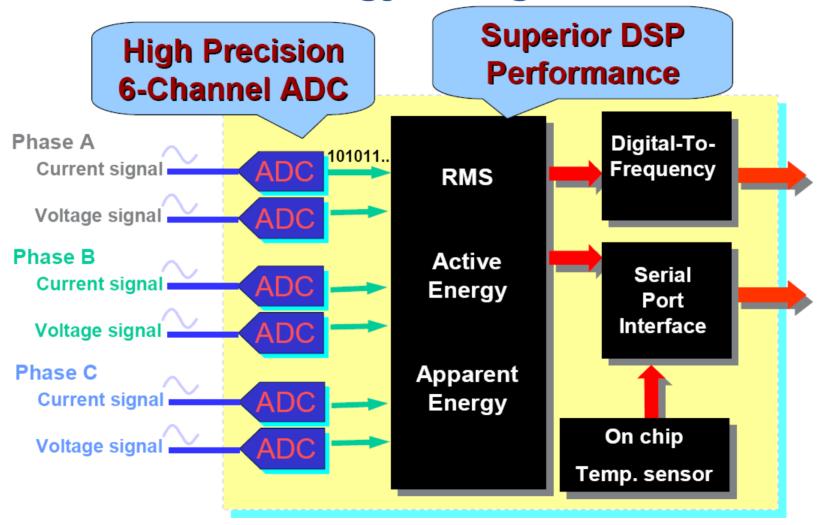

Multi-functional Polyphase Energy Metering IC with Serial Port Interface

ADE7754

Energy Measurement Group Precision Converters (PRC) Division

ADE7754: A programmable solution for Polyphase Energy measurementTransducers


Application

Overview

Features

ADE7754: Technology at a glance

Application

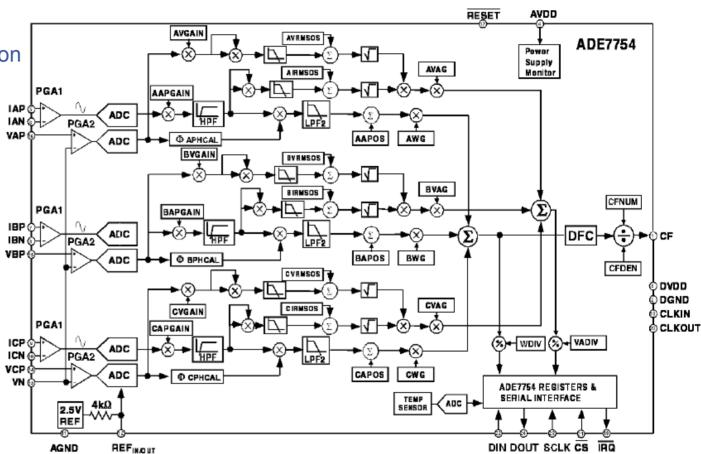
Overview

Features

ADE7754: Overview of Functionalities

- Surpasses IEC1036 requirement. Less than 0.1% error over wide dynamic range
- Supplies the following information:
 - Active energy
 - Sign of Reactive energy
 - Apparent energy
 - Simultaneous RMS calculation on the six analog inputs
 - Peak Voltage and Current detection
 - SAG Line Voltage detection
 - Line Period
 - Temperature
- Digital calibration

Amplifiers Power Hanagement Processor

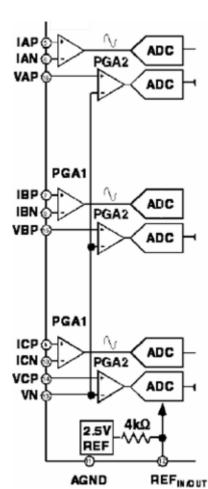

ADE7754: Characteristics

- 24-pin SOIC package
- 5V Power Supply
- [-40 C; +85 C] Temperature Operating range
- 500mV maximum analog input range with PGA of 1, 2 or 4 on all channels
- External Clock frequency = 10MHz

ADE7754: Block Diagram

- Analog Front end
- Current sensor connection
- Digital solution
- Active Energy
- Calibration Mode
- RMS measurements
- Apparent Energy
- Reactive Energy
- Power Line Quality
- Temperature sensor

