

ANALOG 2 pF Off Capacitance, 1 pC Charge Injection, ±15 V/12 V 4:1 iCMOSTM Multinlexer

Preliminary Technical Data

ADG1204

FEATURES

2 pF off capacitance 1 pC charge injection 33 V supply range 120 Ω on resistance Fully specified at +12 V, ±15 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 14-lead TSSOP and 12-lead LFCSP Typical power consumption: <0.03 μW

APPLICATIONS

Automatic test equipment Data aguisition systems Battery-powered systems Sample-and-hold systems **Audio signal routing Communication systems**

GENERAL DESCRIPTION

The ADG1204 is a CMOS analog multiplexer, comprising four single channels designed on an iCMOS process. iCMOS (industrial-CMOS) is a modular manufacturing process that combines high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 30-V operation in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery powered instruments.

FUNCTIONAL BLOCK DIAGRAM

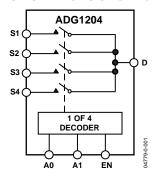


Figure 1.

The ADG1204 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- 2 pF off capacitance (±15 V supply).
- 1 pC charge injection.
- 3 V logic-compatible digital inputs: $V_{IH} = 2.0 \text{ V}, V_{IL} = 0.8 \text{ V}$
- No V_L logic power supply required.
- 5. Ultralow power dissipation: <0.03 μW.
- 14-lead TSSOP and 12-lead 3 mm × 3 mm LFCSP package.

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG1204

Preliminary Technical Data

TABLE OF CONTENTS

Specifications	Pin Configurations and Function Descriptions8
Dual Supply	Terminology9
Single Supply 5	Typical Performance Characteristics
Absolute Maximum Ratings	Test Circuits
Truth Table	Outline Dimensions
ESD Caution	Ordering Guide

REVISION HISTORY

11/04—Revision PrD: Preliminary Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	٧	
On Resistance (RoN)	120	160	180	Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}; \text{ Figure 21}$
,				Ω max	
On Resistance Match between Channels (ΔR _{ON})	5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
Charmers (Milon)				Ω max	
On Resistance Flatness (R _{FLAT(ON)})	25			Ωtyp	$V_s = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}; I_s = -10 \text{ mA}$
Off Resistance Flattiess (NFLAT(ON))	23		50	Ω max	VS = -3 V, U V, +3 V, IS = -10 IIIA
L FAVA CE CLIDDENITC			30	12 IIIax	V .10VV 10V
LEAKAGE CURRENTS					$V_{DD} = +10 \text{ V}, V_{SS} = -10 \text{ V}$
Source Off Leakage, I_s (Off)	±0.01			nA typ	$V_S = 0 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/0 \text{ V}; \text{ Figure 22}$
	±0.5	±1	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_S = 0 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/0 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Channel On Leakage, ID, IS (On)	±0.04			nA typ	$V_S = V_D = 0 \text{ V or } 10 \text{ V; Figure } 23$
	±1	±2	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{NH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
input current, incomme	0.003		±0.5	μA max	VIN — VINE OF VINA
Digital Input Capacitance Co.	5		±0.5	l .	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²	40				D 500 C 05 F
Transition Time, t _{TRANS}	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
				ns max	$V_s = \pm 10 \text{ V}$; Figure 24
t _{on} (EN)	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
			90	ns max	$V_S = \pm 10 \text{ V}$; Figure 24
t _{OFF} (EN)	20			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			40	ns max	$V_S = \pm 10 \text{ V}$; Figure 24
Break-before-Make Time Delay, t _D	15			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			1	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; Figure 25
Charge Injection	1			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 26}$
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 28
Total Harmonic Distortion + Noise	0.002			% typ	$R_L = 600 \Omega$, 5 V rms, $f = 20 Hz$ to 20 kHz
-3 dB Bandwidth	700			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 29
C _s (Off)	2				11 - 30 12, CL - 3 pi , i iguie 29
C _D (Off)				pF typ	
	7			pF typ	
C _D , C _S (On)	4			pF typ	
POWER REQUIREMENTS	1				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
IDD	0.001			μA typ	Digital Inputs = 0 V or V_{DD}
			5.0	μA max	
I _{DD}	150			μA typ	Digital Inputs = 5 V
			300	μA max	
				1	
I _{SS}	0.001			μA typ	Digital Inputs = 0 V or V _{DD}

