

Q3500 SERIES ECL/TTL LOGIC ARRAYS

FEATURES

RANGE OF ARRAY SIZES

1300, 2400, and 3500 equivalent gate versions to support a wide range of circuit requirements.

UP TO 120 I/O CAPABILITY

Each of the arrays in the series has a high I/O to gate ratio. The Q1300S, Q2400S, and Q3500S support 76, 98, and 120 I/O respectively.

VERY HIGH SPEED

.275 to .700nS typical gate delay for complex circuits depending upon the macro performance level chosen.

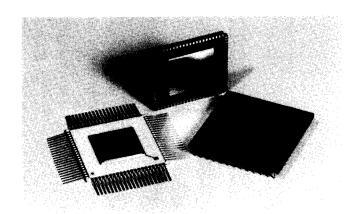
ECL & TTL COMPATIBLE

The Q3500 Series logic arrays are compatible with ECL, TTL or mixed ECL/TTL systems, in both single or dual power supply configurations. This flexible I/O structure eliminates the need for external ECL/TTL and TTL/ECL translation logic in high performance applications.

SPEED/POWER PROGRAMMABILITY

The Q3500 Series offers the advantage of a flexible performance macro library. This feature allows the designer to customize the device capabilities to obtain the highest possible circuit throughput with the lowest possible overall power consumption.

FULL MILITARY AVAILABILITY


These logic arrays are available for applications requiring MIL-STD-883C Class B screening including burn-in, and will operate over the military temperature range of -55° ambient to $+125^{\circ}$ C case.

RADIATION HARD TECHNOLOGY

These devices feature an oxide-isolated bipolar process which is inherently tolerant to radiation.

Typical gate delay* Maximum ECL input frequency Maximum TTL input frequency Maximum ECL output frequency Maximum TTL output frequency ECL output drive TTL output drive (IoL) Average cell utilization	.275 to .700ns 300MHZ 160 MHZ 200 MHZ 90 MHZ 50Ω 20MA 95%

TABLE 1

DESCRIPTION

The AMCC Q3500 Series consists of the Q1300S, Q2400S, and Q3500S logic arrays providing equivalent densities of 1300, 2400, and 3500 gates, respectively. The series is optimized to provide a system approach to high performance semicustom applications. High speed ECL logic and proven reliability are combined with an advanced, interactive CAD system to provide a quick and cost-effective solution to discrete I.C. replacement.

Each device shares a common I/O logic and MSI macro library. The Q3500 Series arrays utilize advanced 3-level series gating techniques providing both density and speed improvements over gate-oriented and other macro-oriented designs.

An extensive library of predefined single and multiple cell logic macros is provided for the Q3500 Series. The library contains basic logic functions such as gates and flip-flops, in low power, standard and high speed versions. The extended MSI library provides commonly used logic functions, such as four-bit counters and shift registers, which are organized to provide improved speed and circuit density over logically equivalent SSI macros. The availability of extended macro libraries, combined with a flexible I/O structure, provides the circuit designer with a very versatile solution to high performance circuit design.

Equivalent gate complexity Internal logic cells I/O cells % of high speed macros supported (Typical) Typical power dissipation per internal cell in mW Typical total circuit dissipation in watts @ 95% utilization*	1300	2400	3500
	84	153	242
	76	98	120
	100%	30-40%	30 to 40%
	4 to 15	4 to 15	4 to 15
	1.1W to 1.6 W	2.1W to 2.9W	3.4W to 4.5W

TABLE 2

APPLIED MICRO CIRCUITS CORPORATION • 5502 OBERLIN DRIVE, SAN DIEGO, CA 92121

(619) 450-9333

^{*}Based upon the use of complex macros and the availability of macro speed/power options.

Q3500 SERIES DIE LAYOUTS

Q3500S — Die Size 362 Mils x 367 Mils

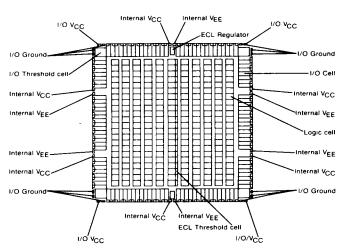


FIGURE 1

ARRAY ARCHITECTURE

The Q3500 Series logic array structure is comprised of two basic configurable cell types, plus array overhead circuitry such as bias generators, voltage references and voltage regulators. The macro libraries provide the available and I/O logic functions which can be assigned to the user-configurable internal logic cells and I/O cells. The internal overhead circuitry is predefined by AMCC. Multiple power and ground connections are provided on the perimeter of the devices to support the various I/O modes minimizing noise feedback due to output switching. These power connections are isolated from the internal power busses.