Application


Overview

Features

ADE7754: A validated Analog front end

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

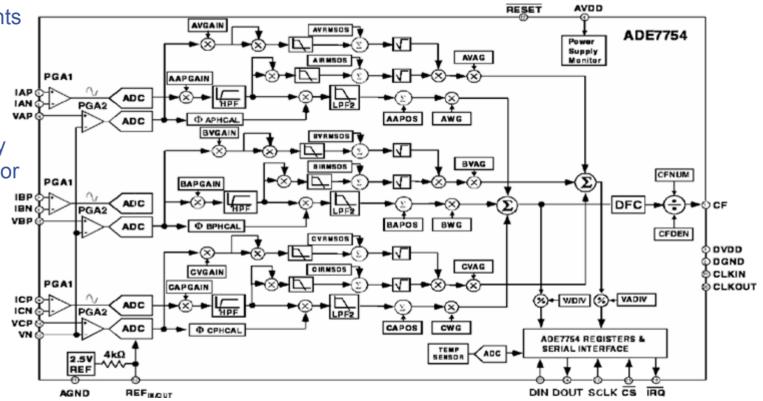
- 16-bit accuracy from 2nd order $\Sigma\Delta$ ADCs
- Linearity error < 0.1% over wide dynamic range (int. reference)
- Measurement Bandwidth 14 kHz

Application

Overview

Features

ADE7754: Easy use of Current sensors


- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Input Gain up to 4
- Phase compensation for CT connection
 - ~ +/-0.5° max in 0.02° increment @ 50Hz

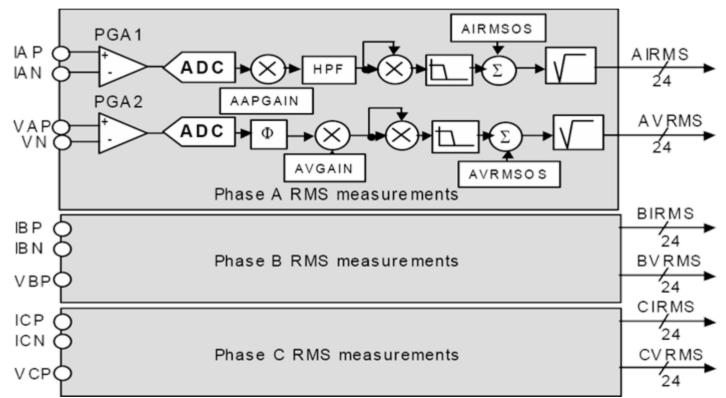
ADE7754: A Digital solution

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Configuration done by writing ADE7754 registers at power up
- Only one point calibration to reach 0.5% accuracy for active energy
- CF output to drive LED

Application

Overview

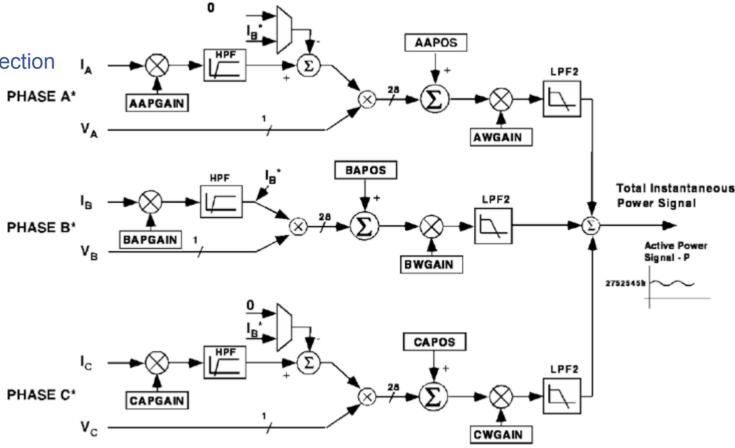

Features

ADE7754: Voltage and Current RMS, and waveform samples

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Simultaneous Voltage and Current RMS values in 24-bit registers
- Offsets compensate RMS noise integration and improve accuracy
- Real-time voltage and current waveforms can be supplied in four different sampling speeds (up to 28ksps)

Application


Overview

Features

ADE7754: Active Energy - Signal Path

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

Application

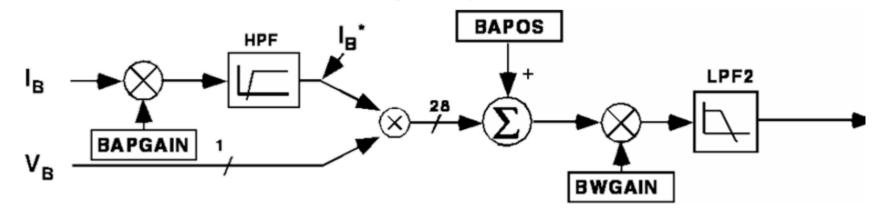
Overview

Features

ADE7754: Active Energy - Description

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Accumulation of the Total Active Energy in a 24-bit register
 Equivalent to 88s of Energy at Full scale
- HPF filter eliminates any DC offset
- Gain for calibration and multi-rate billing
- Different Modes to accumulate active energy in different meter configuration


