the multiplier can receive two operands
• the ALU and multiplier can produce two results (three, if the ALU

operation is a combined addition/subtraction)

The processors’ 48-bit orthogonal instruction word supports parallel data
transfer and arithmetic operations in the same instruction.

1.3.3.31.3.3.31.3.3.31.3.3.31.3.3.3 Extended IEEE-Floating-Point SupportExtended IEEE-Floating-Point SupportExtended IEEE-Floating-Point SupportExtended IEEE-Floating-Point SupportExtended IEEE-Floating-Point Support
All members of the ADSP-21000 family handle 32-bit IEEE floating-point
format, 32-bit integer and fractional formats (twos-complement and
unsigned), and an extended-precision 40-bit IEEE floating-point format.
These processors carry extended precision throughout their computation
units, limiting intermediate data truncation errors. The fixed-point formats
have an 80-bit accumulator for true 32-bit fixed-point computations.

1.3.3.41.3.3.41.3.3.41.3.3.41.3.3.4 Dual Address GeneratorsDual Address GeneratorsDual Address GeneratorsDual Address GeneratorsDual Address Generators
The ADSP-210xx has two data address generators (DAGs) that provide
immediate or indirect (pre- and post-modify) addressing. Modulus and
bit-reverse operations are supported, without constraints on buffer
placement.

1.3.3.51.3.3.51.3.3.51.3.3.51.3.3.5 Efficient Program SequencingEfficient Program SequencingEfficient Program SequencingEfficient Program SequencingEfficient Program Sequencing
In addition to zero-overhead loops, the ADSP-210xx supports single-cycle
setup and exit for loops. Loops are nestable (six levels in hardware) and
interruptable. The processor also supports delayed and non-delayed
branches.

77777

11111IntroductionIntroductionIntroductionIntroductionIntroduction

1.41.41.41.41.4 ADSP-21000 FAMILY ARCHITECTURE OVERVIEWADSP-21000 FAMILY ARCHITECTURE OVERVIEWADSP-21000 FAMILY ARCHITECTURE OVERVIEWADSP-21000 FAMILY ARCHITECTURE OVERVIEWADSP-21000 FAMILY ARCHITECTURE OVERVIEW
The following sections summarize the basic features of the ADSP-21020
architecture. These features are also common to the ADSP-21060 SHARC
processor; SHARC-specific enhancements to the base architecture are
discussed in the next section.

1.4.11.4.11.4.11.4.11.4.1 ADSP-21000 Family Base ArchitectureADSP-21000 Family Base ArchitectureADSP-21000 Family Base ArchitectureADSP-21000 Family Base ArchitectureADSP-21000 Family Base Architecture
All members of the ADSP-21000 Family have the same base architecture.
The ADSP-21060 has advanced features built on to this base, but retains
code compatibility with the ADSP-21020 processor. The key features of the
base architecture are:

• Independent, Parallel Computation Units
The arithmetic/logic unit (ALU), multiplier, and shifter perform
single-cycle instructions. The three units are arranged in parallel,
maximizing computational throughput. Single multifunction
instructions execute parallel ALU and multiplier operations. These
computation units support IEEE 32-bit single-precision floating-point,
extended precision 40-bit floating-point, and 32-bit fixed-point data
formats.

• Data Register File
A general-purpose data register file transfers data between the
computation units and the data buses, and for storing intermediate
results. This 10-port, 32-register (16 primary, 16 secondary) register
file, combined with the ADSP-21000 Harvard architecture, allows
unconstrained data flow between computation units and memory.

• Single-Cycle Fetch of Instruction & Two Operands
The ADSP-210xx features an enhanced Harvard architecture in which
the data memory (DM) bus transfers data and the program memory
(PM) bus transfers both instructions and data (see Figure 1.1). With its
separate program and data memory buses and on-chip instruction
cache, the processor can simultaneously fetch two operands and an
instruction (from the cache) in a single cycle.

• Instruction Cache
The ADSP-210xx includes a high performance instruction cache that
enables three-bus operation for fetching an instruction and two data
values. The cache is selective—only the instructions whose fetches
conflict with PM bus data accesses are cached. This allows full-speed
execution of looped operations such as digital filter multiply-
accumulates and FFT butterfly processing.

11111

88888

IntroductionIntroductionIntroductionIntroductionIntroduction

• Data Address Generators with Hardware Circular Buffers
The ADSP-210xx’s two data address generators (DAGs) implement
circular data buffers in hardware. Circular buffers let delay lines (and
other data structures required in digital signal processing) be
implemented efficiently; circular buffers are commonly used in digital
filters and Fourier transforms. The ADSP-210xx’s two DAGs contain
sufficient registers for up to 32 circular buffers (16 primary register
sets, 16 secondary). The DAGs automatically handle address pointer
wraparound, reducing overhead, increasing performance, and
simplifying implementation. Circular buffers can start and end at any
memory location.

• Flexible Instruction Set
The ADSP-210xx’s 48-bit instruction word accommodates a variety of
parallel operations, for concise programming. For example, in a single
instruction, the ADSP-210xx can conditionally execute a multiply, an
add, a subtract and a branch.

• Serial Scan & Emulation Features
The ADSP-210xx supports the IEEE-standard P1149 Joint Test Action
Group (JTAG) standard for system test. This standard defines a
method for serially scanning the I/O status of each component in a
system. This serial port also gives access to the ADSP-210xx on-chip
emulation features.

1.4.21.4.21.4.21.4.21.4.2 ADSP-21020 DSPADSP-21020 DSPADSP-21020 DSPADSP-21020 DSPADSP-21020 DSP
The ADSP-21020 is the first member of the ADSP-21000 family. It is a
complete implementation of the family base architecture. Figure 1.1 shows
the block diagram of the ADSP-21020 and Figure 1.2 shows a system
diagram.

99999

11111IntroductionIntroductionIntroductionIntroductionIntroduction

Figure 1.2 ADSP-21020 System DiagramFigure 1.2 ADSP-21020 System DiagramFigure 1.2 ADSP-21020 System DiagramFigure 1.2 ADSP-21020 System DiagramFigure 1.2 ADSP-21020 System Diagram

4

1×
CLOCK

CLKIN

PMA

PMD

DMACK

DMA

DMD

ADDR

DATA ADSP-21020

PROGRAM
MEMORY 24

48

DMRD

DMWR
32

DATA
MEMORY

ACK PERIPHERALS

ADDR

DATA

ADDR

DATA40

2

PMACK

4

DMPAGEPMPAGE

SelectsSelects

Selects

F
L

A
G

3-
0

JT
A

G

54

OE

WE

R
C

O
M

P

B
R

B
G

T
IM

E
X

P

OE

WE

PMS1-0

PMRD

PMWR

DMTS
OE

WE

RESET IRQ3-0

PMTS

DMS3-0

Figure 1.1 ADSP-21020 Block DiagramFigure 1.1 ADSP-21020 Block DiagramFigure 1.1 ADSP-21020 Block DiagramFigure 1.1 ADSP-21020 Block DiagramFigure 1.1 ADSP-21020 Block Diagram

DM ADDRESS BUS

24

32

PM DATA BUS

DM DATA BUS

48

40

PROGRAM
SEQUENCER

BARREL
SHIFTER ALU

CACHE
32 x 48

DAG 2
8 x 4 x 24

DAG 1
8 x 4 x 32

TIMER

Bus
Connect

JTAG
TEST &

EMULATION

FLAGS

REGISTER
FILE

16 x 40

MULTIPLIER

PM ADDRESS BUS

11111

1010101010

IntroductionIntroductionIntroductionIntroductionIntroduction

1.4.31.4.31.4.31.4.31.4.3 ADSP-21060 SHARCADSP-21060 SHARCADSP-21060 SHARCADSP-21060 SHARCADSP-21060 SHARC
The ADSP-21060 SHARC (Super Harvard Architecture Computer) is a
single-chip 32-bit computer optimized for signal computing applications.
The ADSP-21060 SHARC has the following key features:

Four Megabit Configurable On-Chip SRAM
• Dual-Ported for Independent Access by Base Processor and DMA
• Configurable as Maximum 128K Words Data Memory (32-Bit),

80K Words Program Memory (48-Bit), or Combinations of Both Up To
4 Mbits

Off-Chip Memory Interfacing
• 4 Gigawords Addressable (32-bit Address)
• Programmable Wait State Generation, Page-Mode DRAM Support

DMA Controller

22222

1515151515

This chapter contains listings and descriptions of several useful
trigonometric, mathematical and transcendental functions. The functions
are

Trigonometric
• sine/cosine approximation
• tangent approximation
• arctangent approximation

Mathematical
• square root
• square root with single precision
• inverse square root
• inverse square root with single precision
• division

Transcendental
• logarithm
• exponential
• power

2.12.12.12.12.1 SINE/COSINE APPROXIMATION SINE/COSINE APPROXIMATION SINE/COSINE APPROXIMATION SINE/COSINE APPROXIMATION SINE/COSINE APPROXIMATION
The sine and cosine functions are fundamental operations commonly used
in digital signal processing algorithms , such as simple tone generation
and calculation of sine tables for FFTs. This section describes how to
calculate the sine and cosine functions.

This ADSP-210xx implementation of sin(x) is based on a min-max
polynomial approximation algorithm in the [CODY]. Computation of the
function sin(x) is reduced to the evaluation of a sine approximation over a
small interval that is symmetrical about the axis.

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

22222

1616161616

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions
Let

|x| = Nπ + f

where

|f| ≤ π/2.

Then

sin(x) = sign(x) * sin(f) * (-1)N

Once the sign of the input, x, is determined, the value of N can be
determined. The next step is to calculate f. In order to maintain the
maximum precision, f is calculated as follows

f = (|x| – xNC1) – xNC2

The constants C1 and C2 are determined such that C1 is approximately
equal to pi (π). C2 is determined such that C1 + C2 represents pi to three or
four decimal places beyond the precision of the ADSP-210xx.

For devices that represent floating-point numbers in 32 bits, Cody and
Waite suggest a seven term min-max polynomial of the form R(g) = g·P(g).
When expanded, the sine approximation for f is represented as

sin(f) = ((((((r7·f + r6) * f + r5) * f +r4) * f + r3) * f + r2) * f + r1) · f

With sin(f) calculated, sin(x) can be constructed. The cosine function is
calculated similarly, using the trigonometric identity

cos(x) = sin(x + π/2)

2.1.12.1.12.1.12.1.12.1.1 Implementation Implementation Implementation Implementation Implementation
The two listings illustrate the sine approximation and the calling of the
sine approximation. The first listing, sin.asm , is an implementation of
the algorithm for calculation of sines and cosines. The second listing,
sinetest.asm , is an example of a program that calls the sine
approximation.

1717171717

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Implementation of the sine algorithm on ADSP-21000 family processors is
straightforward. In the first listing below, sin.asm , two segments are
defined. The first segment, defined with the .SEGMENT directive, contains
the assembly code for the sine/cosine approximation. The second segment
is a data segment that contains the constants necessary to perform this
approximation.

The code is structured as a called subroutine, where the parameter x is
passed into this routine using register F0. When the subroutine is finished
executing, the value sin(x) or cos(x) is returned in the same register, F0. The
variables, i_reg and l_reg , are specified as an index register and a
length register, in either data address generator on the ADSP-21000 family.
These registers are used in the program to point to elements of the data
table, sine_data . Elements of this table are accessed indirectly within
this program. Specifically, index registers I0 - I7 are used if the data table
containing all the constants is put in data memory and index registers I8 -
I15 are used if the data table is put in program memory. The variable mem
must be defined as program memory, PM , or data memory, DM .

The include file, asm_glob.h , contains definitions of mem, l_reg ,
and i_reg . You can alter these definitions to suit your needs.

The second listing, sinetest.asm , is an example of a routine that calls
the cosine and sine routines.

There are two entry points in the subroutine, sin.asm . They are labeled
cosine and sine . Code execution begins at these labels. The calling
program uses these labels by executing the instruction

call sine (db);
or

call cosine (db);

with the argument x in register F0. These calls are delayed branch calls
that efficiently use the instruction pipeline on the ADSP-21000 family. In a
delayed branch, the two instructions following the branch instruction are
executed prior to the branch. This prevents the need to flush an instruction
pipeline before taking a branch.

22222

1818181818

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

2.1.22.1.22.1.22.1.22.1.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings

2.1.2.12.1.2.12.1.2.12.1.2.12.1.2.1 Sine/Cosine Approximation SubroutineSine/Cosine Approximation SubroutineSine/Cosine Approximation SubroutineSine/Cosine Approximation SubroutineSine/Cosine Approximation Subroutine

/***

File Name
SIN.ASM

Version
0.03 7/4/90

Purpose
Subroutine to compute the Sine or Cosine values of a floating point input.

Equations Implemented
Y=SIN(X) or
Y=COS(X)

Calling Parameters
F0 = Input Value X=[6E-20, 6E20]
l_reg=0

Return Values
F0 = Sine (or Cosine) of input Y=[-1,1]

Registers Affected
F0, F2, F4, F7, F8, F12
i_reg

Cycle Count
38 Cycles

PM Locations
34 words

DM Locations
11 Words

***/

1919191919

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

#include “asm_glob.h”

.SEGMENT/PM Assembly_Library_Code_Space;

.PRECISION=MACHINE_PRECISION;

#define half_PI 1.57079632679489661923

.GLOBAL cosine, sine;

/**** Cosine/Sine approximation program starts here. ****/
/**** Based on algorithm found in Cody and Waite. ****/

cosine:
i_reg=sine_data; /*Load pointer to data*/
F8=ABS F0; /*Use absolute value of input*/
F12=0.5; /*Used later after modulo*/
F2=1.57079632679489661923; /* and add PI/2*/

JUMP compute_modulo (DB); /*Follow sin code from here!*/
F4=F8+F2, F2=mem(i_reg,1);
F7=1.0; /*Sign flag is set to 1*/

sine:
i_reg=sine_data; /*Load pointer to data*/
F7=1.0; /*Assume a positive sign*/
F12=0.0; /*Used later after modulo*/
F8=ABS F0, F2=mem(i_reg,1);
F0=PASS F0, F4=F8;
IF LT F7=-F7; /*If input was negative, invert

sign*/

compute_modulo:
F4=F4*F2; /*Compute fp modulo value*/
R2=FIX F4; /*Round nearest fractional portion*/
BTST R2 BY 0; /*Test for odd number*/
IF NOT SZ F7=-F7; /*Invert sign if odd modulo*/
F4=FLOAT R2; /*Return to fp*/
F4=F4-F12, F2=mem(i_reg,1); /*Add cos adjust if necessary,

F4=XN*/

compute_f:
F12=F2*F4, F2=mem(i_reg,1); /*Compute XN*C1*/
F2=F2*F4, F12=F8-F12; /*Compute |X|-XN*C1, and

XN*C2*/
F8=F12-F2, F4=mem(i_reg,1); /*Compute f=(|X|-XN*C1)-

XN*C2*/
F12=ABS F8; /*Need magnitude for test*/
F4=F12-F4, F12=F8; /*Check for sin(x)=x*/
IF LT JUMP compute_sign; /*Return with result in F1*/

compute_R:
F12=F12*F12, F4=mem(i_reg,1);

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

2020202020

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions
LCNTR=6, DO compute_poly UNTIL LCE;
F4=F12*F4, F2=mem(i_reg,1); /*Compute sum*g*/

compute_poly:
F4=F2+F4; /*Compute sum=sum+next r*/
F4=F12*F4; /*Final multiply by g*/
RTS (DB), F4=F4*F8; /*Compute f*R*/
F12=F4+F8; /*Compute Result=f+f*R*/

compute_sign:
F0=F12*F7; /*Restore sign of result*/
RTS; /*This return only for sin(eps)=eps

path*/

.ENDSEG;

.SEGMENT/SPACE Assembly_Library_Data_Space;

.PRECISION=MEMORY_PRECISION;

.VAR sine_data[11] =
 0.31830988618379067154, /*1/PI*/
 3.14160156250000000000, /*C1, almost PI*/
-8.908910206761537356617E-6, /*C2, PI=C1+C2*/
 9.536743164E-7, /*eps, sin(eps)=eps*/
-0.737066277507114174E-12, /*R7*/
 0.160478446323816900E-9, /*R6*/
-0.250518708834705760E-7, /*R5*/
 0.275573164212926457E-5, /*R4*/
-0.198412698232225068E-3, /*R3*/
 0.833333333327592139E-2, /*R2*/
-0.166666666666659653; /*R1*/

.ENDSEG;

2121212121

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Listing 2.1 sin.asmListing 2.1 sin.asmListing 2.1 sin.asmListing 2.1 sin.asmListing 2.1 sin.asm

2.1.2.22.1.2.22.1.2.22.1.2.22.1.2.2 Example Calling RoutineExample Calling RoutineExample Calling RoutineExample Calling RoutineExample Calling Routine

/

File Name
 SINTEST.ASM

Purpose
 Example calling routine for the sine function.

***/

#include “asm_glob.h”;
#include “def21020.h”;
#define N 4
#define PIE 3.141592654

.SEGMENT/DM dm_data; /* Declare variables in data memory
*/
.VAR input[N]= PIE/2, PIE/4, PIE*3/4, 12.12345678; /* test data */
.VAR output[N] /* results here */
.VAR correct[N]=1.0, .707106781, .707106781, -.0428573949; /* correct results
*/
.ENDSEG;

.SEGMENT/PM
pm_rsti; /* The reset vector resides in this space */
DMWAIT=0x21; /* Set data memory waitstates to zero */
PMWAIT=0x21; /* Set program memory waitstates to zero */
JUMP start;

.ENDSEG;

.EXTERN sine;

.SEGMENT/PM pm_code;

start:
bit set mode2 0x10; nop; read cache 0; bit clr mode2 0x10;
M1=1;
B0=input;
L0=0;
I1=output;
L1=0;

lcntr=N, do calcit until lce;
CALL sine (db);
l_reg=0;
f0=dm(i0,m1);

calcit:
dm(i1,m1)=f0;

end:

22222

2222222222

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

IDLE;
.ENDSEG;

Listing 2.2 sintest.asmListing 2.2 sintest.asmListing 2.2 sintest.asmListing 2.2 sintest.asmListing 2.2 sintest.asm

2.22.22.22.22.2 TANGENT APPROXIMATIONTANGENT APPROXIMATIONTANGENT APPROXIMATIONTANGENT APPROXIMATIONTANGENT APPROXIMATION
The tangent function is one of the fundamental trigonometric signal
processing operations. This section shows how to approximate the tangent
function in software. The algorithm used is taken from [CODY].

Tan(x) is calculated in three steps:

1. The argument x (which may be any real value) is reduced to a
related argument f with a magnitude less than π/4 (that is, t has a
range of ± π/2).

2. Tan(f) is computed using a min-max polynomial approximation.

3. The desired function is reconstructed.

2.2.12.2.12.2.12.2.12.2.1 Implementation Implementation Implementation Implementation Implementation
The implementation of the tangent approximation algorithm uses 38
instruction cycles and consists of three logical steps.

First, the argument x is reduced to the argument f. This argument
reduction is done in the sections labeled compute_modulo and
compute_f .

The factor π/2 is required in the computation to reduce x (which may be
any floating-point value) to f (which is a normalized value with a range of
± π/2). To get an accurate result, the constants C1 and C2 are chosen so that
C1 + C2 approximates π/2 to three or four decimal places beyond machine
precision. The value C1 is chosen to be close to π/2 and C2 is a factor that is
added to C1 that results in a very accurate representation of π/2.

Notice that in the argument reduction, the assembly instructions are all
multifunction instructions. ADSP-21000 family processors can execute a
data move or a register move in parallel with a computation. Because
multifunction instructions execute in a single cycle, the overhead for the
memory move is eliminated.

2323232323

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

A special case is if tan(x) = x. This occurs when the absolute value of f is
less than epsilon. This value is very close to 0. In this case, a jump is
executed and the tangent function is calculated using the values of f and 1
in the final divide.

The second step is to approximate the tangent function using a min-max
polynomial expansion. Two calculations are performed, the calculation of
P(g) and the calculation of Q(g), where g is just f * f. Four coefficients are
used in calculation of both P(g) and Q(g). The section labeled compute_P
makes this calculation:

P(g) = ((p3 * g + p2) * g + p1) * g *f

Where g = f*f and f is the reduced argument of x. The value f * P(g) is
stored in the register F8.

The section labeled compute_Q , makes this calculation:

Q(g) = ((q3*g + q2)*g + q1) * g + q0

The third step in the calculation of the tangent function is to divide P(g) by
Q(g). If the argument, f, is even, then the tangent function is

tan(f) = f * P(g)/Q(g)

If the argument, f, is odd then the tangent function is

tan(f) = –f * P(g)/Q(g)

Finally, the value N is multiplied in and the reconstructed function tan(x)
is returned in the register F0.

22222

2424242424

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Similarly, the cotangent function is easily calculated by inverting the polynomial

cotan(f) = Q(g)/–f * P(g)

2.2.22.2.22.2.22.2.22.2.2 Code Listing–Tangent SubroutineCode Listing–Tangent SubroutineCode Listing–Tangent SubroutineCode Listing–Tangent SubroutineCode Listing–Tangent Subroutine

/

File Name
TAN.ASM

Version
Version 0.03 7/5/90

Purpose
Subroutine to compute the tangent of a floating point input.

Equations Implemented
Y=TAN(X)

Calling Parameters
F0 = Input Value X=[6E-20, 6E20]
l_reg = 0 (usually L3)

Return Values
F0 = tangent of input X

Registers Affected
F0, F1, F2, F4, F7, F8, F12
i_reg (usually I3)

Cycle Count
38 Cycles

2525252525

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

PM Locations

DM Locations

***/

#include “asm_glob.h”
.SEGMENT/PM Assembly_Library_Code_Space;
.PRECISION=MACHINE_PRECISION;
.GLOBAL tan;

tan: i_reg=tangent_data;
F8=PASS F0, F2=mem(i_reg,1); /* Use absolute value of input

*/

compute_modulo:
F4=F8*F2, F1=F0; /* Compute fp modulo value */
R2=FIX F4, F12=mem(i_reg,1); /* Rnd nearest fractional

portion */
F4=FLOAT R2, R0=R2; /* Return to fp */

compute_f:
F12=F12*F4, F2=mem(i_reg,1); /* Compute XN*C1 */
F2=F2*F4, F12=F8-F12; /* Compute X-XN*C1, and XN*C2

*/
F8=F12-F2, F4=mem(i_reg,1); /* Compute f=(X-XN*C1)-XN*C2

*/
F12=ABS F8, F7=F8;
F4=F12-F4, F12=mem(i_reg,1); /* Check for TAN(x)=x */
IF LT JUMP compute_quot; /* Compute quotient with NUM=f

DEN=1 */

compute_P:
F12=F8*F8, F4=mem(i_reg,1); /* g=f*f */
F4=F12*F4, F2=mem(i_reg,1); /* Compute p3*g */
F4=F2+F4; /* Compute (p3*g + p2) */
F4=F12*F4, F2=mem(i_reg,1); /* Compute (p3*g + p2)*g */
F4=F2+F4; /* Compute (p3*g + p2)*g + p1 */
F4=F12*F4; /* Compute

((p3*g + p2)*g + p1)*g */
F4=F4*F8; /* Compute

((p3*g + p2)*g +p1)*g*f */
F8=F4+F8, F4=mem(i_reg,1); /* Compute f*P(g) */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

2626262626

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

compute_Q:
F4=F12*F4, F2=mem(i_reg,1); /* Compute sum*g */
F4=F2+F4; /* Compute sum=sum+next q */
F4=F12*F4, F2=mem(i_reg,1); /* Compute sum*g */
F4=F2+F4; /* Compute sum=sum+next q */
F4=F12*F4, F2=mem(i_reg,1); /* Compute sum*g */
F12=F2+F4, F7=F8; /* Compute sum=sum+next q */

compute_quot:
BTST R0 BY 0; /* Test LSB */
IF NOT SZ F12=-F7, F7=F12; /* SZ true if even value*/
F0=RECIPS F12; /* Get 4 bit seed R0=1/D */
F12=F0*F12, F11=mem(i_reg,1); /* D(prime) = D*R0 */
F7=F0*F7, F0=F11-F12; /* F0=R1=2-D(prime), F7=N*R0

*/
F12=F0*F12; /* F12=D(prime)=D(prime)*R1 */
F7=F0*F7, F0=F11-F12; /* F7=N*R0*R1, F0=R2=2-

D(prime) */
RTS (DB), F12=F0*F12; /* F12=D(prime)=D(prime)*R2 */
F7=F0*F7, F0=F11-F12; /* F7=N*R0*R1*R2,

F0=R3=2-D(prime)*/
F0=F0*F7; /* F7=N*R0*R1*R2*R3 */

.ENDSEG;

.SEGMENT/SPACE Assembly_Library_Data_Space;

.PRECISION=MEMORY_PRECISION;

.VAR tangent_data[13] = 0.6366197723675834308, /* 2/PI */
 1.57080078125, /* C1, almost PI/2 */
-4.454455103380768678308E-6, /* C2, PI/2=C1+C2 */
 9.536743164E-7, /* eps, TAN(eps)=eps */
 1.0, /* Used in one path */
-0.7483634966612065149E-5, /* P3 */
 0.2805918241169988906E-2, /* P2 */
-0.1282834704095743847, /* P1 */

2727272727

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

-0.2084480442203870948E-3, /* Q3 */
 0.2334485282206872802E-1, /* Q2 */
-0.4616168037429048840, /* Q1 */
 1.0, /* Q0 */
 2.0; /* Used in divide */

.ENDSEG;

Listing 2.3 tan.asmListing 2.3 tan.asmListing 2.3 tan.asmListing 2.3 tan.asmListing 2.3 tan.asm

2.32.32.32.32.3 ARCTANGENT APPROXIMATIONARCTANGENT APPROXIMATIONARCTANGENT APPROXIMATIONARCTANGENT APPROXIMATIONARCTANGENT APPROXIMATION
The arctangent function is one of the fundamental trigonometric signal
processing operations. Arctangent is often used in the calculation of the
phase of a signal and in the conversion between Cartesian and polar data
representations.

This section shows how to approximate the arctangent function in
software. The algorithm used is taken from [CODY].

Calculation of atan(x) is done in three steps:

1. The argument x (which may be any real value) is reduced to a
related argument f with a magnitude less than or equal to 2– R(3).

2. Atan(f) is computed using a rational expression.

3. The desired function is reconstructed.

2.3.12.3.12.3.12.3.12.3.1 ImplementationImplementationImplementationImplementationImplementation
This implementation of the tangent approximation algorithm uses 82
instruction cycles, in the worst case. It follows the three logical steps listed
above.

The assembly code module can be called to compute either of two
functions, atan or atan2 . The atan function returns the arctangent
of an argument x. The atan2 function returns the arctangent of y/x. This
form

22222

2828282828

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

H=atan(y/x)

is especially useful in phase calculations.

First, the argument x is reduced to the argument f. This argument
reduction relies on the symmetry of the arctangent function by using the
identity

arctan(x) = –arctan(–x)

The use of this identity guarantees that approximation uses a non-
negative x. For values that are greater than one, a second identity is used
in argument reduction

arctan(x) = π/2 – arctan (1/x)

The reduction of x to the argument F is complete with the identity

arctan(x) = π/6 + arctan(f)

where

f = (x – (R(3) – 1) / (R(3) + x)

Just like tangent approximation, the second step in the arctangent
calculation is computing a rational expression of the form

R = g * P(g) / Q(g)

where

g * P(g) = (P1 * g + P0) * g

2929292929

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

and

Q(g) = (g + q1) * g + Q0

Notice that an eight-cycle macro, divide , is implemented for division. This macro is
used several times in the program.

The final step is to reconstruct the atan(x) from the atan(f) calculation.

2.3.22.3.22.3.22.3.22.3.2 Listing–Arctangent Subroutine Listing–Arctangent Subroutine Listing–Arctangent Subroutine Listing–Arctangent Subroutine Listing–Arctangent Subroutine

/

File Name
ATAN.ASM

Version
Version 0.01 3/20/91

Purpose
Subroutine to compute the arctangent values of a floating point input.

Equations Implemented
atan- H=ATAN(Y)
atan2- H=ATAN(Y/X)

 where H is in radians

Calling Parameters
F0 = Input Value Y=[6E-20, 6E20]
F1 = Input Value X=[6E-20, 6E20] (atan2 only)
l_reg=0

Return Values
F0 = ArcTangent of input
 =[-pi/2,pi/2] for atan
 =[-pi,pi] for atan2

Registers Affected
F0, F1, F2, F4, F7, F8, F11, F12, F15

 i_reg
 ms_reg

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

3030303030

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Cycle Count
atan 61 Cycles maximum
atan2 82 cycles maximum

PM Locations

DM Locations

***/

/* The divide Macro used in the arctan routine*/
/* ---

DIVIDE - Divide Macro

Register Usage:
 q = f0-f15 Quotient
 n = f4-f7 Numerator
 d = f12-f15 Denominator
 two = f8-f11 must have 2.0 pre-stored
 tmp = f0-f3

Indirectly affected registers:
 ASTAT,STKY

Looping: none

Special Cases:
 q may be any register, all others must be distinct.

Cycles: 8

Created: 3/19/91
--
-----*/

#define DIVIDE(q,n,d,two,tmp) \
 n=RECIPS d, tmp=n; /* Get 8 bit seed R0=1/D*/ \
 d=n*d; /* D(prime) = D*R0*/ \
 tmp=tmp*n, n=two-d; /* N=2-D(prime), TMP=N*R0*/ \
 d=n*d; /* D=D(prime)=D(prime)*R1*/ \
 tmp=tmp*n, n=two-d; /* TMP=N*R0*R1, N=R2=2-D(prime)*/ \
 d=n*d; /* D=D(prime)=D(prime)*R2*/ \
 tmp=tmp*n, n=two-d; /* TMP=N*R0*R1*R2, N=R3=2-D(prime)*/ \
 q=tmp*n

3131313131

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

#include “asm_glob.h”

.SEGMENT/PM Assembly_Library_Code_Space;

.PRECISION=MACHINE_PRECISION;

.GLOBAL atan, atan2;

atan2: i_reg=atan_data;
 F11= 2.0;
 F2= 0.0;
 F1=PASS F1;
 IF EQ JUMP denom_zero; /* if Denom. = 0, goto special
case*/
 IF LT F2=mem(11,i_reg); /* if Denom. < 0, F2=pi (use at
end)*/

overflow_tst: R4=LOGB F0, F7=F0; /* Detect div overflow for atan2*/
 R1=LOGB F1, F15=F1;
 R1=R4-R1; /* Roughly exp. of quotient*/
 R4=124; /* Max exponent - 3*/
 COMP(R1,R4);
 IF GE JUMP overflow; /* Over upper range? Goto overflow*/
 R4=-R4;
 COMP(R1,R4);
 IF LE JUMP underflow; /* Over lower range? Goto
underflow*/

do_division: DIVIDE(F0,F7,F15,F11,F1);
 JUMP re_entry (DB);

atan: R10= 0; /* Flags multiple of pi to add at
end*/
 F15=ABS F0;

 i_reg=atan_data; /* This init is redundant for
atan2f*/
 F11= 2.0; /* Needed for divide*/
 F2= 0.0; /* Result is not in Quad 2 or
3 */

re_entry: F7 = 1.0;
 COMP(F15,F7), F4=mem(0,i_reg); /* F4=2-sqrt(3)*/
 IF LE JUMP tst_f; /* If input<=1, do arctan(input)*/

/* else do arctan(1/input)+const*/
 DIVIDE(F15,F7,F15,F11,F1); /* do x=1/x*/

 R10 = 2; /* signal to add const at
end*/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

3232323232

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

tst_f: COMP(F15,F4); /* Note F4 prev. loaded from memory*/
 IF LT JUMP tst_for_eps;
 R10=R10+1, F4=mem(1,i_reg); /* F4=sqrt(3)*/
 F12=F4*F15;
 F7=F12-F7; /* F7=F12-1.0*/
 F15=F4+F15;
 DIVIDE(F15,F7,F15,F11,F1); /* = (sqrt(3)*x-1)/(x+sqrt(3))*/

tst_for_eps: F7=ABS F15, F4=mem(2,i_reg); /* F4=eps (i.e. small)*/
 COMP(F7,F4);
 IF LE JUMP tst_N; /* if x<=eps, then h=x*/
 F1=F15*F15, F4=mem(3,i_reg); /* else . . .*/
 F7=F1*F4, F4=mem(4,i_reg);
 F7=F7+F4, F4=mem(5,i_reg);
 F7=F7*F1;
 F12=F1+F4, F4=mem(6,i_reg);
 F12=F12*F1;
 F12=F12+F4;
 DIVIDE(F7,F7,F12,F11,F1); /* e=((p1*x^2 +p0)x^2)/(x^2
+q1)x^2+q0*/
 F7=F7*F15;
 F15=F7+F15; /* h=e*x+x*/

tst_N: R1=R10-1, R7=mem(i_reg,7); /* if R10 > 1, h=-h; dummy read*/
 ms_reg=R10;
 IF GT F15=-F15;
 F4 = mem(ms_reg,i_reg); /* index correct angle addend to h
*/
 F15=F15+F4; /* h=h+ a*pi */

tst_sign_y: F2=PASS F2; /* if (atan2f denom <0) h=pi-h else
h=h */
 IF NE F15=F2-F15;
tst_sign_x: RTS (DB), F0=PASS F0; /* if (numer<0) h=-h else h=h*/
 IF LT F15=-F15;
 F0=PASS F15; /* return with result in F0!*/

underflow: JUMP tst_sign_y (DB);
 F15=0;
 NOP;

overflow: JUMP tst_sign_x (DB);
 F15=mem(9,i_reg); /* Load pi/2*/
 NOP;

denom_zero: F0=PASS F0; /* Careful: if Num !=0, then
overflow*/
 IF NE JUMP overflow;

error: RTS; /* Error: Its a 0/0!*/

3333333333

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

.ENDSEG;

.SEGMENT/SPACE Assembly_Library_Data_Space;

.PRECISION=MEMORY_PRECISION;

.VAR atan_data[11] = 0.26794919243112270647, /* 2-sqrt(3) */
 1.73205080756887729353, /* sqrt(3) */
 0.000244140625, /* eps */
 -0.720026848898E+0, /* p1 */
 -0.144008344874E+1, /* p0 */
 0.475222584599E+1, /* q1 */
 0.432025038919E+1, /* q0 */
 0.00000000000000000000, /* 0*pi */
 0.52359877559829887308, /* pi/6 */
 1.57079632679489661923, /* pi/2 */
 1.04719755119659774615, /* pi/3 */
 3.14159265358979323846; /* pi */
.ENDSEG;

Listing 2.4 atan.asmListing 2.4 atan.asmListing 2.4 atan.asmListing 2.4 atan.asmListing 2.4 atan.asm

2.42.42.42.42.4 SQUARE ROOT & INVERSE SQUARE ROOTSQUARE ROOT & INVERSE SQUARE ROOTSQUARE ROOT & INVERSE SQUARE ROOTSQUARE ROOT & INVERSE SQUARE ROOTSQUARE ROOT & INVERSE SQUARE ROOT APPROXIMATIONS APPROXIMATIONS APPROXIMATIONS APPROXIMATIONS APPROXIMATIONS
An ADSP-21000 family DSP can perform the square root function, sqrt(y),
and the inverse square root, isqrt(y), quickly and with a high degree of
precision. These functions are typically used to calculate magnitude
functions of FFT outputs, to implement imaging and graphics algorithms,
and to use the DSP as a fast math coprocessor.

A square root exists (and can be calculated) for every non-negative floating-
point number. Calculating the square root of a negative number gives an
imaginary result. To calculate the square root of a negative number, take the
absolute value of the number and use sqrt(y) or isqrt(y) as defined in this
section. Remember that the result is really an imaginary number.

The ADSP-21000 family program that calculates isqrt(y) is based on the
Newton-Raphson iteration algorithm in [CAVANAGH]. Computation of the
function begins with a low-accuracy initial approximation. The Newton-

22222

3434343434

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions
Raphson iteration is then used for successively more accurate
approximations.

Once isqrt(y) is calculated it only takes one additional operation to
calculate sqrt(y). Given the input, y, the square root, x=R(y), is determined
as follows

x = sqrt(y) = y * 1/sqrt(y)

Given an initial approximation xn for the inverse square root of y, isqrt(y),
the Newton-Raphson iteration is used to calculate a more accurate
approximation, xn+1.

Newton-Raphson iteration: xn+1 = (0.5) (xn) (3 – (xn
2) (y))

The number of iterations determines the accuracy of the approximation.
For a 32-bit floating point representation with a 24-bit mantissa, two
iterations are sufficient to achieve an accuracy to ±1 LSB of precision. For
an extended 40-bit precision representation that has a 32-bit mantissa,
three iterations are needed.

For example, suppose that you need to calculate the square root of 30. If
you use 5.0 as an initial approximation of the square root, the inverse
square root approximation, 1/� 30, is 0.2. Therefore, given y=30 and
xn=0.2, one iteration yields

xn+1 = (0.5) (0.2) (3 - (0.22) (30))
xn+1 = 0.18

A second iteration using 0.18 as an input yields

xn+2 = (0.5) (0.18) (3 – (0.182) (30))
xn+2 = 0.18252

And finally a third iteration using 0.18252 as an input yields

xn+2 = (0.5) (0.18252) (3 – (0.182522) (30))
xn+2 = 0.182574161

3535353535

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Therefore the approximation of the inverse square root of 30 after three
iterations is 0.182574161. To calculate the square root, just multiply the
two numbers together

30 * 0.182574161 = 5.47722483

The actual square root of 30 is 5.477225575. If the initial approximation is
accurate to four bits, the final result is accurate to about 32 bits of
precision.

2.4.12.4.12.4.12.4.12.4.1 ImplementationImplementationImplementationImplementationImplementation
To implement the Newton-Raphson iteration method for calculating an
inverse square root on an ADSP-21000 processor, the first task is to
calculate the initial low-accuracy approximation.

The ADSP-21000 family instruction set includes the instruction RSQRTS
that, given the floating point input Fx, creates a 4-bit accurate seed for
1/√Fx. This seed, or low accuracy approximation, is determined by using
the six MSBs of the mantissa and the LSB of the unbiased exponent of Fx
to access a ROM-based look up table.

Note that the instruction RSQRTS only accepts inputs greater than zero.
A ±Zero returns ±Infinity, ±Infinity returns ±Zero, and a NAN (not-a-
number) or negative input returns an all 1's result. You can use
conditional logic to assure that the input value is greater than zero.

To calculate the seed for an input value stored in register F0, use the
following instruction:

F4=RSQRTS F0; /*Fetch seed*/

Once you have the initial approximation, it is a easy to implement the
Newton-Raphon iteration in ADSP-21000 assembly code. With the
approximation now in F4 and with F1 and F8 initialized with the constants
0.5 and 3 respectively, one iteration of the Newton-Raphson is

22222

3636363636

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

implemented as follows:

F12=F4*F4; /* F12=X0^2 */
F12=F12*F0; /* F12=C*X0^2 */
F4=F2*F4, F12=F8-F12; /* F4=.5*X0, F10=3-C*X0^2 */
F4=F4*F12; /* F4=X1=.5*X0(3-C*X0^2) */

The register F4 contains a reasonably accurate approximation for the inverse square
root. Successive iterations are made by repeating the above four lines or code. The
square root of F0 is calculated by multiplying the approximation F4, by the initial
input F0:

F0=F4*F0; /* X=sqrt(Y)=Y/sqrt(Y) */

2.4.22.4.22.4.22.4.22.4.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings
There are four subroutine listings below that illustrate how to calculate sqrt(y) and
isqrt(y). Two are for single precision (24-bit mantissa), and two for extended precision
(32-bit mantissa).

2.4.2.12.4.2.12.4.2.12.4.2.12.4.2.1 SQRT Approximation SubroutineSQRT Approximation SubroutineSQRT Approximation SubroutineSQRT Approximation SubroutineSQRT Approximation Subroutine
/

File Name

SQRT.ASM

3737373737

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Version
Version 0.02 7/6/90

Purpose
Subroutine to compute the square root of x using the 1/sqrt(x) approximation.

Equations Implemented
X = sqrt(Y) = Y/sqrt(Y)

Calling Parameters
F0 = Y Input Value
F8 = 3.0
F1 = 0.5

Return Values
F0 = sqrt(Y)

Registers Affected
F0, F4, F12

Cycle Count
14 Cycles

PM Locations

DM Locations

***/

#include “asm_glob.h”

22222

3838383838

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

.SEGMENT/PM pm_code;

.PRECISION=MACHINE_PRECISION;

.GLOBAL sqrt;

sqrt:
F4=RSQRTS F0; /*Fetch seed*/

F12=F4*F4; /*F12=X0^2*/
F12=F12*F0; /*F12=C*X0^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X0, F10=3-C*X0^2*/
F4=F4*F12; /*F4=X1=.5*X0(3-C*X0^2)*/

F12=F4*F4; /*F12=X1^2*/
F12=F12*F0; /*F12=C*X1^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X1, F10=3-C*X1^2*/
F4=F4*F12; /*F4=X2=.5*X1(3-C*X1^2)*/

F12=F4*F4; /*F12=X2^2*/
F12=F12*F0; /*F12=C*X2^2*/
RTS (DB), F4=F1*F4, F12=F8-F12; /*F4=.5*X2, F10=3-C*X2^2*/
F4=F4*F12; /*F4=X3=.5*X2(3-C*X2^2)*/

F0=F4*F0; /*X=sqrt(Y)=Y/sqrt(Y)*/
.ENDSEG;

Listing 2.5 sqrt.asmListing 2.5 sqrt.asmListing 2.5 sqrt.asmListing 2.5 sqrt.asmListing 2.5 sqrt.asm

22222.4.2.2.4.2.2.4.2.2.4.2.2.4.2.2 ISQRT Approximation SubroutineISQRT Approximation SubroutineISQRT Approximation SubroutineISQRT Approximation SubroutineISQRT Approximation Subroutine

/

File Name

ISQRT.ASM

3939393939

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Version
Version 0.02 7/6/90

Purpose
Subroutine to compute the inverse square root of x using the 1/

sqrt(x) approximation.

Equations Implemented
X = isqrt(Y) = 1/sqrt(Y)

Calling Parameters
F0 = Y Input Value
F8 = 3.0
F1 = 0.5

Return Values
F0 = isqrt(Y)

Registers Affected
F0, F4, F12

Cycle Count
13 Cycles

#PM Locations

#DM Locations

***/

22222

4040404040

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

#include “asm_glob.h”

.SEGMENT/PM pm_code;

.PRECISION=MACHINE_PRECISION;

.GLOBAL isqrt;

isqrt:
F4=RSQRTS F0; /*Fetch seed*/

F12=F4*F4; /*F12=X0^2*/
F12=F12*F0; /*F12=C*X0^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X0, F10=3-C*X0^2*/
F4=F4*F12; /*F4=X1=.5*X0(3-C*X0^2)*/

F12=F4*F4; /*F12=X1^2*/
F12=F12*F0; /*F12=C*X1^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X1, F10=3-C*X1^2*/
F4=F4*F12; /*F4=X2=.5*X1(3-C*X1^2)*/

F12=F4*F4; /*F12=X2^2*/
F12=F12*F0; /*F12=C*X2^2*/
RTS (DB), F4=F1*F4, F12=F8-F12; /*F4=.5*X2, F10=3-C*X2^2*/
F4=F4*F12; /*F4=X3=.5*X2(3-C*X2^2)*/

/* =isqrt(Y)=1/sqrt(Y)*/

.ENDSEG;

Listing 2.6 isqrt.asmListing 2.6 isqrt.asmListing 2.6 isqrt.asmListing 2.6 isqrt.asmListing 2.6 isqrt.asm

2.4.2.32.4.2.32.4.2.32.4.2.32.4.2.3 SQRTSGL Approximation SubroutineSQRTSGL Approximation SubroutineSQRTSGL Approximation SubroutineSQRTSGL Approximation SubroutineSQRTSGL Approximation Subroutine

/

File Name

SQRTSGL.ASM

4141414141

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Version
Version 0.02 7/6/90

Purpose
Subroutine to compute the square root of x to single-precision (24 bits

mantissa) using the 1/sqrt(x) approximation.

Equations Implemented
X = sqrtsgl(Y) = Y/sqrtsgl(Y)

Calling Parameters
F0 = Y Input Value
F8 = 3.0
F1 = 0.5

Return Values
F0 = sqrtsgl(Y)

Registers Affected
F0, F4, F12

Cycle Count
10 Cycles

22222

4242424242

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

PM Locations

DM Locations

***/

#include “asm_glob.h”

.SEGMENT/PM pm_code;

.PRECISION=MACHINE_PRECISION;

.GLOBAL sqrtsgl;

sqrtsgl:
F4=RSQRTS F0; /*Fetch seed*/

F12=F4*F4; /*F12=X0^2*/
F12=F12*F0; /*F12=C*X0^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X0, F12=3-C*X0^2*/
F4=F4*F12; /*F4=X1=.5*X0(3-C*X0^2)*/

F12=F4*F4; /*F12=X1^2*/
F12=F12*F0; /*F12=C*X1^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X1, F12=3-C*X1^2*/
F4=F4*F12; /*F4=X2=.5*X1(3-C*X1^2)*/
F0=F4*F0; /*X=sqrtsgl(Y)=Y/sqrtsgl(Y)*/

.ENDSEG;

Listing 2.7 sqrtsgl.asmListing 2.7 sqrtsgl.asmListing 2.7 sqrtsgl.asmListing 2.7 sqrtsgl.asmListing 2.7 sqrtsgl.asm

2.4.2.42.4.2.42.4.2.42.4.2.42.4.2.4 ISQRTSGL Approximation SubroutineISQRTSGL Approximation SubroutineISQRTSGL Approximation SubroutineISQRTSGL Approximation SubroutineISQRTSGL Approximation Subroutine

/

File Name

ISQRTSGL.ASM

4343434343

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Version
Version 0.02 7/6/90

Purpose
Subroutine to compute the inverse square root of x to single-precision (24

bits mantissa) using the 1/sqrt(x) approximation.

Equations Implemented
X = isqrtsgl(Y) = 1/sqrtsgl(Y)

Calling Parameters
F0 = Y Input Value
F8 = 3.0
F1 = 0.5

Return Values
F0 = isqrtsgl(Y)

Registers Affected
F0, F4, F12

Cycle Count
9 Cycles

22222

4444444444

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

PM Locations

DM Locations

***/

#include “asm_glob.h”

.SEGMENT/PM pm_code;

.PRECISION=MACHINE_PRECISION;

.GLOBAL isqrtsgl;

isqrtsgl:
F4=RSQRTS F0; /*Fetch seed*/

F12=F4*F4; /*F12=X0^2*/
F12=F12*F0; /*F12=C*X0^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X0, F12=3-C*X0^2*/
F4=F4*F12; /*F4=X1=.5*X0(3-C*X0^2)*/

F12=F4*F4; /*F12=X1^2*/
RTS(DB), F12=F12*F0; /*F12=C*X1^2*/
F4=F1*F4, F12=F8-F12; /*F4=.5*X1, F12=3-C*X1^2*/
F0=F4*F12; /*F4=X2=.5*X1(3-C*X1^2)*/

/* =isqrtsgl(Y)=1/sqrtsgl(Y)*/
.ENDSEG;

Listing 2.8 isqrtsgl.asmListing 2.8 isqrtsgl.asmListing 2.8 isqrtsgl.asmListing 2.8 isqrtsgl.asmListing 2.8 isqrtsgl.asm

2.52.52.52.52.5 DIVISIONDIVISIONDIVISIONDIVISIONDIVISION
The ADSP-21000 family instruction set includes the RECIPS instruction
to simplify the implementation of floating-point division.

2.5.12.5.12.5.12.5.12.5.1 ImplementationImplementationImplementationImplementationImplementation
The code performs floating-point division using an in iterative
convergence algorithm. The result is accurate to one LSB in whichever
format mode, 32-bit or 40-bit, is set (32-bit only for ADSP-21010). The
following inputs are required: F0 = numerator, F12= denominator,
F11 = 2.0. The quotients is returned in F0. (In the code listing, the two
highlighted instructions can be removed if only a ±1 LSB accurate single-
precision result is necessary.)

The algorithm is supplied with a startup seed which is a low-precision
reciprocal of the denominator. This seed is generated by the RECIPS
instruction. RECIPS creates an 8-bit accurate seed for 1/Fx, the reciprocal
of Fx. The mantissa of the seed is determined from a ROM table using the
7 MSBs (excluding the hidden bit) of the Fx mantissa as an index. The
unbiased exponent of the seed is calculated as the twos complement of the

4545454545

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

unbiased Fx exponent, decremented by one; that is, if e is the unbiased exponent of
Fx, then the unbiased exponent of Fn = –e – 1. The sign of the seed is the sign of the
input. ±Zero returns ±Infinity and sets the overflow flag. If the unbiased exponent of
Fx is greater than +125, the result is ±Zero. A NAN input returns an all 1's result.

2.5.22.5.22.5.22.5.22.5.2 Code Listing–Division Subroutine Code Listing–Division Subroutine Code Listing–Division Subroutine Code Listing–Division Subroutine Code Listing–Division Subroutine

/*
File Name

F.ASM

Version
Version 0.03

Purpose
An implementation of division using an Iterative Convergent Divide

Algorithm.

Equations Implemented
 Q = N/D

Calling Parameters
 F0 = N Input Value
 F12 = D Input Value
 F11 = 2.0

Return Values
 F0 = Quotient of input

Registers Affected
 F0, F7, F12

Cycle Count
 8 Cycles (6 Cycles for single precision)

PM Locations

DM Locations

22222

4646464646

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

*/

#include “asm_glob.h”

.SEGMENT/PM Assembly_Library_Code_Space;

.PRECISION=MACHINE_PRECISION;

.GLOBAL divide;

divide: F0=RECIPS F12, F7=F0; /*Get 4 bit seed R0=1/D*/
 F12=F0*F12; /*D(prime) = D*R0*/
 F7=F0*F7, F0=F11-F12; /*F0=R1=2-D(prime), F7=N*R0*/
 F12=F0*F12; /*F12=D(prime)=D(prime)*R1*/
 F7=F0*F7, F0=F11-F12; /*F7=N*R0*R1, F0=R2=2-
D(prime)*/

/* Remove next two instructions for 1 LSB accurate single-precision
result */
 RTS (DB), F12=F0*F12; {F12=D(prime)=D(prime)*R2}
 F7=F0*F7, F0=F11-F12; {F7=N*R0*R1*R2, F0=R3=2-D(prime)}

 F0=F0*F7; {F0=N*R0*R1*R2*R3}

.ENDSEG;

Listing 2.9 Divide..asmListing 2.9 Divide..asmListing 2.9 Divide..asmListing 2.9 Divide..asmListing 2.9 Divide..asm

2.62.62.62.62.6 LOGARITHM APPROXIMATIONSLOGARITHM APPROXIMATIONSLOGARITHM APPROXIMATIONSLOGARITHM APPROXIMATIONSLOGARITHM APPROXIMATIONS
Logarithms (in base e, 2, and 10) can be approximated for any non-
negative floating point number. The Software Manual for the Elementary
Functions by William Cody and William Waite explains how the
computation of a logarithm involves three distinct steps:

1. The given argument (or input) is reduced to a related argument in a
small, logarithmically symmetric interval about 1.

2. The logarithm is computed for this reduced argument.

3. The desired logarithm is reconstructed from its components.

The algorithm can calculate logarithms of any base (base e, 2, or 10); the

4747474747

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

code is identical until step three, so only one assembly-language module is
needed.

The first step is to take a given floating point input, Y, and reduce it to
 Y=f * 2N where 0.5 ≤f < 1. Given that X = log(Y), X also equals

X=loge(Y)
X=loge(f * 2N)
X=loge(f) + N*loge(2)

N * loge(2) is the floating point exponent multiplied by loge(2), which is a
constant. The term loge(f) must be calculated. The definition of the variable
s is

s = (f – 1) / (f + 1)

Then

loge(f) = loge((1 + s) / (1 – s))

This equation is evaluated using a min-max rational approximation
detailed in [CODY]. The approximation is expressed in terms of the
auxiliary variable z = 2s.

Once the value of loge(f) is approximated, the equation

X = loge(f) + N*loge(2)

yields the solution for the natural (base-e) log of the input Y. To compute
the base-2 or base-10 logarithm, the result X is multiplied by a constant
equal to the reciprocal of loge(2), or loge(10), respectively.

2.6.12.6.12.6.12.6.12.6.1 ImplementationImplementationImplementationImplementationImplementation
LOGS.ASM is an assembly-language implementation of the logarithm
algorithm. This module has three entry points; a different base of
logarithm is computed depending on which entry point is used. The label
LOG is used for calling the algorithm to approximate the natural (base-e)
logarithm, while the labels LOG2 and LOG10 are used for base-2 and
base-10 approximations, respectively. When assembling the file
LOGS.ASM you can specify where coefficients are placed—either in data
memory (DM) or program memory (PM)— by using the -Didentifier

22222

4848484848

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions
switch at assembly time.

For example, to place the coefficients in data memory use the syntax

asm21k -DDM_DATA logs

To place the coefficients in program memory use the syntax

asm21k -DPM_DATA logs

The first step to compute any of the desired logarithms is to reduce the
floating point input Y to the form

Y=f * 2N

The ADSP-21000 family supports the IEEE Standard 754/854 floating
point format. This format has a biased exponent and a significant with a
“hidden” bit of 1. The hidden bit, although not explicitly represented, is
implicitly presumed to exist and it offsets the exponent by one bit place.

For example, consider the floating point number 12.0. Using the IEEE
standard, this number is represented as 0.5 * 2131. By adding the hidden
one and unbiasing the exponent, 12.0 is actually represented as 1.5 * 24. To
get to the format f * 2N where 0.5 ≤ f < 1, you must scale 1.5 * 24 by two to
get the format 0.75 * 23. The instruction LOGB extracts the exponent from
our floating-point input. The exponent is then decremented, and the
mantissa is scaled to achieve the desired format.

Use the value of f to approximate the value of the auxiliary variable z. The
variable z is approximated using the following formula

z=znum/zden

where

znum = (f – 0.5) – 0.5

and

zden = (f * 0.5) – 0.5 for f>1/sqrt(2)

4949494949

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

or

znum = f – 0.5 and
zden = znum * 0.5 + 0.5 for f <= 1/sqrt(2)

Once z is found, it is used to calculate the min-max rational approximation
R(z), which has the form

R(z) = z + z * r(z2)

The rational approximation r(z2) has been derived and for w=z2 is

r(z2) = w * A(w)/B(w)

where A(w) and B(w) are polynomials in w, with derived coefficients a0,
a1, and b0

A(w) = a1 * w + a0
B(w) = w + b0

R(z) is the approximation of loge(f) and the final step in the approximation
of loge(Y) is to add in N*loge(2). The coefficients C0 and C1 and the
exponent N are used to determine this value.

If only the natural logarithm is desired, then the algorithm is complete and
the natural log (ln(Y)) is returned in the register F0. If log2(Y) was needed,
then F0 is multiplied by 1/ln(2) or 1.442695041. If log10(Y) is needed, then
F0 is multiplied by 1/ln(10) or 0.43429448190325182765.

2.6.22.6.22.6.22.6.22.6.2 Code ListingCode ListingCode ListingCode ListingCode Listing
The listing for module LOGS.ASM is below. The calling routine uses the
appropriate label for the type of logarithm that is desired: LOG for
natural log (base-e), LOG2 for base-2 and LOG10 for base-10.

At assembly time, you must specify the memory space where the eight
coefficients are stored (Program or Data Memory) by using either the
-DDM_DATA or -DPM_DATA switch. Attempts to assemble LOGS.ASM
without one of these switches result in an error.

2.6.2.12.6.2.12.6.2.12.6.2.12.6.2.1 Logarithm Approximation SubroutineLogarithm Approximation SubroutineLogarithm Approximation SubroutineLogarithm Approximation SubroutineLogarithm Approximation Subroutine

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

5050505050

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

/***
File Name

LOGS.ASM

Version
Version 0.03 8/6/90
revised 26-APR-91

Purpose
Subroutine to compute the logarithm (bases 2,e, and 10) of its floating
point input.

Equations Implemented
Y=LOG(X) or
Y=LOG2(X) or
Y=LOG10(X)

Calling Parameters
F0 = Input Value
l_reg=0;

Return Values
F0 = Logarithm of input

Registers Affected
F0, F1, F6, F7, F8, F10, F11, F12
i_reg

Computation Time
49 Cycles

#PM locations

#DM locations

***/

#include “asm_glob.h”

.SEGMENT/PM Assembly_Library_Code_Space;

.PRECISION=MACHINE_PRECISION;

.GLOBAL log, log10, log2;

log2:
CALL logs_core (DB); /*Enter same routine in two cycles*/
R11=LOGB F0, F1=F0; /*Extract the exponent*/
F12=ABS F1; /*Get absolute value*/
RTS (DB);
F11=1.442695041; /*1/Log(2)*/

5151515151

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

F0=F11*F0; /*F0 = log2(X)*/

log10:
CALL logs_core (DB); /*Enter same routine in two cycles*/
R11=LOGB F0, F1=F0; /*Extract the exponent*/
F12=ABS F1; /*Get absolute value*/
RTS (DB);
F11=0.43429448190325182765; /*1/Log(10)*/
F0=F11*F0; /*F12 = log10(X)*/

log:
R11=LOGB F0, F1=F0;
F12=ABS F1;

logs_core: i_reg=logs_data; /*Point to data array*/
R11=R11+1; /*Increment exponent*/
R7=-R11, F10=mem(i_reg,1); /*Negate exponent*/
F12=SCALB F12 BY R7; /*F12= .5<=f<1*/
COMP(F12,F10), F10=mem(i_reg,1); /*Compare f > C0*/
IF GT JUMP adjust_z (DB);
F7=F12-F10; /*znum = f-.5*/
F8=F7*F10; /*znum * .5*/
JUMP compute_r (DB);
F12=F8+F10; /*zden = znum * .5 + .5*/
R11=R11-1; /*N = N - 1*/

adjust_z:
F7=F7-F10; /*znum = f - .5 - .5*/
F8=F12*F10; /*f * .5*/
F12=F8+F10; /*zden = f * .5 + .5*/

compute_r:
F0=RECIPS F12; /*Get 4 bit seed R0=1/D*/
F12=F0*F12, F10=mem(i_reg,1); /*D(prime) = D*R0*/
F7=F0*F7, F0=F10-F12; /*F0=R1=2-D(prime), F7=N*R0*/
F12=F0*F12; /*F12=D(prime)=D(prime)*R1*/
F7=F0*F7, F0=F10-F12; /*F7=N*R0*R1, F0=R2=2-D(prime)*/
F12=F0*F12; /*F12=D(prime)=D(prime)*R2*/
F7=F0*F7, F0=F10-F12; /*F7=N*R0*R1*R2, F0=R3=2-D(prime)*/
F6=F0*F7; /*F7=N*R0*R1*R2*R3*/
F0=F6*F6, F8=mem(i_reg,1); /*w = z^2*/
F12=F8+F0, F8=mem(i_reg,1); /*B(W) = w + b0*/
F7=F8*F0, F8=mem(i_reg,1); /* w*a1*/
F7=F7+F8, F8=F0; /*A(W) = w * a1 + a0*/
F0=RECIPS F12; /*Get 4 bit seed R0=1/D*/
F12=F0*F12; /*D(prime) = D*R0*/
F7=F0*F7, F0=F10-F12; /*F0=R1=2-D(prime), F7=N*R0*/
F12=F0*F12; /*F12=D(prime)=D(prime)*R1*/
F7=F0*F7, F0=F10-F12; /*F7=N*R0*R1, F0=R2=2-D(prime)*/

22222

5252525252

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

F12=F0*F12; /*F12=D(prime)=D(prime)*R2*/
F7=F0*F7, F0=F10-F12; /*F7=N*R0*R1*R2, F0=R3=2-

D(prime)*/
F7=F0*F7; /*F7=N*R0*R1*R2*R3*/
F7=F7*F8; /*Compute r(z^2)=w*A(w)/B(w)*/

compute_R:
F7=F6*F7; /* z*r(z^2)*/
F12=F6+F7; /*R(z) = z + z * r(z^2)*/
F0=FLOAT R11, F7=mem(i_reg,1); /*F0=XN, F7=C2*/
F10=F0*F7, F7=mem(i_reg,1); /*F10=XN*C2, F7=C1*/
RTS (DB);
F7=F0*F7, F0=F10+F12; /*F0=XN*C2+R(z),

F7=XN*C1*/
F0=F0+F7; /*F0 = ln(X)*/

.ENDSEG;

.SEGMENT/SPACE Assembly_Library_Data_Space;

.VAR logs_data[8] = 0.70710678118654752440, /*C0 = sqrt(.5)*/
0.5, /*Constant used*/
2.0, /*Constant used*/
-5.578873750242, /*b0*/
0.1360095468621E-1, /*a1*/
-0.4649062303464, /*a0*/
-2.121944400546905827679E-4, /*C2*/
0.693359375; /*C1*/

.ENDSEG;

Listing 2.10 logs.asmListing 2.10 logs.asmListing 2.10 logs.asmListing 2.10 logs.asmListing 2.10 logs.asm

2.72.72.72.72.7 EXPONENTIAL APPROXIMATIONEXPONENTIAL APPROXIMATIONEXPONENTIAL APPROXIMATIONEXPONENTIAL APPROXIMATIONEXPONENTIAL APPROXIMATION
The exponential function (eX or exp(X)) of a floating point number is
computed by using an approximation technique detailed in the [CODY].
Cody and Waite explain how the computation of an exponent involves
three distinct steps.

The first step is to reduce a given argument (or input) to a related
argument in a small interval symmetric about the origin. If X is the input
value for which you wish to compute the exponent, let

X = N*ln(C) + g g ≤ln(C)/2.

Then

exp(X) = exp(g) * CN

5353535353

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

where C = 2, and N is calculated as X/ln(C). Since the accuracy of the
approximation critically depends on the accuracy of g, the effective
precision of the ADSP-210xx processor must be extended during the
calculation of g. Use the equation

g = (X – XN * C1) – XN * C2

where C1 + C2 represent ln(C) to more than working precision, and XN is
the floating point representation of N. The values of C1 and C2 are
precomputed and stored in program or data memory.