ADG1204

Parameter	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
I _{GND}	0.001			μA typ	Digital Inputs = 0 V or V _{DD}
			5.0	μA max	
I_{GND}	150			μA typ	Digital Inputs = 5 V
			300	μA max	

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	220			Ωtyp	$V_S = \pm 3.3 \text{ V, } I_S = -10 \text{ mA; Figure 21}$
				Ω max	
On Resistance Match between	10			Ωtyp	
Channels (ΔR_{ON})					
				Ω max	$V_S = \pm 3.3 \text{ V, } I_S = -10 \text{ mA}$
On Resistance Flatness (R _{FLAT(ON)})	30			Ω typ	$V_S = \pm 3.3 \text{ V, } I_S = -10 \text{ mA}$
				Ω max	
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}; \text{ Figure 22}$
	±0.5	±1	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}; \text{ Figure 22}$
	±0.5	±1	±5	nA max	
Channel On Leakage, ID, Is (On)	±0.04			nA typ	$V_D = V_S = \pm 4.5 \text{ V}$; Figure 23
	±1	±2	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0		V min	
Input Low Voltage, V _{INL}		0.8		V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.5	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	160			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
				ns max	$V_S = 3 \text{ V}$; Figure 24
toff	60			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
				ns max	$V_S = 3 \text{ V}$; Figure 24
Break-before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; Figure 25
Charge Injection	20			pC typ	$V_S = 0 \text{ V, } R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 26}$
				pC max	
Off Isolation	56			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Channel-to-Channel Crosstalk	60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 28
–3 dB Bandwidth	20			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 29
C _s (Off)	15			pF typ	f = 1 MHz
C _D (Off)				pF typ	f = 1 MHz
C_D , C_S (On)	100			pF typ	f = 1 MHz

 $^{^1}$ Y Version temperature range is -40°C to $+125^{\circ}\text{C}$. 2 Guaranteed by design, not subject to production test.

Parameter	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
			5.0	μA max	
Iss	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
			5.0	μA max	

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (RoN)	220			Ωtyp	$V_S = 10 \text{ V}, I_S = -10 \text{ mA}$; Figure 21
				Ω max	
On Resistance Match between	1			Ω typ	$V_S = 10 \text{ V}, I_S = -10 \text{ mA}$
Channels (ΔR _{ON})				Ω max	
On Resistance Flatness (RFLAT(ON))	12			Ω typ	$V_S = 3 \text{ V}, 6 \text{ V}, 9 \text{ V}; I_S = -10 \text{ mA}$
LEAKAGE CURRENTS					V _{DD} = 12 V
Source Off Leakage, I _S (Off)	±0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Channel On Leakage, ID, Is (On)	±0.04			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V; Figure } 23$
	±1	±2	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.5	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANS}	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
				ns max	$V_S = \pm 10 \text{ V}$; Figure 24
ton (EN)	50			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
				ns max	$V_S = 8 V$; Figure 24
t _{OFF} (EN)	15			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
				ns max	$V_S = 8 V$; Figure 24
Break-before-Make Time Delay, t _D	15			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
			1	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; Figure 25
Charge Injection	5			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; Figure 26$
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 28
–3 dB Bandwidth	700			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 29
C _s (Off)	2			pF typ	
C _D (Off)	2			pF typ	
C_D , C_S (On)	4			pF typ	

 $^{^1}$ Y Version temperature range is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ADG1204

Preliminary Technical Data

Parameter	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
POWER REQUIREMENTS					V _{DD} = 13.2 V
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			5.0	μA max	
I _{DD}	150			μA typ	Digital inputs = 5 V
			300	μA max	

 $^{^1}$ Y Version temperature range is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4

i able 4.	
Parameter	Rating
V _{DD} to V _{SS}	38 V
V_{DD} to GND	−0.3 V to +25 V
V_{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Digital Inputs	$GND - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (B Version)	−40°C to +85°C
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
14-Lead TSSOP, θ_{JA} Thermal Impedance	150.4°C/W
12-Lead LFCSP, θ _{JA} Thermal Impedance	30.4°C/W
Lead Temperature, Soldering	
Vapor Phase (60 s)	215°C
Infrared (15 s)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

TRUTH TABLE

Table 5.