Mode 1. 3-phase 4-wire Wye service

Mode 2. 3-phase 4-wire Wye service 2 Voltage sensors

Mode 3. 3-phase 3-wire Delta service

Mode 4. 3-phase 4-wire Delta service

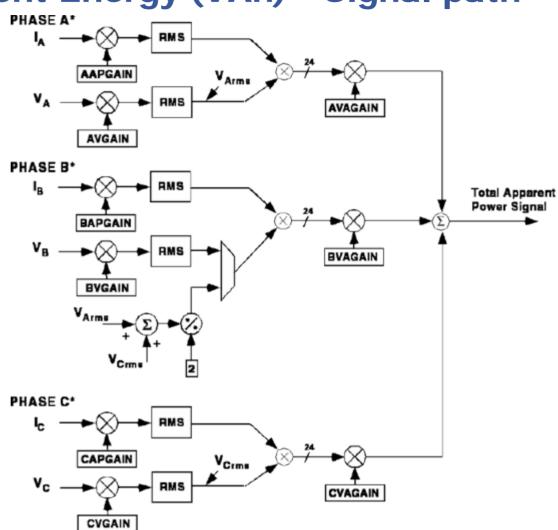
- See configurability

Application

Overview

Features

ADE7754: Active Energy - Description


- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- No-load threshold per phase for anticreep 0.005% of Full scale
- Sum of absolute energies for antitampering Option selectable
- Instantaneous Reverse Active Power per phase

ADE7754: Apparent Energy (VAh) - Signal path

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

Application

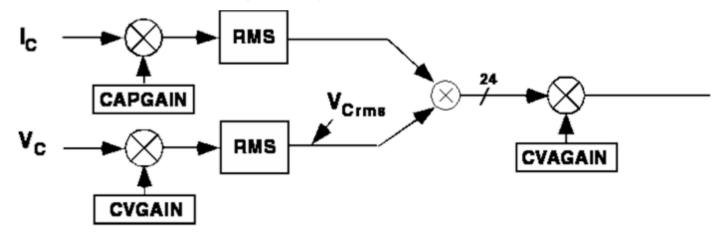
Overview

Features

ADE7754: Apparent Energy (VAh) - Description

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Apparent power is calculated using: VA = Vrms x Irms
- Accumulation of the Apparent Energy in a 24-bit register
 Equivalent to 131s of Energy at Full scale
- Gain for calibration and multi-rate billing
- Different Modes to accumulate apparent energy in different meter configuration


Mode 1. 3-phase 4-wire Wye service

Mode 2. 3-phase 4-wire Wye service 2 Voltage sensors

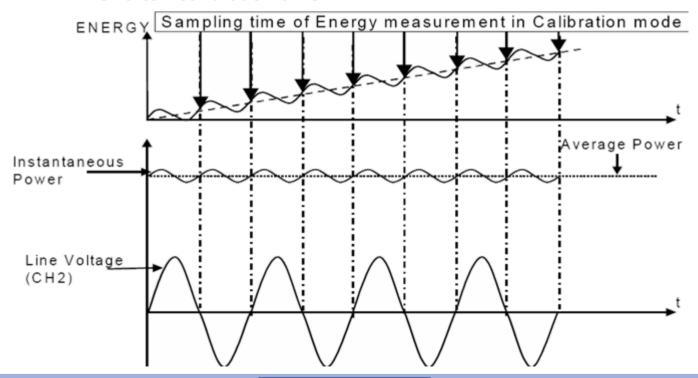
Mode 3. 3-phase 3-wire Delta service

Mode 4. 3-phase 4-wire Delta service

- See configurability

Application

Overview


Features

ADE7754: Active and Apparent Energy

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Principle: Accumulation of the Active and Apparent Energy over N half line cycles (<16384) => Drive IRQ when finished
- · Benefits:
 - Cancels the ripple frequency effect (2 x line freq) in Energy Measurement
 - Shorten calibration time

Application

Overview

Features

ADE7754: Reactive Energy (VAR) - 1

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Sign of Reactive Energy can be directly read from the LVARENERGY[23:0]
- The sign of LVARENERGY indicates inductive or capacitive loading
- LVARENERGY is updated synchronous to a programmable number of voltage half-cycles to improve accuracy