RESCURCE SUMMARY							
	Q1300S	Q2400S	Q3500S				
Internal logic cells	84	153	242				
I/O cells	76	98	120				

TABLE 3

As shown in Table 3, each array in the Q3500 Series has a different quantity of configurable cell resources available. However these arrays all contain identical cell types and are supported by a single macro library. The logic cells make up the array core.

The I/O cells are located around the perimeter of the array. They are used to implement ECL 10K, ECL 100K or TTL I/O. Additional logic can be incorporated into the I/O cell depending upon the macro chosen.

Q2400S — Die Size 314 Mils x 308 Mils

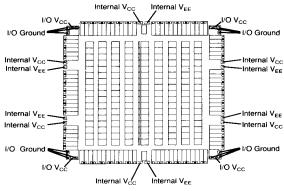
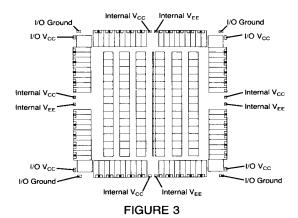



FIGURE 2

Q1300S — Die Size 272 Mils x 257 Mils

I/O RESOURCES

				<u>ectros</u>
TTL SYSTEMS	I/O Cells V _{CC} (+5.0V _{DC} nom.) Ground	76 8 8	98 10 18	120 10 18
ECL SYSTEMS	I/O Cells V _{EE} (-4.5V _{DC} to -5.2V _{DC}) Ground	76 8 8	98 6 22	120 6 22
MIXED ECL/TTL SYSTEMS	I/O Cells (TTL or ECL) V _{CC} (+5.0V _{DC} nom.) V _{EE} (-4.5V _{DC} to -5.2V _{DC}) TTL Ground ECL Ground	76 4 4 4 4	98 4 6 8 10	120 4 6 8 10
+5.0V ONLY ECL ECL/TTL SYSTEMS	I/O Cells V _{DC} (+5.0V _{DC} nom.) Ground	76 8 8	98 14 14	120 14 14

TABLE 4

Q3500S SERIES INTERNAL LOGIC CELLS

INTERNAL LOGIC CELL CAPABILITIES

The Q3500 Series arrays have 84, 153, and 242 internal logic cells respectively. These cells have identical structure, and are positioned in uniform columns across the arrays. Containing 80 uncommitted transistors and resistors each, these cells are individually configurable to provide a variety of logic functions through the use of the Q3500 Series internal logic macro library. As shown in Figure 4, the macro library provides for SSI, MSI, and some basic LSI functions. An MSI library is available for the more frequently used complex logic functions (adders, counters, shift registers, parity generators, etc.). These MSI logic macros uniquely interconnect a larger number of transistor and resistor components than may be contained in a single cell. This higher level of integration provides the advantages of higher speed, lower power, and higher circuit density over a logically equivalent macro implementation.

TYPICAL MACROS

Illustrated in Figures 5 and 6 are typical examples of macros found in the library. Each of the standard macros occupies up to one internal logic cell location and is organized much like circuits in a TTL or ECL logic catalog. Additionally, the MSI logic macros are available for frequently required high level logic functions.

HIGH SPEED/LOW POWER MACROS

The Q3500 Series macro library offers maximum flexibility in regard to circuit performance and power consumption. A full complement of macros is offered with low power, standard and high speed options. The high speed options require somewhat more power, but provide enhanced performance. The Q3500 Series macro library also contains low power versions of the macros which can be used to reduce power consumption in non-critical paths.