The second step is to compute the exponential for the reduced argument.
Since you have now calculated N and g, you must approximate exp(g).
Cody and Waite have derived coefficients (p1, q1, etc.) especially for the
approximation of exp(g)/2. The divide by two is added to counteract
wobbly precision. The approximation of exp(g)/2 is

R(g) = 0.5 + (g*P(z))/Q(z)- g(P(z))

where

g*P(z) = ((p1 * z) + p0) * g,
Q(z) = (q1 * z) + q0,
z = g2

The third step is to reconstruct the desired function from its components.
The components of exp(X) are exp(g)=R(g), C=2, and N=X/ln(2). Therefore:

exp(X) = exp(g) * CN

 = R(g) * 2(N+1)

Note that N was incremented by one due to the scaling that occurred in
the approximation of exp(g).

2.7.12.7.12.7.12.7.12.7.1 ImplementationImplementationImplementationImplementationImplementation
EXP.ASM is an implementation of the exponent approximation for the
ADSP-21000 family. When assembling the file EXP.ASM you can specify
where coefficients are placed—either in data memory (DM) or program
memory (PM)— by using the -D identifier switch at assembly
time.

22222

5454545454

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions
For example, to place the coefficients in data memory use the syntax

asm21k -DDM_DATA exp

To place the coefficients in program memory use the syntax

asm21k -DPM_DATA exp

Before the first step in the approximation of the exponential function is
performed, the floating-point input value is checked to assure that it is in
the allowable range. The floating-point input is limited by the machine
precision of the processor calculating the function. For the ADSP-21000
family, the largest number that can be represented is XMAX = 2127 – 1LSB.
Therefore, the largest input to the function exp(X) is ln(XMAX), which is
approximately 88. The smallest positive floating point number that can be
represented is XMIN=2–127. Computing ln(XMIN) gives approximately –88
as the largest negative input to the function exp(x). Therefore, comparisons
to ln(XMIN) and ln(XMAX) are the first instructions of the EXP.ASM
module. If these values are exceeded, the subroutine ends and returns
either an error (X > ln(XMAX)) or a very small number (X < ln(XMIN)).

The code includes another comparison for the case where the input
produces the output 1. This only occurs when the input is equal to
0.000000001 or 1.0E-9. If the input equals this value, the subroutine ends
and returns a one.

The first step in the approximation is to compute g and N for the equation

exp(X) = exp(g) * 2N

Where

N=X/ln(2)
g = (X - XN * C1) – XN * C2

C1 = 0.693359375
C2 = –2.1219444005469058277E-4

Since multiplication requires fewer instructions than division, the constant
1/ln(2) is stored in memory along with the precomputed values of C1 and
C2. XN is a floating point representation of N that can be easily computed
using the FIX and FLOAT conversion features of the ADSP-210xx
processors.

Given g and XN, it is simple to compute the approximation for exp(g)/2

5555555555

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

using the constants and equations outlined in the [CODY].

R(g) = 0.5 + (g * P(z)) / Q(z) – g(P(z))

where

g*P(z) = ((p1 * z) + p0) * g,
Q(z) = (q1 * z) + q0
z = g2

P1 = 0.59504254977591E–2
P0 = 0.24999999999992
Q2 = 0.29729363682238E-3
Q1 = 0.53567517645222E-1
Q0 = 0.5

Once R(g), the approximation for exp(g), is calculated, the approximation for exp(x) is
derived by using the following equation:

exp(X) = 2(approx(exp(g)/2)) * 2N

= approx(exp(g)/2) * 2(N+1)

= R(g) * 2(N+1)

The SCALB instruction scales the floating point value of R(g) by the exponent N + 1.

2.7.22.7.22.7.22.7.22.7.2 Code Listings–Exponential SubroutineCode Listings–Exponential SubroutineCode Listings–Exponential SubroutineCode Listings–Exponential SubroutineCode Listings–Exponential Subroutine

/***
File Name

EXP.ASM

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

5656565656

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Version
Version 0.03 8/6/90
Modified 9/27/93

Purpose
Subroutine to compute the exponential of its floating point input

Equations Implemented
Y=EXP(X)

Calling Parameters
F0 = Input Value
l_reg=0;

Return Values
F0 = Exponential of input

Registers Affected
F0, F1, F4, F7, F8, F10, F12
i_reg

Computation Time
38 Cycles

PM locations
46 words

#DM locations
12 words (could be placed in PM instead)

***/

#include “asm_glob.h”
.SEGMENT/PM Assembly_Library_Code_Space;
.PRECISION=MACHINE_PRECISION;
.GLOBAL exponential;
output_too_large: RTS (DB);

F0=10000; /*Set some error here*/
F0=10000;

output_too_small: RTS (DB);
F0 = .000001;
F0 = .000001;

output_one: RTS (DB);
F0 = 1.0;
F0 = 1.0;

exponential: i_reg=exponential_data; /*Skip one cycle after this*/
F1=PASS F0; /*Copy into F1*/
F12=ABS F1, F10=mem(i_reg,1); /*Fetch maximum input*/
COMP(F1,F10), F10=mem(i_reg,1); /*Error if greater than max*/
IF GT JUMP output_too_large; /*Return XMAX with error*/
COMP(F1,F10), F10=mem(i_reg,1); /*Test for input to small*/
IF LT JUMP output_too_small; /*Return 0 with error*/
COMP(F12,F10), F10=mem(i_reg,1); /*Check for output 1*/

5757575757

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

IF LT JUMP output_one; /*Simply return 1*/
F12=F1*F10, F8=F1; /*Compute N = X/ln(C)*/
R4=FIX F12; /*Round to nearest*/
F4=FLOAT R4, F0=mem(i_reg,1); /*Back to floating point*/

compute_g: F12=F0*F4, F0=mem(i_reg,1); /*Compute
XN*C1*/

F0=F0*F4, F12=F8-F12; /*Compute |X|-XN*C1,
and XN*C2*/

F8=F12-F0, F0=mem(i_reg,1); /*Compute g=(|X|-
XN*C1)-XN*C2*/
compute_R: F10=F8*F8; /*Compute z=g*g*/

F7=F10*F0, F0=mem(i_reg,1); /*Compute p1*z*/
F7=F7+F0, F0=mem(i_reg,1); /*Compute p1*z + p0*/
F7=F8*F7; /*Compute g*P(z) =

(p1*z+p0)*g*/
F12=F0*F10, F0=mem(i_reg,1); /*Compute q2*z*/
F12=F0+F12, F8=mem(i_reg,1); /*Compute q2*z +

q1*/
F12=F10*F12; /*Compute (q2*z+q1)*z)*/
F12=F8+F12; /*Compute

Q(z)=(q2*z+q1)*z+q0*/
F12=F12-F7, F10=mem(i_reg,1); /*Compute Q(z) - g*P(z)*/
F0=RECIPS F12; /*Get 4 bit seed

R0=1/D*/
F12=F0*F12; /*D(prime) = D*R0*/
F7=F0*F7, F0=F10-F12; /*F0=R1=2-D(prime),

F7=N*R0*/
F12=F0*F12; /

*F12=D(prime)=D(prime)*R1*/
F7=F0*F7, F0=F10-F12; /*F7=N*R0*R1,

F0=R2=2-D(prime)*/
F12=F0*F12; /

*F12=D(prime)=D(prime)*R2*/
F7=F0*F7, F0=F10-F12; /*F7=N*R0*R1*R2,

F0=R3=2-D(prime)*/
F7=F0*F7; /*F7=N*R0*R1*R2*R3*/
F7=F7+F8; /*R(g) = .5 +

(g*P(z))/(Q(z)-
g*P(z))*/

R4=FIX F4; /*Get N in fixed point
again*/

RTS (DB);
R4=R4+1;
F0=SCALB F7 BY R4; /*R(g) * 2^(N+1)*/

.ENDSEG;

.SEGMENT/SPACE Assembly_Library_Data_Space;

.PRECISION=MEMORY_PRECISION;

.VAR exponential_data[12] = 88.0, /*BIGX */
-88.0, /*SMALLX*/
0.000000001, /*eps*/
1.4426950408889634074, /*1/ln(2.0)*/
0.693359375, /*C1*/
-2.1219444005469058277E-4, /*C2*/
0.59504254977591E-2, /*P1*/
0.24999999999992, /*P0*/
0.29729363682238E-3, /*Q2*/

22222

5858585858

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

0.53567517645222E-1, /*Q1*/
0.5, /*Q0 and others*/
2.0; /*Used in divide*/

.ENDSEG;

Listing 2.11 Exponential SubroutineListing 2.11 Exponential SubroutineListing 2.11 Exponential SubroutineListing 2.11 Exponential SubroutineListing 2.11 Exponential Subroutine

2.82.82.82.82.8 POWER APPROXIMATIONPOWER APPROXIMATIONPOWER APPROXIMATIONPOWER APPROXIMATIONPOWER APPROXIMATION
The algorithm to approximate the power function (pow(x,y), x**y, or xy) is
more complicated than the algorithms for the other standard floating-
point functions. The power function is defined mathematically as

x ** y = exp(y * ln(x))

Unfortunately, computing pow(x,y) directly with the exponent and
logarithm routines discussed in this chapter yields very inaccurate results.
This is due to the finite word length of the processor. Instead, the
implementation described here uses an approximation technique detailed
in the [CODY]. Cody and Waite use pseudo extended-precision arithmetic
to extend the effective word length of the processor to decrease the
relative error of the function.

The key to pseudo extended-precision arithmetic is to represent the
floating point number in the reduced form; for a floating-point number V

V = V1 + V2

where

V1 = FLOAT(INTRND(V * 16))/16

and

V2 = V – V1

To compute the power function Z = XY, let

Z = 2W

5959595959

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

where

W = Y log2(X)

Let the input X be a positive floating-point number, and let U = log2(X).
The equation simplified is

W = Y * U

To implement this approximation accurately, you must compute Y and U
to extended-precision using their reduced forms (Y1+Y2 and U1 + U2,
respectively). U1 and U2 are calculated with the approximations outlined
below. Y1 and Y2 are formed from the floating-point input Y.

To calculate U1 and U2, first represent the floating-point input, X, in the
form

X = f * 2m

where

1/2 ≤ f < 1

The value of U2 is determined using a rational approximation generated
by Cody and Waite, and the value of U1 is determined using the equation

U1 = FLOAT(INTRND(U*16))/16

where p is an odd integer less than 16 such that

f = 2(–p/16) * g/a

a = precalculated coefficients
g = f * 2r = f (in the case of non-decimal processors r=0)

The reduced form of W is derived from the values of U1, U2, Y1, and Y2.
Since

W1 = m’ - p’/16

Z = 2m’ * 2(-p’/16) * 2W2

where 2W2 is evaluated by means of another rational approximation.

22222

6060606060

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions
2.8.12.8.12.8.12.8.12.8.1 ImplementationImplementationImplementationImplementationImplementation
POW.ASM is an ADSP-21000 implementation of the power algorithm.
When assembling the file POW.ASM , you can specify where coefficients
are placed—either in data memory (DM) or program memory (PM)— by
using the -D identifier switch at assembly time.

For example, to place the coefficients in data memory use the syntax

asm21k -DDM_DATA pow

To place the coefficients in program memory use the syntax

asm21k -DPM_DATA pow

The power function approximation subroutine expects inputs, X and Y, to
be floating-point values.

The first step of the subroutine is to check that X is non-negative. If X is
zero or less than zero, the subroutine terminates and returns either the
value zero or the value of X, depending on the conditions.

The second step is to calculate f such that

 X = f * 2m

Use the LOGB function to recover the exponent of X. Since the floating
point format of the ADSP-210xx has a hidden scaling factor (see Appendix
D, “Numeric Formats,” in The ADSP-21020 User's Manual for details) you
must add a one to the exponent. This new exponent, m, scales X to
determine the value of f such that 1/2 ≤ f < 1.

f = X * 2 –m

Note for these calculations, the value of g is equal to the value of f.

The value of p is determined using a binary search and an array of floating
point numbers A1 and A2 such that sums of appropriate array elements
represent odd integer powers of 2–1/16 to beyond working precision.

set p = 1
if (g ≤ A1(9)), then p = 9
if (g ≤ A1(p+4)), then p = p + 4
if (g ≤ A1(p+2)), then p = p + 2

6161616161

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Next, you must determine the values of U1 and U2. To determine U2, you
must implement a rational approximation. The equation for U2 is

U2 = (R + z * K) + z

where K is a constant and z and R(z) are determined as described below.

To determine the value of z, the following equation is used

z’ = 2 * [g - A1(p+1)] - A2 ((p+1)/2)
z = z’ + z’

At this point,  z  ≤ 0.044.

To determine the value of R(z), Cody and Waite derived coefficients (p1, p2)
especially for this approximation. The equation is

R(z) = [(p2 * v) + p1] * v * z

where

v = z * z.

To determine the value of U1

U1 = REDUCE(U)
U1 = FLOAT(INTRND(U * 16))/16

since

U = log2(X)
= log2(f * 2m)
= log2([2(-p/16) *g/a] * 2m)
= m - p/16

Therefore

U1 = FLOAT(INTRND(16*m-p)) * 0.0625

Having calculated U1 and U2, reduce Y into Y1 and Y2:

Y1 = REDUCE(Y)

22222

6262626262

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Y2 = Y – Y1

and then calculate the value of W using the pseudo extended-precision
product of U and Y with the following sequence of operations:

W = U2 * Y + U1 * Y2
W1 = REDUCE(W)
W2 = W - W1
W = W1 + U1 * Y1
W1 = REDUCE(W)
W2 = W2 + (W– W1)
W = REDUCE(W2)
IW1 = INT(16 * (W1 + W))
W2 = W2 – W

Now compare IW1 with the largest and smallest positive finite floating-
point numbers to test for overflow. If an overflow occurs, the subroutine
ends and an error value should be set.

For the next step IW2 must be less than or equal to zero. If W2 > 0, add one
to IW1 and subtract 1/16 from W2.

Determine that values of m’ and p’ using the equations:

m’ = IW1/16 + 1
p’ = 16 * m’ – IW1

You can now determine the value of Z

Z = 2m’ * 2(-p’/16) * 2W2

The value of 2W2 – 1 is evaluated for –0.0625 ≤ W2 ≤ 0 using a near-
minimax polynomial approximation developed by Cody and Waite.

Z = W2 * Q(W2)

where Q(W2) is a polynomial in W2 with coefficients q1 through q5.
Therefore

Z = ((((q5 * W2 + q4) * W2 + q3) * W2 + q2) * W2 + q1) * W2

6363636363

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

Now, add 1 to Z and multiply by 2(–p’/16) using the equation

Z = (Z * A1(p’+1)) + A1(p1+1)

Finally, scale Z by the value of m’ or Z = ADX(Z, m’)

2.8.22.8.22.8.22.8.22.8.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings

2.8.2.12.8.2.12.8.2.12.8.2.12.8.2.1 Power SubroutinePower SubroutinePower SubroutinePower SubroutinePower Subroutine

/***
File Name

POW.ASM

Version
Version 0.04 7/6/90

Purpose
Subroutine to compute x raise to the y power of its two floating point

inputs.
Equations Implemented

Y=POW(X)

Calling Parameters
F0 = X Input Value
F1 = Y Input Value
l_reg = 0

Return Values
F0 = Exponential of input

Registers Affected
F0, F1, F2, F4, F5, F7,
F8, F9, F10, F11, F12, F13, F14, F15
i_reg, ms_reg

Computation Time
37 Cycles

PM locations
125 words

#DM locations
33 words (could be placed in PM instead)

***/
 #include “asm_glob.h”
 #include “pow.h”
 #define b_reg B3

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

6464646464

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

 #define i_reg I3
 #define l_reg L3
 #define mem(i,m) DM(i,m)
 #define m1_reg M7
 #define mm_reg M6
 #define ms_reg M5
 #define SPACE DM

 .SEGMENT/PM rst_svc;
jump pow;

 .ENDSEG;

 .SEGMENT/PM pm_sram;

 .PRECISION=MACHINE_PRECISION;

 .GLOBAL pow;

 pow: F0=PASS F0; /*Test for x<=0*/
IF LT JUMP x_neg_error; /*Report error*/
IF EQ JUMP check_y; /*Test y input*/

 determine_m: R2=LOGB F0; /*Get exponent of x input*/
R2=R2+1; /*Reduce to proper format*/
R3=-R2; /*Used to produce f*/

 determine_g: F15=SCALB F0 BY R3; /* .5 <= g < 1*/
 determine_p: i_reg=a1_values;

R14=1;
R13=9;
R10=i_reg;
F12=mem(9,i_reg); /*Get A1(9)*/
COMP(F12,F15), F12=mem(5,i_reg); /*A1(9) - g*/
F11=mem(13,i_reg);
IF GE F12=F11; /*Use A(13) next*/
IF GE R14=R13; /*IF (g<=A1(9)) p=9*/
R9=R10+R14;
i_reg=R9;

6565656565

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

R13=4;
COMP(F12,F15), F12=mem(2,i_reg); /*A1(p+4) - g*/
F11=mem(6,i_reg);
IF GE F12=F11;
IF GE R14=R14+R13; /*IF (g<=A1(p+4)) p=p+4*/
R13=2;
COMP(F12,F15); /*A1(p+2) - g*/
IF GE R14=R14+R13; /*IF (g<=A1(p+4)) p=p+2*/

 determine_z: R14=R14+1, R4=R14;
ms_reg=R14;
i_reg=a1_values;
R11=ASHIFT R14 BY -1; /*Compute (p+1)/2*/
F12=mem(ms_reg,i_reg); /*Fetch A1(p+1)*/
ms_reg=R11;
i_reg=a2_values; /*Correction array*/
F0=F12+F15; /*g + A1(p+1)*/
F14=F15-F12, F11=mem(ms_reg,i_reg);
F7=F14-F11, F12=F0; /*[g-A1(p+1)]-A2((p+1)/2)*/
F11=2.0;

 __divide_: F0=RECIPS F12; /*Get 4 bit seed R0=1/D*/
F12=F0*F12; /*D(prime) = D*R0*/
F7=F0*F7, F0=F11-F12; /*F0=R1=2-D(prime), F7=N*R0*/
F12=F0*F12; /*F12=D(prime)=D(prime)*R1*/
F7=F0*F7, F0=F11-F12; /*F7=N*R0*R1, F0=R2=2-D(prime)*/
F12=F0*F12; /*F12=D(prime)=D(prime)*R2*/
F7=F0*F7, F0=F11-F12; /*F7=N*R0*R1*R2, F0=R3=2-

D(prime)*/
F7=F0*F7; /*F7=N*R0*R1*R2*R3*/

F7=F7+F7; /* z = z + z*/
 determine_R: i_reg=power_array;

F8=F7*F7, F9=mem(p2,i_reg); /* v = z * z */
F10=F8*F9, F9=mem(p1,i_reg); /* p2*v */
F10=F10+F9; /* p2*v + p1 */
F10=F10*F8; /* (p2*v + p1) * v */
F10=F10*F7, F9=mem(K,i_reg); /* R(z) = (p2*v+p1)*v*z */

 determine_u2: F11=F10*F9; /* K*R */
F11=F10+F11; /* K + K*R */
F9=F9*F7; /* z*K */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

22222

6666666666

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

F9=F9+F11; /* R + z*K */
F9=F9+F7; /* (R + z*K) + z*/

 determine_u1: R3=16;
R2=R2*R3 (SSI); /* m*16 */
R2=R2-R4; /* m*16-p */
R3=-4;
F2=FLOAT R2 BY R3; /*FLOAT(m*16-p)*.0625*/

 determine_w: R4=4; /*Used in reduce*/
R8=FIX F1 BY R4;
F8=FLOAT R8 BY R3; /* y1=REDUCE(Y) */
F7=F1-F8; /* y2 = y - y1 */
F15=F9*F1; /* U2*Y */
F14=F2*F7; /* U1*Y2 */
F15=F14+F15; /* W = U2*Y + U1*Y2*/
R14=FIX F15 BY R4;
F14=FLOAT R14 BY R3; /* W1=REDUCE(W) */
F13=F15-F14; /* W2 = W - W1 */
F12=F2*F8; /* U1*Y1 */
F12=F14+F12; /* W = W1 + U1*Y1 */
R14=FIX F12 BY R4;
F14=FLOAT R14 BY R3; /* W1 = REDUCE(W) */
F11=F12-F14; /* W-W1 */
F13=F11+F13; /* W2 = W2 + (W-W1) */
R12=FIX F13 BY R4;
F12=FLOAT R12 BY R3; /* W = REDUCE(W2) */
F10=F12+F14;
R10=FIX F10 BY R4; /* IW1 = INT(16*(W1+W)) */
F13=F13-F12, R9=mem(bigx,i_reg); /* W2 = W2 - W */
COMP(R10,R9), R9=mem(smallx,i_reg); /* Test for overflow */
IF GE JUMP overflow
COMP(R10,R9);
IF LE JUMP underflow;

 flow_to_a: F13=PASS F13; /* W2 must be <=0 */
IF LE JUMP determine_mp;
F8=.0625;
F13=F13-F8;
R10=R10+1;

 determine_mp: R8=1;
R10=PASS R10;
IF LT R8=R8-R8; /* I=0 if IWI < 0 */
R6=ABS R10; /* Take ABS for shift*/
R7=ASHIFT R6 BY -4; /* IW1/16 */
R6=PASS R10;
IF LT R7=-R7;
R7=R7+R8; /* m(prime) = IW1/16 + I */
R6=ASHIFT R7 BY 4; /* m(prime)*16 */
R6=R6-R10, F5=mem(q5,i_reg); /* p(prime) = 16*m(prime) - IW1 */

 determine_Z: F4=F5*F13, F5=mem(q4,i_reg); /* q5*W2 */
F4=F4+F5, F5=mem(q3,i_reg); /* q5*W2 + q4 */

6767676767

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

F4=F4*F13; /* (q5*W2+q4)*W2 */
F4=F4+F5, F5=mem(q2,i_reg); /* (q5*W2+q4)*W2+q3 */
F4=F4*F13; /* ((q5*W2+q4)*W2+q3)*W2 */
F4=F4+F5, F5=mem(q1,i_reg); /* ((q5*W2+q4)*W2+q3)*W2+q2 */
F4=F4*F13; /* (((q5*W2+q4)*W2+q3)*W2+q2)*W2 */
F4=F4+F5; /*

Q(W2)=(((q5*W2+q4)*W2+q3)*W2+q2)*W2+q1*/
F4=F4*F13; /* Z = W2*Q(W2) */
i_reg=a1_values;
R6=R6+1; /* Compute p(prime)+1 */
ms_reg=R6;
F5=mem(ms_reg,i_reg); /* Fetch A1(p(prime)+1) */
F4=F4*F5; /* A1(p(prime)+1)*Z */
F4=F4+F5; /* Z = A1(p(prime)+1) +

A1(p(prime)+1)*Z */
F0=SCALB F4 BY R7; /* Result = ADX(Z,m(prime)) */

 underflow: F0=0; /*Set error also*/
RTS;

 x_neg_error: F0=0; /*Set an error also*/
RTS;

 check_y: F1=PASS F1, F0=F0; /*If y>0 return x*/
IF GT RTS;

 overflow: RTS; /*Set an error also*/

22222

6868686868

Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

 .ENDSEG;

 .SEGMENT/DM dm_sram;

 .VAR a1_values[18] = 0,
0x3F800000,
0x3F75257D,
0x3F6AC0C6,
0x3F60CCDE,
0x3F5744FC,
0x3F4E248C,
0x3F45672A ,
0x3F3D08A3 ,
0x3F3504F3 ,
0x3F2D583E ,
0x3F25FED6 ,
0x3F1EF532 ,
0x3F1837F0 ,
0x3F11C3D3 ,
0x3F0B95C1 ,
0x3F05AAC3 ,
0x3F000000;

 .VAR a2_values[9] = 0,
0x31A92436,
0x336C2A95,
0x31A8FC24,
0x331F580C,
0x336A42A1,
0x32C12342,
0x32E75624,
0x32CF9891;

 .VAR power_array[10]= 0.833333286245E-1, /* p1 */
 0.125064850052E-1, /* p2 */
 0.693147180556341, /* q1 */
 0.240226506144710, /* q2 */
 0.555040488130765E-1, /* q3 */

6969696969

22222Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &Trigonometric, Mathematical &
Transcendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental FunctionsTranscendental Functions

 0.961620659583789E-2, /* q4 */
 0.130525515942810E-2, /* q5 */
 0.44269504088896340736, /* K */

 2032., /* bigx */
 -2015; /* smallx */

 .ENDSEG;

Listing 2.12 pow.asmListing 2.12 pow.asmListing 2.12 pow.asmListing 2.12 pow.asmListing 2.12 pow.asm

2.8.2.22.8.2.22.8.2.22.8.2.22.8.2.2 Global Header FileGlobal Header FileGlobal Header FileGlobal Header FileGlobal Header File

#define MACHINE_PRECISION 40
 #define MEMORY_PRECISION 32

 #ifdef PM_DATA

 #define b_reg B11
 #define i_reg I11
 #define l_reg L11
 #define mem(m,i) PM(m,i)
 #define m1_reg M14
 #define mm_reg M13
 #define ms_reg M12
 #define SPACE PM
 #define Assembly_Library_Data_Space Lib_PMD

 #endif

 #ifdef DM_DATA

 #define b_reg B3
 #define i_reg I3
 #define l_reg L3
 #define mem(i,m) DM(i,m)
 #define m1_reg M7
 #define mm_reg M6
 #define ms_reg M5
 #define SPACE DM
 #define Assembly_Library_Data_Space Lib_DMD

 #endif

Listing 2.13 asm_glob.hListing 2.13 asm_glob.hListing 2.13 asm_glob.hListing 2.13 asm_glob.hListing 2.13 asm_glob.h

2.8.2.32.8.2.32.8.2.32.8.2.32.8.2.3 Header FileHeader FileHeader FileHeader FileHeader File

/*
 This include file is used by the power routine of the assembly
 library
*/

 #define p1 0
 #define p2 1
 #define q1 2
 #define q2 3
 #define q3 4
 #define q4 5

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions 33333

7171717171

Matrices are useful in image processing and graphics algorithms because
they provide a natural two-dimensional format to store x and y
coordinates. Many signal processing algorithms perform mathematical
operations on matrices. These operations range from scaling the elements
in the matrix to performing an autocorrelation between two signals
described as matrices.

The three basic matrix operations discussed in this chapter are

• multiplying one matrix by a vector

• multiplying one matrix by another matrix

• finding the inverse of a matrix

This chapter describes three ADSP-21000 family assembly language
subroutines that implement these operations. The matrix buffers, interrupt
vector tables, and DAG registers must be set up by the calling routine
before the routines can access the matrices. Optionally, each subroutine
can include setup code so it can run independently of a calling routine.
This setup code is conditionally assembled by using the assembler’s
-D identifier command line switch.

The implementations are based on the matrix algorithms described in
[EMBREE91].

33333

7272727272

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.13.13.13.13.1 STORING A MATRIXSTORING A MATRIXSTORING A MATRIXSTORING A MATRIXSTORING A MATRIX
To minimize index register usage, the two-dimensional array matrix is
stored in a single-dimensional array buffer and element positions are kept
track of by the processor’s DAG registers. The program can access any
matrix element by using the index, modify, and length registers. The
elements are stored in row major order; all the elements of the first row are
first in the buffer, then all of the elements in the second row, and so forth.

For example, a 3×3 matrix with these elements

A11 A12 A13
A21 A22 A23
A31 A32 A33

is placed in a nine element buffer in this order

{A11, A12, A13, A21, A22, A23, A31, A32, A33}

The elements can be read continuously and consecutively if you

• use circular buffering

• use the correct modify values for index pointers

• keep track of the pointer in the matrix

To read the elements in a row consecutively, set the index pointer to the
location of the first element in the row and set the modify value to 1.

To read the elements in a column consecutively, set the index register to
the location of the first element in the column and set the modify value
equal to the length of the row.

For example, to read the first column in the 3 ×3 matrix example, set the
index pointer to point to A11 and the set modify value to three (3). After an
indirect memory read of the first element, the index pointer points to A21,
the second column element.

This method of storing and accessing a matrix keeps available more DAG
registers than using a different index pointer for each row of the matrix.

7373737373

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.23.23.23.23.2 MULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A M×N MATRIX BY AN NN MATRIX BY AN NN MATRIX BY AN NN MATRIX BY AN NN MATRIX BY AN N×1 VECTOR1 VECTOR1 VECTOR1 VECTOR1 VECTOR
This section discusses how to multiply a two-dimensional matrix of
arbitrary size, M×N, by a vector (one-dimensional matrix), N×1.

3.2.13.2.13.2.13.2.13.2.1 ImplementationImplementationImplementationImplementationImplementation
The matrix elements are stored in the buffer mat_a , with length of M×N
(where M is the number of rows in a matrix and N is the number of
columns).

The vector is stored in a separate buffer, mat_b , with length of N. (The
number of rows in the vector must equal the number of columns of the
matrix.)

The result of the multiplication is another vector stored in a buffer,
mat_c , with length of M (the number of rows of the first matrix).

The M×N matrix and M×1 result vector are stored in a data memory
segment, while the N×1 multiply vector is stored in a program memory
segment. This lets the algorithm take advantage of the dual fetch of the
multifunction instructions to access the next two elements of the matrix
and vector while multiplying the current two elements.

The multiplication of the matrix and vector is performed in a two-level
deep loop. The inner loop, row , is a single instruction that performs the
multiplication of the current two elements and accumulates the previous
multiplication while fetching the next two elements to be multiplied. This
row loop is performed N times (the number of columns) to account for
the number of multiply/accumulate steps done for each row.

The outer loop, column , takes the final accumulated result and stores it
in the mat_c result buffer. The loop also clears the accumulator result,
R8, so that it can be used again for the next row loop. The column loop
is performed M times (the number of rows) to account for the number of
times it has to perform the row loop operations.

For efficient loops, the operation of multiplication, accumulation and the
next two data fetches are all performed in the same multifunction
instruction. Each multiply is done on operands which were fetched on the
pervious iteration of the inner loop. Similarly, each addition accumulates
the product from the multiply in the previous loop iterations. Before the
loops are entered the first time, the operands must be preloaded from
memory.

33333

7474747474

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

This technique of preloading registers so multifunction instructions can be
used in the loop body is called “rolling the loop.” To roll the loop, the first
instructions outside of the row and column loops clear the
accumulator, fetch the first two elements to be multiplied and multiplies
them while fetching the next two elements.

One cycle can be saved when clearing the accumulator by performing an
exclusive or operation (XOR) between the accumulator register (R8) and
itself. This lets the processor fetch the next two elements while performing
a computation, which is faster than using one cycle to clear the
accumulator by loading R8 with a zero and then a second cycle to perform
the fetches. The processor cannot perform a register load and two data
fetches in the same cycle.

This trick of combining the computation with data fetches in a single
instruction is also used for the last instruction of the column loop when
clearing the accumulator for the next loop and storing the final
accumulation result to the mat_c buffer. Since this loop may be
performed many times (depending on the number of rows in the matrix),
it can greatly reduce the time spent executing the algorithm.

The accumulation operation of the multifunction instruction used in the
row loop is performed last. When the accumulation of the last element is
performed for the current row, the multiplier has already multiplied the
first two elements of the next row and the second two elements have been
fetched. Provided the current row is not the last one, the extra
multiplication and data fetches roll over into the next iteration of the loop.

When performing the accumulation on the last elements of the last row,
the index pointers of the input buffers wrap around to the start of the
buffer; the multiplication and data fetches for the first row are repeated.
Since those operations are redundant, their destination registers can be
written over after the routine completes. Note that the index pointers are
also modified and point to the third elements in the matrices when the
routine is finished. Therefore, the pointers must be restored if the same
matrices must be used in a subsequent routine.

7575757575

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.2.23.2.23.2.23.2.23.2.2 Code Listing–MCode Listing–MCode Listing–MCode Listing–MCode Listing–M×N By NN By NN By NN By NN By N×1 Multiplication1 Multiplication1 Multiplication1 Multiplication1 Multiplication

/***

File Name
MxNxNx1.ASM

Version
25-APR-91

Purpose
Matrix times a Vector.

Matrix dimensions are arbitrary. Matrix A accessed as a circular buffer so
that the last iteration of the inner loop will do a dummy read from a
known location.

Use the -Dexample Assembler Preprocessor Switch to include assembly of an
example calling routine

Equations Implemented
[Mx1]=A[MxN]*B[Nx1]

Calling Parameters
Constants: m, n
pm(mat_b[n]) row major, dm(mat_a[m*n]) row major,
M1=1;
M9=1;
B0=mat_a; L0=@mat_a;
B1=mat_c; L1=0;
B8=mat_b; L8=@mat_b;

Return Values
dm(mat_c[m]) row major

Registers Affected
F0,F4,F8,F12, I0,I1,I8

Cycle Count
cycles=6+M(3+N)+5 (entrance + core + 5 cache)

PM Locations
pm code=8 words, pm data=n words

DM Locations
dm data=m*n+m words

***/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

33333

7676767676

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

/* dimension constants */
#define M 4
#define N 4

#ifndef example
.GLOBAL mxnxnx1;
.EXTERN mat_a, mat_b,mat_c;
#endif

#ifdef example
.SEGMENT/DM dm_data;
.VAR mat_a[M*N]=”mat_a.dat”;
.VAR mat_c[M];
.ENDSEG;

.SEGMENT/PM pm_data;

.VAR mat_b[N]=”mat_bb.dat”;

.ENDSEG;

.SEGMENT/PM rst_svc;
dmwait=0x21; /* set dm waitstates to zero */
pmwait=0x21; /* set pm waitstates to zero */
jump setup;

.ENDSEG;

/* example calling code */
.SEGMENT/PM pm_code;
setup: m1=1;

m9=1;
b0=mat_a; l0=@mat_a;
b1=mat_c; l1=0;
b8=mat_b; l8=@mat_b;
call mxnxnx1;
idle;

.ENDSEG;
#endif

/* matrix multiply starts here */
.SEGMENT/PM pm_code;
mxnxnx1: r8=r8 xor r8, f0=dm(i0,m1), f4=pm(i8,m9); /* clear f8 */

f12=f0*f4, f0=dm(i0,m1), f4=pm(i8,m9);
lcntr=M, do column until lce;
 lcntr=N, do row until lce;

row: f12=f0*f4, f8=f8+f12, f0=dm(i0,m1), f4=pm(i8,m9);
column: r8=r8 xor r8, dm(i1,m1)=f8;

rts;
.ENDSEG;

Listing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asm

7777777777

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.33.33.33.33.3 MULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A M×N MATRIX BY A NN MATRIX BY A NN MATRIX BY A NN MATRIX BY A NN MATRIX BY A N×O MATRIXO MATRIXO MATRIXO MATRIXO MATRIX
This section discusses how to multiply two matrices of arbitrary size.

3.3.13.3.13.3.13.3.13.3.1 ImplementationImplementationImplementationImplementationImplementation
The two input matrices are stored in separate data memory and program
memory segments so multifunction instructions can be used to produce
efficient code.

• The first input matrix (M×N), mat_a , is stored in data memory.

• The second input matrix (N×O), mat_b , is stored in program memory.

• The result matrix (M×O), mat_c , is stored in data memory.

You can think of matrix-matrix multiplication as several matrix-vector
multiplications. The matrix is always the first input matrix and each
“vector” is a column in the second matrix. As discussed in the previous
section, the matrix-vector multiplication code consisted of two loops: row
and col . To obtain the matrix-matrix multiplication code a third loop is
added, colrow , that simply repeats the entire block of matrix-vector
code for the number of columns in the second matrix.

Repeating this code, however, requires that the modifications of the index
pointers for each matrix be handled differently. The modify value for
mat_a (m1) is still set to 1 to increment through the matrix row by row.
However, to consecutively increment through the columns of mat_b , the
modify value (m10) needs to be set to the number of columns in that
matrix. For this code example, the second matrix is a 4 × 4 matrix, so the
modify value is 4. The result matrix is written to column by column and
has the same modify value.

After a single loop through the matrix-vector code, a column in the result
matrix is complete. Because the code is looped to reduce the number of
cycles inside the loop, the position of the index pointers are incorrect to
perform the next matrix-vector multiplication. Modify instructions are
included at the end of the rowcol loop that modify the index pointers so
they begin at the correct position. The index register for mat_a is
modified to point to the beginning of the first row and first column. The
index registers (pointers) for both mat_b and the result matrix mat_c
are modified to point to the beginning of the next column.

33333

7878787878

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

The pointer to the matrix mat_a is modified to point to the first element
of the first row by performing a dummy fetch with a modify value of –2.
(Because the loop is rolled, the DAG fetches the first two row elements
again.)

A dummy fetch is also used to modify the matrix pointer for mat_b to
point to the first element of the next column. The modify value for this
dummy fetch is –(O * 2 – 1), where O is the number of columns in the
matrix. Because of loop rolling, the index pointer points to the third
column element. Therefore, the index pointer needs to be adjusted
backwards by two rows minus one element. For this code example, the
index pointer points to the third column position. To make the pointer
point to the first element of the next column, modify the pointer by
–(4 * 2 – 1) = –7.

Finally, the pointer to the result matrix mat_c is modified to point to the
first element of the next column by modifying the index pointer by one.
Since the instruction that writes the result is the last one in the loop, loop
rolling does not affect this index pointer. Dummy reads modify the index
registers, instead of modify instructions, so that a multifunction
instruction can be performed. This reduces the number of cycles in the
loop.

The loop colrow is then executed again, which calculates the result for
the next column in the result matrix. The loop colrow repeats until all
the columns in the result matrix are filled.

The final pointer positions are as follows

• position (1,1) for mat_a (beginning of the buffer and matrix),

• position (2,1) for mat_b (row 2, column 1)

• position (2,1) for the result mat_c (row 2, column 1).

To use the same matrices in a subsequent routine, first reset the index
pointers to the beginning of each buffer.

7979797979

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.3.23.3.23.3.23.3.23.3.2 Code Listing–MCode Listing–MCode Listing–MCode Listing–MCode Listing–M×N By NN By NN By NN By NN By N×O MultiplicationO MultiplicationO MultiplicationO MultiplicationO Multiplication

/

File Name
MxNxNxO.ASM

Version
25-APR-91

Purpose
Matrix times a Matrix.

The three matrices have arbitrary dimensions. Matrix A accessed as a
circular buffer so that the last iteration of the inner loop will do a
dummy read from a known location.

Use the -Dexample Assembler Preprocessor Switch to include assembly of an
example calling routine

Equations Implemented
C[MxO]=A[MxN]*B[NxO]

Calling Parameters
Constants: m, n, o
pm(mat_b[N*O]) row major, dm(mat_a[M*N]) row major
dm(mat_c[M*O]) row major
M1=1;
M2=-2;
M3=o;
M9=-(o*2-1);
M10=o;
B0=mat_a; L0=@mat_a;
B1=mat_c; L1=@mat_c;
B8=mat_b; L8=@mat_b;

Return Values
F0,F4,F8,F12, I0,I9, B8

Registers Affected
F0,F4,F8,F12, I0,I1,I8

Cycle Count
cycles=4+o(m(n+2)+5)+7 (entrance + core + 7 cache)

PM Locations
pm code=11 words, pm data=NxO words,

DM Locations
dm data=MxN+MxO words

***/(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

33333

8080808080

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

/* dimension constants */
#define M 4
#define N 4
#define O 4

#ifndef example
.GLOBAL mxnxnxo;
.EXTERN mat_a, mat_b, mat_c;
#endif

#ifdef example
.SEGMENT/DM dm_data;
.VAR mat_a[M*N]=”mat_a.dat”;
.VAR mat_c[M*O];
.ENDSEG;

.SEGMENT/PM pm_data;

.VAR mat_b[N*O]=”mat_b.dat”;

.ENDSEG;

.SEGMENT/PM rst_svc; /* reset vector */
dmwait=0X21; /* set dm waitstates to zero */
pmwait=0X21; /* set pm waitstates to zero */
jump setup;

.ENDSEG;

/* example calling code */
.SEGMENT/PM pm_code;
setup: m1=1;

m2=-2;
m3=O;
m9=-(O*2-1);
m10=O;
b0=mat_a; l0=@mat_a;
b1=mat_c; l1=@mat_c;
b8=mat_b; l8=@mat_b;
call mxnxnxo;
idle;

.ENDSEG;
#endif

/* matrix multiply starts here */
.SEGMENT/PM pm_code;
mxnxnxo: lcntr=O, do colrow until lce;

 r8=r8 xor r8, f0=dm(i0,m1), f4=pm(i8,m10); /* clear f8 */
 f12=f0*f4, f0=dm(i0,m1), f4=pm(i8,m10);
 lcntr=M, do column until lce;
 lcntr=N, do row until lce;

row: f12=f0*f4, f8=f8+f12, f0=dm(i0,m1), f4=pm(i8,m10);
column: r8=xor r8, dm(i1,m3)=f8;

 f0=dm(i0,m2), f4=pm(i8,m9); /* modify with dummy fetches */
colrow: modify(i1,1);

rts;
.ENDSEG;

Listing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asm

8181818181

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.43.43.43.43.4 MATRIX INVERSIONMATRIX INVERSIONMATRIX INVERSIONMATRIX INVERSIONMATRIX INVERSION
The inversion of a matrix is used to solve a set of linear equations. The
format for the linear equations is

Ax = b

The vector x contains the unknowns, the matrix A contains the set of
coefficients, and the vector b contains the solutions of the linear equations.
The matrix A must be a non-singular square matrix. To get the solution for
x, multiply the inverse of matrix A by the constant vector, b. The inverse
matrix is useful if a different constant vector b is used with the same
equations. The same inverse can be used to solve for the new solutions.

Because of round-off error that occurs during the elimination process, it is
hard to get accurate results when inverting large matrices. The Gauss-
Jordan method elimination with full pivoting, however, provides a highly
accurate matrix inverse.

Gauss-Jordan elimination can become numerically unstable unless
pivoting is used. Full pivoting is the interchanging of rows and columns in
a matrix to have the largest magnitude element on the diagonal of the
matrix. This diagonal element, called the pivot, is then used to divide the
other elements of the row. The row is used to eliminate other column
elements to obtain the identity matrix. The same elimination procedures
are performed on an original identity matrix. Once the matrix is reduced
to the identity matrix, the original identity matrix will contain the inverse
matrix. This resulting matrix must be adjusted for any interchanging of
rows and columns.

The Gauss-Jordan algorithm is an in-place algorithm: the input matrix and
output result are stored in the same buffer of data.

The algorithm is subdivided into five sections:

• The first section searches for the largest element of the matrix.

• The second section places that element on the diagonal of the matrix
making it the pivot element. The row that contained the pivot element
is marked so that it won’t be used again.

• The third section of code divides the rest of the row by that pivot
element.

33333

8282828282

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

• The fourth section performs the in-place elimination.

• The first four sections are repeated until all of the rows of the matrix
have been checked for a pivot point.

• The fifth section performs the corrections for swapping rows and
columns.

3.4.13.4.13.4.13.4.13.4.1 ImplementationImplementationImplementationImplementationImplementation
The matrix is in data memory and uses N×N locations, where N is the size
of the matrix (N=3 for a 3×3 matrix). The pivot flag (pf) and swap column
(swc) arrays are also stored in data memory. The swap row array (swr) is
in program memory.

This routine uses all of the universal registers (F0-F15) and eight of the
DAG registers (I0-I8) as either data storage or temporary registers.
Therefore, if this routine is called from a routine that uses these registers,
switch to the secondary registers before starting the routine. Make sure to
switch back to the primary registers when done.

The first four sections of the algorithm are enclosed in the full_pivot
loop. Each pass through the loop searches for the largest element in the
matrix, places that element on the diagonal, and performs the in-place
elimination. The loop repeats for every row of the matrix.

The first section of the algorithm searches the entire matrix for the largest
magnitude pivot value in the nested loops row_big and column_big .
At the beginning of each loop, it checks if the pivot flag is set for that row
or column. If the pivot flag is set, that row or column contains a pivot
point that has already been used. Since any element in a row or column
that previously contained a pivot point cannot be reused, the loop is
skipped and the index pointer is modified to point to the next row or
column.

The loop performs a comparison of all the elements in the matrix and the
largest value is stored in register F12—the pivot element. The row that
contained the pivot point is stored in the pf buffer so that any elements
in that row will not be used again. A test is performed to see if the pivot
element is a zero. If the pivot point is zero, the matrix is singular and does
not have a realizable inverse. The routine returns from the subroutine and
the error flag is register F12 containing a zero.

8383838383

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

The second section of the algorithm checks if the pivot element is on the
diagonal of the matrix. If the pivot element is not on the diagonal,
corresponding rows and columns are swapped to place the element on the
diagonal. The position of the pivot element is stored in the counters R2
and R10. If these two numbers are equal, then the element is already on a
diagonal and the algorithm skips to the next section of the algorithm. If
the numbers are not equal, the loop swap_row is performed. This loop
swaps the corresponding row and column to place the pivot element on
the diagonal of the matrix. The row and column numbers that were
swapped are stored in separate arrays called swr (row) and swc
(column) . These values will be used in the fifth section to correct for any
swapping that has occurred.

The third section of the algorithm divides all the elements of the row
containing the pivot point by the pivot point. The inverse of the pivot
point is found with the macro DIVIDE . The result of the macro is stored
in the f1 register. The other elements in the row are then multiplied by the
result in the loop divide_row .

The fourth section of the algorithm performs the in place elimination. The
elimination process occurs within the two loops fix_row and
fix_column . The results of the elimination replace the original elements
of the matrix.

These four sections described are repeated N times, where N is the
number of rows in the matrix.

The fifth section of the algorithm is executed after the entire matrix is
reduced. This section fixes the matrix if any row and column swapping
was done. The algorithm reads the values stored in the arrays swr and
swc and swaps the appropriate columns if the values are not zero.

33333

8484848484

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.4.23.4.23.4.23.4.23.4.2 Code Listing—Matrix Inversion Code Listing—Matrix Inversion Code Listing—Matrix Inversion Code Listing—Matrix Inversion Code Listing—Matrix Inversion

/

File Name
MATINV.ASM

Version
May 6 1991

Purpose
Inverts a square matrix using the Gauss-Jordan elimination.
algorithm with full pivoting.

See P.M. Embree and B. Kimble. C Language Algorithms For Digital
Signal Processing. Chap. 6, Sect. 6.2.3, pp. 326-329.Prentice-Hall, 1991

Equations Implemented
C[MxO]=A[MxN]*B[NxO]

Calling Parameters
 dm(mat_a[n*n]) row major, dm(pf[n+1]), dm(swc[n]);
 pm(swr[n]);
 r14=n; (n= number of rows (columns))
 m0=1; m1=-1;
 m8=1; m9=-1;
 b0=mat_a;
 b1=pf;
 b7=swc; l7=0;
 b8=swr; l8=0;

Return Values
dm(mat_a[n*n]) row major;
f12=0.0 -> matrix is singular

Registers Affected
f0 - f15,
i0 - i7, i8, m2

Cycle Count
 maximum number= worst case= 7.5n**3+25n**2+25.5n+23 (approximated)

PM Locations
pm code= 93 words, pm data= n words

DM Locations
dm data= n*n+2n+1 words

8585858585

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

***/

/* To assemble the example below type the following command

 asm21k -Dexample matinv */

#include “macros.h”

#define n 3

#ifndef example
.GLOBAL mat_inv;
.EXTERN mat_a;
#endif

#ifdef example
.SEGMENT/DM dm_data;
.VAR mat_a[n*n]= “mat_a1.dat”;
.VAR pf[n+1];
.VAR swc[n];
.ENDSEG;

.SEGMENT/PM rst_svc;
 dmwait=0x21; /*set dm waitstates to zero*/

 pmwait=0x21; /*set pm waitstates to zero*/
 jump setup;

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR swr[n];

.ENDSEG;
/* example calling code */

.SEGMENT/PM pm_code;
setup: b0=mat_a; /*i0 -> a(row,col)*/

b1=pf; /*i1 -> pf= pivot_flag*/
b7=swc; /*i7 -> swc= swap_col*/
b8=swr; /*i8 -> swr= swap_row*/
l7=0;
l8=0;
m0=1;
m1=-1;
m8=1;
m9=-1;
r14=n;
call mat_inv;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

33333

8686868686

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

idle;
.ENDSEG;
#endif

/* Matrix inversion starts here */
.SEGMENT/PM pm_code;
mat_inv: r13=r14*r14(ssi), b3=b0;

l0=r13; /*matrix in a circular data buffer*/
b4=b0;
b5=b0;
b6=b0;
l3=l0;
l4=l0;
l5=l0;
l6=l0;
r13=r14+1, b2=b1;
l1=r13; /*pf in a circular data buffer*/
l2=l1;
f9=0.0;
f8=2.0; /*2.0 is required for DIVIDE_macro*/
f7=1.0; /*1.0 is a numerator for DIVIDE_macro*/
r13=fix f9, m2=r14;
lcntr=r14, do zero_index until lce;
 dm(i7,m0)=r13, pm(i8,m8)=r13;

zero_index: dm(i1,m0)=r13;
f0=pass f9, dm(i1,m0)=r13; /*f0= big*/

lcntr=r14, do full_pivot until lce;
/*find the biggest pivot element*/

 r1=pass r13, r11=dm(i1,1); /*r1= row no., r11= pf(row)*/
 lcntr=r14, do row_big until lce;
 r11=pass r11, i4=i3; /*check if pf(row) is zero*/
 if ne jump (PC,12), f4=dm(i0,m2); /*i0 -> next row*/
 r5=pass r13, r15=dm(i2,1); /*r5= col no., r15= pf(col)*/
 lcntr=r14, do column_big until lce;
 r15=pass r15; /*check if pf(col) is zero*/
 if ne jump column_big (db);

f4=dm(i0,1); /*f4= a(row,col)*/
f6=abs f4;
comp(f6,f0); /*compare abs_element to big*/
if lt jump column_big;
f0=pass f6, f12=f4; /*f0= abs_element, f12= pivot_element*/
r2=pass r1, r10=r5; /*r2= irow, r10= icol*/

column_big: r5=r5+1, r15=dm(i2,1);
row_big: r1=r1+1, r11=dm(i1,1);

/*swap rows to make this diagonal the biggest absolute pivot*/
 f12=pass f12, m5=r10; /*check if pivot is zero, m5= icol*/
 if eq rts; /*if pivot is zero, matrix is singular*/
 r1=r2*r14 (ssi), dm(m5,i1)=r5; /*pf(col) not zero*/
 r5=r10*r14 (ssi), m6=r1;
 comp(r2,r10), r1=dm(i3,m6); /*i3 -> a(irow,col)*/
 dm(i7,m0)=r10, pm(i8,m8)=r2; /*store icol in swc and irow in swr*/

 if eq jump row_divide (db);
 r2=pass r13, m7=r5;

8787878787

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

 modify(i4,m7); /*i4 -> a(icol,col)*/
 i5=i4;
 lcntr=r14, do swap_row until lce;
 f4=dm(i3,0); /*f4= temp= a(irow,col)*/
 f0=dm(i5,0); /*f0= a(icol,col)*/
 dm(i3,1)=f0; /*a(irow,col)= a(icol,col)*/

swap_row: dm(i5,1)=f4; /*a(icol,col)= temp*/

/*divide the row by the pivot*/
row_divide: f6=pass f7, i5=i4;

 DIVIDE(f1,f6,f12,f8,f3); /*f1= pivot_inverse*/
 i6=i5;
 f4=dm(i4,1);
 lcntr=r14, do divide_row until lce;
 f5=f1*f4, f4=dm(i4,1);

divide_row: dm(i6,1)=f5;
 dm(m5,i5)=f1;

/*fix the other rows by subtracting*/
 lcntr=r14, do fix_row until lce;
 comp(r2,r10), i6=i5; /*check if row= icol*/
 if eq jump (PC,8), f4=dm(i0,m2); /*i0 -> next row*/
 f4=dm(m5,i0); /*temp= a(row,icol)*/
 dm(m5,i0)=f9;
 f3=dm(i6,1);
 lcntr=r14, do fix_column until lce;
 f3=f3*f4, f0=dm(i0,0);
 f0=f0-f3, f3=dm(i6,1);

fix_column: dm(i0,1)=f0;
fix_row: r2=r2+1;
full_pivot: f0=pass f9, i3=i0;

/*fix the affect of all the swaps for final answer*/
r0=dm(i7,m1), r1=pm(i8,m9); /*i7 -> swc(N-1), i8 -> swr(N-1)*/
r0=dm(i7,m1), r1=pm(i8,m9); /*r0= swc(N-1), r1= swr(N-1)*/
lcntr=r14, do fix_swap until lce;
 comp(r0,r1), m5=r0; /*m5= swc(swap)*/
 if eq jump fix_swap;
 m4=r1; /*m4= swr(swap)*/
 lcntr=r14, do swap until lce;
 f4=dm(m4,i0); /*f4= temp= a(row,swr(swap))*/
 f0=dm(m5,i0); /*f0= a(row,swc(swap))*/
 dm(m4,i0)=f0; /*a(row,swr(swap))= a(row,swc(swap))*/
 dm(m5,i0)=f4; /*a(row,swc(swap))= temp*/

swap: modify(i0,m2);
fix_swap: r0=dm(i7,m1), r1=pm(i8,m9);

rts;
.ENDSEG;

Listing 3.3 matinv.asmListing 3.3 matinv.asmListing 3.3 matinv.asmListing 3.3 matinv.asmListing 3.3 matinv.asm

33333

8888888888

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.53.53.53.53.5 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES

[EMBREE91] Embree, P. and B. Kimble. 1991. C Language Algorithms
For Digital Signal Processing. Englewood Cliffs, NJ:
Prentice Hall.

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters 44444

8989898989

Digital filtering algorithms are widely used in DSP-based applications,
including (but not limited to)

• Audio processing

• Speech compression

• Modems

• Motor control

• Video and image processing

Historically, electronics designers implemented filters with analog
components. With the advent of digital signal processing, designers have
a superior alternative: filters implemented in software running on DSPs.
Digital filters have many advantages that make them more attractive than
their analog predecessors:

• Digital filters have transfer functions that can comply to rigorous
specifications. The stop band can be highly attenuated without
sacrificing a steep transition band.

• DSP filters are programmable. The transfer function of the filter can be
changed by changing coefficients in memory. A single hardware
design can implement many different filters, by merely changing the
software.

• The characteristics of DSP filters are predictable. Available filter design
software packages can accurately profile the performance of a filter
before it is implemented in hardware. Digital filter designers have the
flexibility to try alternative designs to get an expectation of filter
performance.

44444

9090909090

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

• Unlike analog filters, the performance of digital filters is not subject to
environmental changes, such as voltage and temperature.

• Often, digital filters can be implemented at a lower cost than complex
analog filters.

This chapter presents two classes of digital filters and their software
implementations on ADSP-21000 family processors. The first section of
this chapter discusses the Finite Impulse Response (FIR) filter and the
second section discusses the Infinite Impulse Response (IIR) filter.

4.14.14.14.14.1 FIR FILTERSFIR FILTERSFIR FILTERSFIR FILTERSFIR FILTERS
An FIR filter is a weighted sum of a finite set of inputs. The equation for
an FIR filter is

m–1

y(n)= ∑ akx(n – k)
k=0

where

x(n – k) is a previous history of inputs
y(n) is the filter output at time n
ak is a vector of filter coefficients

The FIR code is a software implementation of this equation.

FIR filtering is a convolution in time. The FIR filter equation is similar to
the convolution equation:

∞
y(n)= ∑ h(k) x(n – k)

k=0

9191919191

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

FIR filters have several advantages that make them more desirable than
IIR filters for certain design criteria

• FIR filters can be designed to have linear phase. In many applications,
phase is a critical component of the output. For example, in video
processing, if the phase information is corrupted the image becomes
unrecognizably distorted.

• FIR filters are always stable because they are made up solely of zeros
in the complex plane.

• Overflow errors are not problematic because the sum of products
operation in the FIR filter is performed on a finite set of data.

• FIR filters are easy to understand and implement. They can provide
quick solutions to engineering problems.

4.1.14.1.14.1.14.1.14.1.1 ImplementationImplementationImplementationImplementationImplementation
The FIR filter program is presented in this section as an example, but it
easily can be modified and used in a real world system. It is helpful to
read the actual program listing along with the following description.

The FIR filtering code uses predefined input samples stored in a buffer
and coefficients that are stored in a data file. The code executes a five-tap
filter on nine predefined samples. After the program processes the ninth
sample it enters an infinite loop.

The code for the FIR filter consists of two assembly-language modules,
firtest.asm and fir.asm . The firtest.asm module sets up
buffers and pointers and calls fir.asm , the module that performs the
multiply-accumulate operations. Two other files are needed: an
architecture file and a data file. The file generic.ach is the architecture
file, which defines the hardware in terms of memory spaces and
peripherals. The fircoefs.dat file contains a list of filter coefficients
for the filter.

The code in firtest.asm is executed first. The firtest.asm code
starts by defining the constants TAPS and SAMPLES .

• TAPS is the number of taps of the filter. To change the number of taps,
change the value of TAPS and add or delete coefficients to the file
FIRCOEFS.DAT .

44444

9292929292

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

• SAMPLES is the constant that represents the number of samples that
are input into the filter. If you need to change the number of samples,
change SAMPLES and add or delete the number of predefined
samples to the input buffer.

The next part of firtest.asm defines four buffers, COEFS , DLINE ,
INBUF , and OUTBUF :

• COEFS , a circular buffer in program memory, is filled with the filter
coefficients data from the fircoefs.dat file.

Note: The coefficients in fircoefs.dat are ordered so the k=max
coefficient comes first, because the FIR loop processes the oldest input
sample first and then the next oldest and so on. This means that the
coefficient buffer must store the coefficient associated with the oldest
value in the delay line in the first position in the coefficient buffer.

• The buffer DLINE , in data memory, contains the delay line, a circular
buffer of past samples. The COEFS and DLINE buffers are used in
the fir.asm module and hold the values that are multiplied and
accumulated.

• INBUF , a non-circular buffer, contains the predefined input samples
and is initialized when it is defined.

• OUTBUF , a non-circular buffer, holds the output samples.

The executable code starts at the label INITIAL_SETUP . It is placed at
program memory location 0x8, which is the address of the reset interrupt
service routine. The first instruction executed is a delayed branch jump to
the label BEGIN . In the two cycles that it takes to branch, the memory
wait states for program and data memory are set. At the BEGIN label, the
data address generator registers are assigned to data buffers. The
following four registers are defined to point to buffers:

Register Buffer Name Length Description
I0——> dline L0=TAPS delay line
I1——> inbuf L1=0 input buffer
I2——> outbuf L2=0 outbuffer
I8——> coefs L8=TAPS coefficients

If the length of a buffer is not zero, the buffer is circular.

9393939393

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

After the buffer is associated with data address registers, the code
initializes the delay line. At the label FIR_INIT a loop that puts zeros in
the delay line buffer starts. This initialization loop is necessary because
without it the contents of the buffer would be undefined until five samples
are accessed.

The actual filtering algorithm is implemented as a loop. The loop is
executed SAMPLE number of times (once for each input sample) and
ends at the label FILTERING . Iterating through this loop is equivalent to
varying n in the FIR filter equation. This loop (in FIRTEST.ASM) calls
FIR (in FIR.ASM) with a delayed branch. In the two cycles that it takes to
branch, two transfers happen:

• A value from the input buffer is placed in F0. This is how the input
sample is passed to the FIR.ASM module.

• R1 is set to a value that is the amount of times that the loop in the FIR
module has to repeat. As shown by the FIR equation, R1 is one less
than the number of multiplies that has to be executed for a given value
of n.

After the code in FIR.ASM completes, control returns to FIRTEST.ASM
. The instruction at the line labeled FILTERING writes a result to the
output buffer. After the FILTERING loop completes, the execution goes
into an infinite loop.

The sum of products operations, which comprise the core loop of the FIR
filter, are executed by FIR.ASM . The code starts by zeroing some registers
and loading data from buffers into other registers. At the line labeled FIR
, a trick is used to zero the R12 register and fetch an input sample to the
delay line buffer in a single cycle: use an XOR to zero R12 instead of
using an immediate move. The XOR is an ALU compute operation. The
ADSP-21000 family allows for a computation and a data movement to be
executed in the same instruction. If an immediate move instruction was
used to set R12 to zero, the data move could not be executed in the same
instruction.

Note that the pointer is post modifed when the input sample moves to the
delay line buffer. Because of this, the coefficients array must be arranged
so that the coefficient associated with K = max is first in the array. The
modify instruction moves the delay line pointer to the oldest value in the
delay line. The input sample just written to the delay line buffer is not
accessed until the rest of the buffer is accessed. See Figure 4.1.

44444

9494949494

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

Figure 4.1 Delay LineFigure 4.1 Delay LineFigure 4.1 Delay LineFigure 4.1 Delay LineFigure 4.1 Delay Line

The MACS loop, which computes the sum of products and executes
TAPS – 1 number of times, efficiently uses the multifunction capabilities of
the ADSP-21000 architecture. A multifunction instruction can fetch two
operands and perform a multiplication and an addition operation in a
single cycle.

• The multiplication works on the operands fetched in the previous
cycle. Therefore, the coefficients and data must be loaded outside the
sum of products loop.

• The operands for the addition are the results of the multiplication;
valid operands for the addition are not generated until the loop
executes twice. For the first two iterations of the loop, the code uses
“dummy” operands of zero. The third time through the loop and after,
the multiplication generates two valid operands for the addition.

The code and memory usage for this algorithm is determined by the
number of taps the filter has. The code in FIR.ASM is common to FIR
filter implementations. The code in FIRTEST.ASM varies depending on
how coefficients and data are input into the filter, and therefore is not
included in the benchmark.

K = O
newest sample

K = 4
oldest sample

K = 3

K = 2

K = 1

K = 4

K = 3

K = 2

K = 1

K = 0

Dline Coefs

IO

I8

Position of pointers for delay line buffer and coefficent buffer after a new sample has just been
added to the delay line. Note the order of the coefficients. It refers to the equation in section 4.4.