Application

Overview

Features

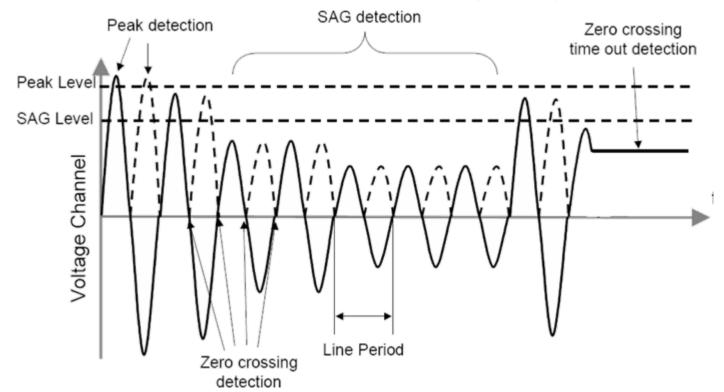
ADE7754: Reactive Energy (VAR)-2

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

Proposed Method to measure Reactive
 Energy and Power Factor including harmonics:

Varh = $\sqrt{(VAh2-Wh2)}$ = $\sqrt{(LVAENERGY2-LAENERGY2)}$ PF = sign(LVARENERGY) * LAENERGY/ LVAENERGY

Using synchronous VAh and Wh data


The nature of the load (inductive or capacitive) is determined by the sign of LVARENERGY register

ADE7754: Power Line Quality Supervisory

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

- Period Measurement of any Voltage <u>channel</u>
- Configurable SAG and Peak detections of the Voltage channels
- Zero crossing of the Voltage <u>channels</u>
- General supervisory of each lines' Voltage quality

Application

Overview

Features

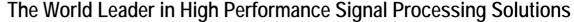
ADE7754: Temperature Measurement

- Analog Front end
- Current sensor connection
- Digital solution
- RMS measurements
- Active Energy
- Apparent Energy
- Calibration Mode
- Reactive Energy
- Power Line Quality
- Temperature sensor

8-bit register: 1LSB/°C

- Temperature compensation of external components
- Temperature supervisory of the system

3-phase Product Comparison


•			
	Competitor	ADE7752	ADE7754
Meter architecture	Single chip meter + Analog calibration	Single chip meter + Analog calibration	Micro-processor based meter + Digital calibration
AC Linearity	1%	0.5%	0.5%
Energy Measurements	Watt Hour	Watt Hour	Watt + VA + RMS + Sign of VAR
Other Measurements	-	-	Line Period + Temperature sensor + SAG and PEAK detections
Power Service compatibility	3-Ф 4-wire or 3-Ф 3- wire	3-Ф 4-wire or 3-Ф 3-wire	Any
Interface	Pulsed output for calibration + 1 pulsed output for Impulse counter	1 Pulsed output for calibration (CF) + 2 pulsed outputs (F1/F2) for Impulse or Stepper motor counter	1 Pulsed output for calibration of Watt + SPI interface for DIGITAL CALIBRATION
Output rates	1 rate for CF + 3 rates for F1	2 different rates for CF + 5 rates for F1/F2	Any rate possible for CF
Reverse power	Detection + Display per phase	Detection per phase + General Display	Any detection and display possible
No Load threshold	No spec.	0.0007% of max current	Can easily be done by the micro-processor