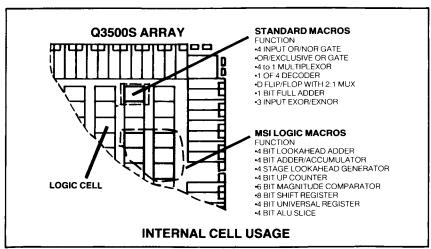
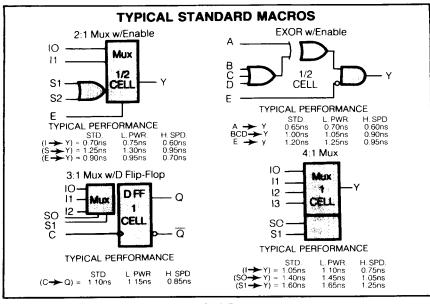



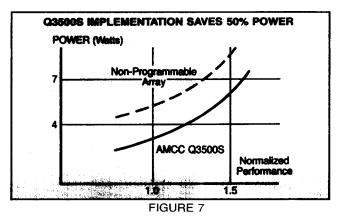
FIGURE 4

TYPICAL MSI MACRO 4 BIT UP COUNTER OIN ĎЗ O3N CLK TC **FUNCTION** CE CLK MODE PF 0 Ŧ LOAD 0 0 ₹ COUNT £ HOLD n 0 0 **CLEAR** Х Х Х TYPICAL PERFORMANCE $\begin{array}{c} \text{CLK} \hspace{0.2cm} \blacktriangleright \hspace{0.2cm} \text{T}_{\text{C}}, \text{T}_{\text{CN}} = 1.10 \, \text{ns} \\ \text{CLK} \hspace{0.2cm} \blacktriangleright \hspace{0.2cm} \text{Q} = 1.55 \, \text{ns} \\ \text{AR} \hspace{0.2cm} \blacktriangleright \hspace{0.2cm} \text{Q} = 2.65 \, \text{ns} \end{array}$

FIGURE 6

FIGURE 5

MACRO CAPABILITIES


Table 5 illustrates the performance and power differences of typical Q3500 Series macros. As shown, the overall macro performance versus power consumption can significantly vary, allowing the circuit designer maximum flexibility for performance enhancement and/or power savings.

Macro Options			
Internal	HS	Std.	LP
Equivalent Gate Delay (ps)	350	500	700
Equivalent Gate Power (mW)	1.7	1.3	1
I/O Pair Delay	HS	Std.	LP
TTL (ns)	5	6	9
ECL (ns)		1.3	-

TABLE 5

HIGH PERFORMANCE, LOW POWER

Figure 7 illustrates the power savings of a complex logic circuit which has been designed using a mix of high speed and low power macros. Only a portion of the circuit requires high performance macros, with the remainder designed with standard or low power macros.

FLEXIBLE I/O STRUCTURE

The Q3500 Series I/O cells are configurable to provide a full range of interface options.

NPUT	BI-DIRECTIONAL	QUTPUT
TTL ECL 10K ECL 100K TTL 3-state enable ECL output enable	TTL transceiver ECL 10K transceiver ECL 100K transceiver	TTL totem pole TTL 3-state TTL open collector ECL 10K ECL 100K

The Q3500 Series arrays also offer the following special options to support unique I/O requirements: high speed and low power TTL I/O (see Table 5), differential ECL I/O, +5V power only ECL and TTL.

The mixed ECL/TTL capabilities allow the use of both technologies in a single design without the use of external translators.

The +5V only ECL allows partitioning of a high speed TTL design into multiple AMCC devices using a single +5V supply, while providing high speed ECL I/O between arrays and full system TTL compatibility.

DESIGN INTERFACE

The AMCC circuit development interface has been structured to provide maximum flexibility with respect to customer involvement. AMCC provides the MacroMatrix™ design kit with fully supported macro libraries on several popular engineering workstations for on-site array development. The following MacroMatrix CAD software tools are available.

WORKSTATION SUPPORT

- Schematic capture
- Logic simulation
- Engineering rule checks
- Post route timing verification

In addition, AMCC has developed a comprehensive set of CAD tools to assure "correct by construction" quick turnaround logic array designs.

AMCC CAD TOOLS

- Auto placement and routing
- Interactive preplace, preroute
- Test vector generation
- Test fault coverage grading
- Design rule & interconnect verification
- Post-route timing verification

These CAD tools are used by AMCC to complete a circuit design from an engineering workstation-generated schematic and simulation output.

AMCC-PROVIDED SERVICES

In addition to providing the required CAD capability to allow customer design of arrays, AMCC provides a number of services to support customer design including: logic conversion and simulation, custom macro development, high-level engineering support, comprehensive training courses.