9595959595

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

The code in FIR.ASM takes seven memory locations for instructions. In
addition to the instruction memory requirement, there is also a
requirement for the delay line and coefficient buffers. The delay line buffer
is stored in data memory and the coefficient buffer is stored in program
memory. The length of these buffers is equal to the filter’s number of taps.

The number of cycles needed to execute the code is 7+ (number of TAPS).
This number is derived by the following calculation: three instructions
plus one cache miss for the first three lines of code; (TAPS – 1) plus one
cache miss for the MACS loop; then three instructions to finish off the
code. This formula for the number of cycles is:

cycles = 3+ (TAPS – 1) + 3 + 2 cache misses = 7 + number of taps

A cache miss occurs when an instruction that requires two program
memory fetches and a fetch from data memory is executed for the first
time. When executing this instruction for the first time, the opcode is
loaded in to the cache. The next time that instruction is executed, the
opcode can be fetched from the cache, and the program memory bus is
free to access data.

44444

9696969696

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

4.1.24.1.24.1.24.1.24.1.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings

4.1.2.14.1.2.14.1.2.14.1.2.14.1.2.1 Example Calling RoutineExample Calling RoutineExample Calling RoutineExample Calling RoutineExample Calling Routine

/***

File Name
 FIRTEST.ASM

Version
 .03 11/2/93

Purpose
 This program is a shell program for the FIR.ASM code. This program
 initializes buffers and pointers. It also calls the FIR.ASM code.

***/

#define SAMPLES 0x9 /*number of input samples to be
filtered*/
#define TAPS 5
.EXTERN fir;

.SEGMENT /PM pm_data;

.VAR coefs[TAPS] = “fircoefs.dat”; /* FIR coefficient stored in file */

.ENDSEG;

.SEGMENT /DM dm_data;

.VAR dline[TAPS]; /* buffer that holds the delay line */

.ENDSEG;

.SEGMENT /DM dm_data;

.VAR inbuf[SAMPLES]= 1., 2., 3., 4., 5., 6., 7., 8., 9.;

.VAR outbuf[SAMPLES]=-99.,-99.,-99.,-99.,-99.,-99.,-99.,-99.,-99.;

.ENDSEG;

.SEGMENT /PM rst_svc;
initial_setup:
 jump begin (db);
 pmwait=0x0021; /*Bank 0 and 1, internal wait states only, 0
wait states*/
 dmwait=0x8421; /*Banks 0-3, internal wait states only, 0 wait
states*/

9797979797

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

.ENDSEG;

.SEGMENT /PM pm_code;
begin: l0=TAPS; /*delay line buffer pointer initialization*/
 b0=dline;
 m0=1;
 l1=0; /*input buffer pointer initalization*/
 b1=inbuf;
 l2=0; /*output buffer pointer initalization*/
 b2=outbuf;
 l8=TAPS; /*coefficent buffer pointer initalization*/
 b8=coefs;
 call fir_init (db); /*initalize delay line buffer to zero */
 m8=1;
 r0=TAPS;
 lcntr=SAMPLES, do filtering until lce;
 call fir (db); /*input sample passed in F0, output returned in
F0*/
 r1=TAPS-1;
 f0=dm(i1,1);
filtering: dm(i2,1)=f0; /*result is stored in outbuf*/
done: jump done;

fir_init:
 lcntr=r0, do zero until lce;
zero: dm(i0,m0)=0; /*initalize the delay line to 0*/
 rts;

.ENDSEG;

44444

9898989898

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

Listing 4.1 firtest.asmListing 4.1 firtest.asmListing 4.1 firtest.asmListing 4.1 firtest.asmListing 4.1 firtest.asm

4.1.2.24.1.2.24.1.2.24.1.2.24.1.2.2 Filter CodeFilter CodeFilter CodeFilter CodeFilter Code
/***

File Name
 FIR.ASM

Version
 0.03 11/2/93

Purpose
 This is a subroutine that implements FIR filter code given
 coefficents and samples.

Equation Implemented
 y(n)=Summation from k= 0 to M of H sub k times x(n-k)

Calling Parameters
 f0 = input sample x(n)
 r1 = number of taps in the filter minus 1
 b0 = address of the delay line buffer
 m0 = modify value for the delay line buffer
 l0 = length of the delay line buffer
 b8 = address of the coefficent buffer
 m8 = modify value for the coefficent buffer
 l8 = length of the coefficent buffer

Return Values
 f0 = output sample y(n)

Registers Affected
 f0, f4, f8, f12
 i0, i8

Cycle Count
 6 + (Number of taps -1) + 2 cache misses

PM Locations
 7 instruction words
 Number of taps locations for coefficents

DM Locations
 Number of taps of samples in the delay line

***/

9999999999

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

.GLOBAL fir;

.EXTERN coefs, dline;

.SEGMENT /PM pm_code;

fir: r12=r12 xor r12, dm(i0,m0)=f0;
/*set r12 =0 and store input sample in dline*/

 r8=r8 xor r8, f0=dm(i0,m0), f4=pm(i8,m8);
/*set r8=0 and grab data from dline and coef*/

 lcntr=r1, do macs until lce;
/*set loop to iterate taps-1 times*/

macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
/*perform mult. accumlate and fetch data*/

 rts (db);
 f12=f0*f4, f8=f8+f12;

/*perform mult on last pieces of data and 2nd to last
add*/
 f0=f8+f12;

/*perform last add and store result in f0*/

.ENDSEG;

44444

100100100100100

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

Listing 4.2 fir.asmListing 4.2 fir.asmListing 4.2 fir.asmListing 4.2 fir.asmListing 4.2 fir.asm

4.24.24.24.24.2 IIR FILTERSIIR FILTERSIIR FILTERSIIR FILTERSIIR FILTERS
Because IIR digital filters correspond directly to analog filters, one way to
design an IIR filter is to create a desired transfer function in the analog
domain and then transform it to the z domain. Then the coefficients of a
direct form IIR filter can be calculated from the z domain equation. The
following equation is the direct form of the biquad difference equation of
an IIR filter:

y(n) = b0x(n) + b1x(n – 1) + b2x(n – 2) + a1y(n – 1) + a2y(n – 2)

The direct form is not commonly used in IIR filter design. Another form,
called the canonical form, (also called direct form II) uses half as many delay
stages, and therefore uses less memory. By assuming a linear time
invariant system, the direct form can be mathematically manipulated to
get the canonical form. The equation for the canonical form is

w(n) = x(n) + b1 * w(n-1) +b2 * w(n – 2)
y(n) = w(n) + a1 * w(n-1) +a2 * w(n – 2)

The input sample is x(n) and y(n) is the output sample. The term w(n) is
called the intermediate value; w(n – 1) is the previous value and w(n – 2)
the one before that. The variables a and b are the coefficients for the filter.

The example in this section uses a variant of the canonical form equation
that limits the summation in the canonical form to two. This type of IIR
filter is called a biquad and is a second order filter. Higher order filters can
be constructed by cascading several biquad filters together.

IIR filters have some advantages over FIR filters:

• IIR filters require less memory and fewer instructions to implement a
specified transfer function than FIR filters.

• IIR filters are made up of poles and zeros in the complex plane. The
poles give IIR filters an ability to realize transfer functions that FIR
filters cannot.

• IIR filters translate well into analytical models. An example of this
from control theory is the proportional integral differential (PID)
controller equation. One implementation of this algorithm uses an

101101101101101

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

equation that is an implementation of an IIR filter.

The following tradeoffs are the costs of improved performance:

• IIR filters are not necessarily stable—it is the designer’s task to ensure
stability.

• Processor overflow must be considered. IIR filters are implemented
with a sum of products operation that is based on an infinite sum. This
construct can produce results that exceeds the maximum value that
can be represented by the processor.

4.2.14.2.14.2.14.2.14.2.1 ImplementationImplementationImplementationImplementationImplementation
This section of the chapter describes the assembly code for the biquad IIR
filter. The IIR filter code executes a direct form II realization structure.

4.2.1.14.2.1.14.2.1.14.2.1.14.2.1.1 Implementation OverviewImplementation OverviewImplementation OverviewImplementation OverviewImplementation Overview
Five files are used to assemble the IIR filter; two assembly language
modules, the architecture file, the input data file, and the coefficients file.
With these five files, you can run the IIR filter code in the ADSP-21000
family simulator and plot the impulse response of the filter.

• The assembly language module CASCADE.ASM contains the assembly
code that implements a direct form II IIR biquad filter. This code is
common to all biquad IIR filters and can be included as part of a
library of general DSP functions.

• The assembly language module IIRMEM.ASM initializes the input
and coefficient buffers and then calls the CASCADE.ASM code.

• The architecture file is GENERIC.ACH , the same file used in the FIR
filter code.

• The file INPUT.DAT contains data used to initialize the input buffer
for the IIR filter code. This file consists of 300 samples that represent an
impulse.

• The coefficients file is called IIRCOEFS.DAT and contains filter
coefficients generated by a filter design software package. (The filter
design software used for this example is FDAS, by Momentum Data
Systems.) The coefficients represent a sixth-order elliptical bandpass
filter that has a passband from 400 to 500 Hertz with cutoff frequencies
of 300 and 600 Hertz. The following listing is an FDAS file that

44444

102102102102102

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

contains the complete specifications for the FIR filter:

FILTER COEFFICIENT FILE

IIR DESIGN

FILTER TYPE BAND PASS

ANALOG FILTER TYPE ELLIPTIC

PASSBAND RIPPLE IN -dB -.1000

STOPBAND RIPPLE IN -dB -1.0000

PASSBAND CUTOFF FREQUENCIES .400000E+03 .500000E+03 HERTZ

STOPBAND CUTOFF FREQUENCIES .300000E+03 .600000E+03 HERTZ

SAMPLING FREQUENCY .800000E+04 HERTZ

FILTER DESIGN METHOD: BILINEAR TRANSFORMATION

FILTER ORDER 6 0006h

NUMBER OF SECTIONS 3 0003h

NO. OF QUANTIZED BITS 32 0020h

QUANTIZATION TYPE - FLOATING POINT

COEFFICIENTS SCALED FOR FLOATING POINT IMPLEMENTATION

 .67730926E-02 /* overall gain */

 .00000000 /* section 1 coefficient B1 */

 -1.0000000 /* section 1 coefficient B2 */

 1.8039191 /* section 1 coefficient A1 */

 -.92128010 /* section 1 coefficient A2 */

 -1.7640328 /* section 2 coefficient B1 */

 1.0000000 /* section 2 coefficient B2 */

 1.8060702 /* section 2 coefficient A1 */

 -.96266572 /* section 2 coefficient A2 */

 -1.9376569 /* section 3 coefficient B1 */

 1.0000000 /* section 3 coefficient B2 */

 1.8791107 /* section 3 coefficient A1 */

 -.97108089 /* section 3 coefficient A2 */

Listing 4.3 Filter Specifications From FDASListing 4.3 Filter Specifications From FDASListing 4.3 Filter Specifications From FDASListing 4.3 Filter Specifications From FDASListing 4.3 Filter Specifications From FDAS

4.2.1.24.2.1.24.2.1.24.2.1.24.2.1.2 Implementation DetailsImplementation DetailsImplementation DetailsImplementation DetailsImplementation Details
The module IIRMEM.ASM starts by declaring and initializing the buffers
used by the filter.

The first buffer declared, INBUF , is 300 locations long. This buffer is
initialized with the data file INPUT.DAT , which contains input samples
for the filter. These input samples represent an impulse response so that
the impulse response of the filter can be examined.

The second buffer declared, OUTBUF , is also 300 locations long, and stores

103103103103103

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

the output samples of the filter.

DLINE is the third buffer declared. This buffer holds the delay line that is
the w(n-1) and w(n-2) for each biquad stage of the filter. Since there are
two past intermediate values for each stage of a biquad, the length of this
buffer is twice as long as the number of stages. The delay line buffer is
ordered

1st stage w(n – 2), 1st stage w(n – 1), 2nd stage w(n – 2), 2nd stage
w(n – 1)…

The coefficients buffer, which is the next buffer initialized in the code,
must be ordered so that it matches the order of the delay line buffer. The
order is

1st stage a2, 1st stage a1, 1st stage b2, 1st stage b1, 2nd stage a2…

This ordering is used because it is assumed that when the filter
sequentially accesses values from the delay line and the coefficient buffer,
these values are the ones that should be multiplied together. The
coefficient buffer is the only buffer that is stored in program memory; all
the others are stored in data memory.

After the buffers are declared, the code in IIRMEM.ASM assigns pointers
to each data buffer. When assigning pointers to the buffers, a base register
(B) and a length (L) register in the data address generators must be
defined. When the base register is loaded with a value, the corresponding
index register (I) is automatically loaded with a value. Following is a list of
index register pointers and their corresponding buffers:

I0—> delay line buffer
I1—> delay line buffer, used to update old intermediate values
I3—> input buffer
I4—> output buffer

44444

104104104104104

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

I8—> coefficient buffer

The length (L register) of DLINE is six and COEFFS is twelve; the other
buffer lengths are set to zero to indicate that they are not circular. After a
buffer is traversed, the index register is specifically written with the base
address by an instruction.

Before the filtering starts, the subroutine CASCADED_BIQUAD_INIT is
called to fill the delay line buffer with zeros. This buffer has to be zeroed
out because it is accessed for additions the first time through the QUADS
loop (in CASCADE.ASM). If the buffer was not initialized to zero, the first
additions in the filter would be incorrect. The CASCADED_BIQUAD_INIT
loop is iterated as many times as the number of biquad sections in the
filter. Each time the loop is iterated two zeros are written to the buffer.
This corresponds to writing zeros to the two intermediate values (w(n – 2)
and w(n – 1)) that are stored for each stage.

CASCADED_BIQUAD is called by the loop labeled FILTERING , which is
executed once for each input sample. In this case it is executed 300 times—
the length of the input buffer. The input sample is loaded in the F8
register. The pointers to the delay line and to the coefficients buffer are set
to the beginning of the buffers. After the CASCADED_BIQUAD subroutine
returns, the output value of the filter is in F8 and is written to the output
buffer.

The file CASCADE.ASM contains CASCADED_BIQUAD , the actual IIR
filtering subroutine. CASCADED_BIQUAD expects an input value to be
passed in F8 and pointers to be set up as mentioned above. This code uses
the b1=b0 instruction to initialize the I1 pointer, which is the pointer to
the delay line that updates the old intermediate values. The subroutine
also expects the delay line and the coefficients to be ordered as specified
above.

The filtering starts with the first multifunction line

f12=f12-f12, f2=dm(i0,m1), f4=pm(i8,m8)

This line sets F12 to zero (by performing the subtraction) and fetches a
delay line value and a coefficient value. These two values represent w(n –
2) and a2 for the first biquad stage. This instruction is executed outside of
the QUADS loop so that data is available to be multiplied in the first
instruction of the loop. Each iteration of the QUADS loop represents one
biquad stage of the filter. If there are three biquad stages of the filter, this
loop is repeated three times. The register R0 (which was assigned a value
equal to the number of stages of the filter in the IIRMEM.ASM module) is

105105105105105

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

used to set the number of times that the loop will be repeated.

The computational registers used by the loop are F2, F3, F4, F8, and F12.
Following is a list of what these registers hold for each stage:

Reg. Contents Comment
F2 w(n – 2)
F3 w(n – 1)
F4 a2, a1, b2, b1 held in this order
F8 sum of multiplications output of stage at end
F12 a2 * w(n – 2), a1 *w(n – 1), held in this order

b2 * w(n – 2), b1 * w(n – 1)

The QUADS loop is an implementation of the IIR filter direct form II
difference equation previously given . This equation is implemented by
first fetching two pieces of data outside the loop. Then in each cycle of the
loop a multiplication of the data fetched in the previous cycle, a running
total of the summation of the multiplications, and a fetch of two more
pieces of data is executed. After the instruction at the label QUADS is
executed, one of two things can happen:

• The next biquad stage must be calculated and the loop executed again.
The addition in the first line of the loop calculates the final result of the
output of the previous stage.

• The biquad stages of filter executes and the addition (on the line with

44444

106106106106106

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

the RTS) calculates the final result of the filter.

4.2.24.2.24.2.24.2.24.2.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings

4.2.2.14.2.2.14.2.2.14.2.2.14.2.2.1 iirmem.asmiirmem.asmiirmem.asmiirmem.asmiirmem.asm

/***

File Name
IIRMEM.ASM

Version
created 4/25/91
modified 12/1/93

Purpose
This program declares and initializes input, delay line, and output
buffers that are used in IIR filter calculations. The program then
calls the module CASCADE.ASM which calculates the IIR filter outputs.
The coefficients for the IIR filter are read from the file IIRCOEFS.DAT
which represent a sixth order bandpass elliptical filter.

Equation Implemented

Calling Parameters

Return Values

Registers Affected

Cycle Count

PM Locations

DM Locations

107107107107107

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

***/

.EXTERN cascaded_biquad; /*Used to reference a lable in another module*/

.PRECISION=40; /*40 bit mode is uses to achieve greater
 precision*/
.ROUND_NEAREST; /*Rounding mode for constants when they don’t fit
 into*/

/*destination format*/

#define SAMPLES 300 /*Number of samples in input buffer*/
#define SECTIONS 3 /*Number of biquad sections in filter. In this
 case there*/

/*are three sections which make up sixth order filter*/

.SEGMENT /DM dm_data;

.VAR inbuf[SAMPLES] = “input.dat”; /*Input buffer initalized with
*/

/* impulse made up of 300 samples*/
.VAR outbuf[SAMPLES]; /*Output buffer declared,
holds*/

/* impulse response of filter */
/*after execution */

.VAR dline[SECTIONS*2]; /*Delay line buffer declared */

.ENDSEG;

.SEGMENT /PM pm_data;

.VAR coefs[SECTIONS*4]=”iircoefs.dat”; /*Buffer of coefficents declared and
*/

/* initalized*/
.ENDSEG;
.SEGMENT /PM rst_svc; /*Reset vector*/

jump begin(db); /*Jump to begin with a delayed branch*/
pmwait=0x000021; /*PM internal wait states only, 0 wait states*/
dmwait=0x008421; /*DM internal wait states only, 0 wait states*/

.ENDSEG;

.SEGMENT /PM pm_code;
begin: b3=inbuf; /*I3 points to input buffer*/

l3=0;
b4=outbuf; /*I4 points to output buffer*/
l4=0;
l1=0; /* Updates new values in delay

line,*/
/* b1 is defined in CASCADE.ASM */

m1=1;
l8=12; /*Length for coefficents, B8 is

defined
 in filtering loop*/

m8=1;
b0=dline; /*I0 points to delay line buffer*/
call cascaded_biquad_init (db); /*Zero the delay line */
 l0=6;
 r0=SECTIONS; /* r0=number of times through

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

44444

108108108108108

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

/* delay line init. loop*/
lcntr=SAMPLES, do filtering until lce; /* Execute filtering loop for

/* all 300 samples*/
 f8=dm(i3,1); /*Get a sample from the input

buffer*/
 call cascaded_biquad (db); /*Input=F8, Output=F8 */
 b0=dline; /*Set i0 to begining of delay

line*/
 b8=coefs; /*Set i8 to begining of

coefficents*/
filtering: dm(i4,1)=f8; /* Store filtered value in

/* output buffer*/
done: idle;

cascaded_biquad_init: /*Called once to initalize the delay line*/
 f2=0;
 lcntr=r0, do clear until lce; /* Each section contains a w(n-1) and*/
 /* a w(n-2) in the delay line*/
 dm(i0,1)=f2; /* Set w(n-2) equal to 0*/
clear: dm(i0,1)=f2; /* Set w(n-1) equal to 0*/
 rts;

.ENDSEG;

Listing 4.4 iirmem.asmListing 4.4 iirmem.asmListing 4.4 iirmem.asmListing 4.4 iirmem.asmListing 4.4 iirmem.asm

4.2.2.24.2.2.24.2.2.24.2.2.24.2.2.2 cascade.asmcascade.asmcascade.asmcascade.asmcascade.asm
/***

File Name
 CASCADE.ASM

Version
 created 4/25/91
 modified 12/1/93

Purpose
 This module implements a biquad, canonical form, IIR filter. It needs
 to passed an input sample, a coefficent buffer, and a delay line

109109109109109

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

 buffer. The coefficent buffer should be in the order a2, a1, b2, b1
 for each biquad section section. The delay line buffer should be ordered
 w(n-2), w(n-1) for each biquad section. See the next section, equations
 implemented, to see what the aformentioned variables mean.

Equation Implemented
 w(n) = x(n) + a1*w(n-1) + a2*w(n-2)
 y(n) = w(n) + b1*w(n-1) + b2*w(n-2)

 Note: 1. The usual form for the w(n) equation is

 w(n)=x(n)-a1*w(n-1)-a2*w(n-2)

 Since the code implements the w(n) equation with the additions
 the coefficents for the filter have to take into account the
 minus sign.

 2. The equation that calculates y(n) has a factor associated with
 the w(n) term.
 This factor is 1 in this case because b1 and b2 are normalized
 to the factor.
 By normalizing the filter coefficents ahead of time a
 multiplication is saved in the execution of the filter.

Calling Parameters
 f8 = input sample x(n)
 r0 = number of biquad sections
 b0 = address of DELAY LINE BUFFER
 b8 = address of COEFFICENT BUFFER
 m1 = 1, modify value for delay line buffer
 m8 = 1, modify value for coefficent buffer
 l0 = 0
 l1 = 0
 l8 = 0

Return Values
 f8 = output sample y(n)

Registers Affected
 f2, f3, f4, f8, f12
 i0, b1, i1, i8

Cycle Count
 6 + 4*(number of biquad sections) + 5 cache misses

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

44444

110110110110110

FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

PM Locations
 10 instruction words
 4 * (number of biquad sections) locations for coefficents

DM Locations
 2 * (number of biquad sections) locations for the delay line

***/

.GLOBAL cascaded_biquad;

.SEGMENT/PM pm_code;
cascaded_biquad:

/*Call this for every sample to be filtered*/
b1=b0;

/*I1 used to update delay line with new values*/
f12=f12-f12, f2=dm(i0,m1), f4=pm(i8,m8);

/*set f12=0, get a2 coefficent, get w(n-2)*/
lcntr=r0, do quads until lce;

/*execute quads loop once for each biquad section */
 f12=f2*f4, f8=f8+f12, f3=dm(i0,m1), f4=pm(i8,m8);

/* a2*w(n-2), x(n)+0 or y(n) for a section, get w(n-1), get a1*/

f12=f3*f4, f8=f8+f12, dm(i1,m1)=f3, f4=pm(i8,m8);
/*a1*w(n-1), x(n)+[a2*w(n-2)], store new w(n-2), get b2*/

 f12=f2*f4, f8=f8+f12, f2=dm(i0,m1), f4=pm(i8,m8);
/*b2*w(n-2), new w(n), get w(n-2) for next section, get b1*/

quads:
f12=f3*f4, f8=f8+f12, dm(i1,m1)=f8, f4=pm(i8,m8);
 /*b1*w(n-1), w(n)+[b2*w(n-1)], store new w(n-1), get a2 for next

111111111111111

44444FIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR FiltersFIR & IIR Filters

section*/

rts (db),f8=f8+f12;
/*return, compute y(n)*/

 nop;
 nop;
.ENDSEG;

Listing 4.5 cascade.asmListing 4.5 cascade.asmListing 4.5 cascade.asmListing 4.5 cascade.asmListing 4.5 cascade.asm

4.34.34.34.34.3 SUMMARYSUMMARYSUMMARYSUMMARYSUMMARY
FIR and IIR filters each have their own characteristics and advantages that
makes one or the other suitable for a particular application. If linear phase
is a critical factor, then an FIR filter is best. If a design has tight memory
and instruction constraints, then choose an IIR filter.

4.44.44.44.44.4 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES

[ADI90] Analog Devices, Inc, Amy Mar, ed.. 1990. Digital
Signal Processing Applications Using the ADSP-2100
Family. Englewood Cliffs, NJ: Prentice Hall.

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters 55555

113113113113113

Multirate filters change the sampling rate of a signal—they convert the
input samples of a signal to a different set of data that represents the same
signal sampled at a different rate. Some examples of applications of
multirate filters and systems are:

• Sample-rate conversion between digital audio systems
• Narrow-band and band-pass filters
• Sub-band coding for speech processing in vocoders
• Quadrature modulation

Decimation and interpolation are the two basic types of multirate filtering
processes.

• Decimation is the process of reducing the sample rate of the signal. A
decimation filter removes redundant information from the original
sampled signal thereby compacting the data.

• Interpolation is the process of increasing the sample rate of the signal.
An interpolation filter inserts missing data between the existing
samples.

Multirate systems, such as sample-rate conversions, are combinations of
decimation and interpolation filters.

The six multirate filters described in this chapter are:

• single-stage decimation filter
• single-stage interpolation filter
• rational rate changer (timer based)
• rational rate changer (interrupt based)
• two-stage decimation filter
• two-stage interpolation filter

55555

114114114114114

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

The descriptions of the implementation of these filters for the ADSP-21000
family assume that you already understand the theory behind them. For
more details on the theory of operation of multirate filters, refer to the
Multirate Filter section in [ADI90].

5.15.15.15.15.1 SINGLE-STAGE DECIMATION FILTERSINGLE-STAGE DECIMATION FILTERSINGLE-STAGE DECIMATION FILTERSINGLE-STAGE DECIMATION FILTERSINGLE-STAGE DECIMATION FILTER
A single-stage decimation filter simply resamples the digital signal with
anti-aliasing. The code decimate.asm (Listing 5.1) uses an N-tap Direct
Form Finite Impulse Response Filter, and decimates the signal data in real
time by a factor of M. This process yields a decrease in the input sample
rate of 1/M.

The input signal to the decimator is a signal that is oversampled by M;
that is, it is sampled at M times the desired output frequency. The
decimation filter algorithm consists of two operations. First, a lowpass FIR
filter bandlimits the input signal to one-half of the output frequency to
prevent aliasing. Then an decimation removes M – 1 samples of every M
samples to create an output signal that is 1/M times the input sample rate.
Both of the operations are performed in a single FIR routine.

Data acquisition systems take advantage of decimation filters to avoid
using expensive, high-performance analog anti-aliasing filters. A system
oversamples the input signal by a factor of M and then decimates to the
desired sample rate. By oversampling the input signal, the transition band
of the front end filter to prevent aliasing, thus an inexpensive analog filter
can be used. The decimation filter will then reduce the input single to the
required sample rate.

5.1.15.1.15.1.15.1.15.1.1 ImplementationImplementationImplementationImplementationImplementation
The decimate.asm code starts by initializing the data buffers
(input_buf , data , and coef) and the respective DAG registers. The
input buffer, input_buf , is M long where M is the decimation factor.
The data buffer, data , and filter coefficient buffer, coef , are both N
locations long, where N is the number of taps for the filter. The I7 and L7
registers are specifically used for the input_buf so that the circular
buffer overflow interrupt can be used. The timer period is also
programmed to the desired input frequency. Since the timer interrupt
happens during the circular buffer overflow service routine, interrupt
nesting is enabled.

115115115115115

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

The timer interrupt service routine (tmzh_svc) gets the input sample
from an A/D converter port (adc) and stores the samples in the input
buffer input_buf . When M samples have been acquired, the input
buffer is full and a circular buffer overflow interrupt is generated.

The circular buffer overflow interrupt service routine (cb7_svc) calls the
decimator routine (decimate) only every M times, not at every sample.
This removes M–1 samples in between decimator calls.

The decimate routine transfers the input buffer to the data buffer as input
for the decimation filter, converting from the sampled 16-bit fixed point
number to an equivalent 32-bit floating point number. This double
buffering allows the filter computations to proceed in parallel with the
acquisition of the next M inputs, allowing a larger order filter than if all
the filter calculations are made between input sample periods.

To save cycles, the data transfer is performed in a rolled loop to allow the
delayed branch (db) call. The fix-to-float and scaling operations are
performed in parallel, also to save cycles. If the decimation factor is less
than four, the data conversion and transfer is more efficient if performed
unrolled.

After the input_buf buffer is transferred to the data buffer, the
decimate routine runs the FIR filter on the sampled data. The FIR filter is
also a rolled loop where the first three data acquisitions are performed
outside the loop. Therefore, the loop counter is set to N – 3, where N is the
number of taps in the filter. The output of the FIR is then converted back
to a 16-bit fixed point format and written to the output D/A converter
(dac) . The STKY bit for the circular buffer overflow is also cleared to
prevent reentry to the interrupt service routine.

Since the acquisition of the input data and calculation of the FIR filter are
in parallel, the decimator must calculate one pass of the FIR filter while M
samples are being read into the input buffer, input_buf . The following
equation determines the value of the timer period:

Minimum Timer Period = max(ceil[(N + 2*M + 11 + 5*M)/M], 20)

The FIR filter is invoked by cb7_svc , which requires (N + M * 2 + 11)
cycles to execute. To obtain M samples requires an additional (5 * M)
cycles. Dividing by M yields the timer period, but we must take the
greatest integer value larger than this number (ceiling, or ceil function).
Additionally, the input buffer must be completely moved to the data

55555

116116116116116

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

buffer at the start of the cb7_svc routine before the first timer interrupt
occurs again. Because the entire decimate routine (19 cycles) must be
executed between each sampling, there won’t be enough time for this if
the timer period is not at least 20.

Here is an example calculation for a 20 MHz ADSP-210xx processor:

FP = processor frequency = 33.3
N = number of taps = 64
M = decimation factor = 8
Minimum Timer Period =max(ceil[(64+2*8+11+5*8)/8], 20)
= max(ceil[(131/8)], 20)
= max(ceil[(131/8)], 20)
= max(17, 20)
= 20

Maximum Input Frequency = FP/20 = 33.3MHz/20 = 1.1.665 MHz
Maximum Output Frequency = FP/(M*20) = 33.3mHz/(8*20) = 208 kHz

If N=128, and M=8, 25 cycles is the minimum timer period.

117117117117117

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.1.25.1.25.1.25.1.25.1.2 Code Listings–decimate.asmCode Listings–decimate.asmCode Listings–decimate.asmCode Listings–decimate.asmCode Listings–decimate.asm

/**
File Name

DECIMATE.ASM

Version
3/4/91

Purpose
Real Time Decimator

Calling Parameters
Input: adc
r15 = ADC input data

Return Values
Output: dac
r0 = DAC output data

Registers Affected
r0 = FIR data in / ADC fltg-pt data
r4 = FIR coefficients / temporary reg
r8 = FIR accumulate result reg
r12 = FIR multiply result reg / temporary reg
r14 = 16 = exponent scaling value

Start Labels:
init_dec reset-time initialization
decimate called by CB7 interrupt

Computation Time:
cb7_svc = 6 + decimate = N + M*2 + 11
decimate = N + M*2 + 5 + [5 misses]
tmzh_svc = 5

Minimum Timer Period: max(ceil[(N+2*M+11+5*M)/M], 20)

PM Locations
47 Words Code, N Words Data

DM Locations
N + M Words Data

**/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

118118118118118

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

Creating & Using the Test Case:

Running the test case requires two data files:
 coef.dat 32-tap FIR filter coefficients (floating point)
 wave.1 waveform data file

coef.dat contains a 32-tap FIR filter which bandlimits the input signal to 1/8
of the input frequency. Since the decimator in the test case decimates by a
factor M=4, this bandlimitation is equivalent to the required limit of 1/2 the
output frequency. The filter is a Parks-McClellan filter with a passband
ripple of 1.5dB out to about 1/10 the input frequency, and a stopband with
greater than 70dB of attenuation above 1/8 the input frequency.

As an example, if the oversampled input frequency is 64kHz, the passband
extends out to about 6.4kHz. The stopband starts at 8kHz, and the output
frequency is 16kHz.

The example data file is wave.1. It contains 512 signed fixed-point data
which emulate a 16-bit A/D converter whose bits are read from Data Memory bits
39:24. wave.1 contains a composite waveform generated from 3 sine waves of
differing frequency and magnitude. The cb7_svc routine arithmetically shifts
this data to the right by 16 bits, effectively zero-ing out the garbage data
which would be found in bits 23:0 if a real 16-bit ADC port were read.

The test case writes the decimated output to a dac port. Since there are 512
samples in wave.1, and the test case performs decimation by 4, there will be
128 data values written to the dac port if all data samples are read in and
processed. The values written out are left-shifted by 16 bits in parallel
with the float—>fixed conversion, based again on the assumption that the D/A
converter port is located in the upper 16 bits of data memory.

Armed with this information, you are ready to run:

1. Assemble & Start Simulator:

 asm21k -DTEST decimate
 ld21k -a generic decimate
 sim21k -a generic -e decimate

2. In the simulator,
 a. Go to the program memory (disassembled) window,
 d. Go to symbol cb7_done, set to break on 129th occurrence, and
 c. Run

119119119119119

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

3. Compare wave.1 to out.1 on the graphing program of your choice.
———————————————————————————————————————
#include “def21020.h”
#define N 32 /* number of taps */
#define M 4 /* decimation factor */
#define FP 20.0e6 /* Processor Frequency = 20MHz */
#define FI 64.0e3 /* Interrupt Frequency = 64KHz */

#ifndef TEST /*—————————————————————————————*/
#define TPER_VAL 312 /* TPER_VAL = FP/FI - 1 */
#else /*————————————————————————————————*/
#define TPER_VAL 19 /* interrupt every 20 cycles */
#endif /*————————————————————————————————*/

.SEGMENT /dm dm_data;

.VAR data[N]; /* FIR input data */

.VAR input_buf[M]; /* raw A/D Converter data */

.ENDSEG;

.SEGMENT /pm pm_data;

.VAR coef[N]=”coef.dat”; /* FIR floating-point coefficients */

.ENDSEG;

.SEGMENT /dm ports;

.PORT adc; /* Analog to Digital (input) converter */

.PORT dac; /* Digital to Analog (output) converter */

.ENDSEG;

/*———————————————————————————————————————
 RESET Service Routine
———————————————————————————————————————*/
.SEGMENT /pm rst_svc;
rst_svc: PMWAIT=0x0021; /* no wait states,internal ack only */
 DMWAIT=0x8421; /* no wait states,internal ack only */
 jump init_dec; /* initialize the test case */
.ENDSEG;

/*———————————————————————————————————————
 TMZH Service Routine
———————————————————————————————————————*/
.SEGMENT /pm tmzh_svc;
/* sample input: this code occurs at the sample rate */
tmzh_svc: rti(db);
 r15=dm(adc); /* get input sample */
 dm(i7,m0)=r15; /* load in M long buffer */
.ENDSEG;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

120120120120120

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/*———————————————————————————————————————
 DAG1 Circular Buffer 7 Overflow Service Routine
———————————————————————————————————————*/
.SEGMENT /pm cb7_svc;
/* process input data when circular buffer 7 wraps around (“overflows”) */
/* this code occurs at 1/M times the sample rate */
cb7_svc: call decimate (db); /* call the decimator */
 r12=dm(i7,m0);
 r4=ashift r12 by -16;
 rti (db); /* return from interrupt */
 r0 = fix f0 by r14; /* convert to fixed point */
cb7_done: dm(dac)=r0; /* output data sample */
.ENDSEG;

/*———————————————————————————————————————
 efficient decimator initialization
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
init_dec: b0=data; l0=@data; m0=1; /* data buffer */
 b7=input_buf; l7=@input_buf; /* input buffer */
 b8=coef; l8=@coef; m8=1; /* coefficient buffer */

 tperiod=TPER_VAL; /* program timer */
 tcount=TPER_VAL;

 /* enable Timer high priority, CB7 interrupts */
 bit set imask TMZHI|CB7I;
 /* clear interrupts before setting global enable */
 bit clr irptl TMZHI|CB7I;

 r14=16; /* scale factor float—>fixed */
 r15=0; /* clear data buffer */
 lcntr=N, do clrbuf until lce;
clrbuf: dm(i0,m0)=r15;

 /* enable interrupts, nesting mode, ALU saturation */
 bit set mode1 IRPTEN|NESTM|ALUSAT;
 bit set mode2 TIMEN; /* enable the timer */

wait: idle;
 jump wait; /* infinite wait loop */

.ENDSEG;

121121121121121

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/*———————————————————————————————————————
 efficient decimator routine
 executes at 1/M times the sample rate
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
decimate: /* Transfer input samples to the FIR data memory space */
 /* using the input buffer working pointer. Perform */
 /* fix—>float conversion and right-shifting in parallel. */
 /* Note: this loop MUST be unrolled if M<3. It would be */
 /* more efficient if unrolled for any M<4. The 1st two */
 /* instructions of this loop have been executed in the delay */
 /* field of the call to this subroutine */
 f0=float r4, r12=dm(i7,m0);
 lcntr=M-2, do load_data until lce;
 r4=ashift r12 by -16, dm(i0,m0)=f0;
load_data: f0=float r4, r12=dm(i7,m0);
 r4=ashift r12 by -16, dm(i0,m0)=f0;
 f0=float r4;
 dm(i0,m0)=f0;

 /* N-tap FIR filter */
fir: f0=dm(i0,m0), f4=pm(i8,m8);
 f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 lcntr=N-3, do taps until lce;
taps: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);

 rts(db), f12=f0*f4, f8=f8+f12;
 f0=f8+f12; /* final sum in || w/ rts */
 bit clr stky CB7S; /* clear sticky bit to */
 /* prevent re-interrupt */

.ENDSEG;

Listing 5.1 decimate.asmListing 5.1 decimate.asmListing 5.1 decimate.asmListing 5.1 decimate.asmListing 5.1 decimate.asm

55555

122122122122122

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.25.25.25.25.2 SINGLE-STAGE INTERPOLATION FILTERSINGLE-STAGE INTERPOLATION FILTERSINGLE-STAGE INTERPOLATION FILTERSINGLE-STAGE INTERPOLATION FILTERSINGLE-STAGE INTERPOLATION FILTER
A single-stage interpolation filter reconstructs a discrete-time signal from
another discrete-time signal. This is analogous to the decimator where a
sampled signal is sampled again at a different rate. By inserting more data
points between the originally sampled data points, interpolation increases
the output sample rate. Interpolation performs the function of a digital
anti-imaging filter on the original signal. Many digital audio systems, such
as compact disc and digital audio tape players, use interpolation
(oversampling) to avoid using high-performance analog reconstruction
filters. The anti-imaging functions in interpolators allow the use of low-
order analog filters on the D/A outputs.

To increase the input sampling frequency by a factor of L, L – 1 zeroes are
inserted between the original samples and then low-pass filtered. The
insertion of zeros between samples and the smoothing filter fill in the data
missing between the original samples. The filter must bandlimit the
output signal to one-half the output frequency to prevent imaging. Since
one input sample now corresponds to L output samples, the sample rate is
increased by L.

5.2.15.2.15.2.15.2.15.2.1 ImplementationImplementationImplementationImplementationImplementation
The interpol.asm code (Listing 5.2) uses an N-tap Direct Form Finite
Impulse Response Filter in an efficient algorithm to interpolate by L=4.
This increases the input sample rate by a factor of four. The number of
taps is restricted such that N /L must be an integer. An undesirable by-
product of the FIR filter is the attenuation of the input signal by a factor of
L. To correct this, the input data is scaled up by L before it is filtered.

Because most of the delay line inputs are zeros, calculation time would be
wasted if the zero inputs were multiplied by their corresponding
coefficients. Instead, the coefficients are interleaved to perform only the
non-trivial calculations. This technique is known as Poly-phase filtering.
Thus, the delay line must be only N/L locations long. In this example N=32
and L=4, so the delay line, data , is eight location long. The coefficient
buff er, coef , is 32 locations long. The example initializes the delay line
address modifier to one and the coefficient buffer address modifier to L =
4, for the proper interleave.

The internal timer generates interrupts at l times the output sample rate,
which is the desired output frequency. The register R2 is used as a counter
in the timer service routine (tmzh_svc) to get a new sample from the A/
D converter (sample) every Lth pass of the interrupt. When a new

123123123123123

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

sample is read in, it is converted from a 16-bit fixed point value to a 32-bit
floating point value and scaled up by L to compensate for the attenuation
effect. The routine also resets the counter to L and modifies the coefficient
pointer by L for proper interleave.

The timer service routine calls the interpolator (interpol) . The
interpolator runs N/L taps of the FIR filter at the output frequency rate.
To achieve the proper interleaving of coefficients with input data, the
coefficient pointer is modified by -1 before the interpolation takes place.
During the interpolation filter, the coefficient pointer is then modified by
L after every access. This interleaving process is equivalent to running an
N-tap FIR filter on data generated by adding L– 1 zero samples to each
data input.

The filter output is converted back to a 16-bit fixed point value and
written to a D/A converter (dac) after each interpolation. The technique
of rolled loops and delayed branches are used to conserve cycles.

55555

124124124124124

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.2.25.2.25.2.25.2.25.2.2 Code Listing–interpol.asmCode Listing–interpol.asmCode Listing–interpol.asmCode Listing–interpol.asmCode Listing–interpol.asm

/**
File Name

INTERPOL.ASM

Version
3/6/91

Purpose
Real time Interpolator

Calling Parameters
Input: adc
r15 = ADC input data

Return Values
Output: dac
r0 = DAC output data

Registers Affected
r0 = FIR data in / ADC data / temp register
r1 = scale factor L
r2 = counter
r4 = FIR coefficients
r8 = FIR accumulate result reg
r12 = FIR multiply result reg / temporary reg
r14 = 16 = exponent scale factor

Start Labels
init_int reset-time initialization
interpol called by Timer Zero High Priority interrupt

Computation Time
tmzh_svc = 5 + interpol

 = N/L + 9 (no sample)
 = N/L + 17 (with sample)

interpol = N/L + 4 (no sample)
 = N/L + 12 + [5 misses] (with sample)

Minimum Timer Period: N/L+20
Maximum Output Frequency: FP/(N/L+20)
Maximum Input Frequency: FP/(L*(N/L+20))

PM Locations
44 Words Code, N Words Data

DM Locations
N/L Words Data

**/

125125125125125

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

——————————————————————————————————————
Creating & Using the Test Case:

Running the test case requires two data files:
 coef.dat 32-tap FIR filter coefficients (floating point)
 wave.1 waveform data file

coef.dat contains a 32-tap FIR filter which bandlimits the output signal to
1/8 of the output frequency. Since the interpolator in the test case
interpolates by a factor M=4, this bandlimitation is equivalent to the
required limit of 1/2 the input frequency. The filter is a Parks-McClellan
filter with a passband ripple of 1.5dB out to about 1/10 its input frequency,
and a stopband with greater than 70dB of attenuation above 1/8 the input
frequency.

As an example, if the interpolated output frequency is 64kHz (==input
frequency of 16kHz), the passband extends out to about 6.4kHz. The stopband
starts at 8kHz, and the output frequency is 16kHz.

The example data file is wave.1. It contains 512 signed fixed-point data
which emulate a 16-bit A/D converter whose bits are read from Data Memory bits
39:24. wave.1 contains a composite waveform generated from 3 sine waves of
differing frequency and magnitude. The cb7_svc routine arithmetically shifts
this data to the right by 16 bits, effectively zero-ing out the garbage data
which would be found in bits 23:0 if a real 16-bit ADC port were read.

The test case writes the interpolated output to a dac port. Since there are
512 samples in wave.1, and the test case performs interpolation by 4, there
will be 2048 data values written to the dac port if all data samples are read
in and processed. The values written out are left-shifted by 16 bits in
parallel with the float—>fixed conversion, based again on the assumption that
the D/A converter port is located in the upper 16 bits of data memory.

Armed with this information, you are ready to run:

1. Assemble & Start Simulator:

 asm21k -DTEST interpol
 ld21k -a generic interpol
 sim21k -a generic -e interpol -k port1

 Note: the keystroke file port1.ksf opens two ports:
 1st port - DM, F0000000, Fixed-Pt., auto-wrap, wave.1
 2nd port - DM, F0000001, Fixed-Pt., no wrap, out.1

2. In the simulator,
 a. Go to the program memory (disassembled) window,
 d. Go to symbol sample, set to break on 513th occurence, and
 c. Run

3. Compare wave.1 to out.1 on the graphing program of your choice.

——————————————————————————————————————*/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

126126126126126

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

#include “def21020.h”
#define N 32 /* number of taps */
#define L 4 /* interpolate by factor of L */
#define FP 20.0e6 /* Processor Frequency = 20MHz */
#define FI 64.0e3 /* Interrupt Frequency = 64KHz */

#ifndef TEST /*—————————————————————————————*/
#define TPER_VAL 312 /* TPER_VAL = FP/FI - 1 */
#else /*————————————————————————————————*/
#define TPER_VAL 27 /* interrupt every 28 cycles */
#endif /*————————————————————————————————*/

.SEGMENT /dm dm_data;

.VAR data[N/L]; /* ADC fixed-point data buffer */

.ENDSEG;

.SEGMENT /pm pm_data;

.VAR coef[N]=”coef.dat”; /* fltg-pt. FIR coefficients */

.ENDSEG;

.SEGMENT /dm ports;

.PORT adc; /* Analog to Digital (input) converter */

.PORT dac; /* Digital to Analog (output) converter */

.ENDSEG;

/*———————————————————————————————————————
 RESET Service Routine
———————————————————————————————————————*/
.SEGMENT /pm rst_svc;
rst_svc: PMWAIT=0x0021; /* no wait states,internal ack only */
 DMWAIT=0x8421; /* no wait states,internal ack only */
 jump init_int; /* initialize the test case */
.ENDSEG;

/*———————————————————————————————————————
 TMZH Service Routine
———————————————————————————————————————*/
.SEGMENT /pm tmzh_svc;
/* sample input: this code occurs at the L*input rate */
tmzh_svc: r2=r2-1,modify(i8,m9); /* decrement counter, and */
 /* shift coef pointer back */
 if eq call sample; /* test and input if L times */

 jump interpol (db); /* perform the interpolation */
 /* filter pass, occurs at L times the input input rate */
 f0=dm(i0,m0), f4=pm(i8,m8);
 f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);

.ENDSEG;

127127127127127

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/*———————————————————————————————————————
 Initialize Interpolation Routine
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
init_int: /* initialize buffer index registers */
 b0=data; l0=@data; m0=1;
 b8=coef; l8=@coef; m8=L; /* modifier for coef is L */
 m9=-1;

 /* Register Initialization */
 r1=L; /* value for upscaling sample */
 f1=float r1; /* fix —> float conversion */
 r2=1; /* set counter to 1 for 1st sample */
 r14=16; /* exponent scale factor */

 tperiod=TPER_VAL; /* program timer */
 tcount=TPER_VAL;
 bit set imask TMZHI; /* enable TMZH interrupt */
 bit clr irptl TMZHI; /* clear any pending interupts */
 bit set mode1 IRPTEN|ALUSAT; /* enable interrupts, ALU sat */
 bit set mode2 TIMEN; /* turn timer on */

 r0=0; /* clear data buffer */
 lcntr=N, do clrbuf until lce;
clrbuf: dm(i0,m0)=r0;

wait: idle;
 jump wait; /* infinite wait loop */
.ENDSEG;

/*———————————————————————————————————————
 sample & interpolate
 code executes at the (L*input_rate)
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
interpol: /* FIR Filter, occurs at L times the input input rate. */
 /* First two instructions of this filter have been run */
 /* in the delay field of the jump to this routine */
 f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 lcntr=N/L-3, do taps until lce;
taps: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f8=f8+f12;
 f0=f8+f12;

 rti (db);
 r0 = fix f0 by r14; /* float -> fixed */
 dm(dac)=r0; /* output data sample */
.ENDSEG;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

128128128128128

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/*———————————————————————————————————————
 get sample
 code executes at the input_rate
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
/* input data sample once every L times (i.e., at the input rate) */
sample: r0=dm(adc); /* input data sample */
 /* input sample occuppies bits 39:24; shift to 15:0 */
 r0 = ashift r0 by -16; /* shift w/ sign extend */
 /* do fix->float, and shift coef pointer up by L */
 f0=float r0, modify(i8,m8);
 rts(db), f0=f0*f1; /* upscale sample by L */
 dm(i0,m0)=f0; /* update delay line */
 r2=m8; /* reset counter to L */
.ENDSEG;

Listing 5.2 interpol.asmListing 5.2 interpol.asmListing 5.2 interpol.asmListing 5.2 interpol.asmListing 5.2 interpol.asm

129129129129129

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.35.35.35.35.3 RATIONAL RATE CHANGER (TIMER-BASED)RATIONAL RATE CHANGER (TIMER-BASED)RATIONAL RATE CHANGER (TIMER-BASED)RATIONAL RATE CHANGER (TIMER-BASED)RATIONAL RATE CHANGER (TIMER-BASED)
This section describes a rational rate changer implemented by cascading
an interpolating filter and a decimating filter. Interpolating filters and
decimating filters can only change the rate of a signal by a factor that is an
integer. This restriction makes these filters useless for many real world
applications when used by themselves. By cascading these filters, the
frequency may be changed by a factor that is a rational number.

For example, to transfer data between a compact disc with a sampling rate
of 44.1 kHz to a digital audio tape player with a sampling rate of 48.0 kHz,
the sampling rate of the compact disc must be increased by a factor of 48/
44.1, which is obviously not an integer. By using a combination of an
interpolation filter and decimation filter, a rational number can be
determined that approximates the desired frequency change.

The interpolation must take place first so as not to lose some of the desired
output frequency bandwidth that otherwise is filtered out by the
decimator. The anti-imaging filter (which operates after interpolation) and
anti-aliasing filter (which operates before decimation) can be combined
into a single low-pass filter.

5.3.15.3.15.3.15.3.15.3.1 ImplementationImplementationImplementationImplementationImplementation
This example, ratiobuf.asm (Listing 5.3), uses an N-tap (in this case,
N = 32) real time direct FIR filter that performs interpolation by L = 4 and
decimation by M = 3 for a L/M = 4/3 change in the input sample rate. The
same techniques used in both interpolation and decimation filters are
utilized to dedicate an entire output period for calculating one output
sample. The ratio N/L is restricted to be an integer.

Like the interpolation algorithm, the ratio changer samples the incoming
signal at L times the sampling rate using the timer interrupt, and only
updates the input buffer every Lth pass. Also, every zero-valued
multiplication is skipped by interleaving the coefficients. Like the
decimator algorithm, the input is double-buffered so that the filter
computations can occur in parallel with the input and output of data. This
allows the use of a larger order filter for a given input sample rate.

This ratio changer implementation is counter based. The counter for the
inputs, IN_CNTR , is set to L, and the counter for the outputs, OUT_CNTR
, is set to M. If the IN_CNTR expires, a new input sample is read into the
input buffer. If the OUT_CNTR expires, a flag is set to indicate that the
main routine must calculate a new output sample.

55555

130130130130130

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

The initialization routine sets the input buffer (input_buf) length to an
integer value larger than M/L. For this example, the interpolation factor (L)
is four and the decimation factor (M) is three. Therefore, the input buffer
length is equal to one (the integer ≥ M/L; 1 ≥ 3/4). This means that an
output occurs at least once before the next input is received. The data
buffer length is set to N/L = 32/4 =8 just as in the single-stage
interpolation. To properly interleave the coefficients for the filter
performing both interpolation and decimation, the buffer pointer I9 is
used to keep track of the coefficient updates. Both counters (IN_CNTR
and OUT_CNTR) are initialized to one so that the first sample is read in
and an output is generated.

The program then waits in an idle loop for the timer interrupt. Every timer
interrupt, the counters are decremented and checked to see if either or
both have expired:

• If IN_CNTR has not expired, the service routine jumps to skipin
where it checks to see if the OUT_CNTR has expired.

• If IN_CNTR has expired, the program jumps to the routine input
where the next value is read in from the A/D, scaled up by L, and
stored in input_buf . The counter is reset and the OUT_CNTR is
then checked to see if an output sample needs calculation.

• If the OUT_CNTR has not expired, the program returns to the idle
statement to wait for the next timer interrupt.

• If the OUT_CNTR has expired, the User Software Interrupt 0 (bit 24 in
the IRPTL register) is set to force a software interrupt. This interrupt
service routine jumps to the routine calc_out .

The routine calc_out first determines the number of elements in
input_buf :

• If the value is zero, a new A/D value was not input since the last time
an output was calculated. The data transfer from input_buf to
data_buf is skipped.

• If the input_buf is not empty, the stored samples are transferred to
the data_buffer .

131131131131131

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

The calc_out routine then adjusts the pointer to the coefficients for the
proper interleave, and executes the low-pass filter code to generate an
output. The low-pass filter is an N/L tap filter implemented as a rolled
loop, similar to both the single-stage interpolation and decimation filters.

At the end of the calc_out routine, the input_buf pointer and
coef are reset to their original values. The final output is converted back
to a 16-bit fixed-point value and sent to the DAC. The routine then returns
to the idle loop to wait for the next timer interrupt.

There are several instances of unusual instruction ordering in the
calc_out subroutine. This ordering is used in order to minimize total
execution time, but requires explanation.

If an instruction modifies an I or M register and then the next instruction
uses the same DAG, a single NOP cycle is inserted. As explained in the
ADSP-21020 User’s Manual, this dead cycle is inserted because the DAG
needs to calculate indirect addresses for a given cycle during the previous
cycle. To avoid this dead cycle, modifications of an I or M register are
separated from use of a DAG where possible, even though the code
ordering becomes more difficult to follow.

For example, the index register I9 is used to track coefficient updates, and
must be modified in the output subroutine. These instructions are
executed:

modify(i9,-M);
m10=i9;
modify(i8,m10);
i9=0;

A dead cycle occurs after the second instruction and possibly after the
fourth instruction (if the fifth instruction uses DAG2). To avoid dead
cycles, the first two instructions are moved away from the third, and the
fourth instruction is moved to a place where a DAG2 operation does not
follow it.

Additionally, there are two places in the output subroutine where
i7=b7 must be executed. Performing this ureg-to-ureg transfer by itself
wastes cycles, so the transfer is combined with unrelated computations to
form a multifunction instruction. The first i7=b7 transfer must occur
before the input buffer is transferred to the delay line. This transfer is
moved earlier in the code in order to combine it with an unrelated

55555

132132132132132

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

computation, saving one cycle. The second i7=b7 can occur
immediately after the input buffer is transferred, but it is moved later in
the code so it can be combined with an unrelated computation.

There are two reasons why the user software interrupt 0 (USI0) is used to
call the calc_out routine. The first reason is that the calc_out
routine must be allowed to be interrupted by the timer interrupt service
routine. The timer interrupt occurs more frequently than the calc_out
routine. If the timer interrupt routine called the calc_out routine, the
timer interrupt would occur again before the calc_out routine had
completed. An interrupt routine cannot interrupt itself. Therefore, the
calc_out routine is called from a lower priority interrupt (USI0).

This code structure also allows an easier transition from the counter-based
rational rate changer algorithm to the external interrupt based algorithm
described in the next section.

133133133133133

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.3.25.3.25.3.25.3.25.3.2 Code Listings–ratiobuf.asmCode Listings–ratiobuf.asmCode Listings–ratiobuf.asmCode Listings–ratiobuf.asmCode Listings–ratiobuf.asm

/**
File Name

RATIOBUF.ASM

Version
3/4/91

Purpose
Timer-Driven Real Time Rational Rate Changer

Calling Parameters
Input: adc
r0 = ADC input data

Return Values
Output: dac
r0 = DAC output data

Registers Affected
r0 = FIR data in / ADC data / temp register
r1 = temp register
r2 = input counter
r3 = output counter
r4 = FIR coefficients
r5 = scale value L
r8 = FIR accumulate result reg
r12 = FIR multiply result reg / temporary reg
r14 = 16 = exponent scale factor

Start Labels
init_rat reset-time initialization
input called by Timer Zero High Priority interrupt
calc_out called by Software Interrupt 0

Computation Time
tmzh_svc = 15
sft0_svc = NoverL + 2+intMoverL + 16

PM Locations
67 Words Code, N Words Data

DM Locations
N/L + M/L Words Data

**/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

134134134134134

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/*———————————————————————————————————————
Creating & Using the Test Case:

Running the test case requires two data files:
 coef.dat 32-tap FIR filter coefficients (floating point)
 wave.1 waveform data file

Descriptions of coef.dat and wave.1 can be found in decimate.asm &
interpol.asm.

The test case writes the rate-changed output to a dac port. Since there are
512 samples in wave.1, and the test case performs interpolation by 4 followed
by decimation by 3, there will be 682 data values written to the dac port if
all data samples are read in and processed. The values written out are
left-shifted by 16 bits in parallel with the float—>fixed conversion, based
again on the assumption that the D/A converter port is located in the upper 16
bits of data memory.

Armed with this information, you are ready to run:

1. Assemble & Start Simulator:

 asm21k -DTEST ratiobuf
 ld21k -a generic ratiobuf
 sim21k -a generic -e ratiobuf -k port1

 Note: the keystroke file port1.ksf opens two ports:
 1st port - DM, F0000000, Fixed-Pt., auto-wrap, wave.1
 2nd port - DM, F0000001, Fixed-Pt., no wrap, out.1

2. In the simulator,
 a. Go to the program memory (disassembled) window,
 d. Go to symbol input, set to break on 513th occurence, and
 c. Run

3. Compare wave.1 to out.1 on the graphing program of your choice.

——————————————————————————————————————*/

#include “def21020.h”

#define N 32 /* N taps, N coefficients */
#define L 4 /* interpolate by factor of L */
#define NoverL 8 /* N must be an integer multiple of L */
#define M 3 /* decimate by factor of M */
#define intMoverL 2 /* smallest integer GE M/L */
#define FP 20.0e6 /* Processor Frequency = 20MHz */
#define FI 64.0e3 /* Interrupt Frequency = 64KHz */

#define IN_CNTR r2 /* input counter register */
#define OUT_CNTR r3 /* output counter register */

#ifndef TEST
/*—————————————————————————————*/

135135135135135

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

#define TPER_VAL 312 /* TPER_VAL = FP/FI - 1 */
#else
/*—————————————————————————————*/
#define TPER_VAL 39 /* interrupt every 40 cycles */
#endif
/*—————————————————————————————*/

.SEGMENT /pm pm_data;

.VAR coef[N]=”coef.dat”; /* coefficient circular buffer */

.ENDSEG;

.SEGMENT /dm dm_data;

.VAR data[NoverL]; /* data delay line */

.VAR input_buf[intMoverL]; /* input buffer is not circular */

.ENDSEG;

.SEGMENT /dm ports;

.PORT adc; /* Analog to Digital (input) converter */

.PORT dac; /* Digital to Analog (output) converter */

.ENDSEG;

/*———————————————————————————————————————
 RESET Service Routine
———————————————————————————————————————*/
.SEGMENT /pm rst_svc;
rst_svc: PMWAIT=0x0021; /* no wait states,internal ack only */
 DMWAIT=0x8421; /* no wait states,internal ack only */
 jump init_rat; /* initialize the test case */
.ENDSEG;

/*———————————————————————————————————————
 Timer=zero high priority Service Routine
———————————————————————————————————————*/
.SEGMENT /pm tmzh_svc;
tmzh_svc: IN_CNTR=IN_CNTR-1; /* test if time for input */
 if ne jump skipin(db);
 OUT_CNTR=OUT_CNTR-1; /* test if time for output */
 nop;
 jump input (db); /* calculate the input sample */
 r0=dm(adc); /* get input sample */
 r0=ashift r0 by -16; /* right-justify the data */
.ENDSEG;

/*———————————————————————————————————————
 Software Interrupt 0 Service Routine
———————————————————————————————————————*/
.SEGMENT /pm sft0_svc;
sft0_svc: jump calc_out (db); /* calculate the output sample */
 r0=i7; /* get current ptr to input buffer */
 r1=input_buf; /* get start addr of input buffer */

.ENDSEG; (listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

136136136136136

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/*———————————————————————————————————————
 Initialize Interpolation Routine
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
init_rat: /* initialize buffer index registers */
 b0=data; l0=@data; m0=1; /* data buffer */
 b7=input_buf; l7=0; /* input buffer */
 b8=coef; l8=@coef; m8=L; /* modifier for coef is L! */
 b9=0;l9=0;m9=-M; /* track coefficient updates */

 IN_CNTR = 1; /* initialize flags, counters */
 OUT_CNTR = 1;
 r5=L; /* scale register for interp. */
 f5=float r5;
 r14=16; /* exponent scale factor */

 r0=0; /* clear data buffer */
 lcntr=NoverL, do clrbuf until lce;
clrbuf: dm(i0,m0)=r0;

 tperiod=TPER_VAL; /* program timer */
 tcount=TPER_VAL;
 bit set mode2 TIMEN;

 /* enable timer zero high priority, software 0 interrupts */
 bit set imask TMZHI|SFT0I;
 bit clr irptl TMZHI|SFT0I; /* clear any pending irpts */
 bit set mode1 IRPTEN|ALUSAT; /* enable irpts, ALU sat */

wait: idle;
 jump wait; /* infinite wait loop */

.ENDSEG;

/*———————————————————————————————————————
 Calculate output
 initiated by software interrupt 0, code below occurs at the
 output sample rate
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
calc_out: r1=r0-r1, i7=b7; /* calculate amount in inbuffer */

 if eq jump modify_coef; /* skip do loop if buffer empty */
 modify(i9,-M); /* modify coef update by -M */
 m10=i9;

 /* dump the input buffer into delay line if L inputs have */
 /* been acquired */
 lcntr=r1, do load_data until lce;
 f1=dm(i7,m0);
load_data: dm(i0,m0)=f1;

modify_coef: modify(i8,m10); /* modify coef ptr by coef update */

137137137137137

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

/* filter pass, occurs at L times the input sample rate */
fir: f0=dm(i0,m0), f4=pm(i8,m8);
 f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 lcntr=NoverL-3, do taps until lce;
taps: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f8=f8+f12;
 f0=f8+f12,i7=b7; /* reset input buffer in || w/comp */

 i9=0; /* reset coef update */
 rti (db);
 r0 = fix f0 by r14; /* float -> fixed */
 dm(dac)=r0; /* output data sample */

.ENDSEG;

/*———————————————————————————————————————
 Acquire input
 initiated by Timer Interrupt, code occurs at L times the input rate
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
input: /* convert fixed->float, modify the coef update by L */
 f0=float r0,modify(i9,m8);
 f0=f0*f5; /* scale by L */
 dm(i7,m0)=f0; /* load in M long buffer */
 /* set AZ flag w/ OUT_CNTR, reset the input count to L */
 OUT_CNTR=pass OUT_CNTR, IN_CNTR=m8;

skipin: if ne rti; /* return if OUT_CNTR!=0 */

output: rti(db);
 /* cause output routine if OUT_CNTR==0 */
 bit set irptl SFT0I;
 OUT_CNTR=M; /* reset output counter to M */
.ENDSEG;

Listing 5.3 ratiobuf.asmListing 5.3 ratiobuf.asmListing 5.3 ratiobuf.asmListing 5.3 ratiobuf.asmListing 5.3 ratiobuf.asm

55555

138138138138138

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.45.45.45.45.4 RATIONAL RATE CHANGER (EXTERNAL INTERRUPT-BASED)RATIONAL RATE CHANGER (EXTERNAL INTERRUPT-BASED)RATIONAL RATE CHANGER (EXTERNAL INTERRUPT-BASED)RATIONAL RATE CHANGER (EXTERNAL INTERRUPT-BASED)RATIONAL RATE CHANGER (EXTERNAL INTERRUPT-BASED)
The rational rate changer shown in rat2int.asm (Listing 5.4) performs
the same operation as the rational rate changer (counter based) algorithm.
The interrupt based algorithm, however, uses two external interrupts
instead of the counters to generate the proper interpolation and
decimation interrupts.

