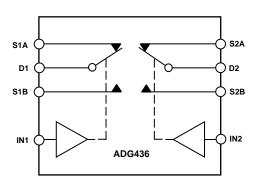


Dual SPDT Switch


ADG436

FEATURES

44 V Supply Maximum Ratings V_{SS} to V_{DD} Analog Signal Range Low On Resistance (12 Ω Typ) Low ΔR_{ON} (3 Ω Max) Low R_{ON} Match (2.5 Ω Max) Low Power Dissipation Fast Switching Times $t_{ON} < 175$ ns $t_{OFF} < 145$ ns Low Leakage Currents (5 nA Max) Low Charge Injection (10 pC) Break-Before-Make Switching Action

APPLICATIONS
Audio and Video Switching
Battery Powered Systems
Test Equipment
Communications Systems

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG436 is a monolithic CMOS device comprising two independently selectable SPDT switches. It is designed on an LC²MOS process which provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the part suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the part ideally suited for portable and battery powered instruments.

Each switch conducts equally well in both directions when ON and has an input signal range which extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- Extended Signal Range
 The ADG436 is fabricated on an enhanced LC²MOS process, giving an increased signal range which extends to the supply rails.
- 2. Low Power Dissipation
- 3. Low RON
- Single Supply Operation
 For applications where the analog signal is unipolar, the ADG436 can be operated from a single rail power supply.

REV. A

ADG436-SPECIFICATIONS1

Dual Supply $(V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}, GND = 0 \text{ V}, unless otherwise noted})$

Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/ Comments
ANALOG SWITCH Analog Signal Range		V _{SS} to V _{DD}	V	
R _{ON}	12		Ω typ	$V_D = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
ΔR_{ON}	1	25	Ω max Ω typ Ω max	$V_D = -5 \text{ V}, 5 \text{ V}, I_S = -10 \text{ mA}$
R _{ON} Match	1	2.5	Ω typ Ω max	$V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.005 ±0.25	±5	nA typ nA max	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$ Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.05 ±0.4	±5	nA typ nA max	$V_S = V_D = \pm 15.5 \text{ V}$ Test Circuit 3
DIGITAL INPUTS	±0.1		III I III III	Total Great 5
Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current		2.4 0.8	V min V max	
I _{INL} or I _{INH}		±0.005 ±0.5	μΑ typ μΑ max	$V_{IN} = 0 \text{ V or } V_{DD}$
DYNAMIC CHARACTERISTICS ²				
t_{ON}	70	125	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
$t_{ m OFF}$	60	123	ns max ns typ	$V_S = \pm 10 \text{ V}$; Test Circuit 4 $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$;
Break-Before-Make Delay, t _{OPEN}	10	120	ns max ns min	$V_S = \pm 10 \text{ V}$; Test Circuit 4 $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$; $V_S = +5 \text{ V}$; Test Circuit 5
Charge Injection	10		pC typ	$V_D = 0 \text{ V}, R_D = 0 \Omega, C_L = 10 \text{ nF};$ Test Circuit 6
OFF Isolation	72		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; $V_S = 2.3 V rms$, Test Circuit 7
Channel-to-Channel Crosstalk	90		dB typ	$R_L = 75 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; $V_S = 2.3 V rms$, Test Circuit 8
C _S (OFF)	10		pF typ	10 212 1 2122, 2000 2000 2000
C_D , C_S (ON)	30		pF typ	
POWER REQUIREMENTS				
${ m I}_{ m DD}$	0.05	0.35	mA typ	Digital Inputs = 0 V or 5 V
${ m I}_{ m SS}$	0.01	5	mA max μA typ μA max	
$V_{\mathrm{DD}}/V_{\mathrm{SS}}$		±3/±20	V min/V max	$ V_{DD} = V_{SS} $

Specifications subject to change without notice.