PACKAGING

The Q3500 Series devices are available in any of the following package configurations. Requirements for special packaging will be evaluated on an individual basis.

	1 4 7 1 27 4 4		d iar	
PACKAGE PIN COUNT	PACKAGE TYPE	Q1300S 92 PADS	Q2400S 126 PADS	Q3500S 148 PADS
24	DIP	•		
28	DIP	•		
40	DIP LCC	•		
44	LCC	•		
48	DIP	•		
64	LDCC LDFP	•		
68	PGA LCC	•	•	•
84	PGA LDFP	•	•	
100	PGA* LDCC	•	•	•
148	PGA*		•	•

LDCC — Leaded Chip Carrier LCC — Leadless Chip Carrier DIP — Dual In Line PGA—Pin Grid Array LDFP—Leaded Flat Pack *Cavity Down

TABLE 6

Q3500 SERIES ECL MODE OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN	NOM	MAX	UNITS
Supply Voltage $(V_{EE}) V_{CC} = 0$				
ECL 10K Mode	-4.7	-5.2	-5.7	V
ECL 100K Mode	-4.2	-4.5	-5.7	V
Input Signal Rise/Fall Time			1.0	ns
Junction Temperature				
Military			150	°C
Commercial			130	°C

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $V_{EE}(V_{CC} = 0)$	-8.0 V DC
Input Voltage (V _{CC} = 0)	GND to V _{EE}
Output Source Current Continuous	- 50mA DC
Operating Temperature	-55°C (Ambient) to +125°C (Case)
Operating Junction Temperature T _J	+ 150°C
Storage Temperature	-65°C to +150°C

ECL 10K INPUT/OUTPUT DC CHARACTERISTICS $V_{EE} = -5.2V^{1}$

		Tambient			T _{case}	
	−55°C	0°C	25°C	75°C	125°C	UNIT
V _{OH max}	V _{CC} -850	V _{CC} -770	V _{CC} -730	V _{CC} -650	V _{CC} -575	mV
V _{IH max}	V _{CC} -800	V _{CC} -720	V _{CC} -680	V _{CC} 600	V _{CC} -525	mV
V _{OH min}	V _{CC} -1080	V _{CC} -1000	V _{CC} -980	V _{CC} -920	V _{CC} -850	mV
V _{IH min}	V _{CC} -1255	V _{CC} -1145	V _{CC} -1105	V _{CC} -1045	V _{CC} -1000	mV
V _{IL max}	V _{CC} -1510	V _{CC} -1490	V _{CC} -1475	V _{CC} -1450	V _{CC} -1400	mV
V _{OL max}	V _{CC} -1655	V _{CC} -1625	V _{CC} -1620	V _{CC} -1585	V _{CC} -1545	mV _
V _{OLmin}	V _{CC} -1980	mV				
V _{fL min}	V _{CC} -2000	mV				
I _{in} H max ²	30	30	30	30	30	μΑ
I _{in} L min ²	.5	.5	.5	.5	.5	μА

ECL 100K INPUT/OUTPUT DC CHARACTERISTICS V_{EE} = -4.5V³

SYMBOL	PARAMETER	TEST DC CONDITIONS	V _{EE} = $-4.2V$ to $-4.8V$ V _{EE} = $-4.5V$ to $-4.8V$			MIL-	UNIT		
STWIDOL	PANAMETER					-4.8V			
			MIN	TYP	MAX	MIN	TYP	MAX	
V _{OH}	Output Voltage HIGH	Loading is 50 Ohms to -2V	V _{CC} -1035		V _{CC} -850	V _{CC} -1080		V _{CC} -835	mV
V _{OL}	Output Voltage LOW	Loading is 50 Ohms to -2V	V _{CC} -1830		V _{CC} -1605	V _{CC} -1880		V _{CC} -1595	mV
V _{IHmin}	Input Voltage HIGH	Maximum input voltage HIGH	V _{CC} -1145		V _{CC} -800	V _{CC} -1145		V _{CC} -800	mV
V _{IL max}	Input Voltage LOW	Maximum input voltage LOW	V _{CC} -1950		V _{CC} -1475	V _{CC} -1950		V _{CC} -1475	mV
I _{INL} ²	Input Current	$V_{IN} = V_{ILmin}$	0.5			0.5			μΑ