5.4.15.4.15.4.15.4.15.4.1 ImplementationImplementationImplementationImplementationImplementation
The IRQ3 interrupt service routine performs the input function of the
rational rate changer. An external timer is necessary to cause this interrupt
to occur at the input sample rate. This interrupt replaces the timer
interrupt and IN_CNTR in the counter based changer. The IRQ2
interrupt service routine performs the output function of the rational rate
changer. Again, another external timer is necessary to cause the interrupt
to occur at the output sample rate. This interrupt routine replaces the User
Software Interrupt 0 routine and OUT_CNTR in the counter based
changer.

Other aspects of the code, initialization of buffers, modifying coefficient
pointers, and filter calculations, are executed in the same manner as in the
previous example.

139139139139139

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.4.25.4.25.4.25.4.25.4.2 Code Listing–rat_2_int.asmCode Listing–rat_2_int.asmCode Listing–rat_2_int.asmCode Listing–rat_2_int.asmCode Listing–rat_2_int.asm

/**
File Name

RAT_2INT.ASM

Version
3/4/91

Purpose
Interrupt-Driven Real Time Rational Rate Changer

Calling Parameters
Input: adc
r0 = ADC input data

Return Values
Output: dac
r0 = DAC output data

Registers Affected
r0 = FIR data in / ADC data / temp register
r1 = temp register
r4 = FIR coefficients
r5 = scale value L
r8 = FIR accumulate result reg
r12 = FIR multiply result reg / temporary reg
r14 = 16 = exponent scale factor

Start Labels
init_rat reset-time initialization
irq3_svc IRQ3 interrupt service routine for input
output called by IRQ2 interrupt service routine

Computation Time
irq2_svc = 6
irq3_svc = 3 + output
output >= NoverL + 14 (Notes: 1,3)

 <= NoverL + 2*intMoverL + 13 (Notes: 2,3)

Notes:
1. w/ no input samples to transfer
2. w/max input samples to transfer
3. maximum of 5 cache misses on the 1st pass

PM Locations
53 Words Code, N Words Data

DM Locations
N/L + M/L Words Data

**/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

140140140140140

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

———————————————————————————————————————
Creating & Using the Test Case:

Running the test case requires two data files:
 coef.dat 32-tap FIR filter coefficients (floating point)
 wave.1 waveform data file

Descriptions of coef.dat and wave.1 can be found in decimate.asm &
interpol.asm.

The test case writes the rate-changed output to a dac port. Since there are
512 samples in wave.1, and the test case performs interpolation by 4 followed
by decimation by 3, there will be 682 data values written to the dac port if
all data samples are read in and processed. The values written out are
left-shifted by 16 bits in parallel with the float—>fixed conversion, based
again on the assumption that the D/A converter port is located in the upper 16
bits of data memory.

Armed with this information, you are ready to run:

1. Assemble & Start Simulator:

 asm21k -DTEST rat_2int
 ld21k -a generic rat_2int
 sim21k -a generic -e rat_2int

2. In the simulator,
 a. Run keystroke file setint.ksf, which programs periodic interrupts,
 a. Go to the program memory (disassembled) window,
 d. Go to symbol irq3_svc, set to break on 513th occurence, and
 c. Run

3. Compare wave.1 to out.1 on the graphing program of your choice.

——————————————————————————————————————*/

#include “def21020.h”

#define N 32 /* N taps, N coefficients */
#define L 4 /* interpolate by factor of L */
#define NoverL 8 /* N must be an integer multiple of L */
#define M 3 /* decimate by factor of M */
#define intMoverL 2 /* smallest integer GE M/L */

.SEGMENT /pm pm_data;

.VAR coef[N]=”coef.dat”; /* coefficient circular buffer */

.ENDSEG;

.SEGMENT /dm dm_data;

.VAR data[NoverL]; /* data delay line */

.VAR input_buf[intMoverL]; /* input buffer is not circular */

.ENDSEG;

.SEGMENT /dm ports;

.PORT adc; /* Analog to Digital (input) converter */

141141141141141

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

.PORT dac; /* Digital to Analog (output) converter */

.ENDSEG;

/*———————————————————————————————————————
 RESET Service Routine
———————————————————————————————————————*/
.SEGMENT /pm rst_svc;
rst_svc: PMWAIT=0x0021; /* no wait states,internal ack only */
 DMWAIT=0x8421; /* no wait states,internal ack only */
 jump init_rat; /* initialize the test case */
.ENDSEG;

/*———————————————————————————————————————
 IRQ3 Interrupt Service Routine
 occurs at input rate
———————————————————————————————————————*/
.SEGMENT /pm irq3_svc;
irq3_svc: r0=dm(adc); /* get input sample */
 r0=ashift r0 by -16; /* right-justify the data */
 /* convert fixed->float, modify the coef update by L */
 f0=float r0,modify(i9,m8);
 rti(db);
 f0=f0*f5; /* scale by L */
 dm(i7,m0)=f0; /* load in input buffer */

.ENDSEG;

/*———————————————————————————————————————
 IRQ2 Interrupt Service Routine
 occurs at output rate
———————————————————————————————————————*/
.SEGMENT /pm irq2_svc;
irq2_svc: jump output (db); /* go to the output routine */
 r0=i7; /* get input buffer pointer */
 r1=input_buf; /* get start addr of input buffer */
.ENDSEG;

/*———————————————————————————————————————
 Initialize Interpolation Routine
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
init_rat: b0=data; l0=@data; m0=1; /* data buffer */
 b7=input_buf; l7=0; /* input buffer */
 b8=coef; l8=@coef; m8=L; /* modifier for coef is L! */
 b9=0;l9=0;m9=-M; /* track coefficient updates */

 r5=L; /* scale reg for interpolator */
 f5=float r5; /* fix —> float conversion */
 r14=16; /* exponent scale factor */

 r0=0; /* clear data buffer */
 lcntr=NoverL, do clrbuf until lce;
clrbuf: dm(i0,m0)=r0;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

142142142142142

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

 /* enable timer zero high priority, software 0 interrupts */
 bit set imask IRQ3I|IRQ2I;
 bit clr irptl IRQ3I|IRQ2I; /* clear any pending irpts */
 bit set mode1 IRPTEN|ALUSAT; /* enable interrupts, ALU sat*/

wait: idle; /* infinite wait loop */
 jump wait;

.ENDSEG;

/*———————————————————————————————————————
 Calculate output
 initiated by IRQ2, occurs at output sample rate
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
output: r1=r0-r1,i7=b7; /* r1 = # samples in input buffer */
 /* also reset input buffer */

 if eq jump mod_coef(db);/* skip do loop if buffer empty */
 modify(i9,-M); /* modify coef update by -M */
 m10=i9;

 /* dump the buffer into delay line */
 lcntr=r1, do load_data until lce;
 f1=dm(i7,m0);
load_data: dm(i0,m0)=f1;

mod_coef: modify(i8,m10); /* modify coef ptr by coef update */

/* filter pass, occurs at L times the input sample rate */
fir: f0=dm(i0,m0), f4=pm(i8,m8);
 f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 lcntr=NoverL-3, do taps until lce;
taps: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f8=f8+f12;
 f0=f8+f12, i7=b7; /* reset input buffer in || w/comp */

 i9=0; /* reset coef update */
 rti (db);
 r0 = fix f0 by r14; /* float -> fixed */
 dm(dac)=r0; /* output data sample */

.ENDSEG;

Listing 5.4 rat2int.asmListing 5.4 rat2int.asmListing 5.4 rat2int.asmListing 5.4 rat2int.asmListing 5.4 rat2int.asm

143143143143143

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.55.55.55.55.5 TWO-STAGE DECIMATION FILTERTWO-STAGE DECIMATION FILTERTWO-STAGE DECIMATION FILTERTWO-STAGE DECIMATION FILTERTWO-STAGE DECIMATION FILTER
In the previous example of a single-stage decimation filter, a single low-
pass filter is used to prevent the aliasing that otherwise occurs with the
rate compression. The filter presented here uses two stages to reduce the
number of calculations required with no loss of precision.

If the output frequency from the decimation filter is much smaller than the
input oversampled frequency, the transition band of the filter needs to be
very small. A small transition band requires a large number of taps, which
increases the computation time.

By cascading filters, the number of taps per stage can be reduced, thereby
increasing the computational efficiency. For example, the first stage filter
may not reduce the input sampling rate by very much, but the filter has a
very large transition band requiring fewer taps. The second stage filter
may then require a smaller transition band, but the output sample rate is
smaller as well, still only needing a few taps. This two-stage
implementation can be easily extended to more stages. See [CROCH83] for
design curves to help determine optimal rat changed factors for
intermediate stages. A two- or three-stage design provides a substantial
reduction in filter computations; further reductions in computations come
from adding more stages. Because the filters are cascaded, each stage must
have a passband ripple equal to the final passband ripple divided by the
number of stages used. The stopband ripple does not have to be less than
the final stopband ripple because each successive stage attenuates the
stopband ripple of the previous stage.

5.5.15.5.15.5.15.5.15.5.1 ImplementationImplementationImplementationImplementationImplementation
This example (dec2stg.asm , Listing 5.5) uses two real time direct-form
FIR filters of N_1 and N_2 taps to decimate by M_1 * M_2 for a
decrease of 1/(M_1 * M_2) times the input sample rate. The use of an
input buffer allows the filter computations to proceed in parallel with the
acquisition of the next M_1 * M_2 inputs, allowing a larger order filter
than if all calculations are made between samples.

The timer interrupt is set at a rate equal to the input sample rate to store
all the incoming values in the input buffer. A counter (CNTR) is set to M_1
* M_2 . This allows the input buffer to have enough samples for both
stages of filters. When the counter expires, User Service Interrupt 0 (USI0)
is set. The USI0 interrupt service routine calls the dec2stg routine that
performs the data transfer and two-stage filter.

55555

144144144144144

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

The length of the input buffer is twice as long as the decimation rate
(that is, 2 * M_1 * M_2) . This double-length buffer acts as two
separate input buffers. While one buffer is being transferred to the data
buffer for filtering, the second buffer stores values read in from the A/D.
This double buffering is accomplished by utilizing two pointers (I7 and I6)
that are offset from each other by M_1 * M_2 . The buffer is circular, so
that the pointers “ping-pong” between being the input pointer and the
transfer pointer.

Since the input buffer is twice as long as needed, the input samples are
now stored in the lower half of the input buffer with pointer I7, while the
transfer from the input buffer to the data buffer is done with pointer I6.
Since the double-buffer is circular, after the first time through the stages,
the pointers “ping-pong,” reversing roles. For more details, see [ADI90].

Because M_1 is less than three for this test case, the movement of data
from the input buffer to the buffer data1 is put at the start of the
subroutine dec2stg as straight-line (i.e., not looped) code. If M_1 is
greater than three, the following code is used:

r12=dm(i6,m0);
r4=ashift r12 by -16;
f0=float r4, r12=dm(i6,m0);
lcntr=M_1-2, do load_data until lce;

r4=ashift r12 by -16, dm(i0,m0)=f0;
load_data: f0=float r4, r12=dm(i6,m0);

r4=ashift r12 by -16, dm(i0,m0)=f0;
f0=float r4;
dm(i0,m0)=f0;

The filter operations and coefficient interleaving are performed in the
same manner as with the single-stage filters.

145145145145145

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

5.5.25.5.25.5.25.5.25.5.2 Code Listing–dec2stg.asmCode Listing–dec2stg.asmCode Listing–dec2stg.asmCode Listing–dec2stg.asmCode Listing–dec2stg.asm

/**
File Name

DEC2STG.ASM

Version
3/18/91

Purpose
Two Stage Decimator

Calling Parameters
Input: adc
r15 = ADC input data

Return Values
Output: dac
r0 = DAC output data

Registers Affected
r0 = FIR data in / ADC fltg-pt data
r3 = counter
r4 = FIR coefficients
r8 = FIR accumulate result reg
r12 = FIR multiply result reg / temporary reg
r14 = 16 = exponent scale factor

Start Labels:
init_dec reset-time initialization
dec2stg called by software 0 interrupt

Computation Time:
sft0_svc = N_2 + 10 + M_2*(N_1 + 2*M_1 + 7)
tmzh_svc = 7

PM Locations
73 Words Code, N_1 + N_2 Words Data

DM Locations
N_1 + N_2 + M_1*M_2*2 Words

**/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

146146146146146

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

Creating & Using the Test Case:

Running the test case requires two data files:
 coef1.dat 32-tap FIR filter #1 coefficients (floating point)
 coef2.dat 128-tap FIR filter #2 coefficients (floating point)
 wave.1 waveform data file

coef1 & coef2 are the two parks-McClellan FIR filters used in this two-stage
decimator. Assume that the input sample rate is 192kHz, and the decimated
output is 192/4 = 48kHz. The first FIR filter has 32 taps, and is designed to
have maximum of 1dB of attenuation from 0 - 48kHz, then >90dB attenuation at
>96kHz. The second FIR filter has 128 taps, and is designed to have maximum
of 1dB of attenuation from 0 - 20kHz, then >90dB attenuation at >24kHz.

Descriptions of wave.1 can be found in decimate.asm & interpol.asm.

The test case writes the decimated output to a dac port. Since there are 512
samples in wave.1, and the test case performs decimation by 4, there will be
128 data values written to the dac port if all data samples are read in and
processed. The values written out are left-shifted by 16 bits in parallel
with the float—>fixed conversion, based again on the assumption that the D/A
converter port is located in the upper 16 bits of data memory.

Armed with this information, you are ready to run:

1. Assemble & Start Simulator:

 asm21k -DTEST dec2stg
 ld21k -a generic dec2stg
 sim21k -a generic -e dec2stg

2. In the simulator,
 a. Go to the program memory (disassembled) window,
 d. Go to symbol output, set to break on 129th occurence, and
 c. Run

3. Compare wave.1 to out.1 on the graphing program of your choice.

——————————————————————————————————————*/

#include “def21020.h”
#define N_1 32 /* number of taps in FIR #1 */
#define N_2 128 /* number of taps in FIR #2 */
#define M_1 2 /* 1st decimation factor */
#define M_2 2 /* 2nd decimation factor */
#define CNTR r3 /* counter */
#define FP 20.0e6 /* Processor Frequency = 20MHz */
#define FI 192.0e3 /* Input Frequency = 192KHz */

#ifndef TEST /*—————————————————————————————*/
#define TPER_VAL 312 /* TPER_VAL = FP/FI - 1 */
#else /*—————————————————————————————*/
#define TPER_VAL 104 /* interrupt every 160 cycles */
#endif /*—————————————————————————————*/

147147147147147

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

.SEGMENT /dm dm_data;

.VAR data1[N_1]; /* FIR input data #1 */

.VAR data2[N_2]; /* FIR input data #2 */

.VAR input_buf[M_1*M_2*2]; /* raw ADC data
*/
.ENDSEG;

.SEGMENT /pm pm_data;

.VAR coef1[N_1]=”coef1.dat”; /* FIR floating-point coefficients
*/
.VAR coef2[N_2]=”coef2.dat”; /* FIR floating-point coefficients
*/
.ENDSEG;

.SEGMENT /dm ports;

.PORT adc; /* Analog to Digital (input) converter
*/
.PORT dac; /* Digital to Analog (output) converter
*/
.ENDSEG;

/*———————————————————————————————————————
 RESET Service Routine
———————————————————————————————————————*/
.SEGMENT /pm rst_svc;
rst_svc: PMWAIT=0x0021; /* no wait states,internal ack only
*/
 DMWAIT=0x8421; /* no wait states,internal ack only
*/
 call init_dec; /* initialize the test case */
wait: idle; /* infinite wait loop
*/
 jump wait;
.ENDSEG;

/*———————————————————————————————————————
 TMZH Service Routine
———————————————————————————————————————*/
.SEGMENT /pm tmzh_svc;
/* sample input: this code occurs at the sample rate
*/
tmzh_svc: /* decrement counter and get a sample
*/
 CNTR=CNTR-1,r15=dm(i2,m2);
 if eq jump zero_yes;
zero_no: rti(db);
 nop;
 dm(i7,m0)=r15; /* load in input buffer
*/
zero_yes: rti(db);
 irptl=SFT0I; /* if counter==0, set interrupt
*/
 dm(i7,m0)=r15; /* load in input buffer

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

148148148148148

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

*/
.ENDSEG;

/*———————————————————————————————————————
 Interrupt Request 3 Service Routine
 Dummy procedure so that the TMZH Service Routine does not fetch
 instructions from empty memory
———————————————————————————————————————*/
.SEGMENT /pm irq3_svc;
/* dummy procedure */
irq3_svc: rti;
.ENDSEG;

/*———————————————————————————————————————
 Software Interrupt 0 Service Routine
———————————————————————————————————————*/
.SEGMENT /pm sft0_svc;
/* process input data: this code occurs at 1/M times the sample rate
*/
sft0_svc: jump dec2stg (db); /* call the 2-stage decimator
*/
 CNTR=M_1*M_2; /* reset input counter
*/
 nop;
.ENDSEG;

/*———————————————————————————————————————
 efficient decimator initialization
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
init_dec: b0=data1; l0=@data1; m0=1; /* data buffer #1
*/
 b1=data2; l1=@data2; /* data buffer #2
*/
 b8=coef1; l8=@coef1; m8=1; /* coefficient buffer #1
*/
 b9=coef2; l9=@coef2; /* coefficient buffer #2
*/
 b7=input_buf; l7=@input_buf; /* input buffer sample ptr
*/
 b6=input_buf; l6=@input_buf; /* inp. buffer working ptr
*/
 b2=adc; l2=1; m2=0; /* set A/D conv. pointer
*/

 r14=16; /* exponent scale factor
*/

149149149149149

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

 CNTR=M_1*M_2; /* set input counter
*/

 r0=0; /* clear data buffers */
 lcntr=N_1, do clrbuf1 until lce;
clrbuf1: dm(i0,m0)=r0;
 lcntr=N_2, do clrbuf2 until lce;
clrbuf2: dm(i1,m0)=r0;

 tperiod=TPER_VAL; /* program timer
*/
 tcount=TPER_VAL;
 bit set mode2 TIMEN;
 bit clr irptl TMZHI|SFT0I; /* clear any pending irpts
*/

 rts (db);
 /* enable Timer high priority, software 0 interrupts
*/
 bit set imask TMZHI|SFT0I;
 /* enable interrupts, nesting, ALU saturation
*/
 bit set mode1 IRPTEN|NESTM|ALUSAT;
.ENDSEG;

/*———————————————————————————————————————
 efficient decimator routine
 executes at 1/(M_1*M_2) times the sample rate
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
dec2stg: lcntr=M_2, do stage_1 until lce;
 /* transfer input samples to the FIR data memory space */
 /* using the input buffer working pointer. Perform */
 /* fix—>float conversion in parallel */
 r12=dm(i6,m0);
 r4=ashift r12 by -16;
 f0=float r4, r12=dm(i6,m0);
 r4=ashift r12 by -16, dm(i0,m0)=f0;
 f0=float r4;
 dm(i0,m0)=f0;

 /* 1st FIR filter */

55555

150150150150150

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

fir_1: f0=dm(i0,m0), f4=pm(i8,m8);
 f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 lcntr=N_1-3, do taps_1 until lce;
taps_1: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f8=f8+f12;
 f0=f8+f12;

stage_1: dm(i1,m0)=f0; /* output to next filter data buffer
*/

 /* 2nd FIR filter */
fir_2: f0=dm(i1,m0), f4=pm(i9,m8);
 f8=f0*f4, f0=dm(i1,m0), f4=pm(i9,m8);
 f12=f0*f4, f0=dm(i1,m0), f4=pm(i9,m8);
 lcntr=N_2-3, do taps_2 until lce;
taps_2: f12=f0*f4, f8=f8+f12, f0=dm(i1,m0), f4=pm(i9,m8);
 f12=f0*f4, f8=f8+f12;
 f0=f8+f12;

 rti (db);
 r0 = fix f0 by r14; /* float —> fix
*/
output: dm(dac)=r0; /* output data sample
*/
.ENDSEG;

Listing 5.5 dec2stg.asmListing 5.5 dec2stg.asmListing 5.5 dec2stg.asmListing 5.5 dec2stg.asmListing 5.5 dec2stg.asm

5.65.65.65.65.6 TWO-STAGE INTERPOLATION FILTERTWO-STAGE INTERPOLATION FILTERTWO-STAGE INTERPOLATION FILTERTWO-STAGE INTERPOLATION FILTERTWO-STAGE INTERPOLATION FILTER
The two-stage interpolation filter (Listing 5.6) uses two real time N-tap
direct form FIR filters to interpolate by L_1 * L_2 for an increase of
L_1 * L_2 times the input sample rate. The number of taps is restricted
such that (N/L_1 * L_2) must be an integer. The internal timer is used
to generate interrupts at L_1 * L_2 times the sample rate. Two
counters are set up so that the delay line is only updated when a sample is
ready at the ADC, that is, both counters have expired.

5.6.15.6.15.6.15.6.15.6.1 ImplementationImplementationImplementationImplementationImplementation
Two delay lines are used, one for each filter stage. The delay line for the
first stage filter, int2stg , is loaded from the ADC. The delay line for the

151151151151151

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

second stage filter, do_fir2 , is loaded from the output of the first stage filter.

After the initialization of the buffers, the main program sits in an idle loop waiting
for timer interrupts. The timer interrupts occur at an interval of L_1 * L_2 times
the sample rate. In the timer service routine, the counters for each stage are
decremented. The counter with the smaller interpolation factor is decremented first (
CNT2=2) . If the counter has not expired, the service routine jumps to the do_fir2
routine. Therefore, the second stage of the filter is executed at an interval of L_1 *
L_2 times the input sample rate. If the counter has expired, the routine decrements
the second counter.

The second counter is set to the higher interpolation factor (CNT=4) . If the counter
has not expired, the service routine jumps to the int2stg routine. This routine is
called at an interval of L_1 times the input sample rate. When the int2stg
routine is called, both the first stage and second stage filtering is performed.

If both counters have expired, the next input value is read from the ADC and then
both filter stages are performed. The filter computations and coefficient interleaving
are performed in the same manner as the single-stage interpolation filter.

5.6.25.6.25.6.25.6.25.6.2 Code Listing–int2stg.asmCode Listing–int2stg.asmCode Listing–int2stg.asmCode Listing–int2stg.asmCode Listing–int2stg.asm

/**
File Name

INT2STG.ASM

Version
3/18/91

Purpose
Two Stage Interpolator

Calling Parameters
Input: adc
r15 = ADC input data

Return Values

55555

152152152152152

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

Output: dac
r0 = DAC output data

Registers Affected
r1 = scale factor L
r2 = counter #1
r3 = counter #2
r4 = FIR coefficients
r8 = FIR accumulate result reg
r12 = FIR multiply result reg / temporary reg
r13 = 1 = counter compare register
r14 = 16 = exponent scale factor

Start Labels
init_int reset-time initialization
int2stg called by Timer Zero High Priority interrupt

Computation Time
tmzh_svc = N_1/L_1 + N_2/L_2 + 25

PM Locations
67 Words Code, N_1 + N_2 Words Data

DM Locations
N_1/L_1 + N_2/L_2 Words Data

**/
———————————————————————————————————————
Creating & Using the Test Case:

Running the test case requires two data files:
 coef.dat 32-tap FIR filter coefficients (floating point)
 sinX.dat sine-wave data files (X=1,2,3,4,5)

coef.dat contains a 32-tap FIR filter which bandlimits the input signal to 1/8
of the input frequency. Since the decimator in the test case decimates by a
factor M=4, this bandlimitation is equivalent to the required limit of 1/2 the
output frequency. The filter is a Parks-McLellan filter with a passband
ripple of 1.5dB out to about 1/20 the input frequency, and a stopband with
greater than 70dB of attenuation above 1/8 the input frequency.

As an example, if the oversampled input frequency is 64kHz, the passband extends
out to about 3.2kHz. The stopband starts at 4kHz, and the output frequency is
16kHz.

The data files are all of the form sin.X, where X ranges from 1 to 5. Each data
file contains 512 signed fixed-point data values in the range +/- 32767. These
data points are meant to resemble data read from a 16-bit A/D converter which

153153153153153

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

generates signed data. sin.1 through sin.4 contain simple sine waves at
different frequencies. sin.5 contains a composite waveform generated from 3
sine wave of differing frequency and magnitude.

The test case writes the interpolated output to a dac port. Since there are 512
samples in sin.X, and the test case performs decimation by 4, there will be 128
data values written to the dac port if all data samples are read in and
processed.

Armed with this information, you are ready to run:

1. Assemble & Start Simulator:
 asm21k -DTEST int2stg
 ld21k -a generic.ach int2stg
 sim21k -a generic.ach -e int2stg

2. In the simulator,
 a. Go to the program memory (disassembled) window,
 d. Go to symbol output, set to break on 4097th occurence, and
 c. Run

3. Compare wave.1 to out.1 on the graphing program of your choice.

——————————————————————————————————————*/

#include “def21020.h”
#define N_1 32 /* number of taps, FIR #1 */
#define N_2 32 /* number of taps, FIR #2 */
#define L_1 4 /* interpolate by factor of L_1 */
#define L_2 2 /* interpolate by factor of L_2 */
#define CNT1 r2
#define CNT2 r3

#define FP 20.0e6 /* Processor Frequency = 20MHz */
#define FI 64.0e3 /* Input Frequency = 64KHz */

#ifndef TEST /*—————————————————————————————*/
#define TPER_VAL 312 /* TPER_VAL = FP/FI - 1 */
#else /*—————————————————————————————*/
#define TPER_VAL 53 /* interrupt every 54 cycles */
#endif /*—————————————————————————————*/

.SEGMENT /dm dm_data;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

55555

154154154154154

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

.VAR data1[N_1/L_1]; /* ADC fixed-point data buffer #1 */

.VAR data2[N_2/L_2]; /* ADC fixed-point data buffer #2 */

.ENDSEG;

.SEGMENT /pm pm_data;

.VAR coef1[N_1]=”coef1.dat”; /* fltg-pt. FIR #1 coefficients */

.VAR coef2[N_2]=”coef2.dat”; /* fltg-pt. FIR #2 coefficients */

.ENDSEG;

.SEGMENT /dm ports;

.PORT adc; /* Analog to Digital (input) converter */

.PORT dac; /* Digital to Analog (output) converter */

.ENDSEG;

/*———————————————————————————————————————
 RESET Service Routine
———————————————————————————————————————*/
.SEGMENT /pm rst_svc;
rst_svc: PMWAIT=0x0021; /* no wait states,internal ack only */
 DMWAIT=0x8421; /* no wait states,internal ack only */
 jump init_int; /* initialize the test case */
.ENDSEG;

/*———————————————————————————————————————
 TMZH Service Routine
———————————————————————————————————————*/
.SEGMENT /pm tmzh_svc;
/* sample input: this interrupt occurs at the L_1*L_2*input rate */
tmzh_svc: CNT2=CNT2-1,modify(i9,m15); /* decrement counter, and */
 /* shift coef #2 pointer back */
 if ne jump do_fir2; /* do second FIR if CNT2!=0 */

 CNT1=CNT1-1,modify(i8,m15); /* decrement counter, and */
 /* shift coef #1 pointer back */
 if ne jump int2stg; /* go to first FIR if CNT1!=0 */
 jump sample (db); /* get sample if CNT1==CNT1==0 */
 r15=dm(adc); /* input data sample */
 r15=ashift r15 by -16; /* right-justify & zero garbage bits */

.ENDSEG;

/*———————————————————————————————————————
 Initialize Interpolation Routine
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
init_int: /* initialize buffer index registers */
 b0=data1; l0=@data1; m0=1; /* data buffer #1 */
 b1=data2; l1=@data2; /* data buffer #2 */
 b8=coef1; l8=@coef1; m8=L_1; /* modifier for coef1 = L_1 */
 b9=coef2; l9=@coef2; m9=L_2; /* modifier for coef2 = L_2 */
 m15=-1;

 /* Register Initialization */
 r1=L_1*L_2; /* value for upscaling sample */
 f1=float r1; /* fix —> float conversion */

155155155155155

55555Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

 CNT1=1; /* set interpolate cntrs to 1 */
 CNT2=1; /* for first data sample */
 r13=1; /* counter compare reg */
 r14=16; /* exponent scale factor */

 r0=0; /* clear data buffers */
 lcntr=N_1/L_1, do clrbuf1 until lce;
clrbuf1: dm(i0,m0)=r0;
 lcntr=N_2/L_2, do clrbuf2 until lce;
clrbuf2: dm(i1,m0)=r0;

 tperiod=TPER_VAL; /* program timer */
 tcount=TPER_VAL;

 bit set imask TMZHI; /* enable TMZH interrupt */
 bit clr irptl TMZHI; /* clear any pending irpts */

 /* enable interrupts, ALU sat */
 bit set mode1 IRPTEN|ALUSAT;
 bit set mode2 TIMEN; /* turn timer on */

wait_interrupt: idle;
 jump wait_interrupt; /* infinite wait loop */

.ENDSEG;

/*———————————————————————————————————————
 Two-stage Interpolate
 code executes at L_1*L_2*(sample_rate)
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
int2stg: /* filter pass, occurs at L_1 times the input sample rate */
 f0=dm(i0,m0), f4=pm(i8,m8);
 f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 lcntr=N_1/L_1-3, do taps1 until lce;
taps1: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
 f12=f0*f4, f8=f8+f12;
 f0=f8+f12;
 dm(i1,m0)=f0;

 modify(i9,m9);
 CNT2=m9; /* reset counter #2 to L_2 */

/* filter pass, occurs at L_1*L_2 times the input sample rate */
do_fir2: f0=dm(i1,m0), f4=pm(i9,m9);
 f8=f0*f4, f0=dm(i1,m0), f4=pm(i9,m9);
 f12=f0*f4, f0=dm(i1,m0), f4=pm(i9,m9);
 lcntr=N_2/L_2-3, do taps2 until lce;
taps2: f12=f0*f4, f8=f8+f12, f0=dm(i1,m0), f4=pm(i9,m9);

55555

156156156156156

Multirate FiltersMultirate FiltersMultirate FiltersMultirate FiltersMultirate Filters

 f12=f0*f4, f8=f8+f12;
 f0=f8+f12;
 dm(i1,m0)=f0;

 rti (db);
 r0 = fix f0 by r14; /* float -> fixed
*/
output: dm(dac)=r0; /* output data sample
*/
.ENDSEG;

/*———————————————————————————————————————
 Acquire Sample
———————————————————————————————————————*/
.SEGMENT /pm pm_code;
/* sample input: this code occurs at the input rate
*/
sample: /* do fix->float, and scale data up by L_1*L_2
*/
 f0=float r15, modify(i8,m8);
 f0=f0*f1; /* upscale sample
*/
 jump int2stg (db);
 dm(i0,m0)=f0; /* update delay line w/latest
*/
 CNT1=m8; /* reset counter #1 to L_1
*/

.ENDSEG;

Listing 5.6 int2stg.asmListing 5.6 int2stg.asmListing 5.6 int2stg.asmListing 5.6 int2stg.asmListing 5.6 int2stg.asm

5.75.75.75.75.7 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES

[ADI90] Analog Devices Inc., Amy Mar, ed. 1990. Digital Signal
Processing Applications Using The ADSP-2100 Family.
Englewood Cliffs, NJ: Prentice Hall.

[CROCH83] Crochiere, Ronald E. and Lawrence L. Rabiner. 1983.
Multirate Digital Signal Processing. Englewood Cliffs,
NJ: Prentice Hall.

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters 66666

157157157157157

6.16.16.16.16.1 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Fixed-frequency-response digital filters were discussed in the two
previous chapters. This chapter looks at filters with a frequency response,
or transfer function, that can change over time to match desired system
characteristics.

Many computationally efficient algorithms for adaptive filtering have
been developed within the past twenty years. They are based on either a
statistical approach, such as the least-mean square (LMS) algorithm, or a
deterministic approach, such as the recursive least-squares (RLS)
algorithm. The major advantage of the LMS algorithm is its computational
simplicity. The RLS algorithm, conversely, offers faster convergence, but
with a higher degree of computational complexity.

The adaptive filter algorithms discussed in this chapter are implemented
with FIR filter structures. Since adaptive FIR filters have only adjustable
zeros, they are free of stability problems that can be associated with
adaptive IIR filters where both poles and zeros are adjustable. Of the
various FIR filter structures available, the direct form (transversal), the
symmetric transversal form, and the lattice form are the ones often
employed in adaptive filtering applications.

6.1.16.1.16.1.16.1.16.1.1 Applications Of Adaptive FiltersApplications Of Adaptive FiltersApplications Of Adaptive FiltersApplications Of Adaptive FiltersApplications Of Adaptive Filters
Adaptive filters are widely used in telecommunications, control systems,
radar systems, and in other systems where minimal information is
available about the incoming signal.

Due to the variety of implementation options for adaptive filters, many
aspects of adaptive filter design, as well as the development of some of the
adaptive algorithms, are governed by the applications themselves. Several
applications of adaptive filters based on FIR filter structures are described
below.

66666

158158158158158

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.1.1.16.1.1.16.1.1.16.1.1.16.1.1.1 System IdentificationSystem IdentificationSystem IdentificationSystem IdentificationSystem Identification
You can design controls for a dynamic system if you have a model that
describes the system in motion. Modeling is not easy with complex
physical phenomena, however. You can get information about the system
to be controlled from collecting experimental data of system responses to
given excitations. This process of constructing models and estimating the
best values of unknown parameters from experimental data is called
system identification.

Figure 6.1 shows a block diagram of the system identification model. The
unknown system is modeled by an FIR filter with adjustable coefficients.
Both the unknown time-variant system and FIR filter model are excited by
an input sequence u(n). The adaptive FIR filter output y(n) is compared
with the unknown system output d(n) to produce an estimation error e(n).
The estimation error represents the difference between the unknown
system output and the model (estimated) output. The estimation error e(n)
is then used as the input to an adaptive control algorithm which corrects
the individual tap weights of the filter. This process is repeated through
several iterations until the estimation error e(n) becomes sufficiently small
in some statistical sense. The resultant FIR filter response now represents
that of the previously unknown system.

u(n)

y(n)

e(n)

Adaptive
Algorithm

FIR Filter
Model

∑

+

Unknown
System

-

d(n)

Figure 6.1 System Identification ModelFigure 6.1 System Identification ModelFigure 6.1 System Identification ModelFigure 6.1 System Identification ModelFigure 6.1 System Identification Model

159159159159159

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.1.1.26.1.1.26.1.1.26.1.1.26.1.1.2 Adaptive Equalization For Data TransmissionAdaptive Equalization For Data TransmissionAdaptive Equalization For Data TransmissionAdaptive Equalization For Data TransmissionAdaptive Equalization For Data Transmission
Adaptive filters are used widely to provide equalization in data modems
that transmit data over speech-band and wider bandwidth channels. An
adaptive equalizer is employed to compensate for the distortion caused by
the transmission medium. Its operation involves a training mode followed
by a tracking mode.

Initially, the equalizer is trained by transmitting a known test data
sequence u(n). By generating a synchronized version of the test signal in
the receiver, the adaptive equalizer is supplied with a desired response
d(n). The equalizer output y(n) is subtracted from this desired response to
produce an estimation error, which is in turn used to adaptively adjust the
coefficients of the equalizer to their optimum values. When the initial
training period is completed, the adaptive equalizer tracks possible time
variations in channel characteristics during transmission by using a
receiver estimate of the transmitted sequence as a desired response. The
receiver estimate is obtained by applying the equalizer output y(n) to a
decision device.

6.1.1.36.1.1.36.1.1.36.1.1.36.1.1.3 Echo Cancellation For Speech-Band Data TransmissionEcho Cancellation For Speech-Band Data TransmissionEcho Cancellation For Speech-Band Data TransmissionEcho Cancellation For Speech-Band Data TransmissionEcho Cancellation For Speech-Band Data Transmission
Dial-up switched telephone networks are used for low-volume infrequent
data transmission. A device called a “hybrid” provides full-duplex
operation, transmit and receive channels, from a two-wire telephone line.
Due to impedance mismatch between the hybrid and the telephone
channel, an “echo” is generated which can be suppressed by adaptive
echo cancellers installed in the network in pairs. The cancellation is
achieved by making an estimate of the echo signal components using the
transmitted sequence u(n) as input data, and then subtracting the estimate
y(n) from the sampled received signal d(n). The resulting error signal can
be minimized, in the least-squares sense, to adjust optimally the weights
of the echo canceller.

Similar applications include the suppression of narrowband interference
in a wideband signal, adaptive line enhancement, and adaptive noise
cancellation.

66666

160160160160160

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.1.1.46.1.1.46.1.1.46.1.1.46.1.1.4 Linear Predictive Coding of Speech SignalsLinear Predictive Coding of Speech SignalsLinear Predictive Coding of Speech SignalsLinear Predictive Coding of Speech SignalsLinear Predictive Coding of Speech Signals
The method of linear predictive coding (LPC) is an example of a source
coding algorithm used for the digital representation of speech signals. So
called source coders are model dependent: they use previous knowledge
of how the speech signal was generated at its source. Source coders for
speech are generally referred to as vocoders and can operate at data rates of
4.8 Kbits/s or below. In LPC, the source vocal tract is modeled as a linear
all-pole filter whose parameters are determined adaptively from speech
samples by means of linear prediction. The speech samples u(n) are, in this
case, the desired response, while u(n-1) forms the inputs to the adaptive
FIR filter known as a prediction error filter. The error signal between u(n)
and the output of the FIR filter, y(n), is then minimized in the least-squares
sense to estimate the model parameters. The error signal and the model
parameters are encoded into a binary sequence and transmitted to the
destination. At the receiver, the speech signal is synthesized from the
model parameters and the error signal.

6.1.1.56.1.1.56.1.1.56.1.1.56.1.1.5 Array ProcessingArray ProcessingArray ProcessingArray ProcessingArray Processing
Adaptive antenna arrays use processing techniques that are very similar to
those of adaptive filters. They use the spatial separation between the
antenna elements to provide a parallel set of signal samples rather than
using the time-delayed or partly processed versions of a one-dimensional
input signal. Their applications include bearing estimation and adaptive
beamforming.

6.1.26.1.26.1.26.1.26.1.2 FIR Filter StructuresFIR Filter StructuresFIR Filter StructuresFIR Filter StructuresFIR Filter Structures
An FIR system has a finite-duration impulse response that is zero outside
of some finite time interval. Thus, an FIR system has a finite memory of
length-N samples. Three basic structures for realizing the FIR filter
(transversal, symmetric, and lattice) are described below.

161161161161161

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.1.2.16.1.2.16.1.2.16.1.2.16.1.2.1 Transversal StructureTransversal StructureTransversal StructureTransversal StructureTransversal Structure
Figure 6.2 shows the structure of a transversal FIR filter with N tap
weights (adjustable during the adaptation process) with values at time n
denoted as

w0(n), w1(n), ..., wN – 1(n).

The tap-weight vector, w(n), is represented as

w(n) = [w0(n) w1(n) ... wN-1(n)]T

the tap-input vector, u(n), as

u(n) = [u(n) u(n-1) ... u(n-N+1)]T

The FIR filter output, y(n), can then be expressed as

N-1

y(n) = wT(n) u(n) = ∑ wi(n) u(n-i)
i=0

where T denotes transpose, n is the time index, and N is the order of the
filter.

• • •

• • •

• • •w
1

w
N-2

w
N-1

-1z -1z -1z
u(n-1) u(n-N+2) u(u-N+1)

∑ ∑ ∑ y(n)

u(n)

w
0

Figure 6.2 Transversal FIR Filter StructureFigure 6.2 Transversal FIR Filter StructureFigure 6.2 Transversal FIR Filter StructureFigure 6.2 Transversal FIR Filter StructureFigure 6.2 Transversal FIR Filter Structure

66666

162162162162162

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.1.2.26.1.2.26.1.2.26.1.2.26.1.2.2 Symmetric Transversal StructureSymmetric Transversal StructureSymmetric Transversal StructureSymmetric Transversal StructureSymmetric Transversal Structure
The characteristic of linear phase response in a filter is sometimes
desirable because it allows a system to reject or shape energy bands of the
spectrum and still maintain the basic pulse integrity with a constant filter
group delay. Imaging and digital communications are examples of
applications where this characteristic is desirable.

An FIR filter with time domain symmetry, such as

w0(n) = wN – 1(n), w1(n) = wN - 2(n)...

has a linear phase response in the frequency domain. Consequently, the
number of weights is reduced by a half in a transversal structure, as
shown in Figure 6.3 with an even N tap weights. The tap-input vector
becomes

u(n) = [u(n) + u(n – N +1), u(n – 1) + u(n – N + 2), ... ,u(n – N/2 + 1) +
u(n - N/2)] T

As a result, the filter output y(n) becomes

N/2

y(n) = ∑ wi(n)[u(n – i) + u(n – N + 1 + i)]
 i=0

Figure 6.3 Symmetric Transversal Filter StructureFigure 6.3 Symmetric Transversal Filter StructureFigure 6.3 Symmetric Transversal Filter StructureFigure 6.3 Symmetric Transversal Filter StructureFigure 6.3 Symmetric Transversal Filter Structure

• • •

w
1

-1z -1z -1z
u(n-1) u(u- +1)

∑ ∑ ∑

u(n)

w
0

• • •∑ ∑ ∑ y(n)

• • •-1z -1z -1z

∑ -1z

N
2

N
2u(n-)

w
 -2N
2

w
 -1N
2

u(n-N+1) u(n-N+2)

163163163163163

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

∑
+

-

∑
+

-

Z
-1

k (n)

k (n)

f (n)

b (n)

f (n)

b (n)

m

m

m

m

m-1

m-1

m-1
b (n-1)

6.1.2.36.1.2.36.1.2.36.1.2.36.1.2.3 Lattice StructureLattice StructureLattice StructureLattice StructureLattice Structure
The lattice filter has a modular structure with cascaded identical stages.
Figure 6.4 shows one stage of a lattice FIR structure.

Figure 6.4 One Stage Of Lattice FIRFigure 6.4 One Stage Of Lattice FIRFigure 6.4 One Stage Of Lattice FIRFigure 6.4 One Stage Of Lattice FIRFigure 6.4 One Stage Of Lattice FIR

The lattice structure offers several advantages over the transversal
structure:

• The lattice structure has good numerical round-off characteristics that
make it less sensitive than the transversal structure to round-off errors
and parameter variations.

• The lattice structure orthogonalizes the input signal stage-by-stage,
which leads to fast convergence and efficient tracking capabilities
when used in an adaptive environment.

• The various stages are decoupled from each other, so it is relatively
easy to increase the prediction order if required.

• The lattice filter (predictor) can be interpreted as wave propagation in
a stratified medium. This can represent an acoustical tube model of the
human vocal tract, which is extremely useful in digital speech
processing.

These advantages, however, come at the expense of an increased number
of multiplies and adds for a given transfer function realization.

66666

164164164164164

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

The following equations represent the dynamics of the mth stage of an
order M lattice structure as derived from Figure 6.4:

fm(n)=fm – 1(n) – Km(n) bm – 1(n – 1), 0 <m < M
bm(n)=bm – 1(n – 1) Km(n) fm – 1(n), 0 < m < M

where fm(n) represents the forward prediction error, bm(n) represents the
backward prediction error, Km(n) is the reflection coefficient, m is the stage
index, and M is the number of cascaded stages. Km(n) has a magnitude less
than one. The terms fm(n) and bm(n) are initialized as

f0(n) = b0(n) = u(n)

where u(n) is the input signal.

Speech analysis is usually performed by using the lattice structure and the
reflection coefficients Km(n). Since the dynamic range of Km(n) is
significantly smaller than that of the tap weights, w(n), of a transversal
filter, the reflection coefficients require fewer bits to represent them.
Hence, Km(n) are transmitted over the channel.

6.1.36.1.36.1.36.1.36.1.3 Adaptive Filter AlgorithmsAdaptive Filter AlgorithmsAdaptive Filter AlgorithmsAdaptive Filter AlgorithmsAdaptive Filter Algorithms
Two types of adaptive algorithms are discussed in this section: least-mean
square (LMS) and recursive least-squares (RLS). LMS algorithms are based
on a gradient-type search for tracking time-varying signal characteristics.
RLS algorithms provide faster convergence and better tracking of time-
variant signal statistics than LMS algorithms, but are more complex
computationally.

6.1.3.16.1.3.16.1.3.16.1.3.16.1.3.1 The LMS AlgorithmThe LMS AlgorithmThe LMS AlgorithmThe LMS AlgorithmThe LMS Algorithm
The LMS algorithm is initialized by setting all the weights to zero at time
n=0. Tap weights are updated using the relationship

w(n+1) = w(n) + µe(n)u(n)

where w(n) represents the tap weights of the transversal filter, e(n) is the
error signal, u(n) represents the tap inputs, and the factor µ is the
adaptation parameter or step-size. To ensure convergence, µ must satisfy
the condition

0 < µ < (2 / total input power)

165165165165165

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

where the total input power refers to the sum of the mean-square values of
the tap inputs u(n), u(n-1), ..., u(n-N+1). Moreover, the LMS convergence
time depends on the ratio of maximum to minimum eigenvalues of the
autocorrelation matrix R of the input signal.

To insure that µ does not become sufficiently large to cause filter
instability, a Normalized LMSalgorithm can be employed. The
normalized LMS employs a time-varying mu defined as

x
uT(n). u(n))

where x is the normalized step-size chosen between 0 and 2. Tap weights
are updated according to the relationship

 xe(n)u(n)
r+uT(n)u(n)

The term x is the new normalized adaptation constant, while r is a small
positive term included to ensure that the update term does not become
excessively large when uT(n)u(n) temporarily becomes small.

A problem can occur when the autocorrelation matrix associated with the
input process has one or more zero eigenvalues. In this case, the adaptive
filter will not converge to a unique solution. In addition, some uncoupled
coefficients (weights) may grow without bound until hardware overflow
or underflow occurs. This problem can be remedied by using coefficient
leakage. This “leaky” LMS algorithm can be written as

w(n+1) = (1-µr)w(n) + µe(n)u(n)

where the adaptation constant µ and the leakage coefficient r are a small
positive values.

6.1.3.26.1.3.26.1.3.26.1.3.26.1.3.2 The RLS AlgorithmThe RLS AlgorithmThe RLS AlgorithmThe RLS AlgorithmThe RLS Algorithm
The LMS algorithm has many advantages (due to its computational
simplicity), but its convergence rate is slow. The LMS algorithm has only
one adjustable parameter that affects convergence rate, the step-size
parameter µ, which has a limited range of adjustment in order to insure
stability.

mu =

w(n+1) = w(n) +

66666

166166166166166

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

For faster rates of convergence, more complex algorithms with additional
parameters must be used. The RLS algorithm uses a least-squares method
to estimate correlation directly from the input data. The LMS algorithm
uses the statistical mean-squared-error method, which is slower.

The RLS algorithm uses a transversal FIR filter implementation. The order
of operations the algorithm takes is

1. Compute the filter output (tap weights initialized to zero)
2. Find the error signal
3. Compute the Kalman Gain Vector (defined below)
4. Update the inverse of the correlation matrix
5. Update the tap weights

The Kalman Gain Vector is based on input-data autocorrelation results, the
input data itself, and a factor called the forgetting factor. The forgetting
factor ranges between zero and one and provides a time-weighting of the
input data such that the most recent data points are weighted more
heavily than past data. This allows the filter coefficients to adapt to time-
varying statistical characteristics of the input data.

The tap weight update is based on the error signal and the Kalman Gain
Vector and is expressed as

w(n) = w(n-1) + Ke(n)

where K is the Kalman Gain Vector and e(n) represents the error signal.

167167167167167

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.26.26.26.26.2 IMPLEMENTATIONSIMPLEMENTATIONSIMPLEMENTATIONSIMPLEMENTATIONSIMPLEMENTATIONS
The adaptive filter routines have two inputs

• input sample

• desired response

and three outputs

• filter output

• filter error signal

• filter weights.

Figure 6.5 Generic Adaptive FilterFigure 6.5 Generic Adaptive FilterFigure 6.5 Generic Adaptive FilterFigure 6.5 Generic Adaptive FilterFigure 6.5 Generic Adaptive Filter

u(n)

∑

e(n)

y(n) y(n)^
Adaptive
Equalizer

Adaptive
Algorithm

Decision
Device

+ -
Desired
Signal1

2

Position 1: Training Mode
Position 2: Tracking Mode

d(n)

66666

168168168168168

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.2.16.2.16.2.16.2.16.2.1 Transversal Filter ImplementationTransversal Filter ImplementationTransversal Filter ImplementationTransversal Filter ImplementationTransversal Filter Implementation
The transversal and symmetric transversal FIR filter structures require the
use of a delay line of input samples u(n). The samples u(n), u(n-1), ...,
u(n-N+1) are stored in a circular Data Memory buffer in a reverse order.
The filter weights w0, w1,...,wN – 1 are placed in a circular Program Memory
Data buffer in forward order. Note that u(n + 1) replaces u(n– N + 1) at
time n + 1; therefore, the index of the delay line buffer must point to u(n -
N + 1) before the next filter iteration.

6.2.26.2.26.2.26.2.26.2.2 LMS (Transversal FIR Filter Structure)LMS (Transversal FIR Filter Structure)LMS (Transversal FIR Filter Structure)LMS (Transversal FIR Filter Structure)LMS (Transversal FIR Filter Structure)
The routine accepts two inputs, the input sample, u(n), and the desired
output, d(n).

The filter output, y(n), is calculated in terms of the difference equation

 N-1

y(n) = ∑ wi(n) u(n – i)

 i=0

The calculation is made in the single-instruction macs loop, which stores
the u(n) value in a delay line when input. Once the output y(n) is
calculated, its value is subtracted from d(n) to yield the error signal, e(n).
The tap weights are updated according to the relationship

wi(n+1) = wi(n) + STEPSIZE * e(n) * u(n – i)

where 0 ≤ i ≤ N – 1.The weights buffer is then updated with the new
value. STEPSIZE is a constant set to 0.005. Increasing this value
decreases adaptation time, but has a negative effect on the system’s
steady-state mean-squared error.

169169169169169

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.2.2.16.2.2.16.2.2.16.2.2.16.2.2.1 Code Listing—lms.asmCode Listing—lms.asmCode Listing—lms.asmCode Listing—lms.asmCode Listing—lms.asm
/

File Name
LMS.ASM

Version
April 2 1991

Purpose
Performs LMS algorithm implemented with a transversal FIR filter structure.

Equations Implemented
**
* 1) y(n)= w.u (. = dot_product), y(n)= FIR filter output *
* where w= [w0(n) w1(n) ... wN-1(n)]= filter weights *
* and u= [u(n) u(n-1) ... u(n-N+1)]= input samples in delay line*
* n= time index, N= number of filter weights (taps) *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= wi(n)+STEPSIZE*e(n)*u(n-i), 0 =<i<= N-1 *
**

Calling Parameters
f0= u(n) = input sample
f1= d(n) = desired output

Return Values
f13= y(n)= filter output
f6= e(n)= filter error signal
i8 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f4, f6, f7, f8, f12, f13

Cycle Count
lms_alg: 3N+8 per iteration, lms_init: 12+N

PM Locations
pm code= 29 words, pm data= N words

DM Locations
dm data= N words

***/

#define TAPS 5
#define STEPSIZE 0.005

.GLOBAL lms_init, lms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[TAPS];

.ENDSEG; (listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

170170170170170

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
lms_init: b0=deline_data;

m0=-1;
l0=TAPS; /* circular delay line buffer */
b8=weights;
b9=b8;
m8=1;
l8=TAPS; /* circular weight buffer */
l9=l8;
f7=STEPSIZE;
f0=0.0;
lcntr=TAPS, do clear_bufs until lce;

clear_bufs: dm(i0,m0)=f0, pm(i8,m8)=f0;
rts; /* clear delay line & weights */

lms_alg: dm(i0,m0)=f0, f4=pm(i8,m8);
 /* store u(n) in delay line, f4=w0(n) */

f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8); /*f8= u(n)*w0(n)
 f0= u(n-1), f4= w1(n) */

f12=f0*f4, f0=dm(i0,m0), f4= pm(i8,m8);
 /* f12= u(n-1)*w1(n), f0= u(n-2), f4= w2(n) */

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4= pm(i8,m8);
 /* f12= u(n-i)*wi(n), f8= sum of prod,
 f0= u(n-i-1), f4= wi+1(n) */

f12=f0*f4, f8=f8+f12; /* f12= u(n-N+1)*wN-1(n) */
f13=f8+f12; /* f13= y(n) */
f6=f1-f13; /* f6= e(n) */
f1=f6*f7, f4=dm(i0,m0); /* f1= STEPSIZE*e(n), f4= u(n) */
f0=f1*f4, f12=pm(i8,m8);/* f0= STEPSIZE*e(n)*u(n),
 f12= w0(n) */

lcntr=TAPS-1, do update_weights until lce;
 f8=f0+f12, f4=dm(i0,m0), f12=pm(i8,m8); /* f8= wi(n+1) */

 /* f4= u(n-i-1), f12= wi+1(n) */

update_weights: f0=f1*f4, pm(i9,m8)=f8; /* f0= STEPSIZE*e(n)*u(n-i-1) */
 /* store wi(n+1) */

rts(db);
f8=f0+f12, f0=dm(i0,1); /* f8= wN-1(n+1) */

/* i0 -> u(n+1) location in delay line */
pm(i9,m8)=f8; /* store wN-1(n+1) */

.ENDSEG;

Listing 6.1 lms.asmListing 6.1 lms.asmListing 6.1 lms.asmListing 6.1 lms.asmListing 6.1 lms.asm

171171171171171

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.2.36.2.36.2.36.2.36.2.3 llms.asm—Leaky LMS Algorithm (Transversal)llms.asm—Leaky LMS Algorithm (Transversal)llms.asm—Leaky LMS Algorithm (Transversal)llms.asm—Leaky LMS Algorithm (Transversal)llms.asm—Leaky LMS Algorithm (Transversal)
Implementation of this algorithm is similar to the standard LMS, except
the tap weight update calculation takes into account the constant
LEAK_COEF , such that

wi(n + 1) = LEAK_COEF * wi(n) + STEPSIZE * e(n) * u(n – i)

6.2.3.16.2.3.16.2.3.16.2.3.16.2.3.1 Code ListingCode ListingCode ListingCode ListingCode Listing
/

File Name
LLMS.ASM

Version
April 2 1991

Purpose
Performs the “leaky” LMS algorithm implemented with a
transversal FIR filter structure

Equations Implemented

* 1) y(n)= w.u (. = dot_product), y(n)= FIR filter output *
* where w= [w0(n) w1(n) ... wN-1(n)]= filter weights *
* and u= [u(n) u(n-1) ... u(n-N+1)]= input samples in delay line*
* n= time index, N= number of filter weights (taps) *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= LEAK_COEF*wi(n)+STEPSIZE*e(n)*u(n-i), 0 =<i<= N-1 *

Calling Parameters
f0= u(n)= input sample
f1= d(n)= desired output

Return Values
f13= y(n)= filter output
f6= e(n)= filter error signal
f8 -> Program Memory Buffer of the filter weights

Registers Affected
f0, f1, f2, f4, f6, f7, f8, f9, f12, f13

Cycle Count
llms_alg: 3N+8 per iteration, llms_init: 13+N

PM Locations
pm code= 30 words, pm data= N words

DM Locations
dm data= N words (listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

172172172172172

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

***/

#define TAPS 5
#define STEPSIZE 0.0045
#define LEAK_COEF 0.9995

.GLOBAL llms_init, llms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
llms_init: b0=deline_data;

m0=-1;
l0=TAPS; /* circular delay line buffer */
b8=weights;
b9=b8;
m8=1;
l8=TAPS; /* circular weight buffer */
l9=l8;
f7=STEPSIZE;
f2=LEAK_COEF;
f0=0.0;

lcntr=TAPS, do clear_bufs until lce;
clear_bufs: dm(i0,m0)=f0, pm(i8,m8)=f0; /* clear delay line & weights */

rts;

llms_alg: f9= pass f1, dm(i0,m0)=f0, f4=pm(i8,m8);
 /* store u(n) in delay line, f4= w0(n), f9= d(n) */

f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8); /* f8= u(n)*w0(n) */
 /* f0= u(n-1), f4= w1(n) */

f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f12= u(n-1)*w1(n), f0= u(n-2), f4= w2(n) */

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f12= u(n-i)*wi(n), f8= sum of prod,
 f0= u(n-i-1), f4= wi+1(n) */

f12=f0*f4, f8=f8+f12; /* f12=u(n-N+1)*wN-1(n) */
f13=f8+f12, f4=pm(i8,m8); /* f13= y(n), f4= w0(n) */
f12=f2*f4, f6=f9-f13, f4=dm(i0,m0); /* f12= LEAK_COEF*w0(n)

 f6= e(n), f4= u(n)*/
f0=f6*f7; /* f0= STEPSIZE*e(n) */
f9=f0*f4, f4=dm(i0,m0); /* f9= STEPSIZE*e(n)*u(n),
 f4= u(n-1) */

173173173173173

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

lcntr=TAPS-1, do update_weights until lce;
f9=f0*f4, f8=f9+f12, f4=dm(i0,m0), f12=pm(i8,m8); /*
f9=STEPSIZE*e(n)*u(n-i-1), f8=wi(n+1),

f4=u(n-i-2),f12=wi+1(n) */
update_weights: f12=f2*f12, pm(i9,m8)=f8;
/* f12= LEAK_COEF*wi+1(n), store wi(n+1) */ rts(db);

f8=f9+f12, f0=dm(i0,2);
/* f8= wN-1(n+1) i0 -> u(n+1) location in delay line */

pm(i9,m8)=f8; /* store wN-1(n+1) */

.ENDSEG;

Listing 6.2 llms.asmListing 6.2 llms.asmListing 6.2 llms.asmListing 6.2 llms.asmListing 6.2 llms.asm

6.2.46.2.46.2.46.2.46.2.4 Normalized LMS Algorithm (Transversal)Normalized LMS Algorithm (Transversal)Normalized LMS Algorithm (Transversal)Normalized LMS Algorithm (Transversal)Normalized LMS Algorithm (Transversal)
This implementation is similar to the standard LMS of lms.asm , but
adds calculation for the normalized stepsize. The normalized stepsize is
calculated using the constants ALPHA and GAMMA and the value E(n),
which represents the energy in the delay line. E(n)is calculated recursively
in the outer nlms_alg loop, just prior to the main filter calculation loop,
macs .

66666

174174174174174

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.2.4.16.2.4.16.2.4.16.2.4.16.2.4.1 Code Listing—nlms.asmCode Listing—nlms.asmCode Listing—nlms.asmCode Listing—nlms.asmCode Listing—nlms.asm

/***

File Name
NLMS.ASM

Version
April 2 1991

Purpose
Performs the normalized LMS algorithm implemented
with a transversal FIR filter structure.

Equations Implemented

* 1) y(n)= w.u (. = dot_product), y(n)= FIR filter output *
* where w= [w0(n) w1(n) ... wN-1(n)]= filter weights *
* and u=[u(n) u(n-1) ... u(n-N+1)]= input samples in delay line*
* n= time index, N= number of filter weights (taps) *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= wi(n)+normalized_stepsize*e(n)*u(n-i), 0 =<i<= N-1*
* 4) normalized_stepsize= ALPHA/(GAMMA+E(n)) *
* where E(n)= u.u = energy in delay line *
* E(n) is computed recursively as follows *
* 5) E(n)= E(n-1)+u(n)**2-u(n-N)**2 *

Calling Parameters
f0= u(n) = input sample
f1= d(n) = desired output

Return Values
f2= y(n)= filter output
f6= e(n)= filter error signal
i8 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f2, f4, f5, f6, f7, f8, f9, f11, f12, f13, f14

Cycle Count
nlms_alg: 3N+16 per iteration, nlms_init: 14+N

PM Locations
pm code= 32 words, pm data= N words

DM Locations
dm data= N words

***/

175175175175175

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

#define TAPS 5
#define ALPHA 0.1
#define GAMMA 0.1

#include “a:\global\macros.h”

.GLOBAL nlms_init, nlms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
nlms_init: b0=deline_data;

m0=-1;
l0=TAPS; /* circular delay line buffer */
b8=weights;
b9=weights;
m8=1;
l8=TAPS; /* circular weight buffer */
l9=TAPS;
f5=ALPHA;
f11=GAMMA; /* f11= E(0)= GAMMA */
f9= 2.0; /* f9= 2.0 for DIVIDE_ macro */
f13=0.0;
lcntr=TAPS, do clear_bufs until lce;

clear_bufs: dm(i0,m0)=f13, pm(i8,m8)=f13;
 /* clear delay line & weights */

rts;

nlms_alg: f14=f0*f0, dm(i0,m0)=f0, f4=pm(i8,m8);
 /* f14= u(n)**2, store u(n) in delay line, f4= w0(n) */

f8=f0*f4, f11=f11+f14, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f11= E(n-1)+u(n)**2, f8=u(n)*w0(n) */
f12=f0*f4, f11=f11-f13, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f12= u(n-1)*w1(n), f11= E(n), f0= u(n-2),

 f4= w2(n) */

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f12= u(n-i)*wi(n), f8= sum of prod, f0= u(n-i-1),
 f4= wi+1(n) */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

176176176176176

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

f12=f0*f4, f8=f8+f12, f14=f11; /* f12= u(n-N+1)*wN-1(n),
 f14= E(n) */
f2=f8+f12; /* f2= y(n) */
f6=f1-f2, f4=dm(i0,m0); /* f6= e(n), f4= u(n) */
f7=f6*f5; /* f7= ALPHA*e(n) */
DIVIDE(f1,f7,f14,f9,f0); /* f1= normalized_stepsize*e(n) */
f0=f1*f4, f12=pm(i8,m8); /* f0= f1*u(n), f12= w0(n) */

lcntr=TAPS-1, do update_weights until lce;
 f8=f0+f12, f4=dm(i0,m0), f12=pm(i8,m8); /* f8= wi(n+1)

 f4= u(n-i-1), f12= wi+1(n) */
update_weights: f0=f1*f4, pm(i9,m8)=f8;
 /* f0=normalized_stepsize*e(n)*u(n-i-1)

 store wi(n+1)*/
rts(db);
f8=f0+f12, f0=dm(i0,1); /* f8= wN-1(n+1)

i0 -> u(n+1) location in delay line */
f13=f4*f4, pm(i9,m8)=f8; /* f13= u(n-N)**2, store wN-1(n+1) */

.ENDSEG;

Listing 6.3 nlms.asmListing 6.3 nlms.asmListing 6.3 nlms.asmListing 6.3 nlms.asmListing 6.3 nlms.asm

6.2.56.2.56.2.56.2.56.2.5 Sign-Error LMS (Transversal)Sign-Error LMS (Transversal)Sign-Error LMS (Transversal)Sign-Error LMS (Transversal)Sign-Error LMS (Transversal)
The sign-error LMS, along with sign-data and sign-sign implementations, represent
attempts to simplify the computational requirements of the LMS by reducing the
number of multiplies required. While this approach has benefits for discrete IC or
VLSI implementations, there is no computational benefit for programmable DSP
processor implementations. The filter implementations are similar to the standard
LMS, but the tap weight updates use information related to the sign of the error
signal and/or the input data.