-2-REV. A

NOTES

Temperature range is as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Single Supply $(V_{DD} = +12 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ unless otherwise noted})$

Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/ Comments
ANALOG SWITCH Analog Signal Range R _{ON} R _{ON} Match	20	0 to V _{DD} 40 2.5	V Ω typ Ω max Ω max	$V_D = +1 \text{ V}, +10 \text{ V}, I_S = -1 \text{ mA}$
LEAKAGE CURRENTS Source OFF Leakage I_S (OFF) Channel ON Leakage I_D , I_S (ON)	±0.005 ±0.25 ±0.05 ±4	±5 ±5	nA typ nA max nA typ nA max	V_{DD} = +13.2 V V_{D} = 12.2 V/1 V, V_{S} = 1 V/12.2 V Test Circuit 2 V_{S} = V_{D} = 12.2 V/1 V Test Circuit 3
DIGITAL INPUTS Input High Voltage, V_{INH} Input Low Voltage, V_{INL} Input Current I_{INL} or I_{INH}		2.4 0.8 ±0.005 ±0.5	V min V max μΑ typ μΑ max	V_{IN} = 0 V or V_{DD}
DYNAMIC CHARACTERISTICS ² t _{ON} t _{OFF} Break-Before-Make Delay, t _{OPEN} Charge Injection OFF Isolation Channel-to-Channel Crosstalk C _S (OFF) C _D , C _S (ON)	100 90 10 10 72 90 10 30	200	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ	$R_{L} = 300 \ \Omega, C_{L} = 35 \ pF;$ $V_{S} = +8 \ V; \ Test \ Circuit \ 4$ $R_{L} = 300 \ \Omega, C_{L} = 35 \ pF;$ $V_{S} = +8 \ V; \ Test \ Circuit \ 4$ $R_{L} = 300 \ \Omega, C_{L} = 35 \ pF;$ $V_{S} = +5 \ V; \ Test \ Circuit \ 5$ $V_{D} = 6 \ V, R_{D} = 0 \ \Omega, C_{L} = 10 \ nF;$ $Test \ Circuit \ 6$ $R_{L} = 75 \ \Omega, C_{L} = 5 \ pF, \ f = 1 \ MHz;$ $V_{S} = 1.15 \ V \ rms; \ Test \ Circuit \ 7$ $R_{L} = 75 \ \Omega, C_{L} = 5 \ pF, \ f = 1 \ MHz;$ $V_{S} = 1.15 \ V \ rms; \ Test \ Circuit \ 8$
POWER REQUIREMENTS I_{DD} V_{DD}	0.05	0.35 +3/+30	mA typ mA max V min/V max	V _{DD} = +13.5 V Digital Inputs = 0 V or 5 V

REV. A -3-

NOTES

1 Temperature range is as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG436

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to V_{SS} +44 V
V_{DD} to GND
V _{SS} to GND +0.3 V to -30 V
Analog, Digital Inputs ² $V_{SS} - 2 V$ to $V_{DD} + 2 V$
or 20 mA, whichever occurs first
Continuous Current, S or D
Peak Current, S or D 40 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +125°C
Junction Temperature+150°C
Plastic DIP Package
θ_{IA} , Thermal Impedance
Lead Temperature, Soldering (10 sec) +260°C

SOIC Package	
--------------	--

θ_{JA} , Thermal Impedance	77°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION_

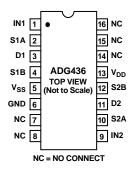
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG436 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. Truth Table

ON OFF

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Descriptions	Options
ADG436BN	-40°C to +85°C	Plastic DIP	N-16
ADG436BR	-40°C to +85°C	0.15" SOIC	R-16A