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER					-55°/+12	MAX.	UNIT
t _{IPD}	Input Propagation Delay Inclu	ding Buffer		0.5		0.5		ns_
t _{OPD}	Output Propagation Delay		5pF,50Ω to -2V	0.8		0.8		ns
t _{FPD}	Internal Equivalent	Standard		 0.5		0.5		ns
470	Gate Delay⁴	Low Power		0.7		0.7		ns
		High Speed		0.35		0.35		ns
F _{MAXT}	Max. Internal Flip/Flop	Standard		250		250		MHz
· MAX I	Toggle Frequency	Low Power		 200		200		MHz
		High Speed		400		400		MHz
F _{IN} ⁵	Maximum Input Frequency	Standard		175		175		MHz
. 11/4	At Package Pin	High Speed		300		300		MHz

Data measured with $V_{EE} = -5.2 \pm .1V$ (or $V_{CC} = 5.0 \pm .1V$ for +5V ref. ECL 10K) assuming a $+50^{\circ}$ C rise between ambient (T_a) and junction temperature (T_J) for -55° C, 0° C, $+25^{\circ}$ C, and $+70^{\circ}$ C, and a $+25^{\circ}$ C rise for $+125^{\circ}$ C. Specifications will vary based upon T_J. See AMCC Packaging and Design Guides concerning V_{OH} and V_{OL} adjustments associated with T_J for specific packages and operating conditions.

Per tan-in.
 Data measured at thermal equilibrium, with maximum T_J not to exceed recommended limits. See AMCC Packaging Guide to compute T_J for specific package and operating conditions. For +5V ref. ECL 100K, V_{OH} and V_{OL} specifications will vary based upon power supply. See AMCC Design Guide for adjustment factors.
 Logic cell delays are for each gating level of a more complex logic function (i.e. D flip/flop, 4 to 1 mux, etc.)
 Package selection will determine the maximum input frequency. Consult AMCC.

Q3500 SERIES TTL MODE OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN	NOM	MAX	UNIT
Supply Voltage (V _{CC}) Military Commercial	4.5 4.75	5.0 5.0	5.5 5.25	V V
Output Current Low (I _{OL}) Military Commercial			20 20	mA mA
Operating Temperature Military Commercial	- 55 (ambient) 0 (ambient)		+ 125 (case) 70 (ambient)	°C °C
Junction Temperature T _{.1}				
Military			150	°C
Commercial			130	°C

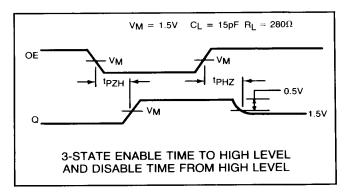
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}), V _{EE} = 0	7.0V
Input Voltage	5.5V
Operating Temperature	- 55°C (Ambient) to + 125°C(Case)
Junction Temperature (Operating)	150°C
Storage Temperature	− 65°C to + 150°C

INPUT/OUTPUT DC CHARACTERISTICS

SYMBOL	PARAMETER	TEST DC CONDITIONS	COM	COMM -0° / +70°C			MIL-55° / +125°C		
STWIDOL		TEST DO CONDITIONS	Min	Typ ¹	Max	Min	Typ ¹	Max	UNIT
V_{1H^2}	Input HIGH voltage	Guaranteed input HIGH voltage for all inputs	2.0			2.0			٧
V_{IL^2}	Input LOW voltage	Guaranteed input LOW voltage for all inputs			0.8			0.8	٧
VIK	Input clamp diode voltage	V_{CC} – Min, $I_{IN} = -18$ mA		8	-1.2		8	-1.2	V
V _{OH}	Output HIGH voltage	$V_{CC} - Min, I_{OH} = -1mA$	2.7	3.4		2.4	3.4		V
V_{OL}	Output LOW voltage	$V_{CC} = Min \mid I_{OL} = 4mA$			0.4			0.4	V
		$I_{OL} = 20 \text{mA}$			0.5			0.5	V
I _{OZH}	Output "off" current HIGH (3-state)	$V_{CC} = Max, V_{OUT} = 2.4V$	-50		50	-50		50	μΑ
l _{ozL}	Output "off" current LOW (3-state)	$V_{CC} = Max, V_{OUT} = 0.4V$	-50		50	-50		50	μΑ
I _{IH}	Input HIGH current	$V_{CC} = Max, V_{IN} = 2.7V$			50			50	μА
l _l	Input HIGH current at Max.	$V_{CC} = Max, V_{IN} = 5.5V$			1.0			1.0	mA
I _{IL}	Input LOW current	$V_{CC} = Max, V_{IN} = 0.5V$			-0.4			-0.4	mA
los	Output short circuit current	$V_{CC} = Max, V_{OUT} = 0V$	-25		-100	-25		-100	mA