For the sign-error algorithm, taps are updated according to the relationship

wi(n+1) = wi(n) + STEPSIZE * sgn{e(n)} * u(n – i)

where

sgn{x} = 1 for x ≥ 0
sgn{x} = –1 for x < 0

This function is implemented after the main filter calculation loop, macs , and prior
to the update_weights loop, as the error signal is used across all weights i, for
any given time, n.

177177177177177

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.2.5.16.2.5.16.2.5.16.2.5.16.2.5.1 Code Listing—selms.asmCode Listing—selms.asmCode Listing—selms.asmCode Listing—selms.asmCode Listing—selms.asm

/

File Name
 SELMS.ASM

Version
April 2 1991

Purpose
Performs the sign-error LMS algorithm implemented
with a transversal FIR filter structure

Equations Implemented
**
* 1) y(n)= w.u (. = dot_product) , y(n)= FIR filter output *
* where w= [w0(n) w1(n) ... wN-1(n)]= filter weights *
* and u= [u(n) u(n-1) ... u(n-N+1)]= input samples in delay line *
* n= time index, N= number of filter weights (taps) *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= wi(n)+STEPSIZE*sgn[e(n)]*u(n-i), 0 =<i<= N-1 *
* where sgn[e(n)]= +1 if e(n) >= 0 and -1 if e(n) < 0 *
**

Calling Parameters
f0= u(n)= input sample
f1= d(n)= desired output

Return Values
 f13= y(n)= filter output
 f1= e(n)= filter error signal
 i8 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f2, f4, f7, f8, f12, f13

Cycle Count
selms_alg: 3N+8 per iteration, selms_init: 12+N

PM Locations
pm code: 29 words, pm data= N words

DM Locations
dm data= N words

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

178178178178178

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

***/

#define TAPS 5
#define STEPSIZE 0.005

.GLOBAL selms_init;

.GLOBAL selms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
selms_init: b0=deline_data;

m0=-1;
l0=TAPS; /* circular delay line buffer */
b8=weights;
b9=b8;
m8=1;
l8=TAPS; /* circular weight buffer */
l9=l8;
f7=STEPSIZE;
f0=0.0;

lcntr=TAPS, do clear_bufs until lce;
clear_bufs: dm(i0,m0)=f0, pm(i8,m8)=f0;
 /* clear delay line & weights */

rts;

selms_alg: dm(i0,m0)=f0, f4=pm(i8,m8);
 /* store u(n) in delay line, f4= w0(n) */

f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f8= u(n)*w0(n)f0= u(n-1), f4= w1(n) */

f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f12= u(n-1)*w1(n), f0= u(n-2), f4= w2(n)
*/

179179179179179

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f12= u(n-i)*wi(n), f8= sum of prod, f0= u(n-i-1), f4= wi+1(n) */
 f12=f0*f4, f8=f8+f12; /* f12=u(n-N+1)*wN-1(n) */
 f13=f8+f12, f2=f7; /* f13= y(n), f2= step-size */
 f1=f1-f13, f4=dm(i0,m0);/* f1= e(n), f4= u(n) */
 if lt f2=-f7;
 /* if e(n) < 0 then f2= -step-size */

f0=f2*f4, f12=pm(i8,m8);/* f0= f2*u(n), f12= w0(n) */

lcntr=TAPS-1, do update_weights until lce;
 f8=f0+f12, f4=dm(i0,m0), f12=pm(i8,m8);

 /* f8= wi(n+1), f4= u(n-i-1), f12= wi+1(n) */
update_weights: f0=f2*f4, pm(i9,m8)=f8;
 /* store wi(n+1) */

 rts(db);
 f8=f0+f12, f0=dm(i0,1); /* f8= wN-1(n+1) */
 /* i0 -> u(n+1) location in delay line */
 pm(i9,m8)=f8; /* store wN-1(n+1) */

.ENDSEG;

Listing 6.4 selms.asmListing 6.4 selms.asmListing 6.4 selms.asmListing 6.4 selms.asmListing 6.4 selms.asm

6.2.66.2.66.2.66.2.66.2.6 Sign-Data LMS (Transversal)Sign-Data LMS (Transversal)Sign-Data LMS (Transversal)Sign-Data LMS (Transversal)Sign-Data LMS (Transversal)
Another sign variation, this time relying on the sign of the data input, where

wi(n+1) = wi(n) + STEPSIZE * e(n) * sgn{u(n - i)}.

The sign function here is implemented in the update_weights loop, as

66666

180180180180180

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

previous input values have influence across the taps, i, for a given time, n.

6.2.6.16.2.6.16.2.6.16.2.6.16.2.6.1 Code Listing—sdlms.asmCode Listing—sdlms.asmCode Listing—sdlms.asmCode Listing—sdlms.asmCode Listing—sdlms.asm

/

File Name
 SDLMS.ASM

Version
April 2 1991

Purpose
Performs the sign-data LMS algorithm implemented with
a transversal FIR filter structure

Equations Implemented

* 1) y(n)= w.u (. = dot_product), y(n)= FIR filter output *
* where w= [w0(n) w1(n) ... wN-1(n)]= filter weights *
* and u= [u(n) u(n-1) ... u(n-N+1)]= input samples in delay line*
* n= time index, N= number of filter weights (taps) *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= wi(n)+STEPSIZE*e(n)*sgn[u(n-i)], 0 =<i<= N-1 *
* where sgn[u(n)]= +1 if u(n) >= 0 and -1 if u(n) < 0 *

Calling Parameters
f0= u(n)= input sample
f1= d(n)= desired output

Return Values
f13= y(n)= filter output
f6= e(n)= filter error signal
i8 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f4, f5, f6, f7, f8, f9, f12, f13

Cycle Count
sdlms_alg: 4N+8 per iteration, sdlms_init: 13+N

PM Locations
pm code= 32 words, pm data= N words

DM Locations

181181181181181

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

dm data= N words
***/

#define TAPS 5
#define STEPSIZE 0.005

.GLOBAL sdlms_init, sdlms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
sdlms_init: b0=deline_data;

m0=-1;
l0=TAPS; /* circular delay line buffer */
b8=weights;
b9=b8;
m8=1;
l8=TAPS; /* circular weight buffer */
l9=l8;
f7=STEPSIZE;
f5=1.0;
f0=0.0;
lcntr=TAPS, do clear_bufs until lce;

clear_bufs: dm(i0,m0)=f0, pm(i8,m8)=f0;
 /* clear delay line & weights */

rts;

sdlms_alg: dm(i0,m0)=f0, f4=pm(i8,m8);
 /* f4=w0(n),store u(n) in delay line */

f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f8= u(n)*w0(n) f0= u(n-1), f4= w1(n) */

f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f12= u(n-1)*w1(n), f0= u(n-2), f4= w2(n)

*/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

182182182182182

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f12= u(n-i)*wi(n), f8= sum of prod, f0= u(n-i-1), f4= wi+1(n)
*/

f12=f0*f4, f8=f8+f12; /* f12=u(n-N+1)*wN-1(n) */
f13=f8+f12, f12=pm(i8,m8);/* f13= y(n), f12= w0(n) */
f6=f1-f13, f8=dm(i0,m0); /* f6= e(n), f8= u(n) */
f1=f6*f7, f4=dm(i0,m0); /* f1= STEPSIZE*e(n),f4=u(n-1) */
f0=pass f8, f9=f1; /* set ALU flags for sign of u(n) */

lcntr=TAPS-1, do update_weights until lce;
 if lt f9=-f1;

 /* if u(n-i) < 0 then f9= -STEPSIZE*e(n) */
 f9=f1*f5, f8=f9+f12, f12=pm(i8,m8);

 /* f8= wi-1(n+1) f12= wi(n), f9= STEPSIZE*e(n)
*/
update_weights: f0=pass f4, f4=dm(i0,m0), pm(i9,m8)=f8;
 /*store wi-1(n+1) set ALU flags for sign of u(n-i), f4= u(n-i-1)
*/

if lt f9=-f1;
rts(db);
f8=f9+f12, f0=dm(i0,2);

183183183183183

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

 /* f8= wN-1(n+1) i0 -> u(n+1) location in delay line
*/

pm(i9,m8)=f8; /* store wN-1(n+1) */

.ENDSEG;

Listing 6.5 sdlms.asmListing 6.5 sdlms.asmListing 6.5 sdlms.asmListing 6.5 sdlms.asmListing 6.5 sdlms.asm

6.2.76.2.76.2.76.2.76.2.7 Sign-Sign LMS (Transversal)Sign-Sign LMS (Transversal)Sign-Sign LMS (Transversal)Sign-Sign LMS (Transversal)Sign-Sign LMS (Transversal)
This sign variation uses sign information from both the error signal and
input value to calculate the tap weight updates, using the relationship

wi(n+1) = wi(n) + STEPSIZE * sgn{e(n)} * sgn{u(n – i)}

The error value, e(n), and the input value, u(n), are multiplied together in
the update_weights loop in order to set the appropriate multiplier sign
flags. The resultant flags determine whether the STEPSIZE value is
added or subtracted from the past tap weight.

6.2.7.16.2.7.16.2.7.16.2.7.16.2.7.1 Code Listing—sslms.asmCode Listing—sslms.asmCode Listing—sslms.asmCode Listing—sslms.asmCode Listing—sslms.asm

/

File Name
 SSLMS.ASM

Version
April 2 1991

Purpose
Performs the sign-sign LMS algorithm implemented with
a transversal FIR filter structure

Equations Implemented

* 1) y(n)= w.u (. = dot_product), y(n)= FIR filter output *
* where w= [w0(n) w1(n) ... wN-1(n)]= filter weights *
* and u= [u(n) u(n-1) ... u(n-N+1)]= input samples in delay line*
* n= time index, N= number of filter weights (taps) *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= wi(n)+STEPSIZE*sgn[e(n)]*sgn[u(n-i)], 0 =<i<= N-1 *
* where sgn[x]= +1 if x >= 0 and -1 if x < 0 *

Calling Parameters
f0= u(n)= input sample

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

184184184184184

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

f1= d(n)= desired output

Return Values
f13= y(n)= filter output
f1= e(n)= filter error signal
i8 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f2, f4, f7, f8, f9, f12, f13

Cycle Count
sslms_alg: 4N+7 per iteration, sslms_init: 13+N

PM Locations
pm code= 31 words, pm data= N words

DM Locations
dm data= N words

***/

#define TAPS 5
#define STEPSIZE 0.005

.GLOBAL sslms_init, sslms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
sslms_init: b0=deline_data;

m0=-1;
l0=TAPS; /* circular delay line buffer */
b8=weights;
b9=b8;
m8=1;
l8=TAPS; /* circular weight buffer */
l9=l8;
f7=STEPSIZE;
f2=1.0;
f0=0.0;

lcntr=TAPS, do clear_bufs until lce;
clear_bufs: dm(i0,m0)=f0, pm(i8,m8)=f0; /* clear delay line & weights */

rts;

sslms_alg: dm(i0,m0)=f0, f4=pm(i8,m8);

185185185185185

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

 /* f4=w0(n), store u(n) in delay line */
f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f8= u(n)*w0(n), f0= u(n-1), f4= w1(n) */
f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f12= u(n-1)*w1(n), f0= u(n-2), f4= w2(n)
*/

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);

 /* f12= u(n-i)*wi(n), f8= sum of prod, f0= u(n-i-1), f4= wi+1(n)
*/

f12=f0*f4, f8=f8+f12; /* f12=u(n-N+1)*wN-1(n) */
f13=f8+f12, f8=dm(i0,m0), f12=pm(i8,m8);

 /* f13= y(n), f12= w0(n) */
 f1=f1-f13, f9=f7; /* f1= e(n), f8= u(n), f9= STEPSIZE */

f0=f1*f8, f4=dm(i0,m0);
 /* f0= u(n)*e(n) to set multiplier flags for sign of product, f4=u(n-1)
*/

lcntr=TAPS-1, do update_weights until lce;
 if ms f9=-f7; /* if u(n)*e(n)<0 then f9=-STEPSIZE */
 f9=f2*f7, f8=f9+f12, f12=pm(i8,m8);

 /* restore f9 to STEPSIZE f8= wi-1(n+1), f12= wi(n)
*/
update_weights: f0=f1*f4, f4=dm(i0,m0), pm(i9,m8)=f8;
 /* store wi-1(n+1),set multiplier flags, f4= u(n-i-1)
*/

if ms f9=-f7;
rts(db);
f8=f9+f12, f0=dm(i0,2);
 /* i0 -> u(n+1) location in delay line,.f8= wN-1(n+1)

*/
pm(i9,m8)=f8; /* store wN-1(n+1) */

.ENDSEG;

Listing 6.6 sslms.asmListing 6.6 sslms.asmListing 6.6 sslms.asmListing 6.6 sslms.asmListing 6.6 sslms.asm

6.2.86.2.86.2.86.2.86.2.8 Symmetric Transversal Filter Implementation LMSSymmetric Transversal Filter Implementation LMSSymmetric Transversal Filter Implementation LMSSymmetric Transversal Filter Implementation LMSSymmetric Transversal Filter Implementation LMS
In this routine, the filter output is defined as

 N–1

66666

186186186186186

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

y(n) = ∑ wi(n) * [u(n – i) + u(n – M + i + 1)].

 i=0

The filter calculation is broken up into two loops. The macs loop is
similar to the one in lms.asm , but this algorithm adds a second
calculation loop, macs1 , to account for the second term in the
sum-of-products. The update_weights loop has an added multiply to
account for the extra term in the weight update equation

wi(n + 1) = wi(n) + STEPSIZE * e(n) * [u(n – i) + u(n – M + i + 1)]

6.2.8.16.2.8.16.2.8.16.2.8.16.2.8.1 Code Listing—sylms.asmCode Listing—sylms.asmCode Listing—sylms.asmCode Listing—sylms.asmCode Listing—sylms.asm
/

File Name
SYLMS.ASM

Version
April 2 1991

Purpose
Even order symmetric transversal filter structure implementation of the LMS

algorithm

Equations Implemented

* 1) y(n)= SUM[wi(n)*[u(n-i)+u(n-M+i+1)]] for 0 =<i<= N-1 *
* where y(n)= FIR filter output, wi= filter weights *
* u= input samples in delay line, N= number of weights (taps),*
* n= time index, and M= 2N= length of delay line *
* 2) e(n)= d(n)-y(n), e(n)= error signal & d(n)= desired output *
* 3) wi(n+1)= wi(n)+STEPSIZE*e(n)*[u(n-i)+u(n-M+i+1)], 0=<i<=N-1*

Calling Parameters
Calling parameters (inputs):
f0= u(n)= input sample
f1= d(n)= desired output

Return Values
f13= y(n)= filter output
f6= e(n)= filter error signal

187187187187187

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

i8 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f3, f4, f6, f7, f8, f9, f12, f13

Cycle Count
sylms_alg: 2M+10 per iteration, sylms_init: 17+M

PM Locations
pm code= 39 words, pm data= N words

DM Locations
dm data= 2N

***/

#define TAPS 4
#define STEPSIZE 0.005

.GLOBAL sylms_init, sylms_alg;

.SEGMENT/DM dm_data;

.VAR deline_data[2*TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
sylms_init: b0=deline_data;

b3=deline_data;
m0=-1;
m1=1;
m2=TAPS+2;
l0=2*TAPS; /* circular delay line buffer of length M= 2N */
l3=2*TAPS;
b8=weights;
b9=weights;
m8=1;
m9=-1;
m10=-2;
l8=TAPS; /* circular weight buffer */
l9=TAPS;
f7=STEPSIZE;
f0=0.0;
lcntr=2*TAPS, do clear_bufs until lce;

clear_bufs: dm(i0,m0)=f0, pm(i8,m8)=f0;
 /* clear delay line & weights */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

188188188188188

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

rts;

sylms_alg: dm(i0,m0)=f0, f4=pm(i8,m8);
 /* store u(n) in delay line, f4=w0(n) */

f8=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f8= u(n)*w0(n), f0= u(n-1), f4= w1(n) */

f12=f0*f4, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f12= u(n-1)*w1(n), f0= u(n-2), f4= w2(n) */

lcntr=TAPS-3, do macs until lce;
macs: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m8);
 /* f12= u(n-i)*wi(n), f8= sum of prod, f0= u(n-i-1), f4=wi+1(n) */

f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f9=pm(i8,m10);
 /* f12= u(n-N+1)*wN-1(n), i8 -> wN-2(n) */

lcntr=TAPS-1, do macs1 until lce;
macs1: f12=f0*f4, f8=f8+f12, f0=dm(i0,m0), f4=pm(i8,m9);
 /* f4=wi-1(n) */

f12=f0*f4, f8=f8+f12, i3=i0;
f13=f8+f12, f9=dm(i0,m0), f12=pm(i8,m8);

 /* f13= y(n), i0 -> u(n-1), i8 -> w0(n) */
f6=f1-f13, f4=dm(i3,m1);

 /*f6= e(n), f4= u(n), i3 -> u(n-M+1) */
f1=f6*f7, f3=dm(i3,m1); /* f1= STEPSIZE*e(n), f3= u(n-M+1) */
f4=f3+f4, f3=dm(i3,m1), f12=pm(i8,m8);
 /* f4= u(n)+u(n-M+1), f3= u(n-M+2), f12=w0(n) */
f9=f1*f4, f0=dm(i0,m0);

 /* f9= STEPSIZE*e(n)*[u(n)+u(n-M+1)] f0= u(n-1) */
f4=f0+f3, f3=dm(i3,m1);

 /* f4= u(n-1)+u(n-M+2), f3= u(n-M+3)*/

189189189189189

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

lcntr=TAPS-1, do update_weights until lce;
 f9=f1*f4, f8=f9+f12, f0=dm(i0,m0), f12=pm(i8,m8)

 /* f9= STEPSIZE*e(n)*[u(n-i-1)+u(n-M+2+i)], */
 /* f8= wi(n+1), f0= u(n-2-i), f12= wi+1(n) */
update_weights: f4=f0+f3, f3=dm(i3,m1), pm(i9,m8)=f8;

 /* f4=u(n-2-i)+u(n-M+3+i), f3=u(n-M+4+i), store
wi(n+1) */

rts(db);
f8=f9+f12, f0=dm(i0,m2);
 /* i0 ->u(n+1) location in delay line */
pm(i9,m8)=f8;

.ENDSEG;

Listing 6.7 sylms.asmListing 6.7 sylms.asmListing 6.7 sylms.asmListing 6.7 sylms.asmListing 6.7 sylms.asm

6.2.96.2.96.2.96.2.96.2.9 Lattice Filter LMS With Joint Process EstimationLattice Filter LMS With Joint Process EstimationLattice Filter LMS With Joint Process EstimationLattice Filter LMS With Joint Process EstimationLattice Filter LMS With Joint Process Estimation
The LMS algorithm is implemented using a lattice structure with Joint
Process estimation. The utility of a multistage lattice predictor is extended
by using the resulting sequence of backward prediction errors, bm(n), as
inputs to a corresponding set of tap coefficients gm(n), to produce the
minimum mean-square estimate of some desired response d(n). This is
referred to as a Joint Process estimator since it provides simultaneous
calculation of both forward prediction, fm(n), as well as backward
prediction, providing the optimum estimation of the desired response.
This joint process LMS technique allows very fast system adaptation for
channel equalization and noise cancellation applications. This technique is
also known as the gradient lattice-ladder algorithm.

The lattice parameters are described by the relationship

km(n + 1) = Km(n) + µ[fm(n) bm –1 (n – 1) + bm(n) fm-1(n)]

where 0 < m ≤ M. The first-stage error is set as

e0(n) = d(n) – b0(n) g0(n)

and subsequent stages set as

em(n) = em–1(n) – bm(n) gm(n)

where 0 < m < M. The tap coefficients are updated using the relationship

gm(n+1) = gm(n) + µem(n) bm(n)

66666

190190190190190

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

where 0 < m ≤ M.

The output value, y(n), is calculated using the difference equation
M

y(n) = ∑ gm(n) bm(n)

191191191191191

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

m = 0

The gradient lattice algorithm provides significantly faster convergence than the
LMS algorithm. Unlike the LMS algorithm, the convergence rate of the gradient
lattice algorithm does not depend on the eigenvalue spread of the autocorrelation
matrix.

In addition to the filter weight, filter error, and filter output, this routine also
provides reflection coefficient, forward prediction error, and backward prediction
error as outputs. The lattice algorithm is implemented in the update_coefs loop.
This loop is STAGES long, where STAGES is a constant set to the length of the
lattice structure (STAGES = 3 in this example).

6.2.9.16.2.9.16.2.9.16.2.9.16.2.9.1 Code Listing—latlms.asmCode Listing—latlms.asmCode Listing—latlms.asmCode Listing—latlms.asmCode Listing—latlms.asm

/

File Name
LATLMS.ASM

Version
April 9 1991

Purpose
Performs the LMS algorithm implemented with a lattice FIR filter structure

with Joint Process estimation

Equations Implemented

* 1) f0(n)= b0(n)= u(n) *
* 2) fm(n)= fm-1(n) - km(n)*bm-1(n-1), 0 <m<= M *
* 3) bm(n)= bm-1(n-1) - km(n)*fm-1(n), 0 <m<= M *
* 4) km(n+1)= km(n) + STEPSIZE*[fm(n)*bm-1(n-1) + bm(n)*fm-1(n)],*
* 0 <m<= M *
* where u(n)= input sample, n= time index, M= Number of stages *
* fm(n)= forward prediction error of the mth stage *
* bm(n)= backward prediction error of the mth stage *
* km(n)= reflection coefficient of the mth stage *
* *
* 5) e0(n)= d(n) - b0(n)*g0(n) *
* 6) em(n)= em-1(n) - bm(n)*gm(n), 0 <m<= M *
* 7) gm(n+1)= gm(n) + STEPSIZE*em(n)*bm(n), 0 <=m<= M *
* 8) y(n)= SUM [gm(n)*bm(n)] for 0 <=m<= M *
* where d(n)= desired output, y(n)= FIR filter output *
* em(n)= output error at the mth stage *

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

192192192192192

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

* gm(n)= filter weight at the mth stage *
**

Calling Parameters
f0= u(n)= input sample
f9= d(n)= desired output

Return Values
f0= bm(n)= mth backward prediction error
f2= fm(n)= mth forward prediction error
f6= em(n)= mth output error
f12= y(n)= filter output
i8 -> Program Memory Data buffer of the reflection coefficients
i10 -> Program Memory Data buffer of the filter weights

Registers Affected
f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f12, f13

Cycle Count
 LATLMS_ALG: 7+11M per iteration , LATLMS_INIT: 16+2M

PM Locations
 pm code= 36 words, pm data= 2M+1

DM Locations
dm data= M+1

***/

#define STAGES 3
#define STEPSIZE 0.005

.GLOBAL latlms_init, latlms_alg;

.SEGMENT/DM dm_data;

.VAR bpe_coef[STAGES+1];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR weights[STAGES+1];

.VAR ref_coef[STAGES];

.ENDSEG;

.SEGMENT/PM pm_code;

193193193193193

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

latlms_init: b0=bpe_coef;
m0=0;
m1=1;
l0=STAGES+1;
b8=ref_coef;
b10=weights;
m8=0;
m9=1;
l8=STAGES;
l10=STAGES+1;
f7=STEPSIZE;
f0=0.0;
lcntr=STAGES, do clear_bufs until lce;
 dm(i0,m1)=f0, pm(i8,m9)=f0;

clear_bufs: pm(i10,m9)=f0;
rts(db);
dm(i0,m1)=f0, pm(i10,m9)=f0;
nop;

latlms_alg: f10=pass f0, f1=dm(i0,m0), f4=pm(i10,m8);
/* f0= b0(n), f10= f0(n), f1= b0(n-1), f4= g0(n) */

f12=f0*f4, dm(i0,m1)=f0, f5=pm(i8,m9);
/* f12= y0(n)= b0(n)*g0(n), store b0(n), f5= k1(n) */

f13=f1*f5, f6=f9-f12;
 /* f13= b0(n-1)*k1(n), f6= e0(n) */

lcntr=STAGES, do update_coefs until lce;
 f3=f0*f7, f2=f10-f13, f8=f4;
 /* f2= fm(n), f3= bm-1(n)*stepsize, f8= gm-1(n) */
 f13=f3*f6, f3=f10;
 /* f13= stepsize*bm-1(n)*em-1(n), f3= fm-1(n) */
 f13=f3*f5, f4=f8+f13, f8=f5;

 /* f4= gm-1(n+1), f13= fm-1(n)*km(n), f8= km(n) */
 f0=f1-f13, pm(i10,m9)=f4;

 /* f0= bm(n), store gm-1(n+1) */
 f10=f0*f3, f9=dm(i0,m0);

 /* f10= bm(n)*fm-1(n), f9= bm(n-1) */
 f13=f1*f2, dm(i0,m1)=f0, f4=pm(i10,m8);
 /* f13= bm-1(n-1)*fm(n), store bm(n), f4= gm(n) */
 f13=f0*f4, f1=f10+f13, f10=f6;

 /* f10= em-1(n)*/
 /* f13= bm(n)*gm(n), f1= fm(n)*bm-1(n-1)+bm(n)*fm-1(n) */
 f12=f12+f13, f5=pm(i8,-1);

66666

194194194194194

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

 /* f12= y(n) of mth stage, f5= km+1(n) */
 f13=f1*f7, f6=f10-f13, f1=f9;
 /* f6= em(n), f13= stepsize*f1, f1= bm(n-1) */
 f13=f1*f5, f8=f8+f13, f10=f2;
 /* f13= bm(n-1)*km+1(n), f8= km(n+1), f10= fm(n) */

update_coefs: f3= f0*f6, pm(i8,2)=f8;
 /* f3= bm(n)*em(n), store km(n+1) */

rts(db), f3=f3*f7;
 /* f3= stepsize*em(n)*bm(n) */

f4=f3+f4, f3=pm(i8,-1);
 /* f4= gm(n+1), i8 -> k1(n+1) */

pm(i10,m9)=f4;
 /* store gm(n+1) */
.ENDSEG;

Listing 6.8 latlms.asmListing 6.8 latlms.asmListing 6.8 latlms.asmListing 6.8 latlms.asmListing 6.8 latlms.asm

6.2.106.2.106.2.106.2.106.2.10 RLS (Transversal Filter)RLS (Transversal Filter)RLS (Transversal Filter)RLS (Transversal Filter)RLS (Transversal Filter)

195195195195195

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

The routine calculates the transversal filter output, y(n), much like the lms.asm
routine. The Kalman Gain Vector is computed in two steps. The first step computes
an intermediate value, x. Since x deals with the N-by-N matrix of input
autocorrelation data, it is calculated using a nested loop. The second step takes x and
performs a dot product with the input vector, u, in the mac3 loop, to create k0(n),
the first element in the vector. The subsequent vector values, ki(n), along with the tap
weight vector, wi(n), are computed in the loop comp_kn_wn . Finally, the
autocorrelation matrix, Z, is updated in a nested loop, where the inner loop updates
the rows, and the outer loop updates the columns.

During initialization, the Z-matrix is set up using the forgetting factor to create the
time decay structure. The forgetting factor is set as a constant, FORGET_FACT .

6.2.10.16.2.10.16.2.10.16.2.10.16.2.10.1 Code Listing—rls.asmCode Listing—rls.asmCode Listing—rls.asmCode Listing—rls.asmCode Listing—rls.asm
/

File Name
RLS.ASM

Version
April 18 1991

Purpose
Performs the Recursive Least-Squares (RLS) algorithm
implemented with a transversal FIR filter structure

Equations Implemented

* 1) x= s*Z(n-1).u , where s= 1/forgetting factor, n= time index *
* u= [u(n) u(n-1) ... u(n-N+1)]= input samples in delay line *
* Z is an N-by-N matrix, N= number of filter weights *
* 2) k= x/[1+u.x] where k is an N-by-1 vector *
* 3) Z(n)= s*Z(n-1) - k.xT , xT is the transpose of vector x *
* 4) e(n)= d(n) - w(N-1).u , e(n)= filter “a priori” error signal *
* w= [w0 w1 ... wN-1]= filter weights, d(n)= desired output *
* 5) w(n)= w(n-1) + k*e(n) *

Calling Parameters
f0, f1, f2, f3, f4, f5, f8, f9, f10, f11, f12, f13, f14

Return Values

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

196196196196196

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

 f13= y(n)= filter output
 f1= e(n)= filter “a priori” error signal
 i0 -> Data Memory Data buffer of the filter weights

Registers Affected
f0, f1, f2, f4, f7, f8, f9, f12, f13

Cycle Count
rls_alg: 3N**2+9N+20 per iteration, rls_init: N**2+3N+25

PM Locations
pm code= 81 words, pm data= 2N words

DM Locations
dm data= N**2+2N

***/

#define TAPS 5
#define FORGET_FACT 0.9
#define INIT_FACT 1000.

#include “b:\global\macros.h”

.GLOBAL rls_init, rls_alg;

.SEGMENT/DM dm_data;

.VAR weights[TAPS];

.VAR zmatrix[TAPS*TAPS];

.VAR xvector[TAPS];

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR deline_data[TAPS];

.VAR kvector[TAPS];

.ENDSEG;

.SEGMENT/PM pm_code;
rls_init: b0=weights;

l0=TAPS;
b1=zmatrix;
l1=TAPS*TAPS;
b3=b1;
l3=l1;
b2=xvector;
l2=TAPS;
m0=1;
m2=0;
m3=-3;
b8=deline_data;
l8=TAPS;
b9=kvector;
l9=TAPS;

197197197197197

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

m8=-1;
m9=1;
m11=3;
f10=2.0;
f14=1.0;
f5=1/FORGET_FACT;
f0=0.0;
f1=INIT_FACT;
lcntr=TAPS, do clear_bufs until lce;
 dm(i0,m0)=f0, pm(i8,m9)=f0;

clear_bufs: dm(i2,m0)=f0, pm(i9,m9)=f0;
dm(i1,m0)=f1;
lcntr=TAPS-1, do init_zmatrix until lce;
 lcntr=TAPS, do clear_zel until lce;

clear_zel: dm(i1,m0)=f0;
init_zmatrix: dm(i1,m0)=f1;

rts;

rls_alg: f4=dm(i0,m0), pm(i8,m8)=f0;
 /* f4=w0(n-1), store u(n) */

f8=f0*f4, f4=dm(i0,m0), f0=pm(i8,m8);
 /* f8=u(n)*w0(n-1), f4=w1(n-1), f0=u(n-1) */
f12=f0*f4, f4=dm(i0,m0), f0=pm(i8,m8);

 /* f12=u(n-1)*w1(n-1), f4=w2(n-1), f0=u(n-2) */

lcntr=TAPS-3, do mac1 until lce;
mac1: f12=f0*f4, f8=f8+f12, f4=dm(i0,m0), f0=pm(i8,m8);
 /* f12=u(n-i)*wi(n-1), f8=sum of prod,f4=wi+1(n-1), f0=u(n-i-1)
*/

f12=f0*f4, f8=f8+f12, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f12=u(n-N+1)*wN-1(n-1), f4=Z0(0,n-1), f0=u(n) */

f8=f0*f4, f13=f8+f12, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f13=y(n), f8= u(n)*Z0(0,n-1), f4=Z0(1,n-1), f0=u(n-1) */

f12=f0*f4, f1=f9-f13, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f1=e(n), f12=u(n-1)*Z0(1,n-1), f4=Z0(2,n-1), f0=u(n-2) */

lcntr=TAPS, do compute_xn until lce;
 lcntr=TAPS-3, do mac2 until lce;

mac2: f12=f0*f4, f8=f8+f12, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f12=u(n-i)*Zk(i,n-1), f8=sum of prod,f4=Zk(i+1,n-1), f0=u(n-i-1)
*/

 f12=f0*f4, f8=f8+f12, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f12=u(n-N+1)*Zk(N-1,n-1), f4=Zk+1(0,n-1), f0=u(n) */
 f8=f0*f4, f2=f8+f12, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f2=xk(n),f8=u(n)*Zk+1(0,n-1),f4=Zk+1(1,n-1),
 f0=u(n-1) */
 f12=f0*f4, f4=dm(i1,m0), f0=pm(i8,m8);
 /* f12=u(n-1)*Zk+1(1,n-1), f4=Zk+1(2,n-1), f0=u(n-2) */

compute_xn: dm(i2,m0)=f2;
 /* store xk(n) */

f4=dm(i1,m3), f0=pm(i8,m11);

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

198198198198198

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

 /* i1 -> Z0(0,n-1), i8 -> u(n) */
f4=dm(i2,m0), f0=pm(i8,m8);

 /* f4= x0(n), f0= u(n) */
f8=f0*f4, f4=dm(i2,m0), f0=pm(i8,m8);
 /* f8=x0(n)*u(n), f4=x1(n), f0=u(n-1) */
f12=f0*f4, f8=f8+f14, f4=dm(i2,m0), f0=pm(i8,m8);
 /* f12=x1(n)*u(n-1), f8=1+x0(n)*u(n),f4=x2(n), f0=u(n-

2) */

lcntr=TAPS-3, do mac3 until lce;
mac3: f12=f0*f4, f8=f8+f12, f4=dm(i2,m0), f0=pm(i8,m8);

 /* f12=xi(n)*u(n-i), f8=1+sum of prod, f4=xi+1(n),
f0=u(n-i-1) */

f12=f0*f4, f8=f8+f12, f4=f14;
 /* f12=u(n-N+1)*xN-1(n), f4=1.*/

f12=f8+f12, f3=dm(i2,m0);
 /* f12=1+u.x, f3= x0(n) */

DIVIDE(f2,f4,f12,f10,f0);
 /* f2=1/(1+u.x) */

f0=f2*f3, modify(i8,m9);
 /* f0=k0(n), i8 -> u(n+1) location in delay line */

lcntr=TAPS-1, do comp_kn_wn until lce;
 f8=f0*f1, f12=dm(i0,m2), pm(i9,m9)=f0;
 /* f8= ki(n)*e(n), f12=wi(n-1), store ki(n) */
 f8=f8+f12, f3=dm(i2,m0);

 /* f8=wi(n), f3=xi+1(n) */
comp_kn_wn: f0=f2*f3, dm(i0,m0)=f8;
 /* f0=ki+1(n), store wi(n) */

f8=f0*f1, f12=dm(i0,m2), pm(i9,m9)=f0;
 /* f8=kN-1(n)*e(n), f12=wN-1(n-1), store kN-1(n) */
f11=f8+f12, f2=dm(i2,m0), f4=pm(i9,m9);
 /* f11= wN-1(n), f2= x0(n), f4= k0(n) */

f12=f2*f4, f8=dm(i1,m0), f4=pm(i9,m9);
 /* f12= x0(n)*k0(n), f8=Z0(0,n-1), f4= k1(n) */

199199199199199

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

lcntr=TAPS-1, do update_zn until lce;
 f12=f2*f4, f0=f8-f12, f8=dm(i1,m0);
 lcntr=TAPS-2, do update_zrow until lce;
 f3=f0*f5, f0=f8-f12, f8=dm(i1,m0), f4=pm(i9,m9);

update_zrow: f12=f2*f4, dm(i3,m0)=f3;
 f3=f0*f5, f0=f8-f12, f2=dm(i2,m0);
 f0=f0*f5, dm(i3,m0)=f3, f4=pm(i9,m9);
 f12=f2*f4, dm(i3,m0)=f0, f4=pm(i9,m9);

update_zn: f8=dm(i1,m0);
f12=f2*f4, f0=f8-f12, f8=dm(i1,m0);
lcntr=TAPS-2, do update_zlastrow until lce;
 f3=f0*f5, f0=f8-f12, f8=dm(i1,m0), f4=pm(i9,m9);

update_zlastrow: f12=f2*f4, dm(i3,m0)=f3;
f3=f0*f5, f0=f8-f12, dm(i0,m0)=f11;
rts(db);
f0=f0*f5, dm(i3,m0)=f3;
dm(i3,m0)=f0;

.ENDSEG;

Listing 6.9 rls.asmListing 6.9 rls.asmListing 6.9 rls.asmListing 6.9 rls.asmListing 6.9 rls.asm

6.2.116.2.116.2.116.2.116.2.11 Testing Shell For Adaptive FiltersTesting Shell For Adaptive FiltersTesting Shell For Adaptive FiltersTesting Shell For Adaptive FiltersTesting Shell For Adaptive Filters
The program acts as the signal-generating plant, and can call any of the
adaptive algorithms. This module must be edited for use with the specific
routine it will call.

6.2.11.16.2.11.16.2.11.16.2.11.16.2.11.1 Code Listing—testafa.asmCode Listing—testafa.asmCode Listing—testafa.asmCode Listing—testafa.asmCode Listing—testafa.asm
/

File Name
TESTAFA.ASM

Version
April 2 1991

Purpose
This is a testing shell for the Adaptive Filtering Algorithms.

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

66666

200200200200200

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

This file has to be edited to conform with the algorithm employed.

Equations Implemented

* This program generates a moving average sequence of real

samples, *
* and employs the adaptive filter for System Identification based

on *
* a transversal FIR filter structure. The generating plant is

*
* described by the following difference equation: *
* y(n)= x(n-1)-0.5x(n-2)-x(n-3)

*
* where the plant impulse response is 0, 1, -0.5, -1, 0, 0,

*
* The filter is allowed five weight coefficients. The input data

*
* sequence is a pseudonoise process with a period of 20.

*
* This program is also used to test adaptive filters based on

both *
* symmetric transversal FIR and lattice FIR structures. The output

*
* filter error signal is stored in a data buffer named [flt_err]

*
* for comparison.

*
* Place * s in this file with the corresponding code

*

***/

#define SAMPLES **
/* ** = 200 for RLS and 1000 for various LMS */

.EXTERN ***_init, ***_alg;
/* *** = lms, llms, nlms, selms, sdlms, sslms, */

 /* sylms, latlms, rls .
*/

.SEGMENT/DM dm_data;

.VAR flt_err[SAMPLES];

.VAR input_data[20]= 0.038, -0.901, 0.01, -0.125, -1.275, 0.877,

201201201201201

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

-0.881,
0.930, 1.233, -1.022, 1.522, -0.170, 1.489, -1.469,
1.068, -0.258, 0.989, -2.891, -0.841, -0.355;

.GLOBAL flt_err;

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR plant_hn[3]= -1.0, -0.5, 1.0;

.ENDSEG;

.SEGMENT/PM rst_svc;
dmwait=0x21;
pmwait=0x21;
jump begin;

.ENDSEG;

.SEGMENT/PM pm_code;
begin: b6=flt_err;

l6=0;
b7=input_data;

66666

202202202202202

Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

l7=20;
b15=plant_hn;
l15=3;
m15=1;
m7=1;
m6=-3;

call ***_init;/* *** = algorithm codenames listed above */

lcntr=SAMPLES, do adapt_filter until lce;
 /* generate data through the plant */

 f0=dm(i7,m7), f4=pm(i15,m15); /* f0= x(n-3), f4= -1.0 */
 f8=f0*f4, f0=dm(i7,m7), f4=pm(i15,m15);

 /* f8= -x(n-3), f0= x(n-2), f4= -0.5 */
 f12=f0*f4, f0=dm(i7,m7), f4=pm(i15,m15);

 /* f12= -0.5x(n-2), f0= x(n-1), f4= 1.0 */
 f12=f0*f4, f8=f8+f12, f0=dm(i7,m7);
 /* f12= x(n-1), f8= -x(n-3)-0.5x(n-2), f0=

x(n)= u(n) */
 f*=f8+f12, modify(i7,m6);
 /* f*= y(n)= d(n), i7 -> x(n-3) of next iteration */
 /* f*= f1 for lms, nlms, llms, selms, sdlms,

sslms,sylms */
 /* f*= f9 for latlms and RLS */

 call ***_alg; /* *** = algorithm codenames listed above */

 dm(i6,m7)=f*; /* store filter error */
 /* f*= f6 for lms, llms, nlms, sdlms, sylms, latlms */
 /* f*= f1 for selms, sslms, rls */
 nop;

adapt_filter: nop;
idle;

.ENDSEG;

Listing 6.10 testafa.asmListing 6.10 testafa.asmListing 6.10 testafa.asmListing 6.10 testafa.asmListing 6.10 testafa.asm

203203203203203

66666Adaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive FiltersAdaptive Filters

6.36.36.36.36.3 CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
Table 6.1 lists the number of instruction cycles and the memory usage
relating to the various LMS algorithms implemented with a transversal
FIR filter structure. It is interesting to note that the sign-LMS algorithms,
originally designed to ease implementation in fixed-function silicon,
require more instruction cycles in a programmable DSP due to their sign
checking routines.

Memory Usage
Algorithm Cycles per PM Code PM Data DM Data

Iteration
LMS 3N + 8 29 N N
“Leaky” LMS 3N + 8 30 N N
Normalized LMS 3N + 16 40 N N
Sign-Error LMS 3N + 8 29 N N
Sign-Data LMS 4N + 8 32 N N
Sign-Sign LMS 4N + 8 31 N N

Table 6.1 Transversal FIR LMS Performance & Memory Benchmarks For Filters Of OrderTable 6.1 Transversal FIR LMS Performance & Memory Benchmarks For Filters Of OrderTable 6.1 Transversal FIR LMS Performance & Memory Benchmarks For Filters Of OrderTable 6.1 Transversal FIR LMS Performance & Memory Benchmarks For Filters Of OrderTable 6.1 Transversal FIR LMS Performance & Memory Benchmarks For Filters Of Order
NNNNN

Table 6.2 shows the performance of the LMS algorithm implemented with
three different FIR filter structures. The final application will determine
the structure used.

Memory Usage
Structure Cycles per PM Code PM Data DM Data

Iteration
Transversal 3N + 8 29 N N
Symmetric Transversal 2N + 10 39 0.5N N
Lattice-Ladder 11N + 7 36 2N + 1 N + 1

Table 6.2Table 6.2Table 6.2Table 6.2Table 6.2 LMS Algorithm Benchmarks For Different Filter StructuresLMS Algorithm Benchmarks For Different Filter StructuresLMS Algorithm Benchmarks For Different Filter StructuresLMS Algorithm Benchmarks For Different Filter StructuresLMS Algorithm Benchmarks For Different Filter Structures

Finally, the performance of the RLS and LMS algorithms implemented
with a transversal FIR filter structure are compared in Table 6.3. Evidently
the fast convergence of the RLS occurs at the expense of instruction cycles.

Algorithm Cycles per Iteration PM Code PM Data DM Data
LMS 3N + 8 29 N N
RLS 3N2 + 9N + 20 89 2N N2 + 2N

Memory Usage

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms 77777

205205205205205

The Discrete Fourier Transform (DFT) is the decomposition of a sampled
signal in terms of sinusoidal (complex exponential) components. (If the
signal is a function of time, this decomposition results in a frequency
domain signal.) The DFT is a fundamental digital signal processing
algorithm used in many applications, including frequency analysis and
frequency domain processing.

• Frequency analysis provides spectral information for signals that are
examined or used in further processing, such as in speech
compression.

• Frequency domain processing allows for the efficient computation of
the convolution integral (for linear filtering) and of the correlation
integral (for correlation analysis).

Because of its computational requirements, the DFT algorithm usually is
not used for real time signal processing. Research has developed more
efficient ways to compute the DFT. The symmetry and periodicity
properties of the DFT are exploited to significantly lower its
computational requirements. The resulting algorithms are known
collectively as Fast Fourier Transforms (FFTs).

This chapter gives an overview of the DFT algorithm and discusses the
features of the ADSP-21000 family architecture that enable fast execution
of FFTs. It presents implementations of the DFT when its size is a power of
two (a radix-2 FFT) and when its size is a power of four (a radix-4 FFT).
Details of these implementations are discussed, including optimization, bit
and digit-reversal, coefficient generation, and inverse transforms. This
chapter also provides benchmarks and code listings of implementations of
the algorithms.

77777

206206206206206

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.17.17.17.17.1 COMPUTATION OF THE DFTCOMPUTATION OF THE DFTCOMPUTATION OF THE DFTCOMPUTATION OF THE DFTCOMPUTATION OF THE DFT
The DFT resembles the correlation operation in that it measures the
similarity of an unknown signal with a complex exponential. The resulting
spectrum yields the complex information (phase and amplitude) for N
frequencies. The resulting values are commonly called frequency bins
because they fill up with amplitude information for each frequency.

An N-point DFT computes a sequence X(k) of N complex-valued numbers
given another sequence of data x(n) of length N according to the formula

N-1

X(k) = ∑ x(n) e–j2πnk/N k = 0 to N-1
n=0

To simplify the notation, the complex-valued phase factor e-j2πnk/N is
usually defined as WN where:

WN = e-j2π/N = cos(2π/N) – j sin(2π/N)

Direct computation of the DFT requires approximately N2 complex
multiplications and N2 complex accumulations. The DFT is inefficient
because it does not exploit the symmetry and periodicity properties of the
phase factor WN. These properties are

Symmetry property: WNk+N/2 = –WNk

Periodicity property: WNk+N = WNk

The FFT algorithms take advantage of the symmetry and periodicity
properties to greatly reduce the number of calculations that the DFT
requires. In an FFT implementation the real and imaginary components of
WN are frequently called twiddle factors. These sine and cosine constants
are usually precalculated and stored in a table.

207207207207207

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.1.17.1.17.1.17.1.17.1.1 Derivation Of The Fast Fourier TransformDerivation Of The Fast Fourier TransformDerivation Of The Fast Fourier TransformDerivation Of The Fast Fourier TransformDerivation Of The Fast Fourier Transform
The basis of the FFT is that a DFT can be divided into smaller DFTs. A
radix-2 FFT divides the FFT DFT into two smaller DFTs, each of which is
divided into two smaller DFTs, and so on, resulting in a combination of
two-point DFTs.

An N-point DFT can be computed by executing two N/2-point DFTs and
combining the outputs of the smaller DFTs to give the same output as the
original DFT. The original DFT requires N2 complex multiplications and
N2 complex additions. Each DFT of N/2 input samples requires (N/2)2 =
N2/4 complex multiplications and complex additions, a total of N2/2
calculations for the complete DFT. Dividing the DFT into two smaller
DFTs reduces the number of computations by 50%. Each of these smaller
DFTs can be divided in half, yielding four N/4-point DFTs. If the N-point
calculations are divided into smaller DFTs until only two-point DFTs
remain, the total number of complex multiplications and additions is
reduced to Nlog2N. For example, a 1024-point DFT requires over a million
complex additions and multiplications. A 1024-point DFT divided down
into two point DFTs needs fewer than ten thousand complex additions
and multiplications, a reduction of over 99%.

 In a similar fashion, a radix-4 FFT divides the DFT into four smaller DFTs,
each of which is divided into four smaller DFTs, and so on, resulting in a
combination of four-point DFTs.

Two methods are used repeatedly to split the DFTs into smaller (two-
point or four-point) core calculations:

• The decimation-in-time (DIT) FFT divides the input (time) sequence
into two groups: one of even samples and the other of odd samples.

• The decimation-in frequency (DIF) FFT divides the output (frequency)
sequence into even and odd portions.

See the references listed at the end of this chapter for more detail on the
derivation of these and other FFT algorithms.

77777

208208208208208

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.1.27.1.27.1.27.1.27.1.2 Butterfly CalculationsButterfly CalculationsButterfly CalculationsButterfly CalculationsButterfly Calculations
The two-point DFT at the core of a radix-2 DIT FFT is called a butterfly
calculation. The equations for the radix-2 DIT butterfly are:

X0’ = X0 + (CX1 + SY1)
X1’ = X0 – (CX1 + SY1)
Y0’ = Y0 + (CY1 – SX1)
Y1’ = Y0 – (CY1 – SX1)

The variables Xn and Yn represent the real and imaginary parts,
respectively, of a data sample. The flow graph representing this butterfly
calculation is shown in Figure 7.1. Figure 7.2 shows a complete 32-point
radix-2 DIT FFT, which is the FFT structure used in the ADSP-210xx radix-
2 implementation shown later in this chapter.

X0+jY0 X'0+jY'0

X1+jY1 X'1+jY'0
-1C+jS

Figure 7.1 Flow Graph Of Butterfly CalculationFigure 7.1 Flow Graph Of Butterfly CalculationFigure 7.1 Flow Graph Of Butterfly CalculationFigure 7.1 Flow Graph Of Butterfly CalculationFigure 7.1 Flow Graph Of Butterfly Calculation

209209209209209

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms
x(0)

x(16)

x(8)

x(24)

x(4)

x(20)

x(12)

x(28)

x(2)

x(18)

x(10)

x(26)

x(6)

x(22)

x(14)

x(30)

x(1)

x(17)

x(9)

x(25)

x(5)

x(21)

x(13)

x(29)

x(3)

x(19)

x(11)

x(27)

x(7)

x(23)

x(15)

x(31)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

X(16)

X(17)

X(18)

X(19)

X(20)

X(21)

X(22)

X(23)

X(24)

X(25)

X(26)

X(27)

X(28)

X(29)

X(30)

X(31)

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W0

W8

W0

W8

W0

W8

W0

W8

W0

W8

W0

W8

W0

W8

W0

W8

W0

W4

W0

W12

W8

W4

W0

W12

W8

W4

W0

W12

W8

W4

W0

W12

W8

W2

W0

W6

W4

W10

W8

W14

W12

W2

W0

W6

W4

W10

W8

W14

W12

W1

W0

W3

W2

W5

W4

W7

W6

W9

W8

W11

W10

W13

W12

W15

W14

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 7.2 32-Point Radix-2 DIT FFTFigure 7.2 32-Point Radix-2 DIT FFTFigure 7.2 32-Point Radix-2 DIT FFTFigure 7.2 32-Point Radix-2 DIT FFTFigure 7.2 32-Point Radix-2 DIT FFT

77777

210210210210210

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

The radix-2 FFT is partitioned into repeated structures called stages and
groups, as well as individual butterflies. There are log2(N) stages in an N-
point radix-2 FFT. This 32-point FFT example contains five stages. The
number of groups decreases by 1/2 per stage. The number of butterflies
per group increases by two per stage. The number of butterflies per stage
is a constant, N/2.

Note that in this implementation, the output array X(k) is in a normal
sequential order and the input array x(n) is in a bit-reversed order. This
non-sequential order is a result of the FFT algorithm’s repeated
subdivision of the data sequences. Therefore, the locations of the data,
locations of the twiddle factors, or locations of the both may be scrambled
(in bit-reversed order). Bit-reversal is an addressing technique used in FFT
calculations to order the results sequentially. A bit-reversed address is
generated by reversing the order of the bits in a binary representation of
the address. (The address is read right to left, with the least significant bit
becoming the most significant bit.) Bit-reversal of a data array is
accomplished by swapping each position in a data array with the position
of its corresponding bit-reversed address.

7.27.27.27.27.2 ARCHITECTURAL FEATURES FOR FFTSARCHITECTURAL FEATURES FOR FFTSARCHITECTURAL FEATURES FOR FFTSARCHITECTURAL FEATURES FOR FFTSARCHITECTURAL FEATURES FOR FFTS
The ADSP-21000 family of processors has many architectural features that
allow for fast implementation of the FFT. These features not only benefit
FFT implementations but are also common requirements of all digital
signal processing.

The FFT butterfly calculation requires fast arithmetic computations and
the generation of a complex sequence of addresses. It also requires a high
transfer rate of data between memory and the computation units. The
ADSP-210xx meets these needs with its capability to execute a
multiplication, an addition and a subtraction, two memory transfers, and
two address pointer modifications, all in a single instruction cycle. The
parallel addition and subtraction instructions on the ADSP-210xx support
the frequent A + B and A – B operations used within butterfly calculations.

A bit-reversed addressing mode is available on the ADSP-210xx to allow
low- or no-overhead unscrambling of the FFT results.

211211211211211

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

The Radix-4 FFT algorithm, in particular, requires that the computation
units keep many intermediate values. The ADSP-210xx’s 16-location
register file prevents bottlenecks from forming between the computation
units and memory. It can store all intermediate values needed for an
efficient 14 cycle radix-4 butterfly.

The nested structure of a memory-efficient FFT requires a powerful
looping support mechanism. The ADSP-210xx allows up to six nested DO
UNTIL loops without overhead. Counter decrement, testing and
branching all take place in parallel with computations.

7.37.37.37.37.3 COMPLEX FFTSCOMPLEX FFTSCOMPLEX FFTSCOMPLEX FFTSCOMPLEX FFTS
The program FFTRAD2.ASM (Listing 7.2) is an implementation of a
complex input radix-2 FFT for the ADSP-21020 , while the program
FFTRAD4.ASM (Listing 7.3) is an implementation of the complex input
radix-4 FFT. To execute these programs on other ADSP-21000 family
members, you must only change the initialization code at the reset vector,
rst_svc.

These implementations are optimized to minimize execution time, with
only a small increase in code space as a tradeoff. The optimization process
uses several techniques, among them are use of simplified butterflies for
certain sections of the flow graph and the elimination of overhead through
the consolidation of short iterating butterfly loops.

7.3.17.3.17.3.17.3.17.3.1 Architecture File RequirementsArchitecture File RequirementsArchitecture File RequirementsArchitecture File RequirementsArchitecture File Requirements
The FFT bit-reversal operation places a specific requirement on the
absolute address of a data array, which is accessed with bit-reversed
addressing. The starting address of the data array must be an integer
multiple of the FFT size, (0, N, 2N, ...). To force an array to start at a
specific location, define a segment in the architecture file that starts at an
absolute location, and then assign the array to that segment from within
the assembly file.

Listing 7.1 shows an example architecture file for the ADSP-21020 which
supports bit-reversal. It assigns the segments dm_rdat and dm_idat
to support bit-reversal of the real and imaginary data for FFTs up to 16K
points long.

77777

212212212212212

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

The radix-2 program in Listing 7.2 reads the input arrays, redata and
imdata , using bit-reversed addressing. The .SEGMENT directive is used
to place these arrays at absolute locations in the dm_rdat and dm_idat
segments.

The radix-4 program in Listing 7.3 writes to the output arrays, refft
and imfft , using bit-reversed addressing. The . SEGMENT directive is
used to place these arrays at absolute locations in the dm_rdat and
dm_idat segments.

7.3.27.3.27.3.27.3.27.3.2 The Radix-2 DIT FFT ProgramThe Radix-2 DIT FFT ProgramThe Radix-2 DIT FFT ProgramThe Radix-2 DIT FFT ProgramThe Radix-2 DIT FFT Program
For maximum efficiency, this implementation of the radix-2 FFT is broken
up into a minimum of five stages: the first two stages, the middle stages,
the second to the last, and the last stage. Since there is a minimum of five
stages, the smallest FFT calculable by this implementation is N = 25 = 32
points.

The first two stages are performed together in a single loop. They are
combined into a loop that implements what is essentially a radix-4
butterfly. The twiddle factor for this butterfly is WN0 = cos(0) – j sin(0) = 1;
therefore no multiplications are required. The first two stages execute
quickly because there is no group overhead and because the no-multiply
radix-4 butterfly requires an equivalent of two cycles per radix-2 butterfly
compared to the normal four cycles required by the middle stages.

The addressing of data input to all butterflies is from the bottom of the
working array to the top, in other words, they are accessed backwards.

The flow graph for the FFT is structured so that all butterflies within a
particular group require the same twiddle factors. As a result, a new value
must be read into the register file only at the start of each new group,
which improves the FFT’s performance by about 20%.

Most of the FFT execution time is spent within the middle stage
butterflies. The ADSP-210xx architecture executes these butterflies very
efficiently. They require only four cycles each to execute, because a
multiply and add operation is performed in all four cycles and a subtract
is done on two of the four cycles. The two address generators support four
memory reads and four memory writes in each butterfly with a total of
eight address pointer updates.

213213213213213

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

The second to the last stage has only two butterflies per group. It is
implemented with one loop to reduce the overhead between groups. Each
butterfly takes only 4.5 cycles in this stage.

The last stage has only one butterfly per group, is implemented within one
loop, and takes five cycles per butterfly.

7.3.37.3.37.3.37.3.37.3.3 The Radix-4 DIF FFT ProgramThe Radix-4 DIF FFT ProgramThe Radix-4 DIF FFT ProgramThe Radix-4 DIF FFT ProgramThe Radix-4 DIF FFT Program
This implementation of the radix-4 FFT executes about 10% faster than the
radix-2 program. The only drawbacks are that the number of points in the
radix-4 FFT is restricted to a power of four, the program is a bit longer,
and that there are N/2 more twiddle factors required.

Instead of bit-reversal, digit-reversal is required for the radix-4 algorithm.
Digit-reversal for a radix-4 FFT is defined by taking the addresses in
groups of 4 bits and by reversing the order of the groups. Normally the
generation of digit-reversed addresses requires either a lookup table in
memory or the use the barrel shifter. There is a very simple trick to
perform digit-reversal with little or no overhead. Swap the results of the
middle two nodes in all radix-4 butterflies, and write the results in a data
array in bit-reversed order. Then the ADSP-210xx’s built in bit reversal
feature can generate a result in normal order.

The radix-4 program is broken up into a minimum of three stages: the first
stage, the middle stages, and the last stage. Since there is a minimum of
three stages, the smallest FFT calculable in this implementation is
N=43=64 points.

The first stage uses a simplified butterfly that requires no multiplications
and takes only eight cycles to execute. The middle and last stages are
identical and require 14 cycles per butterfly. The last stage is separate so
that bit reverse mode can be enabled. The real data is then bit-reversed as
it is written out to the refft output array resulting in normal order
data. The imaginary array is then bit-reversed by reading it with DAG2
and writing the result with the DAG1 I0 register. This also results in
normal order data.

77777

214214214214214

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

The following equations are used in the ADSP-210xx implementation of
the radix-4 DIF butterfly:

X0’ = X0 + (C3X2 + S3Y2) + (C2X3 + S2Y3) + (C1X1 + S1Y1)
X1’ = X0 + (C3X2 + S3Y2) – (C2X3 + S2Y3) + (C1X1 + S1Y1)
Y0’ = Y0 + C3Y2 – (C3X2 + S3Y2) + (C1Y1 – S1X1) + (C2Y3 – S2X3)
Y1’ = Y0 + C3Y2 – (C3X2 + S3Y2) – (C1Y1 – S1X1) + (C2Y3 – S2X3)
Y2’ = Y0 – C3Y2 – (C3X2 + S3Y2) + (C2X3 + S2Y3) – (C1X1 + S1Y1)
Y3’ = Y0 – C3Y2 – (C3X2 + S3Y2) – (C2X3 + S2Y3) – (C1X1 + S1Y1)
X2’ = X0 – (C3X2 + S3Y2) + (C1Y1 – S1X1) – (C2Y3 – S2X3)
X3’ = X0 – (C3X2 + S3Y2) – (C1Y1 – S1X1) – (C2Y3 – S2X3)

See the references at the end of this chapter for more detail on radix-4 FFT
structures.

7.3.47.3.47.3.47.3.47.3.4 FFTs On The ADSP-21060 FFTs On The ADSP-21060 FFTs On The ADSP-21060 FFTs On The ADSP-21060 FFTs On The ADSP-21060
The ADSP-21060 can bit-reverse with the DAG2 I8 register. By
incorporating both the DAG1 and DAG2 bit-reversal in a parallel
instruction, approximately N cycles are saved in an N-point FFT. Both the
FFTRAD2.ASM and FFTRAD4.ASM programs can be modified easily to
take advantage of this feature.

7.3.57.3.57.3.57.3.57.3.5 FFT Twiddle Factor GenerationFFT Twiddle Factor GenerationFFT Twiddle Factor GenerationFFT Twiddle Factor GenerationFFT Twiddle Factor Generation
The radix-2 FFT requires two twiddle factor tables stored in memory.
These tables consist of 1/2 cycle of a sine wave and a cosine wave. Each
table is N/2 samples long. A C language utility for generating the two
tables, called TWIDRAD2.C , is shown in Listing 7.4.

The radix-4 FFT also requires two twiddle factor tables stored in memory.
They are different from the radix-2 tables in that they are stored in a bit-
reversed-like order. These tables consist of 3N/4 samples. A C language
utility for generating the two tables called twidrad4.c , is shown in
Listing 7.5. Radix-4 tables generated for an N-point FFT also can be used
for any radix-4 FFT of length less than N, because of the bit-reversed
nature of the radix-4 tables.