-4– REV. A

ADG436

TERMINOLOGY

	T		1	
$ m V_{DD}$	Most positive power supply potential.	t_{OFF}	Delay between applying the digital control	
V_{SS}	Most negative power supply potential in dual		input and the output switching off.	
	supplies. In single supply applications, it may	t _{OPEN}	Break-before-make delay when switches are	
	be connected to ground.		configured as a multiplexer.	
GND	Ground (0 V) reference.	V_{INL}	Maximum input voltage for Logic "0."	
S	Source terminal. May be an input or output.	V_{INH}	Minimum input voltage for Logic "1."	
D	Drain terminal. May be an input or output.	I_{INL} (I_{INH})	Input current of the digital input.	
IN	Logic control input.	Crosstalk	A measure of unwanted signal that is coupled	
R_{ON}	Ohmic resistance between D and S.		through from one channel to another as a result	
ΔR_{ON}	R _{ON} variation due to a change in the analog		of parasitic capacitance.	
011	input voltage with a constant load current.	Off Isolation	A measure of unwanted signal coupling	
R _{ON} Match	Difference between the R_{ON} of any two channels.		through an "OFF" switch.	
I _S (OFF)	Source leakage current with the switch "OFF."	Charge Injection	A measure of the glitch impulse transferred	
I_D , I_S (ON)	Channel leakage current with the switch "ON."		from the digital input to the analog output	
$V_D(V_S)$	Analog voltage on terminals D, S.		during switching.	
C_S (OFF)	"OFF" switch source capacitance.	I_{DD}	Positive supply current.	
- , ,	-	I_{SS}	Negative supply current.	
$C_D, C_S(ON)$	"ON" switch capacitance.			
t_{ON}	Delay between applying the digital control			
	input and the output switching on.			

PIN CONFIGURATION (DIP/SOIC)

REV. A -5-

ADG436—Typical Performance Characteristics

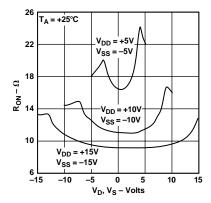


Figure 1. R_{ON} as a Function of V_D (V_S): Dual Supply

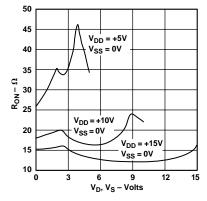


Figure 2. R_{ON} as a Function of V_D (V_S): Single Power Supply

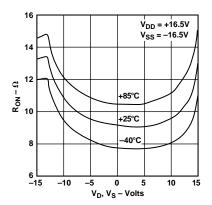


Figure 3. R_{ON} as a Function of V_D (V_S) for Different Temperatures: Dual Supply

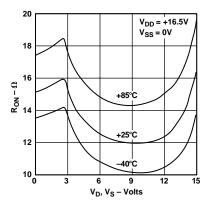


Figure 4. R_{ON} as a Function of V_D (V_S) for Different Temperatures: Single Supply