EN	A1	A0	S 1	S2	S3	S4
0	Χ	Χ	Off	Off	Off	Off
1	0	0	On	Off	Off	Off
1	0	1	Off	On	Off	Off
1	1	0	Off	Off	On	Off
1	1	1	Off	Off	Off	On

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

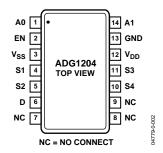


Figure 2. TSSOP Pin Configuration

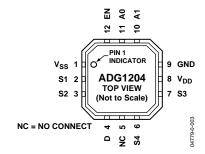


Figure 3. LFCSP Pin Configuration

Table 6. Pin Function Descriptions

Pin	No.		
TSSOP	LFCSP	Mnemonic	Function
1	11	A0	Logic Control Input.
2	12	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	V _{SS}	Most Negative Power Supply Potential.
4	2	S1	Source Terminal. Can be an input or an output.
5	3	S2	Source Terminal. Can be an input or an output.
6	4	D	Drain Terminal. Can be an input or an output.
7–9	5	NC	No Connection.
10	6	S4	Source Terminal. Can be an input or an output.
11	7	S3	Source Terminal. Can be an input or an output.
12	8	V_{DD}	Most Positive Power Supply Potential.
13	9	GND	Ground (0 V) Reference.
14	10	A1	Logic Control Input.

TERMINOLOGY

I_{DD}

The positive supply current.

Iss

The negative supply current.

$V_D(V_s)$

The analog voltage on Terminals D and S.

RON

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

$I_D, I_S(On)$

The channel leakage current with the switch on.

V_{INL}

The maximum input voltage for Logic 0.

V_{INH}

The minimum input voltage for Logic 1.

$I_{\rm INL}\left(I_{\rm INH}\right)$

The input current of the digital input.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

C_D (Off)

The off switch drain capacitance, which is measured with reference to ground.

C_D , C_S (On)

The on switch capacitance, which is measured with reference to ground.

C_{IN}

The digital input capacitance.

ton (EN)

The delay between applying the digital control input and the output switching on. See Figure 24, Test Circuit 4.

t_{OFF} (EN)

The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

tTRANS

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

TYPICAL PERFORMANCE CHARACTERISTICS

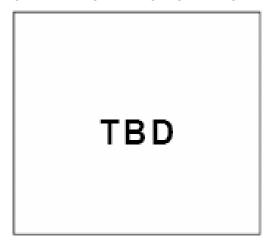


Figure 4. On Resistance as a Function of V_D (V_S) for Single Supply

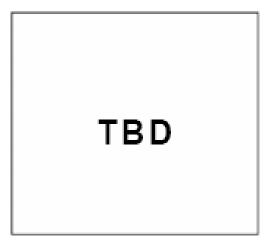


Figure 5. On Resistance as a Function of V_D (V_S) for Dual Supply

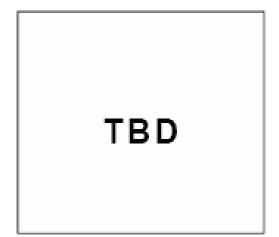


Figure 6. On Resistance as a Function of $V_{\mathbb{D}}$ (V_{S}) for Different Temperatures, Single Supply

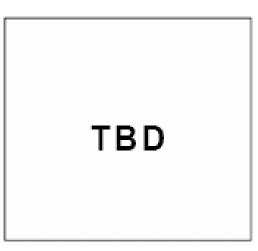


Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

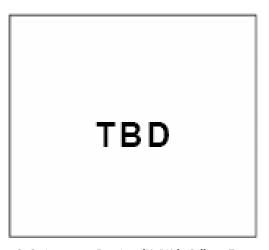


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

Figure 9. Leakage Currents as a Function of V_D (V_S)

TBD

Figure 10. Leakage Currents as a Function of V_D (V_S)