NOTES


Typical limits are at 25°C, $V_{CC} = 5.0V$ These input levels provide zero noise immunity and should only be tested in a static, noise-free environment

²b Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMCC recommends using $V_{IL} \le 0.4V$ and $V_{IH} \ge 2.4V$ for AC tests

Q3500 SERIES TTL MODE OPERATING CONDITIONS

AC ELECTRICAL CHARACTERISTICS

	PARAMETER		TEST CONDITIONS	COMM 0°/+75°			MIL-55°/+125°			LIAILT
SYMBOL				MIN	TYP	NAX		TYP	MAX	UNIT
t _{IPD}	Input Propagation Delay	Standard			2.8			2.8		ns
" 5	Through Input Buffer	High Speed			0.8			0.8		ns
t _{OPD}	Output Propagation Delay	Standard	$RL = 280\Omega$,		5			5		ns
010		High Speed	CL=15pFLoad ²		3.8			3.8		ns
t _{EPD} 1	Internal Equivalent	Standard			0.5			0.5		ns
11.0	Gate Delay	Low Power			0.7			0.7		ns
		High Speed			0.35			0.35		ns
F _{MAXT}	Max. Internal Flip-Flop Toggle Frequency	Standard			250			250		MHz
IVIAAI		Low Power			200			200		MHz
		High Speed			400			400		MHz
t _{PZH}	Enable time to high level	1	Fig 8. 3 state output		9			9		ns
t _{PZL}	Enable time to low level		Fig 9. 3 state output		9			9		ns
t _{PHZ}	Disable time from high level		Fig 8. 3 state output		9			9		ns
t _{PLZ}	Disable time from low level		Fig 9. 3 state output		9			9		ns
F _{IN} ³	Maximum input frequency	Standard			120			120		MHz
11.4	at package pin	High Speed			160			160		MHz

OE

VM = 1.5V CL = 15pF RL = 280Ω

VM

VM

tPZL

The state is a second of the state of the state

FIGURE 8

FIGURE 9

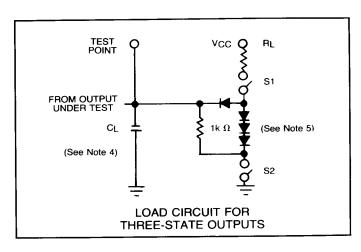
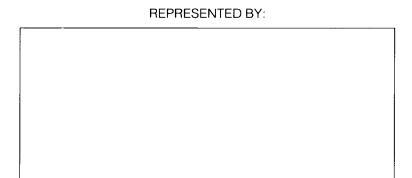


FIGURE 10


TEST CIRCUIT SWITCH TABLE

	TEST FUNCTIONS	\$1	S2
	tp _{zH}	Open	Closed
-	tp _{zL}	Closed	Open
	tp _{HZ}	Closed	Closed
	tp _{LZ}	Closed	Closed

NOTES:

- 1 Logic cell delays are for each gate level of a more complex logic function (i.e. D flip/flop, 4 to 1 mux, etc.)
- 2 Standard TTL load circuit used, see Figure 10 (S1 and S2 closed)
- Package selection will determine the maximum input frequency.
 Consult AMCC
- 4 CL includes probe and jig capacitance
- All diodes are 1N916 or 1N3064

NOTES

AMCC reserves the right to change specifications for this product in any manner without notice.

AMCC is a registered trademark of Applied Micro Circuits Corporation. MacroMatrix is a trademark of Applied Micro Circuits Corporation.

Copyright® 1986 Applied Micro Circuits Corporation.

Printed in U.S. Applied Micro Circuits Corporation.