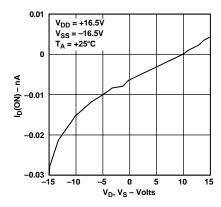


Figure 5. I_D (ON) Leakage Current as a Function of V_D (V_S): Dual Supply

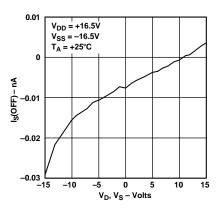


Figure 6. I_S (OFF) Leakage Current as a Function of V_D (V_S): Dual Supply

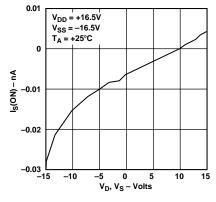


Figure 7. I_S (ON) Leakage Current as a Function of V_D (V_S): Dual Supply

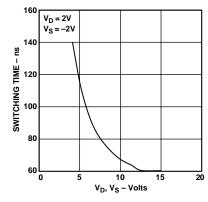


Figure 8. Switching Time as a Function of V_D (V_S): Dual Supply

-6-

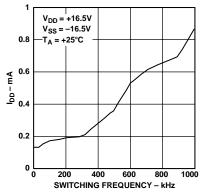
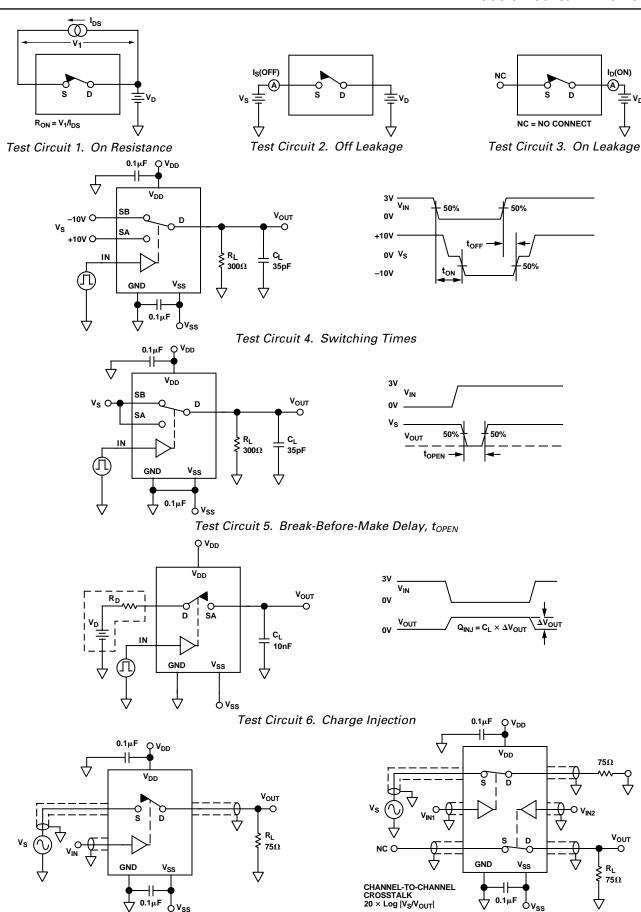



Figure 9. I_{DD} as a Function of Switching Frequency: Dual Supply

Test Circuits—ADG436

Test Circuit 8. Channel-to-Channel Crosstalk

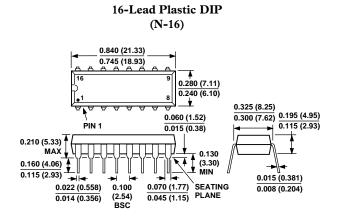
Test Circuit 7. Off Isolation
-7-

REV. A

ADG436

APPLICATIONS INFORMATION

ADG436 Supply Voltages


The ADG436 can operate from a dual or single supply. V_{SS} should be connected to GND when operating with a single supply. When using a dual supply, the ADG436 can also operate with unbalanced supplies, for example V_{DD} = 20 V and V_{SS} = –5 V. The only restrictions are that V_{DD} to GND must not exceed 30 V, V_{SS} to GND must not drop below –30 V and V_{DD} to V_{SS} must not exceed +44 V. It is important to remember that the ADG436 supply voltage directly affects the input signal range, the switch ON resistance and the switching times of the part. The effects of the power supplies on these characteristics can be clearly seen from the characteristic curves in this data sheet.

Power-Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those maximum ratings listed in the data sheet. Always sequence $V_{\rm DD}$ on first followed by $V_{\rm SS}$ and the logic signals. An external signal can then be safely presented to the source or drain of the switch.

OUTLINE DIMENSIONS

Dimensions are shown in inches and (mm).

(R-16A)0.3937 (10.00) 0.3859 (9.80) 0.1574 (4.00) 0.2550 (6.20) 0.1497 (5.80) 0.2284 (5.80) 0.0196 (0.50) x 45° 0.0688 (1.75) 0.0098 (0.25) 0.0532 (1.35) 0.0099 (0.25) 0.0040 (0.10) 0.0500 0.0192 (0.49) SEATING 0.0099 (0.25) 0.0500 (1.27) 0.0138 (0.35) PLANE 0.0075 (0.19) 0.0160 (0.41)

16-Lead Narrow Body SOIC