215215215215215

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.47.47.47.47.4 INVERSE COMPLEX FFTsINVERSE COMPLEX FFTsINVERSE COMPLEX FFTsINVERSE COMPLEX FFTsINVERSE COMPLEX FFTs
The inverse relationship for obtaining a sequence from its DFT is called
the inverse DFT (IDFT). The transformation is described by the equation

N-1

x(n) = 1/N ∑ X(k) ej2πnk/N n = 0 to N – 1
k=0

You can use the complex FFTs algorithms described in this chapter to
implement both the IDFT and the DFT. The only difference between the
two transformations is the normalization factor 1/N and the phase signs of
the twiddle factors. Consequently, an FFT algorithm for computing the
DFT are converted into an IFFT algorithm by using a reversed (upside
down) twiddle factor table. Because the cosine table is symmetrical about
zero, only the sine table must be reversed.

Instead of reversing the twiddle factors, a simpler method to convert the
FFT into an IFFT is to swap the complex parts of input and output arrays
with this algorithm:

1. Swap the input data array’s real and imaginary parts.
2. Run the forward FFT.
3. Swap the result’s real and imaginary parts.
4. Scale the result by 1/N.

The data swapping steps need no overhead if they are incorporated into
data transfers that are already required.

77777

216216216216216

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.57.57.57.57.5 BENCHMARKSBENCHMARKSBENCHMARKSBENCHMARKSBENCHMARKS

Complex Radix-2 FFT with Bit -Reversal

Butterfly Calculation Performance:
 First 2 Stages 8 cycles per 4 (radix-2) butterflies
 Middle Stages 4 cycles per butterfly
 2nd to Last Stage 9 cycles per 2 butterflies
 Last Stage 5 cycles per butterfly group

Memory Usage:
 pm code = 158 words, pm data = 1.5 * N words, dm data = 3.5 * N

words

Complex Radix-4 FFT with Digit-Reversal

Butterfly Calculation Performance:
 First Stage 8 cycles per radix-4 butterfly
 Other Stages 14 cycles per radix-4 butterfly

Memory Usage:
 pm code = 192 words, pm data = 1.75 * N words, dm data = 3.75 * N

words

217217217217217

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.67.67.67.67.6 CODE LISTINGSCODE LISTINGSCODE LISTINGSCODE LISTINGSCODE LISTINGS

7.6.17.6.17.6.17.6.17.6.1 FFT.ACH - Architecture File FFT.ACH - Architecture File FFT.ACH - Architecture File FFT.ACH - Architecture File FFT.ACH - Architecture File

! FFT.ACH
! Example (ADSP-21020) architecture file for FFTs. Supports proper multiple
! of N base addresses for bit reversing of real and imaginary arrays of sizes
! up to 16K words.

.SYSTEM fft;

.PROCESSOR = ADSP21020;

.SEGMENT /ROM /BEGIN=0x000008 /END=0x00000F /PM rst_svc;

.SEGMENT /ROM /BEGIN=0x000100 /END=0x003FFF /PM pm_code;

.SEGMENT /RAM /BEGIN=0x004000 /END=0x00BFFF /PM pm_data;

.SEGMENT /RAM /BEGIN=0x00000000 /END=0x00003FFF /DM dm_rdat;

.SEGMENT /RAM /BEGIN=0x00004000 /END=0x00007FFF /DM dm_idat;

.SEGMENT /RAM /BEGIN=0x00008000 /END=0x0000BFFF /DM dm_data;

.ENDSYS;

Listing 7.1 FFT.ACHListing 7.1 FFT.ACHListing 7.1 FFT.ACHListing 7.1 FFT.ACHListing 7.1 FFT.ACH

77777

218218218218218

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.6.27.6.27.6.27.6.27.6.2 FFTRAD2.ASM - Complex Radix2 FFTFFTRAD2.ASM - Complex Radix2 FFTFFTRAD2.ASM - Complex Radix2 FFTFFTRAD2.ASM - Complex Radix2 FFTFFTRAD2.ASM - Complex Radix2 FFT

/*___
FFTRAD2.ASM ADSP-21020 Radix-2 DIT Complex Fast Fourier Transform

Calculates a radix-2 FFT. The FFT length (N) must be a power of 2 and a
minimum of 32 points. Input data is not destroyed during the course of this
routine. The input and output arrays are normal ordered. The real array is
stored in DM, the imaginary array is stored in PM. The real twiddle factors
are in an N/2 long Cosine table stored in PM, and the imaginary twiddle
factors are in an N/2 long Sine Table in stored in DM. The twiddle factors
are generated by the program TWIDRAD2.

To implement a inverse FFT, one only has to (1) swap the real and imaginary
of the incoming data, (2) take the forward FFT, (3) swap the real and
imaginary of the outgoing data, and (4) scale the data by 1/N.

Version:
10-SEP-90 Original

 25-APR-91 Revision
 26-MAY-93, in FSTAGE drain pipe without dummy dm access
 14-DEC-93, Cleaned up format, added benchmarks

Calling Parameters:
 pm(cosine[N/2]) - real twiddle factors from TWIDRAD2 program
 dm(sine[N/2]) - imaginary twiddle factors from TWIDRAD2 program
 dm(redata[N]) - real input array, bitreversed to a working array
 dm(imdata[N]) - imaginary input array, bitreversed to a working array

 (Note: Because the bit reversed address mode is used with the arrays
 refft and imfft, they must start at addresses that are integer
 multiples of the length (N) of the transform, (i.e. 0,N,2N,3N,...).
 This is accomplished by specifing two segments starting at those addresses
 in the architecture file and placing the variables alone in their
 respective segments. These addresses must also be reflected in the
 preprocessor variables ORE and OIM in bit reversed format.)

Return Values:
 dm(refft[N]) - real working array and output
 dm(imfft[N]) - imaginary working array and output

Altered Registers:
 Most I, M, L, and R registers.
 Three levels of loop nesting.

219219219219219

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

Benchmarks: Radix-2, complex with bit reversal

 FFT Length cycles ms @ 25 MHz CLK ms @ 33 MHz CLK ms @ 40 MHz CLK
 ————— ——— ——————— ——————— ———————
 64 1002 .040 .031 .021
 128 2088 .083 .063 .052
 256 4486 .179 .135 .112
 512 9764 .391 .293 .244
 1024 21314 .853 .639 .533
 2048 46432 1.857 1.393 1.161
 4096 100734 4.029 4.022 2.518
 8192 217504 8.700 6.535 5.437

 First 2 Stages - 8 cycles per 4 (radix-2) butterflies
 Middle Stages - 4 cycles per butterfly
 2nd to Last Stage - 9 cycles per 2 butterflies
 Last Stage - 5 cycles per butterfly group

Memory Usage:
 pm code = 158 words, pm data = 1.5*N words, dm data = 3.5*N words
__*/

/* Include for symbolic definition of system register bits */
#include “def21020.h”

/*_________The constants below must be changed for different length FFTs______
N = number of points in the FFT, must be a power of 2
STAGES = log2(N)
BRMODIFY = bitrev(32 bit N/2)
ORE = bitrev(32 bit addr of input real in dm), addr is 0,N,2N,3N,...
OIM = bitrev(32 bit addr of input imag in dm), addr is 0,N,2N,3N,...
__*/
#define N 256
#define STAGES 8
#define BRMODIFY 0x01000000
#define ORE 0x00000000
#define OIM 0x00020000

/*________These constants are independent of the number of points____________*/
#define BFLY8 4 /*Number of bttrfly in a group of 8*/

.SEGMENT/DM dm_data;

.VAR sine[N/2]= “ts2.dat”; /*imag twiddle factors, from TWIDRAD2 */

.VAR refft[N]; /* real result */

.GLOBAL refft;

.ENDSEG;

.SEGMENT/DM dm_rdat; /* This segment is an integer multiple of N */

.VAR redata[N]= “inreal.dat”; /* input real array */

.GLOBAL redata;

.ENDSEG;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

77777

220220220220220

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

.SEGMENT/DM dm_idat; /* This segment is an integer multiple of N */

.VAR imdata[N]= “inimag.dat”; /* input image array */

.GLOBAL imdata;

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR cosine[N/2]= “tc2.dat”; /* real twiddle factors, from TWIDRAD2 */

.VAR imfft[N]; /* imag result */

.GLOBAL imfft;

.ENDSEG;

/*_______________ADSP-21020 reset vector test call of fft____________________*/
.SEGMENT/PM rst_svc; /* program starts at the reset vector */
 pmwait=0x0021; /*pgsz=0,pmwtstates=0,intrn.wtstates only*/
 dmwait=0x8421; /*pgsz=0,pmwtstates=0,intrn.wtstates only*/
 call fftrad2;
stop: idle;
.ENDSEG;

.SEGMENT/PM pm_code;
/*_______________________________begin FFT___________________________________*/
fftrad2:
 bit set mode1 BR0; /* enable bit reverse of i0 */
 B0=OIM; /* Points to input imaginary array */
 l0=0;
 m0=BRMODIFY; /* Modifier for bitreverse counter*/

 b8=imfft; /* Working array and output */
 l8=N;
 m8=1;

/*First read imag and bit reverse to pm space*/
 f0=dm(i0,m0);
 lcntr=N-1, do pmbr until lce; /* Bit reverse from dm to pm */
pmbr: f0=dm(i0,m0), pm(i8,m8)=f0;
 pm(i8,m8)=f0; /* Do last transfer */

/*Now do bitrev real within first two stages*/
 b0=ORE; /* Points to input real array to be read in */
 /* bit reversed order */
 b2=refft;
 l2=N; /* Circ pointer limits loopend pointer overflow */
 m1=1; /* This loop increments forward +1*/

 b8=imfft;
 l8=N; /* Circ pointer limits loopend pointer overflow */
 b10=imfft;
 l10=N; /* Circ pointer limits loopend pointer overflow */

221221221221221

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

 /*Do the first two stages (actually a radix-4 FFT stage)*/

 f0=dm(i0,m0), f1=pm(i8,m8);
 f2=dm(i0,m0), f3=pm(i8,m8);
 f0=f0+f2, f2=f0-f2, f4=dm(i0,m0), f5=pm(i8,m8);
 f1=f1+f3, f3=f1-f3, f6=dm(i0,m0), f7=pm(i8,m8);
 f4=f6+f4, f6=f6-f4;
 f5=f5+f7, f7=f5-f7;
 f8=f0+f4, f9=f0-f4;
 f10=f1+f5, f11=f1-f5;

lcntr=N/4-1, do FSTAGE until lce; /* do N/4 simple radix-4 butterflies */
 f12=f2+f7, f13=f2-f7, f0=dm(i0,m0), f1=pm(i8,m8);
 f14=f3+f6, f15=f3-f6, f2=dm(i0,m0), f3=pm(i8,m8);
 f0=f0+f2, f2=f0-f2, f4=dm(i0,m0), f5=pm(i8,m8);
 f1=f1+f3, f3=f1-f3, f6=dm(i0,m0), f7=pm(i8,m8);
 f4=f6+f4, f6=f6-f4, dm(i2,m1)=f8, pm(i10,m8)=f10;
 f5=f5+f7, f7=f5-f7, dm(i2,m1)=f12, pm(i10,m8)=f14;
 f8=f0+f4, f9=f0-f4, dm(i2,m1)=f9, pm(i10,m8)=f11;
FSTAGE: f10=f1+f5, f11=f1-f5, dm(i2,m1)=f13, pm(i10,m8)=f15;

 f12=f2+f7, f13=f2-f7; /* change on 5/26/93, drain pipe*/
 f14=f3+f6, f15=f3-f6; /* without out of range dm xfer*/
 dm(i2,m1)=f8, pm(i10,m8)=f10;
 dm(i2,m1)=f12, pm(i10,m8)=f14;
 dm(i2,m1)=f9, pm(i10,m8)=f11;
 dm(i2,m1)=f13, pm(i10,m8)=f15;

 /*middle stages loop */

 bit clr mode1 BR0; /*finished with bitreversal*/

 b0=refft;
 l0=N; /* Circ pointer limits loopend pointer overflow */
 b1=sine;
 l1=@sine;

 b9=cosine;
 l9=@cosine;
 b11=imfft;
 l11=N; /* Circ pointer limits loopend pointer overflow */

 m0=-BFLY8;
 m1=-N/8;
 m2=-BFLY8-1;
 m9=-N/8;
 m11=-1;

 r2=2;
 r3=-BFLY8; /*initializes m0,10 - incr for butterf branches*/
 r5=BFLY8; /*counts # butterflies per a group */
 r9=(-2*BFLY8)-1; /*initializes m12 - wrap around to next grp + 1*/
 r10=-2*BFLY8; /*initializes m8 - incr between groups */
 r13=-BFLY8-1; /*initializes m2,13 - wrap to bgn of 1st group */
 r15=N/8; /*# OF GROUPS IN THIRD STAGE*/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

77777

222222222222222

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

 f1=dm(i1,m1), f7=pm(i9,m9); /*set pointers to tables to 1st coeff. */

lcntr=STAGES-4, do end_stage until lce; /*# OF STAGES TO BE HANDLED = LOG2N-4*/
 m8=r10;
 m10=r3;
 m12=r9;
 i0=refft+N-1;
 i2=refft+N-1;
 i8=imfft+N-1;
 i10=imfft+N-1;
 i11=imfft+N-1;
 r15=r15-r2, m13=r13; /*CALCULATE # OF CORE */
 /*BFLIES/GROUP IN THIS STAGE*/

 f0=dm(i1,m1), f7=pm(i8,m8);
f12=f0*f7, f6=dm(i0,m0), f1=pm(i9,m9);
f8=f1*f6, modify(i11,m10);
f11=f1*f7, f7=pm(i8,m8);
f14=f0*f6, f12=f8+f12, f8=dm(i0,m0);
f12=f0*f7, f13=f8+f12, f10=f8-f12, f6=dm(i0,m0);

/*Each iteration does another set of bttrflys in each group*/

lcntr=r5, do end_group until lce; /*# OF BUTTERFLIES/GROUP IN THIS STAGE*/

/*core butterfly loop*/

lcntr=r15, do end_bfly until lce; /*Do a butterfly in each group - 2*/
 f8=f1*f6, f14=f11-f14, dm(i2,m0)=f10, f9=pm(i11,m8);
 f11=f1*f7, f3=f9+f14, f9=f9-f14, dm(i2,m0)=f13, f7=pm(i8,m8);
 f14=f0*f6, f12=f8+f12, f8=dm(i0,m0), pm(i10,m10)=f9;
end_bfly:
 f12=f0*f7, f13=f8+f12, f10=f8-f12, f6=dm(i0,m0), pm(i10,m10)=f3;

/*finish up last bttrfly and set up for next stage*/

f8=f1*f6, f14=f11-f14, dm(i2,m0)=f10, f9=pm(i11,m8);
f11=f1*f7, f4=f9+f14, f9=f9-f14, dm(i2,m0)=f13, f14=pm(i8,m11);
f14=f0*f6, f12=f8+f12, f8=dm(i0,m2), pm(i10,m10)=f9;
 f13=f8+f12, f10=f8-f12, f0=dm(i1,m1), f7=pm(i8,m8);/*dm:sin*/
 f14=f11-f14, dm(i2,m0)=f10, f9=pm(i11,m12);
 /*start on next butterfly in each group*/
f12=f0*f7, f3=f9+f14, f9=f9-f14, f6=dm(i0,m0), f1=pm(i9,m9);/*pm:cos*/
f8=f1*f6, dm(i2,m2)=f13, pm(i10,m10)=f4;
f11=f1*f7, pm(i10,m10)=f9;
f14=f0*f6, f12=f8+f12, f8=dm(i0,m0), f7=pm(i8,m8);
end_group:
f12=f0*f7, f13=f8+f12, f10=f8-f12, f6=dm(i0,m0), pm(i10,m13)=f3;

223223223223223

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

 r4=r15+r2, i1=b1; /*PREPARE R4 FOR #OF BFLIES CALC*/
 r15=ashift r4 by -1; /*# OF BFLIES/GRP IN NEXT STAGE*/
 r4=-r15, i9=b9;
 m1=r4; /*update inc for sin & cos */
 m9=r4;
 r5=ashift r5 by 1, f1=dm(i1,m1); /*update # bttrfly in a grp*/
 r3=-r5; /* inc for bttrfly branch*/
 r13=r3-1, m0=r3; /* wrap to 1st grp */
 r10=ashift r3 by 1, f7=pm(i9,m9); /* inc between grps */
end_stage: r9=r10-1, m2=r13; /* wrap to grp +1 */

/*_________ next to last stage__________*/
 m1=-2; /*modifier to sine table pntr */
 m8=r10; /*incr between groups */
 m9=-2; /*modifier to cosine table pntr */
 m10=r3; /*incr between bttrfly branches */
 m12=r9; /*wrap around to next grp + 1 */
 m13=r13; /*wrap to bgn of 1st group */

 i0=refft+N-1;
 i1=sine+(N/2)-2; /*pntr to 1st sine coeff */
 i2=refft+N-1;
 i8=imfft+N-1;
 i9=cosine+(N/2)-2; /*pntr to 1st cosine coeff */
 i10=imfft+N-1;
 i11=imfft+N-1;
 f0=dm(i1,m1), f7=pm(i8,m8);
f12=f0*f7, f6=dm(i0,m0), f1=pm(i9,m9);
f8=f1*f6, modify(i11,m10);
f11=f1*f7, f7=pm(i8,m12);
f14=f0*f6, f12=f8+f12, f8=dm(i0,m0);
f12=f0*f7, f13=f8+f12, f10=f8-f12, f6=dm(i0,m0);

/*Do the N/4 butterflies in the two groups of this stage*/

lcntr=N/4, do end_group2 until lce;
 f8=f1*f6, f14=f11-f14, dm(i2,m0)=f10, f9=pm(i11,m8);
 f11=f1*f7, f3=f9+f14, f9=f9-f14, dm(i2,m0)=f13, f1=pm(i9,m9);
 f14=f0*f6, f12=f8+f12, f8=dm(i0,m2), pm(i10,m10)=f9;
 f13=f8+f12, f10=f8-f12, f0=dm(i1,m1), f7=pm(i8,m8);
 f12=f0*f7, f14=f11-f14, f6=dm(i0,m0), f9=pm(i11,m12);

 f8=f1*f6, f3=f9+f14, f9=f9-f14, dm(i2,m0)=f10, pm(i10,m10)=f3;
 f11=f1*f7, dm(i2,m2)=f13, pm(i10,m10)=f9;
 f14=f0*f6, f12=f8+f12, f8=dm(i0,m0), f7=pm(i8,m12);
end_group2:
 f12=f0*f7, f13=f8+f12, f10=f8-f12, f6=dm(i0,m0), pm(i10,m13)=f3;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

77777

224224224224224

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

/* The last stage */

 m0=-N/2;
 m2=-N/2-1;
 m10=m0;
 m13=m2;
 i0=refft+N-1;
 i1=sine+(N/2)-1; /*pntr to 1st sine coeff */
 i2=refft+N-1;
 i8=imfft+N-1;
 i9=cosine+(N/2)-1; /*pntr to 1st cosine coeff */
 i10=imfft+N-1;
 i11=imfft+N-1;
 m1=-1; /*modifiers to coeff tables */
 m9=-1;

/*start first bttrfly*/
 f0=dm(i1,m1), f7=pm(i8,m11);
f12=f0*f7, f6=dm(i0,m0), f1=pm(i9,m9);
f8=f1*f6, modify(i11,m10);
f11=f1*f7;
f14=f0*f6, f12=f8+f12, f8=dm(i0,m2), f9=pm(i11,m11);

/*do N/2 bttrflys in the last stage, one butterfly per group*/

lcntr=N/2, do last_stage until lce;
 f13=f8+f12, f10=f8-f12, f0=dm(i1,m1), f7=pm(i8,m11);
 f12=f0*f7, f14=f11-f14, f6=dm(i0,m0), f1=pm(i9,m9);
 f8=f1*f6, f3=f9+f14, f15=f9-f14, dm(i2,m0)=f10, f9=pm(i11,m11);
 f11=f1*f7, dm(i2,m2)=f13, pm(i10,m10)=f15;
last_stage:
 f14=f0*f6, f12=f8+f12, f8=dm(i0,m2), pm(i10,m13)=f3;

rts; /*finished*/
/*___*/
.ENDSEG;

Listing 7.2 fftrad2.asmListing 7.2 fftrad2.asmListing 7.2 fftrad2.asmListing 7.2 fftrad2.asmListing 7.2 fftrad2.asm

225225225225225

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.6.37.6.37.6.37.6.37.6.3 FFTRAD4.ASM - Complex Radix-4 FFTFFTRAD4.ASM - Complex Radix-4 FFTFFTRAD4.ASM - Complex Radix-4 FFTFFTRAD4.ASM - Complex Radix-4 FFTFFTRAD4.ASM - Complex Radix-4 FFT

/*___
FFTRAD4.ASM ADSP-21020 Radix-4 Complex Fast Fourier Transform

This routine performs a complex, radix 4 Fast Fourier Transform (FFT). The FFT
length (N) must be a power of 4 and a minimum of 64 points. The real part of
the input data is placed in DM and the complex part in PM. This data is
destroyed during the course of the computation. The real and complex output of
the FFT is placed in separate locations in DM.

Since this routine takes care of all necessary address digit-reversals, the
input and output data are in normal order. The digit reversal is accomplished
by using a modified radix 4 butterfly throughout which swaps the inner two
nodes resulting with bit reversed data. The digit reversal is completed by
bit reversing the real data in the final stage and then bit reversing the
imaginary so that it ends up in DM.

To implement an inverse FFT, you only have to (1) swap the incoming datas real
and imaginary parts, (2) run the forward FFT, (3) swap the outgoing datas
real and imaginary parts and (4) scale the data by 1/N.

For this routine to work correctly, the program “twidrad4.C” must be used to
generate the special twiddle factor tables for this program.

Author: Karl Schwarz & Raimund Meyer, Universitaet Erlangen Nuernberg
Version:

25-APR-91, Rev. 1
18-JUN-91, Rev. 2
14-DEC-93, Cleaned up comments

Calling Parameters:
 costwid table at DM : cosine length 3*N/4
 sintwid table at PM : sine length 3*N/4
 real input at DM : redata length N, normal order
 imag input at PM : imdata length N, normal order

Return Values:
 real output at DM : refft length N, normal order
 imag output at DM : imfft length N, normal order

 (Note: Because the bit reversed addressing mode is used with the arrays
 refft and imfft, they must start at addresses that are integer
 multiples of the length (N) of the transform, (i.e. 0,N,2N,3N,...).
 This is accomplished by specifying two segments starting at those addresses
 in the architecture file and placing the variables alone in their
 respective segments. These addresses must also be reflected in the
 preprocessor variables ORE and OIM in bit reversed format.)

Altered Registers:
 All I, M, L and R registers.
 Three levels of looping.

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

77777

226226226226226

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

Benchmarks: radix-4, complex with digit reversal

 FFT Length cycles ms @ 25 MHz CLK ms @ 33 MHz CLK ms @ 40 MHz CLK
 ————— ——— ——————— ——————— ———————
 64 920 .037 .028 .023
 256 4044 .162 .121 .101
 1024 19245 .770 .577 .481
 4096 90702 3.628 2.722 2.268
 16384 419434 16.777 12.583 10.486

 First Stage - 8 cycles per radix-4 butterfly
 Other Stages - 14 cycles per radix-4 butterfly

Memory Usage:
 pm code = 192 words, pm data = 1.75*N words, dm data = 3.75*N words
___*/

/*________The constants below must be changed for different length FFTs________
 N Number of points in FFT. Must be a power of four, minimum of 64.
 STAGES Set to log4(N) or (log(N)/log(4))
 OST = bitrev(32 bit N/2)
 ORE = bitrev(32 bit addr of output real in dm), addr is 0,N,2N,3N,...
 OIM = bitrev(32 bit addr of output imag. in dm), addr is 0,N,2N,3N,...
___*/
#define N 256
#define STAGES 4
#define OST 0x01000000
#define ORE 0x00000000
#define OIM 0x00020000

/* include for symbolic definition of system regster bits */
#include “def21020.h”

.SEGMENT/DM dm_data;

.VAR cosine[3*N/4]=”tc4.dat”;/*Cosine twiddle factors, from FFTTR4TBL prog*/

.VAR redata[N]=”inreal.dat”; /* Input real data */

.GLOBAL redata;

.ENDSEG;

.SEGMENT/DM dm_rdat; /* this segment is an integer multiple of N */

.VAR refft[N]; /* Output real data */

.GLOBAL refft;

.ENDSEG;

.SEGMENT/DM dm_idat; /* this segment is an integer multiple of N */

.VAR imfft[N]; /* Output imaginary data */

.GLOBAL imfft;

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR sine[3*N/4]=”ts4.dat”; /* Sine twiddle factors, from FFTTR4TBL prog*/

.VAR imdata[N]=”inimag.dat”; /* Input imaginary data */

.GLOBAL imdata;

.ENDSEG;

227227227227227

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

.SEGMENT/PM rst_svc; /* program starts at the reset vector */
 pmwait=0x0021; /*pgsz=0,pmwtstates=0,intrn.wtstates only*/
 dmwait=0x008421; /*pgsz=0,dmwtstates=0,intrn.wtstates only*/
 call fft;
stop: idle;
.ENDSEG;

.SEGMENT/PM pm_code;
fft:
/*_______first stage radix-4 butterfly without twiddles______*/
 i0=redata;
 i1=redata+N/4;
 i2=redata+N/2;
 i3=redata+3*N/4;
 i4=i0;
 i5=i1;
 i6=i2;
 i7=i3;
 m0=1;
 m8=1;
 i8=imdata;
 i9=imdata+N/4;
 i10=imdata+N/2;
 i11=imdata+3*N/4;
 i12=i8;
 i13=i9;
 i14=i10;
 i15=i11;
 l0 = 0;
 l1 = l0;
 l2 = l0;
 l3 = N; /* circular to prevent pointer overflow */
 l4 = l0;
 l5 = l0;
 l6 = l0;
 l7 = l0;
 l8 = l0;
 l9 = l0;
 l10 = l0;
 l11 = N; /* circular to prevent pointer overflow */
 l12 = l0;
 l13 = l0;
 l14 = l0;
 l15 = l0;
 f0=dm(i0,m0), f1=pm(i8,m8);
 f2=dm(i2,m0), f3=pm(i10,m8);
 f0=f0+f2, f2=f0-f2, f4=dm(i1,m0), f5=pm(i9,m8);
 f1=f1+f3, f3=f1-f3, f6=dm(i3,m0), f7=pm(i11,m8);
 f4=f6+f4, f6=f6-f4;
 f5=f5+f7, f7=f5-f7;
 f8=f0+f4, f9=f0-f4;
 f10=f1+f5, f11=f1-f5;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

77777

228228228228228

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

lcntr=N/4, do fstage until lce; /* do N/4 simple radix-4 butterflies */
 f12=f2+f7, f13=f2-f7, f0=dm(i0,m0), f1=pm(i8,m8);
 f14=f3+f6, f15=f3-f6, f2=dm(i2,m0), f3=pm(i10,m8);
 f0=f0+f2, f2=f0-f2, f4=dm(i1,m0), f5=pm(i9,m8);
 f1=f1+f3, f3=f1-f3, f6=dm(i3,m0), f7=pm(i11,m8);
 f4=f6+f4, f6=f6-f4, dm(i4,m0)=f8, pm(i12,m8)=f10;
 f5=f5+f7, f7=f5-f7, dm(i5,m0)=f9, pm(i13,m8)=f11;
 f8=f0+f4, f9=f0-f4, dm(i6,m0)=f12, pm(i14,m8)=f14;
fstage:
 f10=f1+f5, f11=f1-f5, dm(i7,m0)=f13, pm(i15,m8)=f15;

 l3=l0; /* pointer overflow only problem in 1st stage */
 l11=l0; /* pointer overflow only problem in 1st stage */

/*_____________Middle stages with radix-4 main butterfly___________________*/

/* m0=1 and m8=1 is still preset */
 m1=-2; /* reverse step for twiddles */
 m9=m1;
 m2=3; /* forward step for twiddles */
 m10=m2;
 m5=4; /* first there are 4 groups */
 r2=N/16; /* with N/16 bflies in each group*/
 r3=N/16*3; /* step to next group */

lcntr=STAGES-2, do mstage until lce; /* do STAGES-2 stages */

 i7=cosine; /* first real twiddle */
 i15=sine; /* first imag twiddle */

 r8=redata;
 r9=imdata;

 i0=r8; /* upper real path */
 r10=r8+r2; i8=r9; /* upper imaginary path */
 i1=r10; /* second real input path */
 r10=r10+r2, i4=r10; /* second real output path */
 i2=r10; /* third real input path */
 r10=r10+r2, i5=r10; /* third real output path */
 i3=r10; /* fourth real input path */
 r10=r9+r2, i6=r10; /* fourth real output path */
 i9=r10; /* second imag input path */
 r10=r10+r2, i12=r10; /* second imag output path */
 i10=r10; /* third imag input path */
 r10=r10+r2, i13=r10; /* third imag output path */
 i11=r10; /* fourth imag input path */
 i14=r10; /* fourth imag output path */
 m4=r3;
 m12=r3;
 r4=r3+1, m6=r2;
 m3=r4;
 r2=r2-1, m11=r4;
 m7=r2;

229229229229229

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

lcntr=m5, do mgroup until lce; /* do m5 groups */
 f0=dm(i7,m0), f5=pm(i9,m8);
f8=f0*f5, f4=dm(i1,m0), f1=pm(i15,m8);
f9=f0*f4;
f12=f1*f5, f0=dm(i7,m0), f5=pm(i11,m8);
f13=f1*f4, f12=f9+f12, f4=dm(i3,m0), f1=pm(i15,m8);
f8=f0*f4, f2=f8-f13;
f13=f1*f5;
f9=f0*f5, f8=f8+f13, f0=dm(i7,m1), f5=pm(i10,m8);
f13=f1*f4, f12=f8+f12, f14=f8-f12, f4=dm(i2,m0), f1=pm(i15,m9);
f11=f0*f4;
f13=f1*f5, f6=f9-f13;
f9=f0*f5, f13=f11+f13, f11=dm(i0,0);
f13=f1*f4, f8=f11+f13, f10=f11-f13;
 /*___________Do m7 radix-4 butterflies___________*/
lcntr=m7, do mr4bfly until lce;
 f13=f9-f13, f4=dm(i1,m0), f5=pm(i9,m8);
 f2=f2+f6, f15=f2-f6, f0=dm(i7,m0), f1=pm(i15,m8);
f8=f0*f4, f3=f8+f12, f7=f8-f12, f9=pm(i8,0);
f12=f1*f5, f9=f9+f13, f11=f9-f13, f13=f2;
f8=f0*f5, f12=f8+f12, f0=dm(i7,m0), f5=pm(i11,m8);
f13=f1*f4, f9=f9+f13, f6=f9-f13, f4=dm(i3,m0), f1=pm(i15,m8);
f8=f0*f4, f2=f8-f13, dm(i0,m0)=f3, pm(i8,m8)=f9;
f13=f1*f5, f11=f11+f14, f7=f11-f14, dm(i4,m0)=f7, pm(i12,m8)=f6;
f9=f0*f5, f8=f8+f13, f0=dm(i7,m1), f5=pm(i10,m8);
f13=f1*f4, f12=f8+f12, f14=f8-f12, f4=dm(i2,m0), f1=pm(i15,m9);
f11=f0*f4, f3=f10+f15, f8=f10-f15, pm(i13,m8)=f11;
f13=f1*f5, f6=f9-f13, dm(i6,m0)=f8, pm(i14,m8)=f7;
f9=f0*f5, f13=f11+f13, f11=dm(i0,0);
mr4bfly:
f13=f1*f4, f8=f11+f13, f10=f11-f13, dm(i5,m0)=f3;
 /*___________End radix-4 butterfly_____________*/
/* dummy for address update * * */
 f13=f9-f13, f0=dm(i7,m2), f1=pm(i15,m10);
 f2=f2+f6, f15=f2-f6, f0=dm(i1,m4), f1=pm(i9,m12);
 f3=f8+f12, f7=f8-f12, f9=pm(i8,0);
 f9=f9+f13, f11=f9-f13, f0=dm(i2,m4);
 f9=f9+f2, f6=f9-f2, f0=dm(i3,m4), f1=pm(i10,m12);
 dm(i0,m3)=f3, pm(i8,m11)=f9;
 f11=f11+f14, f7=f11-f14, dm(i4,m3)=f7, pm(i12,m11)=f6;
 f3=f10+f15, f8=f10-f15, pm(i13,m11)=f11;
 dm(i6,m3)=f8, pm(i14,m11)=f7;
mgroup: dm(i5,m3)=f3, f1=pm(i11,m12);

 r3=m4;
 r1=m5;
 r2=m6;
 r3=ashift r3 by -2; /* groupstep/4 */
 r1=ashift r1 by 2; /* groups*4 */
 m5=r1;
mstage: r2=ashift r2 by -2; /* butterflies/4 */

/*____________________Last radix-4 stage__________________________________*/
/* Includes bitreversal of the real data in dm */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

77777

230230230230230

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

 bit set mode1 BR0; /* bitreversal in i0 */
/* with: m0=m8=1 preset */
 i4=redata; /* input */
 i1=redata+1;
 i2=redata+2;
 i3=redata+3;
 i0=ORE; /* real output array base must be an integer multiple of N */
 m2=OST;
 i7=cosine;
 i8=imdata; /* input */
 i9=imdata+1;
 i10=imdata+2;
 i11=imdata+3;
 i12=imdata; /* output */
 i15=sine;
 m1=4;
 m9=m1;
 f0=dm(i7,m0), f5=pm(i9,m9);
f8=f0*f5, f4=dm(i1,m1), f1=pm(i15,m8);
f9=f0*f4;
f12=f1*f5, f0=dm(i7,m0), f5=pm(i11,m9);
f13=f1*f4, f12=f9+f12, f4=dm(i3,m1), f1=pm(i15,m8);
f8=f0*f4, f2=f8-f13;
f13=f1*f5;
f9=f0*f5, f8=f8+f13, f0=dm(i7,m0), f5=pm(i10,m9);
f13=f1*f4, f12=f8+f12, f14=f8-f12, f4=dm(i2,m1), f1=pm(i15,m8);
f11=f0*f4;
f13=f1*f5, f6=f9-f13;
f9=f0*f5, f13=f11+f13, f11=dm(i4,m1);
f13=f1*f4, f8=f11+f13, f10=f11-f13;
 /*________Do N/4-1 radix-4 butterflies_______*/
lcntr=N/4-1, do lstage until lce;
 f13=f9-f13, f4=dm(i1,m1), f5=pm(i9,m9);
 f2=f2+f6, f15=f2-f6, f0=dm(i7,m0), f1=pm(i15,m8);
f8=f0*f4, f3=f8+f12, f7=f8-f12, f9=pm(i8,m9);
f12=f1*f5, f9=f9+f13, f11=f9-f13, f13=f2;
f8=f0*f5, f12=f8+f12, f0=dm(i7,m0), f5=pm(i11,m9);
f13=f1*f4, f9=f9+f13, f6=f9-f13, f4=dm(i3,m1), f1=pm(i15,m8);
f8=f0*f4, f2=f8-f13, dm(i0,m2)=f3, pm(i12,m8)=f9;
f13=f1*f5, f11=f11+f14, f7=f11-f14, dm(i0,m2)=f7, pm(i12,m8)=f6;
f9=f0*f5, f8=f8+f13, f0=dm(i7,m0), f5=pm(i10,m9);
f13=f1*f4, f12=f8+f12, f14=f8-f12, f4=dm(i2,m1), f1=pm(i15,m8);
f11=f0*f4, f3=f10+f15, f8=f10-f15, pm(i12,m8)=f11;
f13=f1*f5, f6=f9-f13, dm(i0,m2)=f3, pm(i12,m8)=f7;
f9=f0*f5, f13=f11+f13, f11=dm(i4,m1);
lstage:

231231231231231

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

f13=f1*f4, f8=f11+f13, f10=f11-f13, dm(i0,m2)=f8;

 f13=f9-f13;
 f2=f2+f6, f15=f2-f6;
 f3=f8+f12, f7=f8-f12, f9=pm(i8,m9);
 f9=f9+f13, f11=f9-f13, dm(i0,m2)=f3;
 f9=f9+f2, f6=f9-f2, dm(i0,m2)=f7;
 pm(i12,m8)=f9;
 f11=f11+f14, f7=f11-f14, pm(i12,m8)=f6;
 f3=f10+f15, f8=f10-f15, pm(i12,m8)=f11;
 dm(i0,m2)=f3, pm(i12,m8)=f7;
 dm(i0,m2)=f8;

/*________Do the bitreversal of the imaginary part from pm to dm___________*/
 i8=imdata;
 i0=OIM; /* image output array base must be an integer multiple of N */
 f0=pm(i8,m8);

 lcntr=N-1, do pmbr until lce; /* do N-1 bitreversals */
pmbr: dm(i0,m2)=f0, f0=pm(i8,m8);

 rts (db);
 dm(i0,m2)=f0;
 bit clr mode1 BR0; /* no bitreversal in i0 any more */
.ENDSEG;

Listing 7.3 fftrad4.asmListing 7.3 fftrad4.asmListing 7.3 fftrad4.asmListing 7.3 fftrad4.asmListing 7.3 fftrad4.asm

77777

232232232232232

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.6.47.6.47.6.47.6.47.6.4 TWIDRAD2.C - Radix2 Coefficient GeneratorTWIDRAD2.C - Radix2 Coefficient GeneratorTWIDRAD2.C - Radix2 Coefficient GeneratorTWIDRAD2.C - Radix2 Coefficient GeneratorTWIDRAD2.C - Radix2 Coefficient Generator

/*__
TWIDRAD2.C Twiddle Factor Generator for ADSP-21020 Radix-2 FFT

Written: 18-FEB-91, Analog Devices
Modified: 25-MAR-91

12-JUN-91
__*/

#include <stdio.h>
#include <math.h>

main()
{
 int i, n;
 double freq, c, s;
 double pi;
 FILE *s_file;
 FILE *c_file;
 char filename1[25];
 char filename2[25];

/* initialize pi */
 pi = 4.0*atan(1.0);

 printf(“%c%c%c%c”,27,91,50,74); /*clear screen*/
 printf(“%c%c%c”,27,91,72); /*curser home*/
 printf(“_____________Radix-2 FFT Twiddle Factor Generator____________\n”);
 printf(“Generates a 1/2 a sine and cosine for use with the ADSP-21020\n”);
 printf(“radix-2 FFT code. Use with the radix-2 FFT - FFTRAD2.ASM only.\n”);
 printf(“12-JUN-91, Analog Devices\n”);
 printf(“___\n”);

233233233233233

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

 printf(“Enter the number of points -> “);
 scanf(“ %d”,&n);
 n=n/2;

 printf(“\nEnter the real twiddles filename ———> “);
 scanf(“ %s”,filename1);
 c_file=fopen(filename1,”w”);

 printf(“\nEnter the imaginary twiddles filename —> “);
 scanf(“ %s”,filename2);
 s_file=fopen(filename2,”w”);

 freq=2.0*pi*0.5/(double)n;
 for (i=0; i <= n-1; i++)
 {
 s=sin((double)i * freq);
 c=cos((double)i * freq);
 fprintf(s_file,”%22.14e\n”,s);
 fprintf(c_file,”%22.14e\n”,c);
 printf(“%d : %22.14e : %22.14e\r”,i,s,c);
 }

 fclose(s_file);
 fclose(c_file);
 printf(“\nFinished\n”);
}

Listing 7.4 twidrad2.cListing 7.4 twidrad2.cListing 7.4 twidrad2.cListing 7.4 twidrad2.cListing 7.4 twidrad2.c

77777

234234234234234

Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

7.6.57.6.57.6.57.6.57.6.5 TWIDRAD4.C - Radix4 Coefficient GeneratorTWIDRAD4.C - Radix4 Coefficient GeneratorTWIDRAD4.C - Radix4 Coefficient GeneratorTWIDRAD4.C - Radix4 Coefficient GeneratorTWIDRAD4.C - Radix4 Coefficient Generator

/*__
TWIDRAD4.C
 C program to generate the radix-4 twiddle factor table for the
 fast FFT-program RAD4.ASM for the ADSP21020.

 Based on MATLAB-File by Karl Schwarz, Erlangen-Nuernberg Universitaet

 Written 12-MAR-1991 Analog Devices
 Revised 25-MAR-1991 Analog Devices
__*/

#include <stdio.h>
#include <math.h>
#define MAX_LEN 16384

int b[MAX_LEN];
main() {
 double tc;
 double ts;
 double k1, k2, k3; /* coeff for table calculation */
 double pi;
 char cosfn[20]; /* strings for file names */
 char sinfn[20];
 int length, /* length of FFT */

 iter, /* length/4 */
 i, j, k;

 FILE *s_file, *c_file;

/* initialize pi */
 pi=4.0*atan(1.0);

/* User interface */

 printf(“%c%c%c%c”,27,91,50,74); /* clears ibm screen */
 printf(“%c%c%c”,27,91,72); /* homes ibm cursor */

printf(“\n FFTR4TBL \n”);
printf(“ Cosine and Sine Table generator for FFTRAD4.ASM \n”);
printf(“\nThis program generates the cosine and sine tables for the fast\n”);
printf(“FFT program FFTRAD4.ASM on the ADSP-21020. The length of the FFTs\n”);
printf(“can be any power of four equal or greater than 64. This program is\n”);
printf(“configured to generate tables for FFTs as long as %d.\n\n”,MAX_LEN);

 printf(“\n Enter the FFT length (max %d): “,MAX_LEN);
 scanf(“ %d”,&length);

 printf(“\n Name of Cosine table to be created: “);
 scanf(“ %s”,cosfn);
 c_file=fopen(cosfn,”w”);

235235235235235

77777Fourier TransformsFourier TransformsFourier TransformsFourier TransformsFourier Transforms

 printf(“ Name of Sine table to be created: “);
 scanf(“ %s”,sinfn);
 s_file=fopen(sinfn,”w”);

/* Start Calculations */
 if (length > 1024)

printf(“\n\n Thinking hard . . .”);
 else

printf(“\n\n Thinking . . .”);

 iter = length/4;

 /* generate array for bit reversed addressing */
 for (i=1,j=1;i<=iter;i++) {

 b[i-1] = j-1;
 k = iter/2;
 while (k<j && k!=0) {
 j =j-k;
 k = k/2;
 }
 j += k;

 }

 /* calculate tables */

 k1 = (2*pi/(double)length);
 k2 = (2*pi/(double)length)*2;
 k3 = (2*pi/(double)length)*3;

 for (i=0;i<iter;i++) {
 tc = cos(b[i]*k1);
 ts = sin(b[i]*k1);
 fprintf(c_file,”%22.14e\n”,tc);
 fprintf(s_file,”%22.14e\n”,ts);

 tc = cos(b[i]*k3);
 ts = sin(b[i]*k3);
 fprintf(c_file,”%22.14e\n”,tc);
 fprintf(s_file,”%22.14e\n”,ts);

 tc = cos(b[i]*k2);
 ts = sin(b[i]*k2);
 fprintf(c_file,”%22.14e\n”,tc);
 fprintf(s_file,”%22.14e\n”,ts);
 }

 fclose(c_file);
 fclose(s_file);
 printf(“\n Done!\n\n”);
}

Listing 7.5 twidrad4.cListing 7.5 twidrad4.cListing 7.5 twidrad4.cListing 7.5 twidrad4.cListing 7.5 twidrad4.c

7.77.77.77.77.7 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
[ADI92] Analog Devices Inc., A. Mar, ed. 1992. Digital Signal

Processing Applications Using The ADSP-2100 Family,
Englewood Cliffs, NJ: Prentice-Hall, Inc.

[BRIGHAM74] Brigham, E. O. 1974. The Fast Fourier Transform,
Englewood Cliffs, NJ: Prentice-Hall, Inc.

[BURRUS85] Burrus, C.S. and T.W. Parks. 1985. DFT and
Convolution Algorithms. New York, NY: John Wiley
and Sons.

[DUDGEON84] Dudgeon, D. and R. Mersereau. 1984. Multidimensional
Digital Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

[EMBREE91] Embree, P. and B. Kimble. 1991. C Language Algorithms
For Digital Signal Processing. , Englewood Cliffs, NJ:
Prentice-Hall, Inc.

[GONZALEZ77] Gonzalez, T. and P. Wintz. 1977. Digital Image
Processing. Reading, MA: Addision-Wesley Publishing
Company.

[HKMSHD88] Hakimmashhadi, H. 1988. “Discrete Fourier
Transform and FFT.” Signal Processing Handbook. New
York, NY: Marcel Dekker, Inc.

[HAYKIN83] Haykin, S. 1983. Communications Systems. New York:
John Wiley and Sons.

[OPPENHEIM75] Oppenheim, A.V. and R.W. Schafer. 1975. Digital
Signal Processing. Engelwood Cliffs, NJ: Prentice-Hall,
Inc.

[PROAKIS88] Proakis, J.G. and D.G. Manolakis. 1988. Introduction To
Digital Signal Processing, New York, NY: Macmillan
Publishing Company.

[RABINER75] Rabiner, L.R. and B. Gold. 1975. Theory And
Applications Of Digital Signal Processing. Engelwood
Cliffs, NJ: Prentice-Hall, Inc.

GraphicsGraphicsGraphicsGraphicsGraphics 88888

237237237237237

A computer graphics display system synthesizes pictures of real or
imaginary objects from computer-based models. A computer graphics
system consists of several subsystems, or layers, which may be
implemented in hardware or software. Each layer processes the input
passed to it from the layer above it and feeds its output to the input of the
next lower layer. The image is constructed as it passes through the
pipeline. The bottom layer is a hardware display device that transforms
the constructed image into a viewable picture, such as a picture on a CRT
monitor or line plotter drawings on paper.

8.18.18.18.18.1 3-D GRAPHICS LINE ACCEPT/REJECT3-D GRAPHICS LINE ACCEPT/REJECT3-D GRAPHICS LINE ACCEPT/REJECT3-D GRAPHICS LINE ACCEPT/REJECT3-D GRAPHICS LINE ACCEPT/REJECT
Depending on an image’s size and position, a display device may be
incapable of displaying the entire image all at once, so device-dependent
constraints must be put on the image before it is rendered. One of the
processes that determines which portion of an image resides within the
“view volume” of the display device is called the 3-D Graphics Line Accept/
Reject. Algorithm.

This subroutine performs trivial accept/reject checking on lines. The input
is a list in data memory of line endpoint coordinates—a pair of x, y, z
coordinates for each line. The subroutine performs clipping to a window
defined by a list in program memory of the Xmin, Xmax, Ymin, Ymax,
Zmin, and Zmax coordinates of the viewing volume. The output of this
subroutine is a display list of lines for the line renderer.

88888

238238238238238

GraphicsGraphicsGraphicsGraphicsGraphics

The subroutine calculates the outcodes for both of the endpoints of each
line. The outcode is a six-bit value that represents this truth table:

OUTCODE bit Meaning
5 Z > Zmax
4 Z < Zmin
3 Y > Ymax
2 Y < Ymin
1 X > Xmax
0 X < Xmin

The algorithm performs these six tests and sets the outcode bits
accordingly. If an outcode is zero, the point lies within the view volume.

Each line is classified into one of three categories:

trivial acceptance both endpoints inside view volume, the line can be
simply rendered

trivial rejection both endpoints outside the view volume, the line is
not rendered at all

neither the line must be clipped prior to rendering

See [FOLEY90] p. 145-149 for further information about 3-D Graphics Line
Accept/Reject.

239239239239239

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.1.18.1.18.1.18.1.18.1.1 ImplementationImplementationImplementationImplementationImplementation
Each point is subjected to six test to determine its outcode. After the six
compares are performed on each point, the Compare Accumulator (upper
six bits of ASTAT) have these values:

OUTCODE bit ASTAT bit Meaning
5 31 Z1 >Zmax
4 30 Z1 < Zmin
3 29 Y1 > Ymax
2 28 Y1 < Ymin
1 27 X1 > Xmax
0 26 X1 < Xmin

A point is only in the view volume if all six of these bits are zero.

Both outcodes must be all zeroes for the line to be trivially accepted.
If the logical OR of the outcodes is not equal to all zeroes, the line can be
trivially rejected.

When the line is neither trivially accepted nor rejected, it is clipped. There
will be at least one bit and at most three bits in the outcode which are non-
zero. Each non-zero bit requires the line to be clipped to its corresponding
window coordinate as shown Table 10.1 above. For example, if outcode bit
2 is non-zero, the line must be clipped to the Ymin boundary.

When a line requires clipping, the program calls the clipline
subroutine. Calling clipline at this point is preferable to clipping after
trivially accepting/rejecting all the lines since the coordinates do not have
to be fetched again and the outcodes do not have to be recalculated.

The clipline subroutine is application dependent and so is not given
here. Keep in mind when you write clipline that the endpoints of the
unclipped line and the outcodes for those endpoints are available in
registers zero through seven. The clipline routine should write a two
(2) to the display list and the new endpoints to the clipped endpoint list.
DAG1 index register I1 points to the display list and I2 points to the
clipped endpoint list.

After each line is classified, and possibly clipped, a value is added to the
display list. A zero (0) in the display list represents a trivially rejected line,
a one (1) represents a trivially accepted line, and a two (2) indicates the
line required clipping. For lines that required clipping, the clipped
endpoint values (two points, i.e. six values) are written to the clipped
endpoint list.

88888

240240240240240

GraphicsGraphicsGraphicsGraphicsGraphics

8.1.28.1.28.1.28.1.28.1.2 Code ListingCode ListingCode ListingCode ListingCode Listing
/

File Name
accrej.asm:

Version
 1.0

Purpose
Performs trivial accept/reject checking on lines.

Equations Implemented

Calling Parameters
REGISTER FILE
r7 number of lines to be examined
r12 preload with 0x3F (six ones)
r13 preload with 2
r14 preload with 1
r15 preload with 0

DAG1 (Data Memory)
i0 pointer to line endpoint list (X1,Y1,Z1,X2,Y2,Z2,...)
m0 +1
i1 pointer to display list
i2 pointer to clipped endpoint list

DAG2 (Program Memory)
i8 pointer to Xmin,Xmax,Ymin,Ymax,Zmin,Zmax
l8 6
m8 +1

Return Values

Registers Affected
r0-r9

Cycle Count
25*N + 28 worst case (all lines require clipping, 24 cache misses),
21*N + 1 best case (all lines trivially accepted, PMDAs in cache)

where N = number of lines, and worst case does NOT include time to perform
clipping

840ns to classify one line @ 40ns instruction cycle
1.2 million lines classified/second @ 40ns instruction cycle

PM Locations
 45 instructions + 6 data

DM Locations
 10*N, where N = Number of lines to be examined.
***/

241241241241241

88888GraphicsGraphicsGraphicsGraphicsGraphics

.EXTERN clipline;

.EXTERN accrej;

/* Defines related to the Compare Accumulator (CACC) */
#define CACC6_MSK 0xfc000000 /* top 6 bits of CACC */
#define test_cacc(msk) bit tst astat msk /* CACC test instr */

/* static registers */
#define REJECT r15 /* = 0 */
#define ACCEPT r14 /* = 1 */
#define CLIP r13 /* = 2 */
#define SIX_ONES r12 /* = 0x3f */

/* First Endpoint Coordinates */
#define X1 f0
#define Y1 f1
#define Z1 f2

/* Second Endpoint Coordinates */
#define X2 f3
#define Y2 f4
#define Z2 f5

/* Outcodes for Each Endpoint */
#define OC1 r6
#define OC2 r7

/* indices to lists */
#define DSP_LIST i1
#define CLIP_LIST i2

.SEGMENT /pm pm_code;

.GLOBAL accrej;
accrej:
 /* Perform OUTCODE #1 Comparisons */
 X1=dm(i0,m0), f8=pm(i8,m8);
 comp (f8,X1), f8=pm(i8,m8); /* X1 < Xmin ? */
 comp (X1,f8), Y1=dm(i0,m0), f8=pm(i8,m8); /* X1 > Xmax ? */
 comp (f8,Y1), f8=pm(i8,m8); /* Y1 < Ymin ? */
 comp (Y1,f8), Z1=dm(i0,m0), f8=pm(i8,m8); /* Y1 > Ymax ? */
 comp (f8,Z1), f8=pm(i8,m8); /* Z1 < Zmin ? */
 comp (Z1,f8), X2=dm(i0,m0), f8=pm(i8,m8); /* Z1 > Zmax ? */

 /* r7 contains number of lines - decrement it for loop */
 r7 = r7 - 1, OC1 = astat; /* get outcode 1, store in a register */
 OC1 = fext OC1 by 26:6; /* extract 6 MSBs */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

242242242242242

GraphicsGraphicsGraphicsGraphicsGraphics

 /* START OF LOOP */
 lcntr = r7, do arlp-1 until lce;
 /* Perform OUTCODE #2 Comparisons */
 comp (f8,X2), f8=pm(i8,m8); /* X2 < Xmin ? */
 comp (X2,f8), Y2=dm(i0,m0), f8=pm(i8,m8); /* X2 > Xmax ? */
 comp (f8,Y2), f8=pm(i8,m8); /* Y2 < Ymin ? */
 comp (Y2,f8), Z2=dm(i0,m0), f8=pm(i8,m8); /* Y2 > Ymax ? */
 comp (f8,Z2), f8=pm(i8,m8); /* Z2 < Zmin ? */
 comp (Z2,f8); /* Z2 > Zmax ? */

 OC2 = astat; /* get outcode 2, store in a register */
 OC2 = fext OC2 by 26:6; /* extract 6 MSBs */

 r9 = OC1 and OC2;
reject:
 if ne jump nxt (db);
 if ne dm(i1,m0) = REJECT;
 r9 = OC1 or OC2;
accept:
 if eq dm(i1,m0) = ACCEPT;

clipit:
 if ne call clipline;

nxt: /* Perform OUTCODE #1 Comparisons */
 /* NOTE: Cannot pre-fetch X1 because the old value in X1 must */
 /* be preserved until after clipline has been called */
 X1=dm(i0,m0), f8=pm(i8,m8);
 comp (f8,X1), f8=pm(i8,m8); /* X1 < Xmin ? */
 comp (X1,f8), Y1=dm(i0,m0), f8=pm(i8,m8); /* X1 > Xmax ? */
 comp (f8,Y1), f8=pm(i8,m8); /* Y1 < Ymin ? */
 comp (Y1,f8), Z1=dm(i0,m0), f8=pm(i8,m8); /* Y1 > Ymax ? */
 comp (f8,Z1), f8=pm(i8,m8); /* Z1 < Zmin ? */
 comp (Z1,f8), X2=dm(i0,m0), f8=pm(i8,m8); /* Z1 > Zmax ? */

 OC1 = astat;
 OC1 = fext OC1 by 26:6;

arlp: /* END OF LOOP */

243243243243243

88888GraphicsGraphicsGraphicsGraphicsGraphics

 comp (f8,X2), f8=pm(i8,m8); /* X2 < Xmin ? */
 comp (X2,f8), Y2=dm(i0,m0), f8=pm(i8,m8); /* X2 > Xmax ? */
 comp (f8,Y2), f8=pm(i8,m8); /* Y2 < Ymin ? */
 comp (Y2,f8), Z2=dm(i0,m0), f8=pm(i8,m8); /* Y2 > Ymax ? */
 comp (f8,Z2), f8=pm(i8,m8); /* Z2 < Zmin ? */
 comp (Z2,f8); /* Z2 > Zmax ? */

 OC2 = astat;
 OC2 = fext OC2 by 26:6;

 r9 = OC1 and OC2;

rej2:
 if ne rts (db);
 if ne dm(i1,m0) = REJECT;
 r9 = OC1 or OC2;
acc2:
 if eq dm(i1,m0) = ACCEPT;

clip2:
 if ne call clipline;

 rts;

.ENDSEG;

Listing 8.1 accej.asmListing 8.1 accej.asmListing 8.1 accej.asmListing 8.1 accej.asmListing 8.1 accej.asm

88888

244244244244244

GraphicsGraphicsGraphicsGraphicsGraphics

8.28.28.28.28.2 CUBIC BEZIER POLYNOMIAL EVALUATIONCUBIC BEZIER POLYNOMIAL EVALUATIONCUBIC BEZIER POLYNOMIAL EVALUATIONCUBIC BEZIER POLYNOMIAL EVALUATIONCUBIC BEZIER POLYNOMIAL EVALUATION
To generate a one-dimensional image that describes a three-dimensional
object, a mathematical relationship must be developed. Traditionally,
three-dimensional curved surfaces are graphically represented by either of
two methods: as functions of the standard x, y, and z variables, or as a
function of another parameter (such as t). A problem inherent with the
parametric method is that it may require a representation of an infinite
slope. Conversely, since the parametric method describes a surface as a
third order polynomial, the slope problem is easily handled. Both the
Bezier and B-spline polynomial use parametric equations to represent
curved surfaces.

The cubic Bezier polynomial uses four points to define a curve (or
surface): both endpoints and two other points not on the curve which
define tangents on the curve’s endpoints. These points (the p terms in the
following equation, are referred to as control points or knots (see Figure
8.1).

Figure 8.1 Cubic Bezier PolynomialFigure 8.1 Cubic Bezier PolynomialFigure 8.1 Cubic Bezier PolynomialFigure 8.1 Cubic Bezier PolynomialFigure 8.1 Cubic Bezier Polynomial

The assembly language routine in this section evaluates the Cubic Bezier
polynomial

x(t) = p1x(1 – t)3 + 3p2t(1 – t)2 + 3p3x t2(1 – t) + p4xt3

after it has been factored to the form

x(t) = (t – 1)[–(t – 1)2p1x + 3t [(t – 1)p2x – p3xt)]] + p4xt3

See [FOLEY90] p. 519 - 521 for further information.

245245245245245

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.2.18.2.18.2.18.2.18.2.1 ImplementationImplementationImplementationImplementationImplementation
The code given is not looped. For a similar example taking advantage of
hardware-supported DO loops, see bspline.asm .

The register definitions used in the code below refer to the various
sections of the factored equation being assembled, as shown in Figure 8.2:

Figure 8.2 Register Assignments For Cubic Bezier PolynomialFigure 8.2 Register Assignments For Cubic Bezier PolynomialFigure 8.2 Register Assignments For Cubic Bezier PolynomialFigure 8.2 Register Assignments For Cubic Bezier PolynomialFigure 8.2 Register Assignments For Cubic Bezier Polynomial

B A
C

E
F

D

H

I

x(t) = (t – 1) [– (t – 1)2 p1x + 3t [(t – 1)p2x – p3xt)]] + p4xt
3

88888

246246246246246

GraphicsGraphicsGraphicsGraphicsGraphics

8.2.28.2.28.2.28.2.28.2.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
bezier.asm

Version

Purpose
Define a curve (or surface).

Equations Implemented
 3 2 2 3
 x(t) = p (1-t) + 3 p t (1-t) + 3 p t (1-t) + p t
 1x 2x 3x 4x

Calling Parameters
f0 = input value (t)
f1 = t - 1
f9 = P1
f5 = P2
f6 = P3
f7 = P4
f14 = 3.0

Return Values
f0 = x(t)

Registers Affected
f8, f12, f13

Cycle Count
11 cycles per bezier evaluation, straight-line code
10 cycles per bezier evaluation, looped
400ns per bezier evaluation @ 40ns instruction cycle

2.5 million bezier evaluations/sec @ 40ns instruction cycle

PM Locations
 11

DM Locations
 0

247247247247247

88888GraphicsGraphicsGraphicsGraphicsGraphics

***/

.GLOBAL bezier;

#define T f0 /* T, the parametric value */
#define T_M1 f1 /* T - 1 */

#define P1 f9
#define P2 f5
#define P3 f6
#define P4 f7

#define TMP f4
#define A f12
#define B f8
#define C f8
#define D f8
#define E f12
#define F f12
#define G f8
#define H f13
#define I f12

#define THREE f14 /* 3.0 */

.SEGMENT /pm pm_code;
bezier:
 A = T * P3, TMP = T_M1;
 B = T_M1 * P2;
 E = T_M1 * TMP, C = B - A;
 C = THREE * C;
 D = T * C;

 F = E * P1;
 H = T * P4, G = D - F;
 H = H * T;
 rts (db), H = H * T;
 I = G * T_M1;
 f0 = H + I;
.ENDSEG;

Listing 8.2 bezier.asmListing 8.2 bezier.asmListing 8.2 bezier.asmListing 8.2 bezier.asmListing 8.2 bezier.asm

88888

248248248248248

GraphicsGraphicsGraphicsGraphicsGraphics

8.38.38.38.38.3 CUBIC B-SPLINE POLYNOMIAL EVALUATIONCUBIC B-SPLINE POLYNOMIAL EVALUATIONCUBIC B-SPLINE POLYNOMIAL EVALUATIONCUBIC B-SPLINE POLYNOMIAL EVALUATIONCUBIC B-SPLINE POLYNOMIAL EVALUATION
The Cubic B-spline polynomial, like the Bezier, is commonly used to
represent curves and surfaces as a compact list of control points, or knots.
(see Figure 8.3). In contrast to the Bezier polynomial, the Cubic B-spline
polynomial does not pass through the endpoints or any of the other
control points.

Figure 8.3 Cubic B-Spline PolynomialFigure 8.3 Cubic B-Spline PolynomialFigure 8.3 Cubic B-Spline PolynomialFigure 8.3 Cubic B-Spline PolynomialFigure 8.3 Cubic B-Spline Polynomial

See [FOLEY90] p. 521-523 for further information about Cubic B-Spline
Polynomials.

8.3.18.3.18.3.18.3.18.3.1 ImplementationImplementationImplementationImplementationImplementation
This routine evaluates the Cubic Bspline polynomial:

– (u – 1)3 p1 + [3u2 (u – 2) + 4] p2 – [3(u3 + u2 + u) + 1] p3 + u3p46

249249249249249

88888GraphicsGraphicsGraphicsGraphicsGraphics

The register definitions used in the code below refer to the various
sections of the factored equation, as shown in Figure 8.4:

Figure 8.4 Register Assignments For Cubic B-Spline PolynomialFigure 8.4 Register Assignments For Cubic B-Spline PolynomialFigure 8.4 Register Assignments For Cubic B-Spline PolynomialFigure 8.4 Register Assignments For Cubic B-Spline PolynomialFigure 8.4 Register Assignments For Cubic B-Spline Polynomial

Upon entering the subroutine the algorithm reads the input value twice
from the same data memory location. For readability of the equation, the
variable U holds the input value for the multiplication and the variable
AU holds the same input value for the additions.