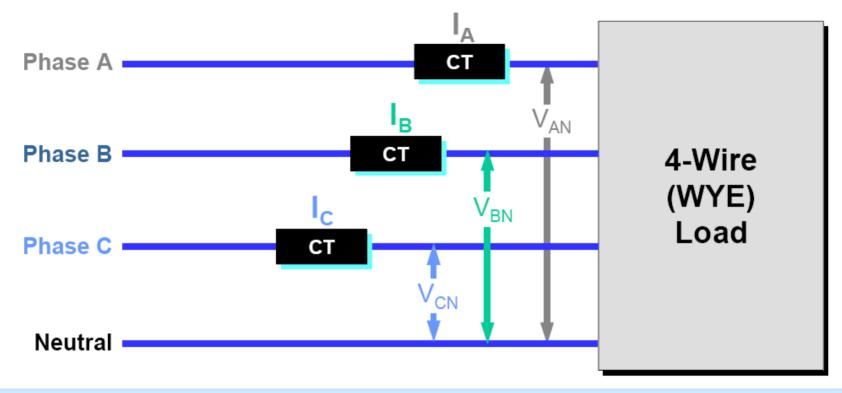
Application

Overview

Features

APPENDIX: Meter Configurations

Mode 1: 3-phase 4-Wire Wye service


Mode 2: 3-phase 4-Wire Wye service 2 voltage sensors

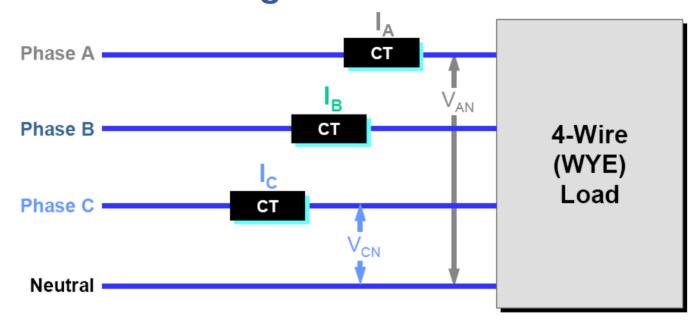
Mode 3: 3-phase 3-Wire Delta service

Mode 4: 3-phase 4-Wire Delta service

Mode 1: 3-phase 4-Wire Wye service

Total Active Power =
$$V_{AN} * I_{A} + V_{BN} * I_{B} + V_{CN} * I_{C}$$

Total Apparent Power = $V_{AN_{rms}} * I_{A_{rms}} + V_{BN_{rms}} * I_{B_{rms}} + V_{CN_{rms}} * I_{C_{rms}}$


Application

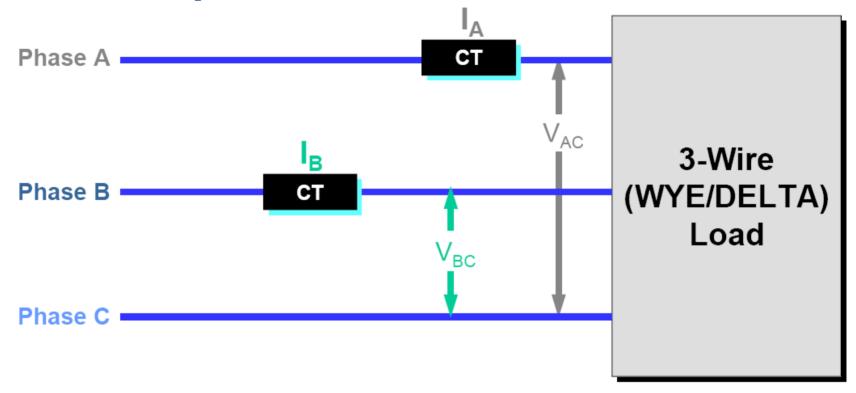
Overview

Features

Mode 2: 3-phase 4-Wire Wye service 2 voltage sensors

Total Active Power =
$$V_{AN} * (I_A - I_B) + V_{CN} * (I_C - I_B)$$

Total Apparent Power = $V_{AN_{rms}} * I_{A_{rms}}$
+ $(V_{AN_{rms}} + V_{CN_{rms}}) / 2 * I_{B_{rms}} + V_{CN_{rms}} * I_{C_{rms}}$


Application

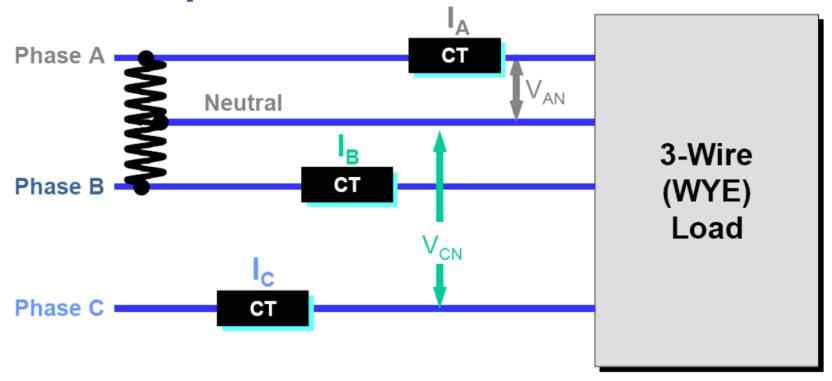
Overview

Features

Mode 3: 3-phase 3-Wire Delta service

Total Power =
$$V_{AC} * I_A + V_{BC} * I_B$$

Total Apparent Power = $V_{AC_{rms}} * I_{A_{rms}} + V_{BC_{rms}} * I_{B_{rms}}$


Application

Overview

Features

Mode 4: 3-phase 4-Wire Delta service

Total Power =
$$V_{AN} * I_{A} - V_{AN} * I_{B} + V_{CN} * I_{C}$$

Apparent Power = $V_{AN_{rms}} * I_{A_{rms}} + V_{BN_{rms}} * I_{B_{rms}} + V_{CN_{rms}} * I_{C_{rms}}$

Application

Overview

Features