Figure 11. Leakage Currents as a Function of V_D (V_S)

Figure 12. Leakage Currents as a Function of Temperature

Figure 13. Leakage Currents as a Function of Temperature

Figure 14. Supply Currents vs. Input Switching Frequency

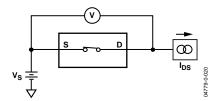
Figure 15. Charge Injection vs. Source Voltage

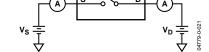
TBD

Figure 16. t_{ON}/t_{OFF} Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency


TBD


Figure 19. On Response vs. Frequency

TBD

Figure 20. THD + N vs. Frequency

TEST CIRCUITS

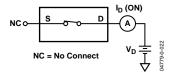


Figure 21. Test Circuit 1—On Resistance

Figure 22. Test Circuit 2—Off Leakage

Figure 23. Test Circuit 3—On Leakage

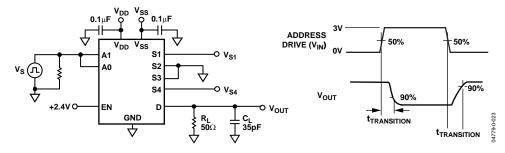


Figure 24. Test Circuit 4—Address to Output Switching Times

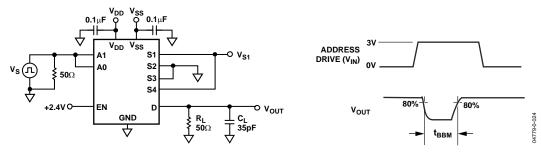


Figure 25. Test Circuit 5—Break-before-Make Time

Figure 26. Test Circuit 6—Enable to Output Switching Delay

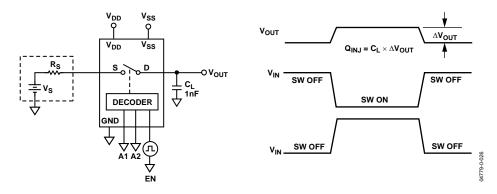


Figure 27. Test Circuit 7— Charge Injection

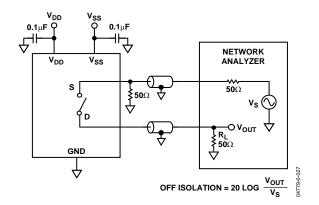


Figure 28. Test Circuit 8—Off Isolation

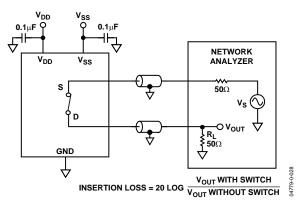


Figure 29. Test Circuit 9—Bandwidth

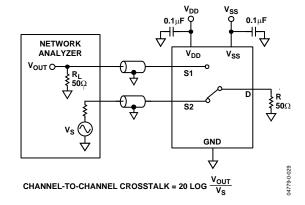
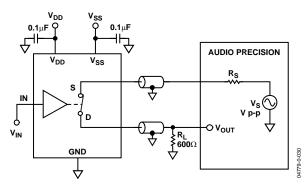
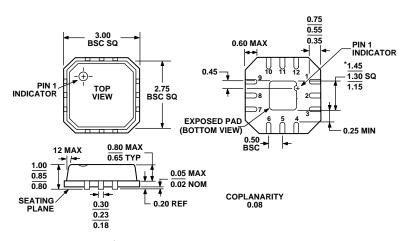


Figure 30. Test Circuit 10—Channel-to-Channel Crosstalk




Figure 31. Test Circuit 11—THD + Noise

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153AB-1

Figure 32. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimension shown in millimeters

*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-1 EXCEPT FOR EXPOSED PAD DIMENSION.

Figure 33. 12-Lead Lead Frame Chip Scale Package [VQ_LFCSP]
3 mm × 3 mm Body, Very Thin Quad
(CP-12-1)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1204YRU	−40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-14
ADG1204YCP	−40°C to +125°C	Lead Frame Chip Scale Package (LFCSP)	CP-12-1

٨	n	n 1	1	n	Λ
A	U	ta I	2	U	4

Preliminary Technical Data

NOTES