The loop counter is set with R0, which holds the number of values for
which the Cubic B-Spline Equation will be executed.

M1

A1

A6

M2

A5

M3

A2 A3

A4

AX AY

(–(u – 1)3 p1 + [3u2 (u – 2) + 4] p2 – [3 (u3 + u2 + u) + 1] p3 + u3p4

88888

250250250250250

GraphicsGraphicsGraphicsGraphicsGraphics

8.3.28.3.28.3.28.3.28.3.2 Code ListingCode ListingCode ListingCode ListingCode Listing
/

File Name
bspline.asm

Version

Purpose
Represent curves and surfaces as a compact list of control points.

Equations Implemented
 3 2 3 2 3
 -(u-1) p + [3u (u-2) + 4] p - [3(u + u + u) + 1)] p + u p
 1 2 3 4
x(u) = ———————————————————————————————————

 6.0

Calling Parameters
r0 = number of x(u) equations to be calculated.
f14 = 1.0
i8 = PM pointer to P1 —> P4
i0 = DM pointer to 1-D array of input U values
i1 = DM pointer to constants { 3.0, 4.0, 0.1666666666 }
i2 = DM pointer to results x(U)

 m1 = 0
 m0 = 1

Return Values
i2 = pointer to results x(U)

Registers Affected
F0, F2, F4, F7, F8, F12

Cycle Count
15N + 11 cycles per bspline evaluation
600ns per bspline evaluation @ 40ns instruction cycle
1.7 million bspline evaluations/sec @ 40ns instruction cycle

PM Locations
 17 instruction + 4 data

DM Locations
 4 + 2 * N, where N = number of times x(U) will be calculated

251251251251251

88888GraphicsGraphicsGraphicsGraphicsGraphics

***/

.GLOBAL bspline;

/* Multiplier Input defines */

#define U f10 /* U, the parametric value */

#define X f0 /* result x(U) */

#define M1 f0
#define M2 f1
#define M3 f2

#define MUS f5 /* U^2, MULT version */
#define MUM1 f6 /* U - 1 */
#define MUM2 f3 /* U - 2 */

#define P1 f4 /* parametric coef #1 */
#define P2 f4 /* parametric coef #2 */
#define P3 f4 /* parametric coef #3 */
#define P4 f4 /* parametric coef #4 */

#define THREE f7 /* 3.0 */
#define ISIX f15 /* 0.16666666666 */
#define ONE f14

/* ALU Input defines */

#define AUC f12 /* U^3, ALU version */
#define AUM1 f9 /* U-1, ALU version */
#define A1 f15
#define A2 f11
#define A3 f9
#define A4 f10
#define A5 f9
#define A6 f11
#define FOUR f15 /* 4.0 */
#define AU f8 /* U, ALU version */
#define AUS f13 /* U^2, ALU version */
#define AX f8 /* sum of 1st 2 terms */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

252252252252252

GraphicsGraphicsGraphicsGraphicsGraphics

#define AY f12 /* sum of last 2 terms */

.SEGMENT /pm pm_code;
bspline:

 U = dm(i0,m1);
 AU = dm(i0,m0);
 MUM1 = U - ONE;

 lcntr = r0, do bslp until lce;

 M1 = MUM1 * MUM1, AUM1 = MUM1;
 M1 = M1 * MUM1, MUM2 = AUM1 - ONE;
 MUS = U * U;
 AUC = U * MUS, AUS = MUS;
 M2 = MUM2 * MUS, A5 = AU + AUS, THREE = dm(i1,m0);
 A6 = M2 * THREE, M3 = A5 + AUC, FOUR = dm(i1,m0);
 A5 = M3 * THREE, M2 = A6 + FOUR, P1 = pm(i8,m8);
 A1 = M1 * P1, M3 = A5 + ONE, P2 = pm(i8,m8);
 A2 = M2 * P2, P3 = pm(i8,m8);
 A3 = M3 * P3, AX = A2 - A1, P4 = pm(i8,m8);
 A4 = AUC * P4;
 AY = A4 - A3, U = dm(i0,m1);
 X = AX + AY, ISIX = dm(i1,m0);
 X = X * ISIX, AU = dm(i0,m0);
bslp: MUM1 = U - ONE, dm(i2,m0) = X;

 rts;

.ENDSEG;

Listing 8.3 B-spline.asmListing 8.3 B-spline.asmListing 8.3 B-spline.asmListing 8.3 B-spline.asmListing 8.3 B-spline.asm

253253253253253

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.48.48.48.48.4 BIT BLOCK TRANSFERBIT BLOCK TRANSFERBIT BLOCK TRANSFERBIT BLOCK TRANSFERBIT BLOCK TRANSFER
Speed of operation is critical for graphics and image processing
applications. Even while an image is displayed, the display processor is
working to update that image and to create new ones—it is often
necessary for the processing unit to perform tasks simultaneously.

Bit-Blt (short for Bit Boundary Block Transfer) is an algorithm for the
transfer of image data (pixels) from one location to another. The location
from which the data is transferred is called the source; the location to
which the data goes is called the destination. In addition to performing the
transfers, Bit-blt can perform logical or mathematical operations on the
data.

8.4.18.4.18.4.18.4.18.4.1 ImplementationImplementationImplementationImplementationImplementation
BitBlt, or Bit Block Transfer, is the transferring of N words of data to a
destination where each destination word is formed by taking bits
OFFSET–1 to 0 from the one source datum, and bits 31 down to OFFSET of
the next source datum. For example, Figure 8.5 shows BitBlt between two
areas in memory, with OFFSET = b :

Source Data Destination Data
31 b b-1 0 31 0
xxxxxxxxx AAAAAAA AAAAAAAAAAAAAAAA
AAAAAAAAA BBBBBBB BBBBBBBBBBBBBBBB
BBBBBBBBB CCCCCCC CCCCCCCCCCCCCCCC
CCCCCCCCC DDDDDDD DDDDDDDDDDDDDDDD
etc... etc...

Figure 8.5 BitBlitFigure 8.5 BitBlitFigure 8.5 BitBlitFigure 8.5 BitBlitFigure 8.5 BitBlit

The BitBlt algorithm alternately uses two registers, X and Y ,to store the
source data to be transferred and two registers, P and Q , to hold the
results of shifting the bit patterns in X and Y. The offset is denoted as b.
Figure 8.6 shows a the usage of X and Y:

31 b b – 1 0
X ––> xxxxxxxxx PPPPPPP
Y ––> PPPPPPPPP QQQQQQQ

X ––> QQQQQQQQQ PPPPPPP
Y ––> PPPPPPPPP QQQQQQQ

Figure 8.6 Register Usage For BitBltFigure 8.6 Register Usage For BitBltFigure 8.6 Register Usage For BitBltFigure 8.6 Register Usage For BitBltFigure 8.6 Register Usage For BitBlt

88888

254254254254254

GraphicsGraphicsGraphicsGraphicsGraphics

The algorithm consists of these steps:

1. Read source word into X.

2. Shift left X by 32 – OFFSET.

3. Read source word into Y.

4. Y Shift right Y by OFFSET.

5. X OR Y -> DM_DEST.

6. Shift Y left by 32 – OFFSET. Read new value into X, Shift X right by OFFSET.

7. Y OR X -> DM_DEST.

8. Repeat 2 - 7 N times, where N is the number of 32-bit words to move.

255255255255255

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.4.28.4.28.4.28.4.28.4.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
bitblt.asm

Version

Purpose
Bit Block Transfer.

Equations Implemented
 None

Calling Parameters
r0 N
r1 OFFSET
i0 pointer to start of source
i1 pointer to start of destination
m0 +1

Return Values
none

Registers Affected
r0, r2-r6

Cycle Count
2N + 7 cycles
12.5 million words / second @ 40ns instruction cycle
50 million bytes / second @ 40ns instruction cycle

PM Locations
15

DM Locations
2 * N, where N is number of words to transfer

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

256256256256256

GraphicsGraphicsGraphicsGraphicsGraphics

***/

#define N r0 /* number of 32-bit words to transfer */
#define OFFSET r1 /* bit offset for each word */
#define A r2 /* register used to assemble transfer */
#define B r2 /* register used to assemble transfer */
#define DM_SRC dm(i0,m0) /* transfer source */
#define DM_DEST dm(i1,m0) /* transfer destination */
#define X r3 /* a source word */
#define Y r4 /* another source word */
#define LREG r5 /* register storing left-shift value */
#define RREG r6 /* register storing right-shift value */
#define LEFT by LREG /* a more descriptive syntax for left-shift */
#define RIGHT by RREG /* “ “ for right-shift */

.SEGMENT /pm pm_code;
bitblt: N = lshift N by -1; { iterations = N/2 }
 N = N - 1; { iterations = N/2 -1 }
 RREG = -OFFSET;
 LREG = 32;
 LREG = LREG + RREG, X = DM_SRC;

 A = lshift X LEFT, Y = DM_SRC;
 A = A or lshift Y RIGHT, X = DM_SRC;

 lcntr=N, do blt until lce;
 B = lshift Y LEFT, DM_DEST = A;
 B = B or lshift X RIGHT, Y = DM_SRC;
 A = lshift X LEFT, DM_DEST = B;
blt: A = A or lshift Y RIGHT, X = DM_SRC;

 B = lshift Y LEFT, DM_DEST = A;
 B = B or lshift X RIGHT;
 DM_DEST = B;
.ENDSEG;

Listing 8.4 bitblt.asmListing 8.4 bitblt.asmListing 8.4 bitblt.asmListing 8.4 bitblt.asmListing 8.4 bitblt.asm

257257257257257

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.58.58.58.58.5 BRESENHAM LINE DRAWINGBRESENHAM LINE DRAWINGBRESENHAM LINE DRAWINGBRESENHAM LINE DRAWINGBRESENHAM LINE DRAWING
The Bresenham Line Drawing Algorithm draws pixels approximating a
line between two specified endpoints. Since the algorithm is working in
pixel coordinates, it is basically an integer operation. The set_pixel
macro, which turns on the chosen pixel, is application-dependent.

[GLASSNER90] presents an implementation of this algorithm in which
both pixel calculations and accumulation of an error term are done in
fixed-point, for a total of four fixed-point operations in the inner loop.

8.5.18.5.18.5.18.5.18.5.1 ImplementationImplementationImplementationImplementationImplementation
Although the ADSP-21020 is a floating-point processor, the ability to use
both the ALU and Data Address Generators in parallel allow the required
four fixed-point operations to be executed in two cycles.

If the inner loop of the Bresenham algorithm is implemented in a
straightforward way, with all calculations performed in the ALU, it
requires five instructions (not including the set_pixel operation). In
this implementation, all macro registers (ERR, Y, X, SX, SY, AX, AY) are in
the register file, and four fixed-point ALU operations are required, two of
which are conditional, two unconditional. The five instructions necessary
are:

If the inner loop is implemented so that the ALU calculates the error term,
ERR , and DAG1 calculates the X and Y coordinates, the loop can be
implemented in two instructions:

 do lp until lce;
 if ge ERR = ERR - AX, modify(Y,SY);
 ERR = ERR + AY, modify (X,SX);
lp: set_pixel(X,Y);

 do lp until lce;
 if lt jump noyinc;
 Y = Y + SY;
 ERR = ERR - AX;
noyinc:
 X = X + SX;
 ERR = ERR + AY;
lp: set_pixel(X,Y);/* application-dependent macro */

88888

258258258258258

GraphicsGraphicsGraphicsGraphicsGraphics

For some graphics applications, the set_pixel macro may be nothing
more than setting a memory location to a constant value. The constant
value may simply be 1, or it may be a 24-bit integer indicating the line
color. The inner loop used in this application can be as simple as a single
instruction:

do lp-1 until lce;

if ge ERR = ERR - AX, modify(P,SY);

ERR = ERR + AY, modify (P,SX);

dm(P) = CONST; /* set_pixel —> one instruction */

lp:

If image memory is in data memory and is organized as M rows each N
pixels long, P is a DAG1 index register, SY is ±N, SX is ±1, and CONST is
a register file register containing the constant value that the pixel is set to.

This implies that the entire Bresenham inner loop, including setting the
chosen pixel, can be performed in as few as three instructions.

259259259259259

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.5.28.5.28.5.28.5.28.5.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
bresen.asm:

Version
 1.0

Purpose
Draws pixels approximating a line between two specified endpoints.

Equations Implemented
Y=SIN(X) or
Y=COS(X)

Calling Parameters
r0 = x1 = x coord on line start
r1 = y1 = y coord on line start
r2 = x2 = x coord on line end
r3 = y2 = y coord on line end
l2 = 0
l3 = 0

Return Values
F0 = Sine (or Cosine) of input Y=[-1,1]

Registers Affected
r0-r11, i2, m2, i3, m3

Cycle Count

2N + set_pixel*(N+1) + 25 cycles
 where N = number of points
 = max (abs(x2-x1),abs(y2-y1))

326 cycles for a 100-pixel line
76,700 100-pixel lines/second @ 40ns instruction cycle

PM Locations
34 words

DM Locations
11 Words

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

260260260260260

GraphicsGraphicsGraphicsGraphicsGraphics

***/

/* set_pixel is a user-defined macro. Currently, it just writes out the
 generated X,Y pairs to data memory for inspection.*/

#define set_pixel(x,y) r0=x; dm(i0,m0)=r0; r0=y; dm(i0,m0)=r0

#define X1 r0
#define Y1 r1
#define X2 r2
#define Y2 r3

#define X i2
#define Y i3
#define XLEN l2
#define YLEN l3
#define XSTP 1
#define YSTP 1

#define SX m2
#define SY m3

#define DX r4
#define DY r5
#define AX r6
#define AY r7
#define RSX r8
#define RSY r9
#define ERR r11

#define NEG_ONE r10
#define LEFT by 1
#define RIGHT by NEG_ONE

/*——————————————————————————————————————
Bresenham Line Drawing Function

 Label Meaning
 ———— ———————————————
 bresen start of function
 oct1 octant 1 line-drawing algorithm
 lp1 octant 1 loop
 oct2 octant 2 line-drawing algorithm

261261261261261

88888GraphicsGraphicsGraphicsGraphicsGraphics

 lp2 octant 2 loop
——————————————————————————————————————*/
.SEGMENT /pm pm_code;
.GLOBAL bresen;
bresen:
 NEG_ONE = -1;
 XLEN = 0; YLEN = 0;
 RSX = 0; RSY = 0;
 DX = X2 - X1;
 if ge RSX = RSX + XSTP; /* if (x2>x1) step x-coord up */
 if lt RSX = RSX - XSTP; /* if (x2>x1) step x-coord down */
 DY = Y2 - Y1;
 if ge RSY = RSY + YSTP; /* if (y2>y1) step y-coord up */
 if lt RSY = RSY - YSTP; /* if (y2>y1) step y-coord down */
 AX = abs DX;
 AX = ashift AX LEFT; /* X error term = 2 * (abs(x2-x1)) */
 AY = abs DY, SX = RSX; /* save register-SX into modify register */
 AY = ashift AY LEFT; /* Y error term = 2 * (abs(y2-y1)) */
 comp(AX,AY), SY = RSY; /* save register-SY into modify register */
 if lt jump oct2(db); /* if (abs(x2-x1) > abs(y2-y1)) { */
 X = X1; /* computeOctant1; */
 Y = Y1; /* } else { computeOctant2; } */

oct1:
 set_pixel(X,Y);

 /* initial error = 2 * (abs(y2-y1) - abs(x2-x1)) */
 ERR = ashift AX RIGHT;
 ERR = AY - ERR, lcntr=ERR;

 do lp1-1 until lce;
 if ge ERR = ERR - AX, modify(Y,SY);
 ERR = ERR + AY, modify (X,SX);
 set_pixel(X,Y);
lp1:
 rts;

oct2:
 set_pixel(X,Y);

 /* initial error = abs(x2-x1) - abs(y2-y1))*2 */
 ERR = ashift AY RIGHT;
 ERR = AX - ERR, lcntr = ERR;

 do lp2-1 until lce;
 if ge ERR = ERR - AY, modify(X,SX);
 ERR = ERR + AX, modify (Y,SY);
 set_pixel(X,Y);
lp2:
 rts;
.ENDSEG;

Listing 8.5 bresen.asmListing 8.5 bresen.asmListing 8.5 bresen.asmListing 8.5 bresen.asmListing 8.5 bresen.asm

88888

262262262262262

GraphicsGraphicsGraphicsGraphicsGraphics

8.68.68.68.68.6 3-D GRAPHICS TRANSLATION, ROTATION, & SCALING3-D GRAPHICS TRANSLATION, ROTATION, & SCALING3-D GRAPHICS TRANSLATION, ROTATION, & SCALING3-D GRAPHICS TRANSLATION, ROTATION, & SCALING3-D GRAPHICS TRANSLATION, ROTATION, & SCALING
Translation, rotation, and scaling are pixel manipulations which move
images.

• An image is translated when its position is changed (the figure seems
to move) without affecting size.

• An image is scaled (stretched or compressed) when it is made larger or
smaller.

• Rotation of an image is angular movement of an image with respect to
its origin.

Scaling, rotation, and repositioning are done by multiplying the input
coordinates (a column vector of size 4 × 1) by a 4 × 4 transformation matrix
This subroutine performs the 3-D graphics transformation:

P’ = M * P

where

P = a 3-D point, a column vector with elements x, y, z, and w
M = a 4 x 4 transformation matrix (combination of translation, scaling

and/or rotation)
P’ = The translation of point P

8.6.18.6.18.6.18.6.18.6.1 ImplementationImplementationImplementationImplementationImplementation
To implement 3-D Translation, Rotation and Scaling, as a 4x4 by 4x1
matrix multiply requires 16 multiplications and 12 additions. In this
routine, assume that M is a matrix of the form:

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

M =

263263263263263

88888GraphicsGraphicsGraphicsGraphicsGraphics

Since the bottom row contains mostly zeroes, this matrix it can be broken
down into a 3×3 matrix of the r terms and a 3×1 matrix of the t terms; when
added together the two matrices yield the same values. The
transformation can be decomposed as

P’ = R * P + T

where

r11 r12 r13
r21 r22 r23
r31 r32 r33

px
py
pz

tx
ty
tz

reducing the operations to nine multiplications and nine additions.

For the true 4 × 4 by 4 × 1 multiply, see mul44x41.asm .

For a description of 3-D transformations and [x, y ,z, w] coordinates, see
Chapter 5 of [FOLEY90].

In this implementation, the original list of points in data memory (pointed
to by i0) contains x, y, z, and w coordinates, while the transformed points
in data memory (pointed to by I1) only have x, y, and z coordinates. To
transfer the w coordinate required two data memory transfers (one to read
w, one to write w), and there is only a single data memory move slot left in
the inner loop in this implementation. Preserving w in the transformed
point list costs an additional cycle.

It is not necessary to actually move the w coordinates; they are unchanged
by the translate/scale/rotate operations. When the transformed points are
later used, the transformed x, y, z coordinates can be accessed by one DM
index register, with a modify value of +1, and the w coordinates can be
accessed by another DM index register, with a modify value of +4.

R =

P =

T =

88888

264264264264264

GraphicsGraphicsGraphicsGraphicsGraphics

Specifically, when a final transformation to the canonical view volume is
required, and a true 4 × 4 by 4 × 1 operation must be performed, the
mul44x41.asm code shows how to index the transformed points with
separate [x, y, z] and [w] indices.

The order of operations has been rearranged slightly to reduce cycle time
and also to take advantage of “empty” instruction slots that are available
during multifunction instructions. Instead of first performing all
multiplications of R * P and then adding T, multifunction capability is
utilized. For example, the F12 term in the last instruction before the loop
holds

r11px + r12py + r13 pz + tx

The program is organized so that the code before the loop reads the
coordinates for the first point to be processed, the first two rows of matrix
R, and enough operands to supply the registers within the loop with data.
After the loop is processed, the remaining code calculates the last point
coordinates.

In the ADSP-21000 family, registers are read at the beginning of a cycle
and are written to at the end of the cycle. For example, in the first parallel
multiply accumulate

f8 = f3 * f4, f12 = f8 + f15, etc.

It is important to remember that F8 used as an addend will reflect the
value that F8 contained at the beginning of this cycle, not the product of
F3 * F4.

There is a tradeoff between leaving values in registers versus dedicating a
circular buffer and register to read the nine values of matrix R. Choosing
the latter is advantageous because multifunction operations can support
the memory reads. Also, since there are nine less registers to keep track of,
the code is easier to comprehend.

For more information, see [FOLEY90] pp. 256-261.

265265265265265

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.6.28.6.28.6.28.6.28.6.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
transf.asm

Version

Purpose
Scaling, rotation, and repositioning with basic matrix operations.

Equations Implemented
P’ = M * P where

P = 3-D point, a column vector with elements x,y,z, and w
M = 4 x 4 transformation matrix (combination of translation,

 scaling and/or rotation)
P’ = Translation of point P

Calling Parameters
r0 = number of points to transform
i0 = index to point P (x,y,z,w)
m0 = +1
m1 = +2
i1 = index to transformed point area
i2 = index to matrix T
l2 = 3 (length of T)
i8 = index to matrix R
l8 = 9 (length of R)
m8 = +1

Return Values

Registers Affected
 r0-r6, r8-r10, r12-r15

Cycle Count
10N+5 cycles, where N 3-D points are transformed
400ns per point @ 40ns instruction cycle
2.5 million points/sec @ 40ns instruction cycle

PM Locations
 27 instructions + 9 words of PM data
DM Locations
 10 words

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

266266266266266

GraphicsGraphicsGraphicsGraphicsGraphics

***/

.GLOBAL transf;

.SEGMENT /pm pm_code;
transf:
 r0 = r0-1, f1=dm(i0,m0), f4=pm(i8,m8); /* first point is processed
*/
 /* outside loop, so
decrement*/
 /* r0, f1 = px, f4 = r11 */
 f15=f1*f4, f2=dm(i0,m0), f4=pm(i8,m8); /* f2=py, f4=r12 */
 f8=f2*f4, f3=dm(i0,m1), f4=pm(i8,m8); /* f3=pz, f4=r13 */
 f8=f3*f4, f12=f8+f15, f9=dm(i2,m0), f4=pm(i8,m8); /* f9=tx, f4=r21 */
 f15=f1*f4, f12=f8+f12, f4=pm(i8,m8); /* f12 holds running sum */
 /* of products, f4=r22 */
 f8=f2*f4, f12=f9+f12, f4=pm(i8,m8); /* f4=r23 */

 lcntr=r0, do trlp until lce;

 f8=f3*f4, f13=f8+f15, f10=dm(i2,m0), f4=pm(i8,m8); /*f10=ty, f4=r31*/
 f15=f1*f4, f13=f8+f13, f11=dm(i2,m0), f4=pm(i8,m8);/*f11=tz, f4=r32*/
 f8=f2*f4, f13=f10+f13,f4=pm(i8,m8); /* f4=r33*/
 f8=f3*f4, f14=f8+f15, dm(i1,m0)=f12; /*f12 = r11px + r12 py */
 /* + r13 pz + tx */

 f14=f8+f14, f1=dm(i0,m0), f4=pm(i8,m8);
 /*cont with circ buf reads*/
 f15=f1*f4, f14=f11+f14, f2=dm(i0,m0), f4=pm(i8,m8);
 f8=f2*f4, f3=dm(i0,m1), f4=pm(i8,m8);
 f8=f3*f4, f12=f8+f15, f9=dm(i2,m0), f4=pm(i8,m8);
 f15=f1*f4,f12=f8+f12,dm(i1,m0)=f13,f4=pm(i8,m8);
 /*f13=pxr21+pyr22+pzr23+ty*/
trlp: f8=f2*f4, f12=f9+f12, dm(i1,m0)=f14, f4=pm(i8,m8);
 /*f14=pxr31+pyr32+pzr33+tz*/

 f8=f3*f4, f13=f8+f15, f10=dm(i2,m0), f4=pm(i8,m8);
 f15=f1*f4, f13=f8+f13, f11=dm(i2,m0), f4=pm(i8,m8);
 f8=f2*f4, f13=f10+f13, f4=pm(i8,m8);
 f8=f3*f4, f14=f8+f15, dm(i1,m0)=f12; /*f12 = pxr11+pyr12+pzr13
+tx*/

 f14=f8+f14;
 rts(db), f14=f11+f14;
 dm(i1,m0)=f13; /*f13 = pxr21 +pyr22+pzr23
+ty*/
 dm(i1,m0)=f14; /*f14 = pxr31+ pyr32+
pzr33+tz*/

267267267267267

88888GraphicsGraphicsGraphicsGraphicsGraphics

8.78.78.78.78.7 MULTIPLY 4MULTIPLY 4MULTIPLY 4MULTIPLY 4MULTIPLY 4×4 BY 44 BY 44 BY 44 BY 44 BY 4×1 MATRICES (3D GRAPHICS TRANSFORMATION)1 MATRICES (3D GRAPHICS TRANSFORMATION)1 MATRICES (3D GRAPHICS TRANSFORMATION)1 MATRICES (3D GRAPHICS TRANSFORMATION)1 MATRICES (3D GRAPHICS TRANSFORMATION)
.ENDSEG;

Listing 8.6 transf.asmListing 8.6 transf.asmListing 8.6 transf.asmListing 8.6 transf.asmListing 8.6 transf.asm

This subroutine performs a 4 × 4 by 4 × 1 3D graphics transformation on N
4 ×1 points. Each point requires 16 multiplications and 12 additions. Even
though this is a graphics transformation that operates in three dimensions
(the x-, y-, and z-axes), the w coordinates are needed to provide a scaling
point of reference for the other three coordinates.

Note that if the transformation is a combination of translation, rotation,
and scaling operations, the routine transf.asm can be used, saving five
multiplications and three additions per point. The mul44x41 module is
intended for use with other types of transformations, such as transforming
to the canonical clipping volume, which can’t be done with the matrix in
transf.asm .

See [FOLEY90], pp. 256-261, for further information

8.7.18.7.18.7.18.7.18.7.1 ImplementationImplementationImplementationImplementationImplementation
This code example can be used in two ways. If the list of points is a
sequence of [x ,y, z, w] coordinates, assemble this code normally (asm21k
mul44x41). If the list of points is [x, y, z] coordinates only, and the w
coordinate is buried in another list of points, define the preprocessor
variable WOUT with the syntax asm21k -DWOUT mul44x41 . This may
be needed if transf.asm has been used in previous transformations,
since the transf.asm code doesn’t keep the w coordinate embedded in
the [x, y, z] coordinate list.

Remember, in the ADSP-21000 family, registers are read at the beginning

88888

268268268268268

GraphicsGraphicsGraphicsGraphicsGraphics

of a cycle and written to at the end of the cycle. When register values are used as
input operands in algebraic expressions, the value that is operated upon is the value
contained in the register before the current cycle is executed.

8.7.28.7.28.7.28.7.28.7.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
mul44x41.asm

Version

Purpose
General 4x4 by 4x1 3D graphics transform on N 4x1 points.

Equations Implemented

Calling Parameters
r9 = number of points to transform
i0 = index to [x,y,z] coordinates
m0 = +1
m1 = +4
i1 = index to transformed point area
i2 = index to [w] coordinates
i8 = index to 4x4 matrix
l8 = 16
m8 = +1

Return Values

Registers Affected
r1, r4-r9, r14-r15

Cycle Count
16N+4 cycles, where N 3-D points are transformed
640ns per point @ 40ns instruction cycle
1.56 million points/sec @ 40ns instruction cycle

PM Locations

269269269269269

88888GraphicsGraphicsGraphicsGraphicsGraphics

 36 words of instructions + 16 words of PM data
DM Locations
 (8 * N) + 4, where N is the number of points to transform

***/

.GLOBAL mul44x41;

#ifdef WOUT

#define IP i0 /* Principal Index, to [x,y,z] list */
#define IS i2 /* Secondary Index, to [w] list */
#define MS m1 /* Secondary Modify, for stepping from w to w */

#else

#define IP i0 /* Principal Index, to [x,y,z] list */
#define IS i0 /* Secondary Index, to [w] list */
#define MS m0 /* Secondary Modify, for stepping from w to w */

#endif

.SEGMENT /pm pm_code;
mul44x41:
 r9 = r9-1, f4=dm(IP,m0), f1=pm(i8,m8);
 /*read px,read r11 of transform matrix*/
 f15=f1*f4, f5=dm(IP,m0), f1=pm(i8,m8);
 /*f15 = pxr11, read py and r12*/
 f8=f1*f5, f6=dm(IP,m0), f1=pm(i8,m8);
 /*f8 = pyr12, read pz and r13*/
 f8=f1*f6, f15=f8+f15, f7=dm(IS,MS), f1=pm(i8,m8);
 /*f8=pzr13, f15 = pxr11 + pyr12*/
 /* read pw and r14*/
 f8=f1*f7, f15=f8+f15, f1=pm(i8,m8);
 /*f8=pwr14, f15 = pxr11 + pyr12*/
 /*+pzr13, read r21*/
 lcntr=r9, do trlp until lce; /*continue w/ rest of points*/
 f14=f1*f4, f15=f8+f15, f1=pm(i8,m8);
 f8=f1*f5, dm(i1,m0)=f15,f1=pm(i8,m8);
 /*f15 = pxr11 + pyr12+ pzr13 + pwr14*,write
it*/
 f8=f1*f6, f14=f8+f14, f1=pm(i8,m8);
 f8=f1*f7, f14=f8+f14, f1=pm(i8,m8);
 f15=f1*f4, f14=f8+f14, f1=pm(i8,m8);
 f8=f1*f5, dm(i1,m0)=f14, f1=pm(i8,m8);
 f8=f1*f6, f15=f8+f15, f1=pm(i8,m8);
 f8=f1*f7, f15=f8+f15, f1=pm(i8,m8);
 f14=f1*f4, f15=f8+f15, f1=pm(i8,m8);
 f8=f1*f5, dm(i1,m0)=f15, f1=pm(i8,m8);
 f8=f1*f6, f14=f8+f14, f1=pm(i8,m8);

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

270270270270270

GraphicsGraphicsGraphicsGraphicsGraphics

 f8=f1*f7, f14=f8+f14, f4=dm(IP,m0), f1=pm(i8,m8);
 f15=f1*f4, f14=f8+f14, f5=dm(IP,m0), f1=pm(i8,m8);
 f8=f1*f5, f6=dm(IP,m0), f1=pm(i8,m8);
 f8=f1*f6, f15=f8+f15, f7=dm(IS,MS), f1=pm(i8,m8);
trlp: f8=f1*f7, f15=f8+f15, dm(i1,m0)=f14, f1=pm(i8,m8);

 f14=f1*f4, f15=f8+f15, f1=pm(i8,m8);
 f8=f1*f5, dm(i1,m0)=f15, f1=pm(i8,m8);
 f8=f1*f6, f14=f8+f14, f1=pm(i8,m8);
 f8=f1*f7, f14=f8+f14, f1=pm(i8,m8);
 f15=f1*f4, f14=f8+f14, f1=pm(i8,m8);
 f8=f1*f5, dm(i1,m0)=f14, f1=pm(i8,m8);
 f8=f1*f6, f15=f8+f15, f1=pm(i8,m8);
 f8=f1*f7, f15=f8+f15, f1=pm(i8,m8);
 f14=f1*f4, f15=f8+f15, f1=pm(i8,m8);
 f8=f1*f5, dm(i1,m0)=f15, f1=pm(i8,m8);
 f8=f1*f6, f14=f8+f14, f1=pm(i8,m8);

 rts(db), f8=f1*f7, f14=f8+f14;
 f14=f8+f14;
 dm(i1,m0)=f14;

.ENDSEG;

Listing 8.7 mul44x41.asmListing 8.7 mul44x41.asmListing 8.7 mul44x41.asmListing 8.7 mul44x41.asmListing 8.7 mul44x41.asm

8.88.88.88.88.8 TABLE LOOKUP WITH INTERPOLATIONTABLE LOOKUP WITH INTERPOLATIONTABLE LOOKUP WITH INTERPOLATIONTABLE LOOKUP WITH INTERPOLATIONTABLE LOOKUP WITH INTERPOLATION
Images that can be represented by coordinate pairs (x, y) can be stored in
memory. The x-coordinate is the index into the array (assuming constant
spacing), and the y -coordinate is the value of the function. This
arrangement is valid for most simple graphs. If greater precision is
required, interpolation must be used. (For example, if the corresponding
function to a point that is in between the indices.)

8.8.18.8.18.8.18.8.18.8.1 ImplementationImplementationImplementationImplementationImplementation
This code performs a table lookup with interpolation to approximate f(x)
from a table of values. An image (or a value on a graph) can be calculated
with the following data:

• input value for the index (or x-coordinate)

271271271271271

88888GraphicsGraphicsGraphicsGraphicsGraphics

• values of the two points that surround the needed value (two y-
coordinates)

• initial x value (starting index)
• spacing (step size) between the indices

The interpolation formula used is

f'(x) = ((F[X + 1] – F[X]) * (– X) } + F[X]

where

f’(x) = the approximation of f(x)
x = input value x
F[x], F[x + 1] = two consecutive points on the graph between which the

x – X0
S

88888

272272272272272

GraphicsGraphicsGraphicsGraphicsGraphics

needed value lies
S = x spacing in the table (step size)
X0 = value of the first index of the table
X = floor of ((x - X0) / S)

8.8.28.8.28.8.28.8.28.8.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
tblllkup.asm:

Version

Purpose
performs a table lookup with interpolation to approximate f(x) from a table

of values.

Equations Implemented
 x - X0

f’(x) = { (F[X+1] - F[X]) * (--- - X) } + F[X]
 S

where:

f’(x) = the approximation of f(x)
x = input value x
F[x], F[x+1] = two consecutive points on the graph between which our

needed value lies
S = x spacing in the table (step size)
X0 = value of the first index of the table
X = floor of ((x - X0) / S)

Calling Parameters
f0 = x
f7 = 1/S
f15 = X0
i0 = start of table
b0 = i0 (base address for circular buffer)
l0 = length of table
m0 = 1

Return Values
f1 = interpolated f(x)

Registers Affected
MODE1 Register Bits:

273273273273273

88888GraphicsGraphicsGraphicsGraphicsGraphics

TRUNC = 1

Cycle Count
11 cycles
440ns @ 40ns instruction cycle
Note: 11 cycles includes the DAG hold after load of m1 register.

PM Locations
 10 words of instructions
DM Locations
 N words data memory, where N is the number of values in the table

***/

.GLOBAL tbllkup;

#define X f0 /* x, the input value */
#define XF f2 /* (float) floor(X) */
#define X0 f15 /* x(0), first index in table */
#define IS f7 /* 1/S inverse of table stepsize */
#define IDX r3 /* (int) floor(X) */
#define INTRP f2 /* interpolation factor */
#define FI f4 /* F(x) */
#define FI1 f1 /* F(x+1) */
#define RES f1 /* the interpolated result */

.SEGMENT /pm pm_code;
tbllkup:
 X = X - X0, i0 = b0; /*subtract starting index from input,verify that
i0 is*/
 /*pointing to top of array */

 X = X * IS; /*=divide by step size */
 IDX = fix X; /*take integer part for spacing*/
 XF = float IDX, m1 = IDX;/*float effectively gives floor function*/
 INTRP = X - XF, modify(i0,m1);/*finding interpolation value */
 FI = dm(i0,m0); /*read y-coordinates that surround needed value
*/
 FI1 = dm(i0,m0);
 rts (db), RES = FI1 - FI;/*subtract y-coordinates*/

88888

274274274274274

GraphicsGraphicsGraphicsGraphicsGraphics

 RES = RES * INTRP; /*multiply by interpolation factor*/
 RES = RES + FI; /*add to known value */
.ENDSEG;

Listing 8.8 tblllkup.asmListing 8.8 tblllkup.asmListing 8.8 tblllkup.asmListing 8.8 tblllkup.asmListing 8.8 tblllkup.asm

8.98.98.98.98.9 VECTOR CROSS PRODUCTVECTOR CROSS PRODUCTVECTOR CROSS PRODUCTVECTOR CROSS PRODUCTVECTOR CROSS PRODUCT
The Vector Cross Product, a commonly used algorithm in 3D graphics
illumination and back-face culling, produces a vector perpendicular to its
two vector operands.

The cross product of vectors A and B is C; C = A × B

can be written as:

cx = ay * bz – az * by
cy = az * bx – ax * bz
cz = ax * by – ay * bx

8.9.18.9.18.9.18.9.18.9.1 ImplementationImplementationImplementationImplementationImplementation
To maximize looped performance, this subroutine simultaneously
computes two vector cross products within a twelve-instruction loop.
Since each cross product requires six multiplications, the effective rate of
six cycles per cross product is the best rate that can be achieved on a

275275275275275

88888GraphicsGraphicsGraphicsGraphicsGraphics

processor with a single parallel multiplier.

Preprocessor #define statements are used for register assignments to make
reading the code easier.

8.9.28.9.28.9.28.9.28.9.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
xprod.asm

Version

Purpose
Vector Cross Product: produces a vector perpendicular to the two vector

operands.

Equations Implemented
cx = ay*bz - az*by
cy = az*bx - ax*bz
cz = ax*by - ay*bx

Calling Parameters
F0 = Input Value X=[6E-20, 6E20]
l_reg=0

Return Values

Registers Affected
r11 = number of cross products to perform (must be even and greater than

4)
i0 = index to list of A vectors
l0 = 0
m0 = +1
i1 = index to C output vectors
l1 = 0
i8 = index to list of B vectors
l8 = 0
m8 = +1

Cycle Count
6N+7 cycles, where N Cross Products are performed
240ns per Cross Product @ 40ns instruction cycle

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

88888

276276276276276

GraphicsGraphicsGraphicsGraphicsGraphics

4.2 million Cross Products/sec @ 40ns instruction cycle

PM Locations
 29 words of PM instructions = 3 * N words of PM data,
 where N is number of cross products to perform
DM Locations
 6 * N words of DM, where N is number of cross products to perform

***/

.GLOBAL xprod;

#define AX1 f1
#define AY1 f2
#define AZ1 f3

#define AX2 f0
#define AY2 f3
#define AZ2 f2

#define BX1 f5
#define BY1 f6
#define BZ1 f7

#define BX2 f4
#define BY2 f7
#define BZ2 f6

#define AXBY f8
#define AYBX f12
#define AYBZ f9
#define AZBY f13
#define AZBX f10
#define AXBZ f14

#define CX f15
#define CY f15
#define CZ f15

.SEGMENT /pm pm_code;
xprod:

 r11 = lshift r11 by -1; /* 2 vector cross prods per loop, so divide */
 /* original number of points by 2 */
 r11 = r11-1, AX1=dm(i0,m0), BX1=pm(i8,m8);
 /* first multply occurs */
 /*outside before loop,so subtract 1 */
 /* from num of points */
 AY1=dm(i0,m0), BY1=pm(i8,m8); /* read AY1, BY1 */
 AZ1=dm(i0,m0), BZ1=pm(i8,m8); /* read AZ1, BZ1 */

277277277277277

88888GraphicsGraphicsGraphicsGraphicsGraphics

 AYBZ=AY1*BZ1;
 AZBY=AZ1*BY1, AX2=dm(i0,m0), BX2=pm(i8,m8); /*read data of next pt
*/

 AZBX=AZ1*BX1, CX=AYBZ-AZBY; /* continue multiplies, calc. CX term */
 AXBZ=AX1*BZ1, AY2=dm(i0,m0), BY2=pm(i8,m8);
 AXBY=AX1*BY1, CY=AZBX-AXBZ, dm(i1,m0)=CX;
 /* first write of CX term, cal. CY term */
 AYBX=AY1*BX1, AZ2=dm(i0,m0), BZ2=pm(i8,m8);
 /*cont multipy and read*/

 lcntr=r11, do xlp until lce;
 AYBZ=AY2*BZ2, CZ=AXBY-AYBX, dm(i1,m0)=CY;
 AZBY=AZ2*BY2, AX1=dm(i0,m0), BX1=pm(i8,m8);
 AZBX=AZ2*BX2, CX=AYBZ-AZBY, dm(i1,m0)=CZ;
 AXBZ=AX2*BZ2, AY1=dm(i0,m0), BY1=pm(i8,m8);
 AXBY=AX2*BY2, CY=AZBX-AXBZ, dm(i1,m0)=CX;
 AYBX=AY2*BX2, AZ1=dm(i0,m0), BZ1=pm(i8,m8);
 AYBZ=AY1*BZ1, CZ=AXBY-AYBX, dm(i1,m0)=CY;
 AZBY=AZ1*BY1, AX2=dm(i0,m0), BX2=pm(i8,m8);
 AZBX=AZ1*BX1, CX=AYBZ-AZBY, dm(i1,m0)=CZ;
 AXBZ=AX1*BZ1, AY2=dm(i0,m0), BY2=pm(i8,m8);
 AXBY=AX1*BY1, CY=AZBX-AXBZ, dm(i1,m0)=CX;
xlp: AYBX=AY1*BX1, AZ2=dm(i0,m0), BZ2=pm(i8,m8);

 AYBZ=AY2*BZ2, CZ=AXBY-AYBX, dm(i1,m0)=CY;
 /*continue multipies and writes outside*/
 AZBY=AZ2*BY2; /*last loop, no more reads needed */
 AZBX=AZ2*BX2, CX=AYBZ-AZBY, dm(i1,m0)=CZ;
 AXBZ=AX2*BZ2;
 AXBY=AX2*BY2, CY=AZBX-AXBZ, dm(i1,m0)=CX;
 rts(db), AYBX=AY2*BX2;
 CZ=AXBY-AYBX, dm(i1,m0)=CY;
 dm(i1,m0)=CZ;
.ENDSEG;

Listing 8.9 xprod.asmListing 8.9 xprod.asmListing 8.9 xprod.asmListing 8.9 xprod.asmListing 8.9 xprod.asm

8.108.108.108.108.10 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
[FOLEY90] Foley, J., A. VanDam, et. al. 1990.Computer Graphics,

Principles and Practice. Addison-Wesley.

[GLASSNER90] Glassner, Andrew S. 1990. Graphics Gems. Boston:
Academic Press, Inc.

 y(n1, n2) = x(k1, k2) h(n1 – k, n2 – k2)

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing 99999

279279279279279

Graphics and imaging are two-dimensional applications. Just as in the
one-dimensional case, it is often desirable to manipulate the data through
filtering. This chapter describes the implementation of two-dimensional
filtering using 3 × 3 kernals, as well as median filtering. Histogram
equalization, a technique for enhancing images, is also described.

9.19.19.19.19.1 TWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTION
According to digital signal processing theory, a linear time-invariant
system (LTI system) is completely characterized by the impulse response
function, h(n), which is the system’s response to the unit sample sequence
delta (n). From this principle, the response y(n) of an LTI system is the
convolution sum of an input to the system x(n) with the impulse response,
h(n). The following equation defines convolution in one dimension:

n

∑
k=0

A two dimensional LTI system can again be described by it’s impulse
response h(n1, n2).The corresponding two-dimensional convolution sum
can be describe by the following equation:

y(n1, n2) = h(n1, n2) ** x(n1, n2)

where

x(n1,n2) describes the two-dimensional input
y(n1,n2) describes the two-dimensional output

Note: The “ **” symbol signifies a two-dimensional convolution.

This equation expands to the following equation:
+∞ +∞

∑ ∑
k1 = –∞ k2= –∞

y(n) = x(k) h(n – k)

99999

280280280280280

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

A matrix is a natural data structure for storing two-dimensional data. For
the two dimensional convolution, the data input values (x-values) are
stored in the data matrix (in data memory), and the impulse response
values, h-values, are stored in the transfer function matrix (in program
memory).

9.1.19.1.19.1.19.1.19.1.1 ImplementationImplementationImplementationImplementationImplementation
FIR filters are used in the two-dimensional signal space just as they are in
the one-dimension signal space. For two-dimensional signals kernal
convolution performs FIR filtering on an image matrix. The kernal
convolution implements the following equation:

+∞ +∞

∑ ∑
k1 = –∞ k2= –∞

where

y(n1, n2) is the output filtered image
h(k1, k2) is the filter kernal
x(n1,n2) is the input image

The kernel convolves a 3 × 3 coefficient matrix by an M × N image matrix.
This code segment can use any size data buffer; the #DEFINE statements
at the start of the program determine the size of the input data matrix. The
input data (in data memory) is assumed to be in row major format. The
kernel (convolution coefficients) are loaded from the file coeff.dat
into program memory.

 y(n1, n2) = x(k1, k2) h(n1 – k, n2 – k2)

281281281281281

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

Figure 9.1 shows A graphical depiction of the 3 × 3 kernel convolution.

Figure 9.1 3x3 Convolution MatrixFigure 9.1 3x3 Convolution MatrixFigure 9.1 3x3 Convolution MatrixFigure 9.1 3x3 Convolution MatrixFigure 9.1 3x3 Convolution Matrix

The data array elements in the upper left are referred to as {d00,d01...}.
The convolution kernel elements are referred to as { c00, c01, ... , c32, c33 }.
The first two convolutions are formed from these products:

Figure 9.2 3x3 Convolution OperationFigure 9.2 3x3 Convolution OperationFigure 9.2 3x3 Convolution OperationFigure 9.2 3x3 Convolution OperationFigure 9.2 3x3 Convolution Operation

 0,0 0,1 0,2 0,3 0,4 . . . 0,M-1

 1,0 1,1 1,2 1,3 1,4
 .
 2,0 2,1 2,2 2,3 2,4

 N-2,M-1

 N-1,0 . . . N-1,M-2 N-1,M-1

~
~

~
~

Data Array:

c00*d00 = a0
c01*d01 = a1	
c02*d02 = a2	
c10*d10 = a3	
c11*d11 = a4	 SUM convolution sum #1
c12*d12 = a5	
c20*d20 = a6	
c21*d21 = a7	
c22*d22 = a8

c00*d01 = b0
c01*d02 = b1	
c02*d03 = b2	
c10*d11 = b3	
c11*d12 = b4	 SUM convolution sum #2
c12*d13 = b5	
c20*d21 = b6	
c21*d22 = b7	
c22*d23 = b8

99999

282282282282282

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

Figure 9.2 shows that for every convolution sum there are

• nine reads from data memory (input data)
• nine reads from program memory (kernel coefficients)
• eight additions
• one write to program memory for the convolution sum

The inner loop of the algorithm performs these 27 operations.

The program executes the outer loop m-2 times because the size the data
matrix is 3 × 3 the data starts at the upper left hand corner of the matrix. At
the m-2th iteration through the outer loop, the 3 × 3 kernel matrix covers
the data values through m; further loop iterations beyond m-2 times are
redundant. Therefore, the outer loop of the program determines the
starting point of the convolution and manages the update of the array
indices from row to row. The advantages of the automatic post modify
DAGs are obvious; one modify statement and one read statement can
manage the indices to process the data array.

The inner loop of the algorithm performs all of the calculations. While the
outer loop determines the starting point of the convolution and manages
the update of the array indices from row to row, the inner loop of the
algorithm performs the calculations. The third kernel coefficient is stored
in F5 in the setup segment of the code so as to avoid an extra cycle for
program memory read within the loop. (The ADSP-210xx multifunction
operations allow a data memory read/write and a program memory
read/write in one cycle, and the algorithm requires 18 reads and one
write.)

The calculations start at the upper left hand corner of the image matrix.
The first iteration of the kernel matrix by the image matrix performs the
operations over the first , second, and third rows. The second iteration
covers the second, third, and fourth rows, etc. Therefore, at the M – 2
iteration, the M – 1 and M rows have already been dealt with, and, in the
interest of time and space, we set the outer loop equal to M – 2.

The write operation to the PM location that contains the convolution sum
is at the second instruction in the inner loop, which may seem like an
unusual place for it. To minimize the cycle count, this write of the partial
sum cannot occur at the bottom of the loop. F12 is used to hold the partial
products, and F8 is used to hold the running total of the partial sums.

283283283283283

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

The first time through the loop, F8 (which only contains one product) is
written to program memory at the relative bottom of the circular buffer
output (where the base register is currently pointing). When the circular
buffer is written to again, with the valid sum of products, the memory is
correctly written at the relative top of the circular buffer.

9.1.29.1.29.1.29.1.29.1.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
comv3x3.asm

Version

Purpose
This code performs the Kernel Convolution.

Equations Implemented
 y(n1, n2) = SUM (SUM (x(k1, k2) h(n1 – k, n2 – k2))

Calling Parameters
 none
Return Values

Registers Affected

Cycle Count
Setup: This code initializes register constants and address pointers needed.

cycles=10+1
time=11•50ns=550ns

Benchmark: This code performs the Kernel Convolution.
cycles=(9*(n-2)+3)*(m-2)+5+11 (note: 11 cache misses)
time (at m=780, n=1024, cycletime=50ns) =7158394•50ns=.3579197s
MFLOPS sustained in core loop=20MIPS(9mpy+8add)/9=37.77

PM Locations
 27 words of instructions + 9 words of PM data
DM Locations
 m * n + (m -2) * (n -2) where m = rows and n = collumns

***/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

99999

284284284284284

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

/*The third coefficient is stored in the register file to free up a cycle to
output a result. The first write to the output buffer is unused, the pointer
then wraps around to the proper location at the start of output.*/

#DEFINE m 780 /*m by n image*/
#DEFINE n 1024

.SEGMENT/DMDATA dmsegment;

.VAR input[m*n];

.VAR output[(m-2)*(n-2)];

.ENDSEG;

.SEGMENT/PMDATA pmdataseg;

.VAR kernal[3*3]=”coef.dat;

.ENDSEG;

.SEGMENT/PMCODE pmcodeseg;
setup: M0=1;

M1=n-2;
M2=-(2*n+1);
M3=2;
M8=1;
M9=2;
B0=input; L0=0;
B8=kernal; L8=@kernal;
B9=output+(m-2)*(n-2); L9=@output;
F5=PM(kernal+2); /*store in register file to save cycle*/

kern_conv: F0=DM(I0,M0), F4=PM(I8,M8);
LCNTR=m-2, DO in_row UNTIL LCE;

LCNTR=n-2, DO in_col UNTIL LCE;
F8=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M9);
F12=F0*F4, F0=DM(I0,M1), PM(I9,M8)=F8;
F12=F0*F5, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M1), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M2), F4=PM(I8,M8);

in_col: F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
MODIFY(I0,M0);

in_row: F0=DM(I0,M0);
RTS (D), F8=F8+F12;
PM(I9,M8)=F8;
NOP;

.ENDSEG;

Listing 9.1 CONV3x3.ASMListing 9.1 CONV3x3.ASMListing 9.1 CONV3x3.ASMListing 9.1 CONV3x3.ASMListing 9.1 CONV3x3.ASM

285285285285285

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

9.29.29.29.29.2 MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)
Like any other data transmitted through a channel, images are subject to
noise corruption. One type of noise is shot or impulse noise—a strong spike-
like noise scattered evenly through the image. Median filtering can remove
shot noise and is particularly useful when the image sharpness must be
preserved. It replaces a given data value with the median value of its
neighboring elements. The median is the value m such that half the values
in an array are less than m and half the values are greater than m.

The program presented here implements a 3×3 median filter (a nine-
element array) which is applied to every pixel in the image and replaces
that pixel with the median value.

In any six element subset of nine data values, at least one of the values will
be larger than the median (i.e., at least one value will have a rank of sixth
largest). This algorithm of median filtering considers the first six values in
the order that they appear in memory—no presorting is required. The
highest and lowest values are discarded and a new data value is read.
Performing this compare iteratively on successively smaller groups yields
a median of three values ranked in the middle of the array—the median is
the “middle” value of these three.

For further information see [GLASSNER90], p.171, 711; [GONZALEZ87],
p. 162-163; [JAIN89], p. 246-247.

9.2.19.2.19.2.19.2.19.2.1 ImplementationImplementationImplementationImplementationImplementation
The median filter algorithm has a simple implementation in ADSP-21000
family assembly language. Most of the program consists of a few
instructions repeated over and over again— the use of macros leads to
code that is easy to read and visualize.

The comp (compare) operator is central to the macro invocation: it
sets the appropriate flag in the arithmetic status (ASTAT) register
depending on the relative value of the operands. This conditional
operation is always valid because the ADSP-210xx updates the ASTAT
register after every operation. The AZ flag is set (ALU result is 0) if the
operands of comp are equal, and the AN flag is set (ALU result is
negative) if the first operator is smaller than the second. The state of the
ASTAT, if neither AZ or AN is set, is positive; operands a and b will be
swapped if and only if a is greater than b.

99999

286286286286286

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

The ADSP-210xx has a sufficient number of registers to perform the
memory read and write operations and the comparisons and swaps that
follow them. If registers were not available, it would not be possible to
read and compare using the same register; an intermediate storage area in
memory and overhead cycles used for memory management would be
needed.

9.2.29.2.29.2.29.2.29.2.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/

File Name
med3x3.asm

Version
 1.0

Purpose
Median filtering: replace a given data value with the median value of its

neighboring elements.

Equations Implemented
Y=SIN(X) or
Y=COS(X)

Calling Parameters
i0 index to data values
m0 column offset (usually 1)
m1 row offset (usually [#pixels/row - 2])
m2 offset to next 3x3 block (usually -[2*m1 + 1])

Return Values
r0 median value

Registers Affected
r0-r6 tmp values

Cycle Count

56 cycles
2.24 µs per 3x3

587ms for median filtering a 512x512 imag

PM Locations
 16 words of instruction
DM Locations
 9 words

287287287287287

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

***/

#define s2(a,b) comp(a,b); if gt b = pass a, a = b;
/*one macrdefinition*/
/*that gets repeated*/

#define mnmx3(a,b,c) s2(b,c); s2(a,c); s2(a,b)

#define mnmx4(a,b,c,d) s2(a,b); s2(c,d); s2(a,c); s2(b,d)

#define mnmx5(a,b,c,d,e) s2(a,b); s2(c,d); s2(a,c); s2(a,e); \
s2(d,e); s2(b,e)

#define mnmx6(a,b,c,d,e,f) s2(a,d); s2(b,e); s2(c,f); \
 s2(a,b); s2(a,c); s2(e,f); s2(d,f)

.SEGMENT /pm pm_code;

.GLOBAL med3x3; /*make code visible*/
/*to other modules*/

med3x3: r1=dm(i0,m0); /*initial 6 reads*/
 r2=dm(i0,m0);
 r3=dm(i0,m1);
 r4=dm(i0,m0);
 r5=dm(i0,m0);
 r6=dm(i0,m1);

strt:
 mnmx6(r1, r2, r3, r4, r5, r6); /*start the compare*/

mm6:
 r1 = dm(i0,m0); /*another read; overwrite*/

/*r1 (the smallest)*/

 mnmx5(r1, r2, r3, r4, r5); /*smallest and greatest
*/

/*values have dropped out*/
mm5:

 r1 = dm(i0,m0); /*r1 replaced again, */
/*r5 drops out*/

 mnmx4(r1, r2, r3, r4);
mm4:

 r1 = dm(i0,m2); /*a 3 value sort here*/
 mnmx3(r1, r2, r3);

mm3:
 rts (db); /*delayed branch means*/

/*2 more instructions*/
/*executed before return*/

 r0 = r2; /*r2 was median of last 3*/
 nop;

.ENDSEG;

Listing 9.2 med3x3.asmListing 9.2 med3x3.asmListing 9.2 med3x3.asmListing 9.2 med3x3.asmListing 9.2 med3x3.asm

99999

288288288288288

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

9.39.39.39.39.3 HISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATION
A histogram tallies the intensities of all 8-bit pixels of an image into the
256 bins of a histogram array. If the pixel resolution is increased to 10-bits
or 12-bits, a larger histogram array is required (1024 or 4096 bins,
respectively). An intensity of zero (0x00) is the darkest pixel and is tallied
in bin 0, the first bin. An intensity of 255 (0xFF) is the brightest pixel and is
stored in bin 255, the last bin. The ADSP-210xx supports a 32-bit integer
data type, and thus can tally large numbers of pixels without overflowing
the histogram array.

After all pixel intensities have been tallied, the histogram array can be
analyzed to determine the darkness or brightness of the image. If the
image is too dark, most of the pixels will record in the first 128 bins
(Figure 9.3). If the image is too bright, most of the pixels will record in the
second 128 bins (Figure 9.4).

The process of histogram equalization enhances the contrast of the image by
applying a gain and offset to each pixel, which produces an image with
pixels that cover all intensities.

PIXEL INTENSITY

N
U
M
B
E
R

O
F

O
C
C
U
R
E
N
C
E
S

0 255

289289289289289

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

Figure 9.3 Histogram Of Dark PictureFigure 9.3 Histogram Of Dark PictureFigure 9.3 Histogram Of Dark PictureFigure 9.3 Histogram Of Dark PictureFigure 9.3 Histogram Of Dark Picture

Figure 9.4 Histogram Of Bright PictureFigure 9.4 Histogram Of Bright PictureFigure 9.4 Histogram Of Bright PictureFigure 9.4 Histogram Of Bright PictureFigure 9.4 Histogram Of Bright Picture

9.3.19.3.19.3.19.3.19.3.1 ImplementationImplementationImplementationImplementationImplementation
The following sequence of tasks generalize the calculation of the
histogram array:

1. Read next pixel from memory.

2. Add the pixel value to the base address of the histogram array.

3. Use this address value as a pointer to read the current number
stored in the corresponding bin in the temporary histogram array.

4. Increment that bin value.

5. Write the bin value back to the temporary histogram.

The histo.asm program (Listing 9.3) is an optimized implementation
of the pseudo-code listed above. The core histogram loop, hloop ,
processes two pixels per iteration. This technique yields an average
calculation rate of 3.5 instruction cycles per pixel. Due to register
pipelining, the two pixels processed in the loop must be tallied in two
different histogram arrays. After all pixels are processed, these two
temporary histograms in program memory are added together to produce
a composite histogram in data memory. The subroutine declares the two

PIXEL INTENSITY
0 255

N
U
M
B
E
R

O
F

O
C
C
U
R
E
N
C
E
S

99999

290290290290290

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

temporary and the final composite histogram arrays.

9.3.29.3.29.3.29.3.29.3.2 Code ListingCode ListingCode ListingCode ListingCode Listing
/

File Name
histo.asm

Version

Purpose
An image histogram is an array summarizing the number of occurrences of each
grey level in an image. If a pixel in a typical monochrome image can take on
any of 256 distinct values, the histogram would need 256 bins. In each bin
the number of ocurrences of this grey level is stored.

The algorithm used here assumes the monochrome image is stored in a buffer in
Data Memory, and the histogram is formed in Data Memory.

Equations Implemented
 None

Calling Parameters
b0,i0 = data buffer start
l0 = data buffer length
m0 = 1
m15 = 0

Note: l1 = l8 = l9 = N = # of bins. N must be even, positive, and >= 4

Return Values
histogram output bins pointed to by i1

Registers Affected
r0 input data 1
r1 bin value 1
r2 input data 2
r3 bin value 2, tmp register
r14 temp bin buffer #1 start
r15 temp bin buffer #2 start

Cycle Count
3.5N + 2B + 30 cycles

where N = number of data values
B = number of bins

PM Locations
 32 words instructions + 512 words data
DM Locations
 N * 256, where N = number of data values

291291291291291

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

***/

* declare two temporary histogram buffers in program memory */

SEGMENT /pm pm_data;
VAR temp1[256];
VAR temp2[256];
ENDSEG;

* declare histogram result buffer in data memory */

SEGMENT /dm dm_data;
VAR histogram[256];
GLOBAL histogram;
ENDSEG;

SEGMENT /pm pm_code;
GLOBAL histo;

* Initialize data addresses, loop count */

histo: b8 = temp1; l8=@temp1; r14=i8;
 b9 = temp2; l9=@temp2;
 r3 = l1; /* r3 = N = # of bins */
 r3 = lshift r3 by -1; /* r3 = N/2 */
 r3 = r3 - 1, r15=i9; /* r3 = N/2-1, initialize r15 */

* Do the histogram into 2 temporary bins in PM */

 r0=dm(i0,m0);
 r0=r0+r14, r2=dm(i0,m0);
 lcntr = r3, do hloop until lce;

r2=r2+r15, i8=r0;
i9=r2;
r1=pm(i8,m15); /* 2 cycles due to I register load latency */
r1=r1+1, r3=pm(i9,m15);
r3=r3+1, r0=dm(i0,m0), pm(i8,m15)=r1;

hloop: r0=r0+r14, r2=dm(i0,m0), pm(i9,m15)=r3;

 r2=r2+r15, i8=r0;
 i9=r2;
 r1=pm(i8,m15);
 r1=r1+1, r3=pm(i9,m15);
 r3=r3+1, pm(i8,m15)=r1;
 pm(i9,m15)=r3;

* Now combine the bins back into DM */

 b1=histogram; l1=@histogram;
 i8=b8;
 i9=b9;
 r2=l1;
 r2=r2-1, r0=pm(i8,m8);

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

99999

292292292292292

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

 r1=pm(i9,m8);
 lcntr=r2, do combine until lce;

r2=r0+r1, r0=pm(i8,m8);
ombine: dm(i1,m0)=r2, r1=pm(i9,m8);

 rts (db);
 r2=r0+r1;
 dm(i1,m0)=r2;

ENDSEG;

Listing 9.3 histo.asmListing 9.3 histo.asmListing 9.3 histo.asmListing 9.3 histo.asmListing 9.3 histo.asm

9.49.49.49.49.4 ONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERING
A median filter is designed to sort samples in an array by magnitude,
lowest to highest. The middle sorted sample is the median value. Median
filters require an odd number of samples to guarantee a middle position.

Median filters are used in image processing to average the image without
blurring edges, like low pass and mean average filters do. Median filters
are non-linear functions and are not used in speech or audio signal
processing.

Some median filters are calculated on samples that cover a two-
dimensional area. The median filter discussed in this section is one-
dimensional; it finds the median of a horizontal line of samples. One-
dimensional median filters may be used if the image scanning device is
line array or if it necessary to reduce the processing power required of the
DSP.

9.4.19.4.19.4.19.4.19.4.1 ImplementationImplementationImplementationImplementationImplementation
Median filters have a delay line similar to the FIR filter that works on the
last N samples. After the median filter processes a sample, it outputs the
results and waits for the next input sample. When the next sample is
received, it replaces the oldest sample in the delay line.

Figure 9.5 demonstrates the first pass through the median filter to resolve
the lowest magnitude sample. The median filter result is four in this
example.

Listing 9.4 is a fixed point implementation of the median filter for an
ADSP-210xx family DSP. The first task is to transfer the samples from the
delay line to the median filter buffer, because they are shuffled. Next, the

293293293293293

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

median filter is performed, as demonstrated in figure 9.5. Each pass of the
outer loop resolves the next highest magnitude sample in the median filter
buffer. Each pass through the inner loop compares the current lowest
sample in the outer loop pass to the next sample in the median filter
buffer. If the next sample is less than the current lowest, they are swapped.
The last outer loop pass resolves the middle or median sample in the
median filter buffer. After the median sample has been resolved, it is not
necessary to resolve the remaining higher magnitude samples.

Listing 9.5 is the floating-point version of listing 9.4.

Figure 9.5 Median Filter AlgorithmFigure 9.5 Median Filter AlgorithmFigure 9.5 Median Filter AlgorithmFigure 9.5 Median Filter AlgorithmFigure 9.5 Median Filter Algorithm

4
5
6
7
1
2
3

base_adr X
5
6
7
4
2
3

before median
filter

after first
pass

X
X
6
7
5
4
3

after second
pass

X
X
X
7
6
5
4

after third
pass

X
X
X
X
7
6
5

after fourth
or last pass

Outer Loop Pass 1: R4 = 4

cmp R4 = 4, r2 = 6; 6 < 4, no, R4 = 4
cmp R4 = 4, r2 = 7; 7 < 4, no, R4 = 4
cmp R4 = 4, r2 = 5; 5 < 4, no, R4 = 4
cmp R4 = 4, r2 = 1; 1 < 4, yes, R4 = 1, base_adr + 4 = 4
cmp R4 = 1, r2 = 2; 2 < 1, no, R4 = 1
cmp R4 = 1, r2 =3; 3 < 4, no, R4 = 1

First pass resolves lowest in buffer, since lowest is not median
in is not restored into the median filter buffer. Next pass starts with
r4 = base_adr + 1 =5. The next pass will resolve the next lowest.
The third pass of the outer loop wil resolve the next lowest. The
fourth pass will resolve the median.

99999

294294294294294

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

9.4.29.4.29.4.29.4.29.4.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings

/

File Name
med_fix.asm

Version

Purpose
N tap one-dimensional median filter subroutine for fixed point data
Equations Implemented

Calling Parameters
b1, i1 = start address of input delay line in data memory
l1 = length of delay line buffer
m1 =1 - to modify index registers
b8, i8 = start address of median filter buffer in program mem
l8 =length of delay line buffer
m9 =1 - to modify index registers

Return Values
r4 = median of values in delay line

Registers Affected
 r0, r2, r4, r5, r15

Cycle Count
FILTER_LEN + 6*[(FILTER_LEN+1)/2] + 14 + 3*sum[N]
where N=(FILTER_LEN-1)/2 to FILTER_LEN-1
99 cycles for FILTER_LEN=7

PM Locations
 16 Instruction + N Words of PM Data, where N is the order of the median
filter
DM Locations
 N Words, where N is the order of the median filter

295295295295295

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

***/

#define FILTER_LEN 7 /* must be an odd number */

.segment/pm pmcode;

.GLOBAL start_median;

start_median:

 /* xfer loop - transfer delay line data in DM to median filter buffer in PM */

 r0=dm(i1,m1);
 lcntr=FILTER_LEN-1, do xfer until lce;
xfer: r0=dm(i1,m1), pm(i8,m9)=r0; /* transfer to filter buffer */
 /* read from input buffer */
 pm(i8,m9)=r0; /* transfer to filter buffer */

/*
 median filter loop - find median value in delay line using this technique:

 for N=0 to (FILTER_LEN+1)/2 - outer loop

 for M=N to FILTER_LEN - inner loop

 if (median[N] < median[M])

 median[M]=median[N], median[M]=median[N]

 inc M

 inc N
*/

 b9=b8; /* i8, i9 point to median filter data */
 r15=FILTER_LEN; /* r15 is loop count for inner loop */

 /* each pass through the outer loop resolves the next greatest magnitude */
 /* in the median filter buffer - median[N] */

 lcntr=(FILTER_LEN+1)/2, do outer_loop until lce;

 r4=pm(i8,m9); /* read median[N] */
 modify(i9,1); /* i9 points to median[M] */
 /* where M=N+1 first */
 r15=r15-1, r5=pm(i9,m9); /* decrement inner loop count */
 /* read median[M] */

 /* inner loop finds minimum of the remaining values in median filter buffer */

 lcntr=r15, do inner_loop until lce;
 r2=pass r5; /* f2=median[M] */
 comp(r2,r4), r5=pm(i9,m9); /* cmp median[M], median[N] */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

99999

296296296296296

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

inner_loop: if lt r4=pass r2, pm(-2,i9)=r4; /* if median[M] < median[N] */
 /* median[N]=median[M] */
 /* median[M]=median[N] */
outer_loop:

 i9=i8; /* init i9 to median[N+1] */

 rts; /* return is non-delayed */
 /* 3 cycles */

.endseg;

Listing 9.4 Fixed-Point 1-D Median FillterListing 9.4 Fixed-Point 1-D Median FillterListing 9.4 Fixed-Point 1-D Median FillterListing 9.4 Fixed-Point 1-D Median FillterListing 9.4 Fixed-Point 1-D Median Fillter

/

File Name
med_flt.asm

Version
 1.0
Purpose

N tap one-dimensional median filter subroutine for floating point data

Calling Parameters
b1, i1 = start address of input delay line in data memory
l1 = length of delay line buffer
m1 =1 - to modify index registers
b8, i8 = start address of median filter buffer in program mem
l8 =length of delay line buffer
m9 =1 - to modify index registers

Return Values
f4 = median of values in delay line

Registers Affected
 f0, f2, f4, f5, r15
Cycle Count

FILTER_LEN + 6*[(FILTER_LEN+1)/2] + 14 + 3*sum[N]
where N=(FILTER_LEN-1)/2 to FILTER_LEN-1
99 cycles for FILTER_LEN=7

PM Locations
 16 instructions + N Words of PM Data,

 where N is the order of the median filter

DM Locations

297297297297297

99999Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

 N Words, where N is the order of the median filter

***/

 Execution Time:

*/

#define FILTER_LEN 7 /* must be an odd number */

.segment/pm pmcode;

.GLOBAL start_median;

start_median:

 /* xfer loop - transfer delay line data in DM to median filter buffer in PM */

 f0=dm(i1,m1);
 lcntr=FILTER_LEN-1, do xfer until lce;
xfer: f0=dm(i1,m1), pm(i8,m9)=f0; /* transfer to filter buffer */
 /* read from input buffer */
 pm(i8,m9)=f0; /* transfer to filter buffer */

/*
 median filter loop - find median value in delay line using this technique:

 for N=0 to (FILTER_LEN+1)/2 - outer loop

 for M=N to FILTER_LEN - inner loop

 if (median[N] < median[M])

 median[M]=median[N], median[M]=median[N]

 inc M

 inc N
*/

 b9=b8; /* i8, i9 point to median filter data */
 r15=FILTER_LEN; /* r15 is loop count for inner loop */

 /* each pass through the outer loop resolves the next greatest magnitude */
 /* in the median filter buffer - median[N] */

 lcntr=(FILTER_LEN+1)/2, do outer_loop until lce;

 f4=pm(i8,m9); /* read median[N] */
 modify(i9,1); /* i9 points to median[M] */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

99999

298298298298298

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

 /* where M=N+1 first */
 r15=r15-1, f5=pm(i9,m9); /* decrement inner loop count */
 /* read median[M] */

 /* inner loop finds minimum of the remaining values in median filter buffer */

 lcntr=r15, do inner_loop until lce;
 f2=pass f5; /* f2=median[M] */
 comp(f2,f4), f5=pm(i9,m9); /* cmp median[M], median[N] */
inner_loop: if lt f4=pass f2, pm(-2,i9)=f4; /* if median[M] < median[N] */
 /* median[N]=median[M] */
 /* median[M]=median[N] */
outer_loop:

 i9=i8; /* init i9 to median[N+1] */

 rts; /* return is non-delayed */
 /* 3 cycles */

.endseg;

Listing 9.5 Floating-Point 1-D Median FillterListing 9.5 Floating-Point 1-D Median FillterListing 9.5 Floating-Point 1-D Median FillterListing 9.5 Floating-Point 1-D Median FillterListing 9.5 Floating-Point 1-D Median Fillter

9.59.59.59.59.5 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
[GLASSNER90] Glassner, Andrew S., ed. 1990. Graphics Gems. San Diego, CA:

Academic Press, Inc.

[GONZALEZ87] Gonzalez, R.C. and P. Wintz. 1987. Digital Image Processing.
Reading, MA: Addison Wesley.

[JAIN89] Jain, Anil K. 1989. Fundamentals of Digital Image Processing.
Englewood Cliffs, NJ: Prentice Hall.

JTAG Downloader 10

The software application described in this chapter is no longer recommended or supported by
Analog Devices. This application provided some guidelines for developing a boot loader that
used the processor's Test Access Port (TAP) and minimal external hardware to load a small
kernel program. When executed, the kernel program would load the remainder of the
application into the processor.

For more information about the JTAG Downloader, contact applications support by email at
processor.support@analog.com.

299

IndexIndexIndexIndexIndex

337337337337337

A

Adaptive filters
benchmarks 202
implementations 167
testing shell for adaptive filters 199
uses of 158, 159, 160

Arctangent
implementation 27
subroutine 29

B

Bit block transfer
transfer of image data 253

Bit-reversal 210, 211
Bresenham line drawing

pixels 257
set_pixel 257

C

Cascaded_biquad 104
Convolution equation 90
Cosine approximation

sine/cosine approximation subroutine 18
Cosine functions 15
Cubic B-spline polynomial evaluation

control points 248
curves 248
knots 248
surfaces 248

Cubic bexier polynomial evaluation
control points 244
knots 244
parametric equations 244
three-dimensional curved surfaces 244

338338338338338

IndexIndexIndexIndexIndex

D

Decimation filters 113
Decimation-in frequency (DIF) FFT 207
Decimation-in-time (DIT) FFT 207
Digit-reversal 213
Digital filtering 89
Discrete fourier transform (DFT) 205

computation of the DFT 206
frequency bins 206
twiddle factors 206

Divide operation
division subroutine 44
implementation 44
iterative convergence algorithm 44

Division 44

E

EPROM
how to make 316

Exponential approximation
exponential function 52
exponential subroutine 55
implementation 53

F

Fast fourier transform (FFT) 205
architectural features for FFTs 210
benchmarks 216
bit-reversal 210, 211
butterfly calculations 208
complex input radix-2 FFT 211
complex input radix-4 FFT 211
decimation-in frequency (DIF) FFT 207
decimation-in-time (DIT) FFT 207
derivation of the fast fourier transform 207
digit-reversal 213
groups 210
inverse complex FFTs 215
radix-2 FFT 205, 207, 212
radix-4 FFT 205, 207, 213
stages 210
twiddle factor 206, 212, 214

Filter structures
lattice filter 163
symmetric transversal structure 162
transversal FIR filter 161

339339339339339

IndexIndexIndexIndexIndex

Finite Impulse Response filter (FIR) 90, 114
FIR filters 90, 114

buffer operation 94
convolution equation 90
example calling routine 96
implementation 91
TAPS 91

Frequency bins 206

G

Gauss-Jordan algorithm 81
Graphic line accept/reject-3D

clipline 239
display device 237
trivial acceptance 238
trivial rejection 238
view volume 237

Graphics algorithms 71
Graphics translation, rotation, & scaling-3D

4×4 transformation matrix 262
multifunction operations 264
x, y, and z coordinates 263
x, y, z, and w coordinates 263

H

Histogram equalization
gain and offset 288
pixel intensity 288
pixels 288
register pipelining 289

I

Image processing 71
Infinite Impulse Response (IIR) filter 119

advantages 100
canonical form 100
cascaded_biquad 104
code listings 106
direct form II 100
implementation 101

Interpolation filters 113
Inverse complex FFTs 215
Iterative convergence algorithm 44

340340340340340

IndexIndexIndexIndexIndex

J

JTAG
definition 299
instruction register (IR) 306
pins 300
signals 300
test access port operations 305

JTAG downloader
block diagram 302
code listings 320
downloader operations 307
hardware 300
parts list 304
prototype board layout 304
prototype schematic 303
reference 336
software 310
software example 313
state diagram 305
system diagram 301
timing considerations 308
timing diagram 309
TMS & TDI bit generation 311

L

Least Mean Square (LMS) filters
algorithm 164
benchmarks 202
code listing 169
gradient lattice-ladder 189
implementation 168
lattice filter LMS with joint process estimation 189
leaky LMS algorithm 171
normalized LMS algorithm 173
sign-data LMS 179
sign-error LMS 176
sign-sign LMS 183
symmetric transversal filter implementation LMS 185

Logarithm approximations 46
implementation 47
logarithm approximation subroutine 49

341341341341341

IndexIndexIndexIndexIndex

M

Matrices 71
Matrix functions

inverse of a matrix 71
matrix inversion 81, 84
multiplication 73, 77
multiplying 71
M×N by N×0 multiplication 79
M×N by N×1 multiplication 75
M×N matrix by a N×0 matrix 77
M×N matrix by an N×1 vector 73
rolling the loop 74
row major order 72
storing a matrix 72

Matrix inversion 81
Median filtering (3×3)

comp (compare) 285
delay line 292
image blurring 292
impulse noise 285
macros 285
middle sorting 292
shot noise 285

Multiply 4×4 by 4×1 matrices (3D graphics transformation)
graphics transformation 267
w coordinate 267

Multirate filters
decimation filter listing 117
decimation filters 113
interpolation filter listing 124
interpolation filters 113
multirate systems 113
rational rate changer (external interrupt-based) 138
rational rate changer (timer-based) 129
rational rate changer listing 133
single-stage decimation filter 114
single-stage interpolation filter 122
two-stage decimation filter 143
two-stage interpolation filter 150

342342342342342

IndexIndexIndexIndexIndex

N

Newton-Raphson iteration 34

P

Polynomial approximation 61
Power function

hidden scaling factor 59
implementation 59
power subroutine 62
pseudo extended-precision product 61

R

Recursive Least Square (RLS) filters
algorithm 165
benchmarks 203
forgetting factor 166
implementation 194
Kalman Gain Vector 166
Z-matrix 194

S

Sine approximation
sine/cosine approximation subroutine 18

Sine/cosine approximation 15
Square root

code listings 35
implementation 34
Newton-Raphson iteration 34

Square root & inverse square root approximations 33

T

Table lookup with interpolation 270
Tangent

implementation 22
min-max polynomial approximation 22
tangent subroutine 24

Tangent approximation 22
Twiddle factor 206, 212, 214
Two-dimensional convolution

convolution sum 279
FIR filters 280
impulse response function 279
linear time-invariant system 279
transfer function matrix 280
two-dimensional convolution sum 279

343343343343343

IndexIndexIndexIndexIndex

V

Vector cross product
3D graphics 274
back-face culling 274
illumination 274

Copyright 1995 Analog Devices, Inc. #83-000855-03

ADSP-21000 Family Development Software
Release 3.2 Installation Guide and

Release Note

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 2

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 3

1 GENERAL INFORMATION..5

1.1 DOCUMENTATION ..5
1.2 WHAT’S COVERED IN THIS RELEASE NOTE?...5
1.3 WHO ARE YOU?...5
1.4 FOR TECHNICAL ASSISTANCE...5
1.5 FOR BUG FIXES AND DOCUMENTATION ERRATA..5
1.6 WARRANTY ..6

2 SALES PACKAGE..7

3 SOFTWARE INSTALLATION...7

3.1 PC VERSION ...7
3.1.1 PC Requirements...7
3.1.2 PC Installation Procedure..8
3.1.3 PC Environment Variables..8

3.2 SUN VERSION..9
3.2.1 Sun Requirements..9
3.2.2 Sun Installation Procedure..9
3.2.3 Sun Environment Variables...10

4 CHANGES FROM PREVIOUS RELEASE..10

4.1 ASSEMBLER...10
4.2 ASSEMBLY RUN-TIME LIBRARY ..10
4.3 L INKER ..10
4.4 LOADER ...10
4.5 L IBRARIAN ...11
4.6 SIMULATORS...11

4.6.1 Version Specific Changes..11
4.6.2 Common Changes...11

4.7 EMULATOR ...12
4.8 SPLITTER..12
4.9 C LANGUAGE TOOLS ...12

4.9.1 G21K Preprocessor...12
4.9.2 G21K Optimizing C Compiler...13
4.9.3 G21K Run Time Library...13

4.10 COFF TOOLS..13
4.10.1 CSWAP..13
4.10.2 CDUMP...13

5 RESTRICTIONS...13

5.1 ASSEMBLER...14
5.2 ASSEMBLY RUN-TIME LIBRARY ..14
5.3 L INKER ..14
5.4 LOADER ...14
5.5 L IBRARIAN ...15
5.6 SIMULATORS...15

5.6.1 Version Specific Restrictions...15
5.6.2 Common Restrictions...15

5.7 EMULATOR ...17
5.7.1 Common Restrictions...17
5.7.2 ADSP-21010/ADSP-21020 EZ-ICE Specific Restrictions...19
5.7.3 SHARC EZ-ICE Specific Restrictions..19

5.8 SPLITTER..20
5.9 C LANGUAGE TOOLS ...20

5.9.1 G21K Preprocessor...20
5.9.2 G21K Optimizing C Compiler...20
5.9.3 G21K Numerical ‘C’ Extensions..20

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 4

5.9.4 G21K Run Time Library...21
5.10 COFF TOOLS..21

5.10.1 CSWAP..21
5.10.2 CDUMP...21

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 5

1 GENERAL INFORMATION

1.1 Documentation
To order additional copies of any of the following publications, contact an Analog Devices sales
agent. Documentation for use with this release includes the following:

ADSP-21000 Family Assembler Tools and Simulator Manual
ADSP-21000 Family C Tools Library Manual
ADSP-21000 Family C Runtime Library Manual
ADSP-21020/ADSP-21010 User’s Manual
ADSP-2106x SHARC User’s Manual
ADSP-2106x SHARC EZ-ICE Hardware Installation Manual
3.2 Release Note

1.2 What’s Covered in this Release Note?
This release note contains information on the following software development tools for ADSP-
21000 Family DSP microprocessors that is not described in, or has changed from, the
descriptions in the corresponding user’s manuals.

Assembler
Linker
Librarian
Simulator
Emulator (EZ-ICE® In-Circuit Emulator)
PROM Splitter
Loader
CSWAP
CDUMP
G21K Optimizing C Compiler

• G21K C Runtime Library

1.3 Who are you?
We can better support you if you register. Please register your software by returning the
enclosed registration form.

1.4 For Technical Assistance
Call DSP Applications Engineering at (617) 461-3672 (Massachusetts), (408) 879-3037
(California), (404) 263-3722 (Georgia), or (323) 2371672 (Europe).

1.5 For Bug Fixes and Documentation Errata
• Contact the BBS at (617) 461-4258, 8 bits data/no parity/1 stop bit/300/1200/2400/

9600/14400 baud. Select the following menu items: (D) DSP Processor Information/(2) 210xx
Family Information/(D) Development Tools/(N) New Bug Fixes

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 6

• Contact the FTP site at ftp.analog.com . The information is in the
/pub/dsp/dev_tool/21k_tool directory in readme.dev .

1.6 Warranty
Analog Devices warrants G21K for users who have purchased this program as part of an
ADSP-21000 Family Development Software package according to the terms and conditions of the
ADSP-2100 and ADSP-21000 Family Development Software License Agreement provided with
this software distribution, subject to the GNU General Public License, also provided therein.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 7

2 SALES PACKAGE

This software package is available for both PC and SUN workstations. The part numbers are:

Part Number Includes this software...

ADDS-210xx-SW-PC Assembler, Linker, Librarian, Assembly Library,
ADSP-21020 Simulator, ADSP-21020 Emulator, ADSP-
2106x Simulator, ADSP-2106x Emulator, PROM Splitter,
G21K C Compiler, C Runtime Library

ADDS-210xx-SW-SUN Assembler, Linker, Librarian, Assembly Library,
ADSP-21020 Simulator, ADSP-2106x Simulator, PROM
Splitter, G21K C Compiler, C Runtime Library

3 SOFTWARE INSTALLATION

The installation procedures for the PC version and the Sun version of these tools differ. Note the
requirements for your package and follow the appropriate instructions.

3.1 PC Version
The PC package contains a set of 3-1/2" high-density diskettes. Make sure that your disk drive is
capable of reading the diskettes. If you require 5-1/4" diskettes, please specify this on your
registration form to receive 5-1/4" diskettes.

3.1.1 PC Requirements
This software requires up to 13 MB of hard disk storage. The required system configuration to
run the development software is a 386, or higher, based PC with hard disk, high-density floppy
disk drive, a color video card and VGA monitor, and a minimum of 2 MB extended RAM. DOS 3.1
or higher. Microsoft® Windows™ 3.1 or higher is required to run Windows-based tools. A
mouse is highly recommended.

You must have at least 450 Kb of memory available in the lower 640 Kb in order for the software
to run properly. Most device drivers and TSRs consume this lower memory. Maximize the low
memory available to the software by moving as many of these device drivers and TSRs into high
memory.

The software opens many files and accesses these files frequently. Performance can be
degraded, or fail in some cases, if DOS is not set up to support this. In the config.sys file, be
sure the following directives are present and the values for these directives are at least equal to
the minimum shown below:

• BUFFERS=25

• FILES=40

If you will be using the development software in native DOS, both Extended Memory Support
(XMS) and Expanded Memory Support (EMS) are required. Use memory managers that support
both standards and be sure not to disable EMS memory in your memory manager if you will be

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 8

running native DOS. If you will not be using the development software in native DOS, but will
use the software in DOS boxes under Windows, only XMS memory support is required.

3.1.2 PC Installation Procedure
The software uses a Windows installation utility to load the software onto your hard drive. To
install the software:

1. Insert the floppy into your PC.
2. Start Windows if it is not already running.
3. From the Program Manager or File Manager, select Run... from the File menu.
4. In the dialog box that appears, type the following

 “a:\install” (or “b:\install”)
5. Follow the directions on the screen.
6. Reboot your PC after completing the installation for all changes to take effect.

3.1.3 PC Environment Variables
The development software requires several environment variables in order to run properly and
efficiently. Because the installation procedure is Windows based, these environment variables
must be set manually. This section describes what these environment variables are used for and
how to change them. In addition to these environment variables, remember to include the
development tools executable directory in your search path. All environment variables are
typically setup in your autoexec.bat file. See the readme.txt file on the installation disk, and your
installation directory, for more information.

Variable
Name

Typical Value Description

ADI_DSP C:\ADI_DSP Points to the root directory of the development
tools software. Insure there is no trailing
whitespace after the pathname.

TMP C:\TMP Points to a directory that all tools, except the
compiler, will use for temporary file storage.
For optimum performance from the tools, this
should point to a sufficiently large RAM drive.

GO32 EMU C:\ADI_DSP\21K\ETC\EMU387 Points to directory that contains floating point
emulation routines. This is only needed on
PCs whose CPU does not support native
floating point operation (ie: 386SX, 486SX)

GO32TMP C:\TMP Points to a directory that the compiler will use
for temporary file storage. For optimum
performance from the tools, this should point
to a sufficiently large RAM drive.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 9

3.2 Sun Version
The Sun package contains a 1/4” cartridge tape. Make sure that your tape drive is capable of
reading this format.

3.2.1 Sun Requirements
The following are required for Sun installations:

System: Sun4, Sparc based

Operating System: SunOS 4.1.3

X Server: X11R5 or OpenWindows 3.0

Window Manager: mwm (Motif 1.2), olwm or twm

Disk Drive: 22 MB plus 48M swap space

Tape Drive: quarter inch cartridge (QIC)

RAM: 12 MB

Misc: Color monitor highly recommended, keyboard and mouse
required

In addition, the development software, specifically the simulators, use the gnuplot graphics
package from the Free Software Foundation for plotting memory. If you plan on using the plotting
feature of the simulators, be sure you have version 3.5 of gnuplot in your executable search
path. You can obtain gnuplot from the official distribution site; ftp.dartmouth.edu [129.170.16.4].
The file is called /pub/gnuplot/gnuplot3.5.tar.Z. Official mirror sites are, in Australia,
monu1.cc.monash.edu.au [130.194.1.101] and, in Europe, irisa.irisa.fr [131.254.254.2].

Lastly, if using the Xnews server, be sure Xnews patch #100444-66 is installed. This patch can
be obtained from Sun, via anonymous FTP, at sunsolve.sun.com. The file is called
/pub/patches/100444-66.tar.Z.

3.2.2 Sun Installation Procedure
The software uses an installation utility to load the software, from the tape drive, onto your hard
drive. To install the software:

1. Insert the tape into the tape drive.
2. Create a directory where the software will be installed, typically named adi_dsp.
3. Use the cd command to make this the default directory.
4. Extract the software from the tape with the following command:

 “tar xvf ‘tape_drive’ ” (where ‘tape_drive’ is the name of your tape drive device,
typically /dev/rmt0)

5. Move the “windows” directory, that was created in the ADI_DSP subdirectory to your home
directory. This can be done by entering the following at the command line:

 mv “full pathname of the adi_dsp directory”/windows ~/.
6. Create the ADI_DSP environment variable and add the executable directory to your default

path. This is typically done in your .cshrc file by adding the lines:
 setenv ADI_DSP “full pathname of the adi_dsp directory”
 set path = ($path $ADI_DSP/21k/bin)
 setenv MWHOME ${ADI_DSP}/mw

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 10

 source ${MWHOME}/setup-mwuser.csh
7. Source your .cshrc file or, log out and then log back in again, for the changes to take effect.

3.2.3 Sun Environment Variables
When you followed the above installation procedure, you created all the environment variable
needed by the software. This section describes what these environment variables are used for
and how to change them.

Variable
Name

Default Description

ADI_DSP adi_dsp Points to the root directory of the
development tools software. Insure there is
no trailing whitespace after the pathname.

MWHOME adi_dsp/mw Points to the directory that contains the
windowing library routines needed to run the
simulators.

4 CHANGES FROM PREVIOUS RELEASE

This section describes the changes from release 3.1 to release 3.2.

4.1 Assembler
• Minor bug fixes.

• The ADSP-21060’s memory-mapped IOP Registers are programmed by writing to the
appropriate address in internal memory. The symbolic names of the IOP registers can also be
used in ADSP-21060 programs—the #define definitions for these names are contained in
the file def21060.h which is provided in the INCLUDE directory of the ADSP-21000 Family
Development Software. The def21060.h file is also described in the ADSP-21060 User’s
Manual.

4.2 Assembly Run-Time Library
• Minor bug fixes.

4.3 Linker
• The -r switch is no longer supported.

• Minor bug fixes.

4.4 Loader
• Minor bug fixes.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 11

4.5 Librarian
• The librarian now accepts absolute path names.

• Minor bug fixes.

4.6 Simulators

4.6.1 Version Specific Changes

4.6.1.1 PC Version

• All simulators are now true 16 bit Windows applications. DOS versions are no longer
provided.

4.6.1.2 Sun Version

• The simulators no longer use a character based interface. Instead, they use a commercial
windowing package, included with the software, that allows the user to select between a
Windows look and feel, or a Motif look and feel.

4.6.2 Common Changes
• Full SHARC IOP bitfield decoding and editing.

• Enhanced memory window tracking by PC, DAG index registers and DMA index registers.

• Format and tracking info shown in memory window title bars.

• Font selection now available via pulldown menu and initialization file variable “font_size”.

• Capability to load only symbols from an executable file via the pulldown menu.

• Boot loader file support now available via the initialization file variable “ldr_file”.

• An automatic run mode now available via the initialization file variable “batch_mode”. If
“batch_mode” is nonzero, the simulator will exit after ‘n’ “validation_cycles”. (see below)

• An automatic termination of simulation after ‘n’ cycles by specifying a nonzero value for the
initialization file variable “validation_cycles”.

• The MS bits of the MODE2 register now reflect the “.PROCESSOR” directive for the simulator.

• Memory mapped port and IOP serial port file input and output now supported from the
pulldown menu.

• Memory mapped port description file support now available from the pulldown menu and the
initialization file variable “prt_file”.

• CBUG now halts properly when running and a key is pressed.

• Profile data dumps now work properly.

• The initialization files used by the simulators, wsim060.ini and wsim020.ini, are located in the
Windows directory. The settings in these files replace the command line parameters used in
traditional DOS programs.

• The simulators use the GNU plot utility, “wgnuplot”, to perform plotting of data. Memory plot
commands result in the creation of plot files that are passed to the wgnuplot program, that is
spawned to display the plot windows. See the files wgnuplot.txt and wgnuplot.hlp for more
information.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 12

• The simulators can generate and send debug information to the standard AUX device. The
initialization file contains a verbose mode variable, which enables or disables this information.
In order to display this information, you may either run the dbwin application, supplied with
this development software, or connect a monochrome monitor. The system.ini file, located in
your windows directory, has been modified to insure this information is turned off by default.
Specifically, the [debug] section has been modified to include the line “OutputTo=NUL”.

4.7 Emulator
• All emulators are now true 16 bit Windows applications. DOS versions are no longer

provided.

• Full SHARC IOP bitfield decoding and editing.

• Enhanced memory window tracking by PC, DAG index registers and DMA index registers.

• Format and tracking info shown in memory window title bars.

• Font selection now available via menu pulldown and initialization file variable “font_size”.

• Capability to load only symbols from an executable file via the menu pulldown.

• Significantly improved speed of memory transfers between host and target.

• Control of background DMA activity, when target is halted, via initialization file variable
“dma_stop”.

• The display can now be refreshed by the Ctrl-Alt-Shift G key.

• The initialization files used by the emulators, wice060.ini and wice020.ini, are located in the
Windows directory. The settings in these files replace the command line parameters used in
traditional DOS programs.

• The emulators use the GNU plot utility, “wgnuplot”, to perform plotting of data. Memory plot
commands result in the creation of plot files that are passed to the wgnuplot program, that is
spawned to display the plot windows. See the files wgnuplot.txt and wgnuplot.hlp for more
information.

• The emulators can generate and send debug information to the standard AUX device. The
initialization file contains a verbose mode variable, which enables or disables this information.
In order to display this information, you may either run the dbwin application, supplied with
this development software, or connect a monochrome monitor. The system.ini file, located in
your windows directory, has been modified to insure this information is turned off by default.
Specifically, the [debug] section has been modified to include the line “OutputTo=NUL”.

4.8 Splitter
Minor bug fixes.

4.9 C Language Tools
• Better error detection for command line switches.

4.9.1 G21K Preprocessor
• C++ style comments (“//”) are now accepted by the preprocessor.

• G21K now takes .i and .is files as inputs to skip pre-processing.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 13

4.9.2 G21K Optimizing C Compiler
• The register allocation function of the compiler has been overhauled. The compiler now

makes much better use, and selection of, registers. This improvement will significantly
improve the compiler’s code generation and efficiency.

• The compiler no longer inserts NOPs after jumps in situations where they are not required.

• Compiler generated code that modified DAG registers to span from internal to external
memory has been improved to work around ADSP-2106x silicon restrictions. See restrictions
section for related limitations.

• All compiler generated symbols now are prefixed by _L$ for easier identification.

• Code selection of Fx = Fx -Fx for zeroing a register has been changed to Rx = Rx -
Rx. The previous code selection caused problems with non-IEEE formatted numbers.

• There exists a silicon restriction that does not allow branch instructions, call or jump, to be
placed in the last two locations of a DO loop. If the compiler generates a branch instruction in
the third location from the end of a DO loop and cannot fill the last two instructions in the DO
loop with meaningful code, the compiler will fill the last two locations with NOPs.

• The compiler generates all branches as PC-relative operations rather than direct addressing.
This feature facilitates relocatable code. The compiler does not use PC-relative operations for
the cjump instruction. The ADSP-21060 silicon does not currently support relative
addressing with cjump.

• In order to better support operating systems, the compiler now supports the -mainrts switch.
This switch forces the function main() to be treated as a true function call, with
appropriate prolog and epilog code, rather than a simple jump from the run time header.

4.9.3 G21K Run Time Library
• stdlib.h has been fixed so that RAND_MAX is defined to be (2^32 - 1) instead of (2^16).

• fir routine now restores registers correctly.

• frexp and frexpf now return properly if an invalid argument was passed in.

• tan, tanf, pow, powf and sinf now function correctly when passed negative
arguments.

4.10 COFF Tools

4.10.1 CSWAP
• No changes.

4.10.2 CDUMP
• No changes.

5 RESTRICTIONS

This section details restrictions in this version of the ADSP-21000 Family Development Software.
The restrictions described in this section are supplemental to those described in the
corresponding user’s manual.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 14

5.1 Assembler
• When using the backslash (\) line continuation character, do not put any characters after the

backslash on the same line; it must be followed immediately by a carriage return. Otherwise,
an assembler error occurs. For example, a comment or a space after a backslash causes an
assembler error.

• When using the Rn=FDEP Rx BY <bit6>:<len6> instruction, use only positive
numbers for <bit6>. A negative number for <bit6> results in a syntax error that is not
properly reported.

• When multiple instructions are placed on a single line in the source file, the listing file shows
only the last instruction on the line.

• Unprintable special characters in the source file may cause the assembler to crash.

• Macro substitutions made with a #define statement cannot begin with a number. The
following example will fail:

#define 2me r0 = 1

• In the architecture file, the END value, must be greater than the BEGIN value when defining a
segment. If not, when computing the size of a segment, the assembler incorrectly interprets
the resulting negative number as a large positive number.

• In the include directory, there is a file called asm_sprt.h, in which are defined various macros
to aid the user in writing assembly level implementations of ‘C’ functions. The use of this file
is described in the ‘C’ Tools Manual. Omitted from the manual is a statement indicating this file
is to be used only as an include file in ‘C’ programs. Unfortunately, when the file is included
from an assembly level routine, the pre-processor defines that are automatically generated
by the compiler, are not asserted. As such, what get’s included from the file are ADSP-
2106x definitions, which is fine if that is your target processor. If your target processor is an
ADSP-21020, you must manually define the processor define, __ADSP21020__, in order to
include the proper ADSP-21020 definitions.

5.2 Assembly Run-Time Library
• None.

5.3 Linker
• The -s switch, used to strip symbolic information from an executable file does not work

reliably.

• The linker will generate an error if the architecture file defines a multiprocessor memory
space segment for processor 1, ID = 001, that defines locations 0x80000 thru 0x9ffff. This
is because that memory space is in fact locations 0x00000 thru 0x7ffff of that processor.

• In the architecture file, the END value, must be greater than the BEGIN value when defining a
segment. If not, when computing the size of a segment, the linker incorrectly interprets the
resulting negative number as a large positive number.

5.4 Loader
• For link booting to function properly, the file “060_link.exe” must be copied from the

21k/examples/06x/linkboot/linkr0 or linkr1 directory into the 21k/etc directory.

• The boot loader does not make special provision for an executable that can be loaded by the
automatic hardware boot alone. It creates a boot file that contains the boot loader, just to load

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 15

over itself. Although this works without a problem, it generates a boot loader file that is
significantly larger (more than twice the size) than necessary.

• The Loader does not efficiently pack the final initialization. Regardless of the size of the last
initialization, the loader places 256 48-bit words in the boot file.

• When using the loader, do not use the mem21k utility. Any executable that is going to be
processed by ldr21k should not be processed with mem21k. See the “-nomem’ compiler
switch.

• The loader requires the use of address 0x20004 for booting an ADSP-2106x target. Any
executable file that is going to be processed by ldr21k, should have a NOP or an IDLE
instruction at address 0x20004. This only applies to ADSP-2106x targets.

• As noted in the users manual, the DMAC6 control register will not contain a zero when the
program begins execution.

• If a single ADSP-2106x has a processor ID that does not equal zero, a dummy executable file
must be placed on the command line or else the boot will not occur properly. When the boot
loader is executed on an ADSP-2106x with a non-zero ID, it expects to read a table of
contents before the boot data begins. This table of contents points to the proper place in the
ROM that holds the code for each different processor. The ldr21k tool only places a table of
contents at the beginning of a ROM file if more than one executable is given on the command
line. A dummy executable can be created by assembling and linking a file that contains a
single NOP.

• The -fbinary switch has not been fully tested and, although implemented, is not supported for
this release.

5.5 Librarian
• None.

5.6 Simulators

5.6.1 Version Specific Restrictions

5.6.1.1 PC Version

• The source file sizes in CBUG are restricted to less than 64Kb.

• The Program Manager icons for the simulators were inadvertantly omitted.

5.6.1.2 Sun Version

• The input and output filenames used for simulated SPORT data transfers must be in lower
case.

• When selecting menu items, the choice currently selected does not highlight.

• When using the “click and drag” method of traversing menu hierarchies, traversing
backwards in the hierarchies does not work. Using the “click and release” method does
work.

5.6.2 Common Restrictions
• The following pulldown menus are not implemented for this release:

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 16

• Save Layout

• Execute Instruction

• Counting Breakpoints

• Auto-Interrupt

• Auto-Flag

• Backtrace

• The ADSP-2106x silicon prioritizes DMA channels as follows: 0, 1, 2, 3, ChainLoad, ExtRW,
4, 5, 6, 7, 8, 9. The simulator has the priority of ChainLoad and ExtRW reversed.

• When entering instructions into a PM window, “if ... else” instructions must be entered with a
comma (,) before the else.

• The simulator allows writing to the following read-only and reserved bits in the IOP memory
space:

 LSRQ: 31-20 and 19-16

 STCTLx: 28-24

 LCTL: 31-30

 LCOM: 31-26, 25-23, 11-0

 LAR: 31-30

 SYSCON: 7

 STKY: 26-21

• The simulator incorrectly initializes the multiprocessing vector interrupt register, VIRPT, to
0x40014 (external). The correct value should be 0x20014 (internal).

• The simulator’s display for the bus timeout counter, BCNT, incorrectly displays the bus
timeout maximum value, BMAX.

• The simulator does not automatically clear it’s symbol table when a new executable is loaded.

• The simulator does not honor the short word sign extend bit, SSE, of the MODE1 register.

• Displays for the serial port FIFO buffers will be available in a future release.

• Variable names which are identical to the segment name in which they reside cause the
simulator to omit the variable name from the symbol table. The practice of naming symbols
and segments with identical names should be avoided.

• The architecture file “.BANK” directive has no affect. The various “.BANK” qualifiers are not
asserted by the simulator. In addition, wait states MSIZE, IMDWx bits etc., are not set
automatically. These bits should be set by the user’s code at run time.

• The ADSP-2106x simulator does not support link ports. SPORT DMA transfers are
supported. External port master mode DMA transfers with external memory functionality is
included but not tested nor supported.

• Host and PROM booting options are the only boot loading operation that the ADSP-2106x
simulator supports. Host boot files must be in ASCII format as created by the loader, ldr21k,
with the -fascii switch.

• Arithmetic loops (i.e. non-counter-based loops) containing one or two instructions that
terminate on the first iteration of the loop are not properly simulated. Workaround: Insert NOP
instructions into the body of the loop to make it at least 3 instructions long.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 17

• When enabling or disabling the timer through the MODE2 register, the timer may exhibit an
extra cycle of latency before the change takes effect. This extra cycle of latency may also
occur when the Auto-Interrupt Control and Auto-Flag Control functions are used.

• If an assembly label coincides with other labels, only the last label linked will be seen by the
simulator symbols display and search.

• In the DAGs, when setting the base registers via the user interface, the corresponding index
register gets set also. This operation differs from the emulators where the index register
does not get set.

• The Buffer Hang Disable (BHD) bit in the ADSP-2106x SYSCON register defaults to a clear
state. This means the processor core will hang by default if memory-mapped FIFOs are
read-when-empty or written-when-full.

• The simulator does not support both serial ports running in loopback simultaneously. The
simulator does support loopback of either serial port, provided only 1 serial port is in loopback
at a time.

• DMA SPORT transfers do not halt properly in the simulator. When a DMA count register
decrements to zero, and no DMA chaining is called for, the DMA channel should disable itself.
However, the DMA activity bit, in the DMASTAT register, is not cleared and the SPORT buffer
status bits are incorrect.

• The Memory Dump command only supports hexadecimal syntax. If dumps in floating point
format are required, use the plot memory command, and examine the resulting .plt file.

• In the ADSP-2106x simulator, if the multiplier underflow bit, MUS, of the STKY register is set,
the simulator incorrectly clears the floating point underflow bit, FLTUI, of the IRPTL register
when the FLTUI interrupt is serviced.

• In the status stack windows, the simulator allows the user to modify the FLAG bits, bits 19
through 22, of the ASTAT registers. These simulator should not allow modification of these
bits.

• In the ADSP-21020 simulator, Program Memory windows do not support the floating point
display mode.

• In the ADSP-21020 simulator, the BSET instruction will not simulate properly if the bit that is to
be set lies in bit position 15 through 31. Note the following run-time library functions may not
simulate properly as they employ use of this function; A-Law/ U-Law encoding, sin, atof,
strtod, dtoi, dmult, dadd and dsub.

• In the ADSP-2106x simulator, memory references to reserved locations in IO space will result
in the “Error --- Instruction Timed Out” message.

• The simulator does not support 40 bit fixed point values with the LOAD command; fixed point
values are limited to 32 bits.

• After a chip reset, all simulators, include the 2 clock cycles that are used to fill the
fetch/decode/execute pipeline, in their cycle counters. The EZ-ICEs do not count these 2
cycles.

5.7 Emulator
This section describes the restrictions for each ADSP-210xx EZ-ICE emulator.

5.7.1 Common Restrictions
This section describes restrictions that are common to all ADSP-210xx EZ-ICE emulators.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 18

• The following pulldown menus are not implemented for this release:

• Save Layout

• Execute Instruction

• Counting Breakpoints

• Auto-Interrupt

• Auto-Flag

• Backtrace

• The Program Manager icons for the emulators were inadvertantly omitted.

• The emulator does not automatically clear it’s symbol table when a new executable is loaded.

• The source file sizes in CBUG are restricted to less than 64Kb.

• The architecture file “.BANK” directive has no affect. The various “.BANK” qualifiers are not
asserted by the emulator. In addition, wait states MSIZE, IMDWx bits etc., are not set
automatically. These bits should be set by the user’s code at run time.

• Variable names which are identical to the segment name in which they reside cause the
emulator to omit the variable name from the symbol table. The practice of naming symbols and
segments with identical names should be avoided.

• The Memory Dump command only supports hexadecimal syntax. If dumps in floating point
format are required, use the plot memory command, and examine the resulting .plt file.

• In the DAGs, when setting the base registers via the user interface, the corresponding index
register does not get set. This operation differs from the simulator where the corresponding
index register’s value is set when the base register is set.

• Software breakpoints can not be placed anywhere that a CALL instruction would be invalid
(i.e., either of the two instructions following a Delayed Branch jump or call, or last three
instructions of a DO loop).

• When loading an executable with Memory Verify ON, any ports that are defined may
report a readback error. Ignore this or turn Memory Verify OFF.

• PM locations, 0 through 7 for ADSP-21020 and 0x20000 through 0x20003 for ADSP-2106x,
must not contain any user code and should be set to 0 (NOP).

• Interrupts to the 21020 are not latched when the emulator is halted.

• Single-step does not wait on IDLE instructions (i.e., executes as a NOP).

• Three locations of the PC stack are reserved for the emulator.

• IRPTL and IMASKP have bit 0 set while stepping.

• Timer continues to operate while software breakpoints are encountered (for approximately 4
cycles with zero wait states).

• If the timer interrupt gets serviced while a software breakpoint is executed, the status stack
may not get cleaned up properly; there may be an extra MODE1/ASTAT pair on the stack.

• PMDA instructions perform both program memory accesses when single-stepping (for
example, if the cache contains the instruction to be fetched, it may fetch the instruction
anyway).

• Software breakpoints remain in memory if you select the RUN command then EXIT or QUIT.
This results in the opcode at the breakpoint address being lost (breakpoint address will
contain a CALL).

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 19

• When entering instructions into a PM window, “if ... else” instructions must be entered with a
comma (,) before the else.

• Do not set the IMASKP bit 0 (EMUI). This causes the processor to enter emulator space.

• The [user_sect] “base_address” variable in the wice0x0.ini file must be set correctly
according to the actual jumper configuration on the emulator PC plug-in board. The default
address for the board is 0x340. See the EZ-ICE Emulator Manual for complete hardware
installation details.

• FADDR and DADDR always display the current PC value in the Program Counters window.

• After a chip reset, all simulators, include the 2 clock cycles that are used to fill the
fetch/decode/execute pipeline, in their cycle counters. The EZ-ICEs do not count these 2
cycles.

5.7.2 ADSP-21010/ADSP-21020 EZ-ICE Specific Restrictions
This section describes restrictions that are common to all ADSP-21010/ADSP-21020 EZ-ICE
emulators.

• Stepping over, or setting breakpoints on, the push loop instruction, or the two instructions
following a push loop instruction, can cause unpredictable results.

• When any of the ADSP-21020 stacks (PC, status, loop) overflow, the ADSP-21020 must be
reset to use those stacks. The stack contents displayed after an overflow are all bits set for
the PC stack and all bits cleared for Loop and Status stacks.

• When the target is not running, and the target asserts BR , the ADSP-21020 asserts BG . None
of the address or control pins are 3-stated as expected, however.

• Read-only registers (i.e., FADDR, DADDR, PMADR, DMADR, etc.) cannot be set from the user
interface.

• PMI hardware breakpoint placed on the instruction immediately following a program memory
data access is ignored until the instruction is cached. Workaround: Use a software
breakpoint.

• The cache is loaded in a different, but valid, sequence. This does not cause the execution
sequence to be different.

• Software breakpoints should not be placed on an instruction immediately following an
instruction that unmasks a pending interrupt.

• Program Memory windows do not support the floating point display mode.

5.7.3 SHARC EZ-ICE Specific Restrictions
• DMA transfers which are halted by the emulator (see [dma_stop] variable in wice060.ini) are

not resumed correctly.

• The input clock rate of the ADSP-2106x target must be >= 20 MHz.

• The ADSP-2106x must be powered by a nominal 5 VDC. The emulator interface pod does
not support a 3.3 VDC supply.

• The JTAG port must be reset after powerup by either an active emulator probe or by the
TRST pin. The emulator probe leaves the TRST open which will cause the TRST pin to float
high. If the probe is inactive, ie; the emulator application is not running, the JTAG port will not
be reset. If the target power supply is cycled in this situation, the JTAG port will come up in
an undefined state and may cause improper operation of the processor. The part will remain
in this state until the emulator application is started.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 20

• If, upon startup, the architecture file listed in the initialization file contains a “.processor”
statement that conflicts with the target processor, the error message displayed does not
include the filename of the architecture file. For example, the error message displayed is

 “Invalid .PROCESSOR directive in .”

 rather than

 “Invalid .PROCESSOR directive in c:\21k.ach.”

• When using the “command_timeout” feature to automatically stop the emulator after ‘n’
milliseconds, there is a slight chance that the emulator will halt and then automatically restart.
This can happen if the emulator encounters a breakpoint at the same instant as the ‘n’
milliseconds timer expires.

• When using the EZ-ICE with the EZ-LAB board and DspHost software library, resetting the
2106x, while the library is in the middle of a PC to EZ-LAB data transfer may cause the PC to
hang.

• The EZ-ICE does not save and restore the instruction cache contents during emulator
halts/runs and single steps. As a result, when benchmarking code, run the code under test
from start to finish with no breakpoints, halts or single steps.

5.8 Splitter
• None.

5.9 C Language Tools

5.9.1 G21K Preprocessor
• None, other than those described in the user’s manual.

5.9.2 G21K Optimizing C Compiler
• The -mpcrel switch, to generate PC relative code, does not generate PC relative code in all

cases. As such, this switch should be avoided.

• Although the compiler generated code that modified DAG registers to span from internal to
external memory has been improved to work around ADSP-2106x silicon restrictions, certain
code sequences can cause problems. For example, the following sequence will cause the
compiler to generate code that violates the ADSP-2106x restriction:

 int i, j;

 int *ptr;

 ptr = (j + (int *)i);

• Although the compiler has been enhanced to minimize the modification of DAG registers that
span

• With Release 3.1, a new function calling convention was implemented. To maintain the
Release 3.0 calling convention, use the -mkeepi13 switch.

5.9.3 G21K Numerical ‘C’ Extensions
• None, other than those described in the user’s manual.

ADSP-21000 Family Development Software Release 3.2

7/14/95 page 21

5.9.4 G21K Run Time Library
• The files strspendp.asm and set_proc21k.asm were incorrectly named on the install disks for

the PC version. After they are installed on the user’s disk, they appear as strspzba.asm and
set_pzaq.asm.

• This release does not include optimized FFT routines. These routines will be placed on the
BBS when available.

• The atof() and strtod() library functions require you to use the
-fno-short-double switch.

• The frexp() and modf() library functions require you to use the
-fno-short-double switch, or rename them as frexpf() and modff().

• The compiler’s built-in code does not check for large numbers; this could result in compiler
errors. When sqrtf() input exceeds FLT_MAX/2 (1.7e38) and the -O2 switch is
used, a negative value may be returned. Use the -fno-builtin switch and -O2
switch to avoid this.

• The sqrt() function returns negative values when the input exceeds FLT_MAX/2
(1.7e38). Use the -mdont-inline-sqrt switch or use sqrtf() with the -
fno-builtin and -O2 switch instead. The compiler’s built-in code does not check for
large numbers; this could result in compiler errors.

• The rsqrt() and rsqrtf() functions do not work.

• The qsort() function is not in the library.

• The matinv() function is no longer supported.

• The acosf() function is unreliable. Use acos() instead.

• The clear_interrupt() routine does not work for interrupts that set STKY register
bits, such as floating point overflow.

• The zero_cross() function does not work.

• The expf(), exp() , and cexpf() functions do not return HUGE_VAL or set
ERANGE in errno when there is an overflow error.

• When polymorphic functions (functions that use pm pointers) are used, and the function
returns a pointer to program memory, cast the output of the function to pm. For example:
(char pm *)

5.10 COFF Tools

5.10.1 CSWAP
• None.

5.10.2 CDUMP
• None.

	ADSP - 21000 Family Application Handbook Volume 1
	Literature
	ADSP - 21000 Family Manuals
	Specification Information

	Contents
	Chapter 1: Introduction
	Chapter 2: Trigonometric, Mathematical & Transcendental Functions
	Chapter 3: Matrix Functions
	Chapter 4: FIR & IIR Filters
	Chapter 5: Multirate Filters
	Chapter 6: Adaptive Filters
	Chapter 7: Fourier Transforms
	Chapter 8: Graphics
	Chapter 9: Image Processing
	Chapter 10: JTAG Downloader
	Index
	Figures
	Tables
	Listings

	Introduction 1
	1.1 Usage Conventions
	1.2 Development Resources
	1.2.1 Software Development Tools
	1.2.2 Hardware Development Tools
	1.2.2.1 EZ-LAB
	1.2.2.2 EZ-ICE

	1.2.3 Third Party Support
	1.2.4 DSPatch
	1.2.5 Applications Engineering Support
	1.2.6 ADSP-21000 Family Classes

	1.3 ADSP-21000 Family: The Signal Processing Solution
	1.3.1 Why DSP ?
	1.3.2 Why Floating-Point ?
	1.3.2.1 Precision
	1.3.2.2 Dynamic Range
	1.3.2.3 Signal-To-Noise Ratio
	1.3.2.4 Ease-Of-Use

	1.3.3 Why ADSP-21000 Family ?
	1.3.3.1 Fast & Flexible Arithmetic
	1.3.3.2 Unconstrained Data Flow
	1.3.3.3 Extended IEEE-Floating-Point Support
	1.3.3.4 Dual Address Generators
	1.3.3.5 Efficient Program Sequencing

	1.4 ADSP-21000 Family Architecture Overview
	1.4.1 ADSP-21000 Family Base Architecture
	1.4.2 ADSP-21020 DSP
	1.4.3 ADSP-21060 SHARC

	Trigonometric, Mathematical & Transcendental Functions 2
	2.1 Sine/Cosine Approximation
	2.1.1 Implementation
	2.1.2 Code Listings
	2.1.2.1 Sine/Cosine Approximation Subroutine
	2.1.2.2 Example Calling Routine

	2.2 Tangent Approximation
	2.2.1 Implementation
	2.2.2 Code Listing - Tangent Subroutine

	2.3 Arctangent Approximation
	2.3.1 Implementation
	2.3.2 Listing-Arctangent Subroutine

	2.4 Square Root & Inverse Square Root Approximations
	2.4.1 Implementation
	2.4.2 Code Listings
	2.4.2.1 SQRT Approximation Subroutine
	2.4.2.2 ISQRT Approximation Subroutine
	2.4.2.3 SQRTSGL Approximation Subroutine
	2.4.2.4 ISQRTSGL Approximation Subroutine

	2.5 Division
	2.5.1 Implementation
	2.5.2 Code Listing-Division Subroutine

	2.6 Logarithm Approximations
	2.6.1 Implementation
	2.6.2 Code Listing
	2.6.2.1 Logarithm Approximation Subroutine

	2.7 Exponential Approximation
	2.7.1 Implementation
	2.7.2 Code Listings - Exponential Subroutine

	2.8 Power Approximation
	2.8.1 Implementation
	2.8.2 Code Listings
	2.8.2.1 Power Subroutine
	2.8.2.2 Global Header File
	2.8.2.3 Header File

	Matrix Functions 3
	3.1 Storing a Matrix
	3.2 Multiplication of a MxN Matrix by an Nx1 Vector
	3.2.1 Implementation
	3.2.2 Code Listing - MxN by Nx1 Multiplication

	3.3 Multiplication of a MxN Matrix by a NxO Matrix
	3.3.1 Implementation
	3.3.2 Code Listing - MxN by NxO Multiplication

	3.4 Matrix Inversion
	3.4.1 Implementation
	3.4.2 Code Listing - Matrix Inversion

	3.5 References

	FIR & IIR Filters 4
	4.1 FIR Filters
	4.1.1 Implementation
	4.1.2 Code Listings
	4.1.2.1 Example Calling Routine
	4.1.2.2 Filter Code

	4.2 IIR Filters
	4.2.1 Implementation
	4.2.1.1 Implementation Overview
	4.2.1.2 Implementation Details

	4.2.2 Code Listings
	4.2.2.1 iirmem.asm
	4.2.2.2 cascade.asm

	4.3 Summary
	4.4 References

	Multirate Filters 5
	5.1 Single - Stage Decimation Filter
	5.1.1 Implementation
	5.1.2 Code Listings - decimate.asm

	5.2 Single - Stage Interpolation Filter
	5.2.1 Implementation
	5.2.2 Code Listings - interpol.asm

	5.3 Rational Rate Changer (Timer-Based)
	5.3.1 Implementation
	5.3.2 Code Listings - ratiobuf.asm

	5.4 Rational Rate Changer (External Interrupt - Based)
	5.4.1 Implementation
	5.4.2 Code Listing - rat_2_int.asm

	5.5 Two-Stage Decimation Filter
	5.5.1 Implementation
	5.5.2 Code Listing - dec2stg.asm

	5.6 Two - Stage Interpolation Filter
	5.6.1 Implementation
	5.6.2 Code Listing - int2stg.asm

	5.7 References

	Adaptive Filters 6
	6.1 Introduction
	6.1.1 Applications of Adaptive Filters
	6.1.1.1 System Identification
	6.1.1.2 Adaptive Equalization for Data Transmission
	6.1.1.3 Echo Cancellation for Speech - Band Data Transmission
	6.1.1.4 Linear Predictive Coding of Speech Signals
	6.1.1.5 Array Processing

	6.1.2 FIR Filter Structures
	6.1.2.1 Transversal Structure
	6.1.2.2 Symmetric Transversal Structure
	6.1.2.3 Lattice Structure

	6.1.3 Adaptive Filter Algorithms
	6.1.3.1 The LMS Algorithm
	6.1.3.2 The RLS Algorithm

	6.2 Implementations
	6.2.1 Transversal Filter Implementation
	6.2.2 LMS (Transversal FIR Filter Structure)
	6.2.2.1 Code Listing - lms.asm

	6.2.3 llms.asm - Leaky LMS Algorithm (Transversal)
	6.2.3.1 Code Listing

	6.2.4 Normalized LMS Algorithm (Transversal)
	6.2.4.1 Code Listing - nlms.asm

	6.2.5 Sign - Error LMS (Transversal)
	6.2.5.1 Code Listing - selms.asm

	6.2.6 Sign-Data LMS (Transversal)
	6.2.6.1 Code Listing - sdlms.asm

	6.2.7 Sign - Sign LMS (Transversal)
	6.2.7.1 Code Listing - sslms.asm

	6.2.8 Symmetric Transversal Filter Implementation LMS
	6.2.8.1 Code Listing - sylms.asm

	6.2.9 Lattice Filter LMS with Joint Process Estimation
	6.2.9.1 Code Listing - latlms.asm

	6.2.10 RLS (Transversal Filter)
	6.2.10.1 Code Listing - rls.asm

	6.2.11 Testing Shell for Adaptive Filters
	6.2.11.1 Code Listing - testafa.asm

	6.3 Conclusion

	Fourier Transforms 7
	7.1 Computation of the DFT
	7.1.1 Derivation of the Fast Fourier Transform
	7.1.2 Butterfly Calculations

	7.2 Architectural Features for FFTs
	7.3 Complex FFTs
	7.3.1 Architecture File Requirements
	7.3.2 The Radix - 2 DIT FFT Program
	7.3.3 The Radix - 4 DIF FFT Program
	7.3.4 FFTs on the ADSP-21060
	7.3.5 FFT Twiddle Factor Generation

	7.4 Inverse Complex FFTs
	7.5 Benchmarks
	7.6 Code Listings
	7.6.1 FFT.ACH - Architecture File
	7.6.2 FFTRAD2.ASM - Complex Radix2 FFT
	7.6.3 FFTRAD4.ASM - Complex Radix - 4 FFT
	7.6.4 TWIDRAD2.C - Radix2 Coefficient Generator
	7.6.5 TWIDRAD4.C - Radix4 Coefficient Generator

	7.7 References

	Graphics 8
	8.1 3-D Graphics Line Accept / Reject
	8.1.1 Implementation
	8.1.2 Code Listing

	8.2 Cubic Bezier Polynomial Evaluation
	8.2.1 Implementation
	8.2.2 Code Listing

	8.3 Cubic B-Spline Polynomial Evaluation
	8.3.1 Implementation
	8.3.2 Code Listing

	8.4. Bit Block Transfer
	8.4.1 Implementation
	8.4.2 Code Listing

	8.5 Bresenham Line Drawing
	8.5.1 Implementation
	8.5.2 Code Listing

	8.6 3-D Graphics Translation, Rotation, & Scaling
	8.6.1 Implementation
	8.6.2 Code Listing

	8.7 Multiply 4x4 by 4x1 Matrices (3D Graphics Transformation)
	8.7.1 Implementation
	8.7.2 Code Listing

	8.8 Table Lookup with Interpolation
	8.8.1 Implementation
	8.8.2 Code Listing

	8.9 Vector Cross Product
	8.9.1 Implementation
	8.9.2 Code Listing

	8.10 References

	Image Processing 9
	9.1 Two-Dimensional Convolution
	9.1.1 Implementation
	9.1.2 Code Listing

	9.2 Median Filtering (3x3)
	9.2.1 Implementation
	9.2.2 Code Listing

	9.3 Histogram Equalization
	9.3.1 Implementation
	9.3.2 Code Listing

	9.4 One-Dimensional Median Filtering
	9.4.1 Implementation
	9.4.2 Code Listings

	9.5 References

	JTAG Downloader 10

	Index

	ADSP - 21000 Family Development Software Release 3.2 Installation Guide and Release Note
	Contents
	1 General Information
	1.1 Documentation
	1.2 What's Covered in this Release Note ?
	1.3 Who are you ?
	1.4 For Technical Assistance
	1.5 For Bug Fixes and Documentation Errata
	1.6 Warranty

	2 Sales Package
	3 Software Installation
	3.1 PC Version
	3.1.1 PC Requirements
	3.1.2 PC Installation Procedure
	3.1.3 PC Environment Variables

	3.2 Sun Version
	3.2.1 Sun Requirements
	3.2.2 Sun Installation Procedure
	3.2.3 Sun Environment Variables

	4 Changes From Previous Release
	4.1 Assembler
	4.2 Assembly Run-Time Library
	4.3 Linker
	4.4 Loader
	4.5 Librarian
	4.6 Simulators
	4.6.1 PC Version
	4.6.1.1 PC Version
	4.6.1.2 Sun Version

	4.6.2 Comman Changes

	4.7 Emulator
	4.8 Splitter
	4.9 C Language Tools
	4.9.1 G21K Preprocessor
	4.9.2 G21K Optimizing C Compiler
	4.9.3 G21K Run Time Library

	4.10 COFF Tools
	4.10.1 CSWAP
	4.10.2 CDUMP

	5 Restrictions
	5.1 Assembler
	5.2 Assembly Run-Time Library
	5.3 Linker
	5.4 Loader
	5.5 Librarian
	5.6 Simulators
	5.6.1 Version Specific Restrictions
	5.6.1.1 PC Version
	5.6.1.2 Sun Version
	5.6.2 Common Restrictions

	5.7 Emulator
	5.7.1 Common Restrictions
	5.7.2 ADSP-21010/ADSP-21020 EZ-ICE Specific Restrictions
	5.7.3 SHARC EZ-ICE Specific Requirements

	5.8 Splitter
	5.9 C Language Tools
	5.9.1 G21K Preprocessor
	5.9.2 G21K Optimizing C Compiler
	5.9.3 G21K Numerical 'C' Extensions
	5.9.4 G21K Run Time Library

	5.10 COFF Tools
	5.10.1 CSWAP
	5.10.2 CDUMP

