
QII53018-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 12.0
Volume 3: Verification
June 2012

June 2012
QII53018-12.0.0
7. The Quartus II TimeQuest
Timing Analyzer
The Quartus® II TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology. Use the
TimeQuest analyzer GUI or command-line interface to constrain, analyze, and report
results for all timing paths in your design.

This chapter contains the following sections:

■ “Getting Started with the TimeQuest Analyzer”

■ “Constraining and Analyzing with Tcl Commands” on page 7–7

■ “Creating Clocks and Clock Constraints” on page 7–14

■ “Creating I/O Requirements” on page 7–24

■ “Creating Delay and Skew Constraints” on page 7–26

■ “Creating Timing Exceptions” on page 7–27

■ “Examples of Basic Multicycle Exceptions” on page 7–35

■ “Application of Multicycle Exceptions” on page 7–44

■ “Timing Reports” on page 7–57

f For more information about basic timing analysis concepts and how they pertain to
the TimeQuest analyzer, refer to the Timing Analysis Overview chapter in volume 3 of
the Quartus II Handbook.

f For more information about Altera resources available for the TimeQuest analyzer,
refer to the TimeQuest Timing Analyzer Resource Center of the Altera website.

f For more information about the TimeQuest analyzer, refer to the Altera Training page
of the Altera website.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qts_qii53030.pdf
http://twitter.com/home/?status=The+Quartus+II+TimeQuest+Timing+Analyzer+http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53018-12.0 (QII HB, Vol 3, Ch7: The Quartus II TimeQuest Timing Analyzer)
https://www.altera.com/servlets/subscriptions/alert?id=QII53018
http://www.altera.com/support/software/timequest/sof-qts-timequest.html
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=The+Quartus+II+TimeQuest+Timing+Analyzer+http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

7–2 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Getting Started with the TimeQuest Analyzer
This section provides an overview of the design steps for setting up your project for
timing and analysis and to constrain your design with the TimeQuest analyzer.

Running the TimeQuest Analyzer
To run the TimeQuest analyzer directly from the Quartus II software GUI, click
TimeQuest Timing Analyzer on the Tools menu.

h For more information about the TimeQuest analyzer GUI, refer to About TimeQuest
Timing Analysis in Quartus II Help.

To run the TimeQuest analyzer as a stand-alone GUI application, type the following
command at the command prompt:

quartus_staw r

To run the TimeQuest analyzer in command-line mode for easy integration with
scripted design flows, type the following command at a system command prompt:

quartus_sta -sr

Table 7–1 describes the available command-line options.

Table 7–1. Summary of Command-Line Options (Part 1 of 2)

Command-Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing

For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock

report_timing -setup -npaths 1 -to_clock $clock

report_timing -hold -npaths 1 -to_clock $clock

report_timing -recovery -npaths 1 -to_clock $clock

report_timing -removal -npaths 1 -to_clock $clock

--force_dat Forces an update of the project database with new delay information.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--sdc=<SDC file> Specifies the .sdc to use.

--report_script=<script> Specifies a custom report script to call.

--speed=<value> Specifies the device speed grade used for timing analysis.

--tq2hc
Generate temporary files to convert the TimeQuest analyzer .sdc file(s) to a
PrimeTime .sdc that can be used by the HardCopy® Design Center.

--tq2pt
Generates temporary files to convert the TimeQuest analyzer .sdc file(s) to a
PrimeTime .sdc.

-f <argument file> Specifies a file containing additional command-line arguments.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–3
Getting Started with the TimeQuest Analyzer
For more information about steps to perform before opening the TimeQuest analyzer,
refer to “Recommended Flow” on page 7–3.

For more information about using Tcl commands to constrain and analyze your
design, refer to “Constraining and Analyzing with Tcl Commands” on page 7–7.

Recommended Flow
The Quartus II TimeQuest analyzer performs constraint validation to timing
verification as part of the compilation flow. Figure 7–1 shows the recommended
design flow to maximize the benefits of the TimeQuest Analyzer.

-c <revision name> |
--rev=<revision_name>

Specifies which revision and its associated .qsf to use.

--multicorner
Specifies that all slack summary reports be generated for both slow- and
fast-corners.

--multicorner[=on|off] Turns off multicorner timing analysis.

--voltage=<value_in_mV> Specifies the device voltage, in mV used for timing analysis.

--temperature=
<value_in_C>

Specifies the device temperature in degrees Celsius, used for timing analysis.

--parallel
[=<num_processors>] Specifies the number of computer processors to use on a multiprocessor system.

--64bit Enables 64-bit version of the executable.

Table 7–1. Summary of Command-Line Options (Part 2 of 2)

Command-Line Option Description

Figure 7–1. Design Flow with the TimeQuest Timing Analyzer

Create Quartus II Project
and Specify Design Files

Perform Initial Compilation

Specify Timing Requirements

Perform Compilation

Verify Timing
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–4 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Creating and Setting Up your Design
You must first create your project in the Quartus II software. Include all the necessary
design files, including any existing Synopsys Design Constraints (.sdc) files that
contain timing constraints for your design.

h For more information, refer to Managing Files in a Project in Quartus II Help.

Performing an Initial Compilation
If you have never compiled your design, or you don't have an .sdc file, and you want
to use the TimeQuest analyzer to create one interactively, you must compile your
design to create an initial design database before you specify timing constraints. You
can either perform Analysis and Synthesis to create a post-map database, or perform a
full compilation to create a post-fit database. Creating a post-map database is faster
than a post-fit database, and is sufficient for creating initial timing constraints. The
type of database you create determines the type of timing netlist generated by the
TimeQuest analyzer; a post-map netlist if you perform Analysis and Synthesis or a
post-fit netlist if you perform a full compilation.

1 If you are using incremental compilation, you must merge your design partitions after
performing Analysis and Synthesis to create a post-map database.

h For more information, refer to Setting up and Running Analysis and Synthesis and
Setting up and Running a Compilation in Quartus II Help.

Specifying Timing Requirements
Before running timing analysis with the TimeQuest analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing exceptions, and signal
transition arrival and required times. You can use the TimeQuest Timing Analyzer
Wizard to enter initial constraints for your design, and then refine timing constraints
with the TimeQuest analyzer GUI or with a Tcl script.

1 The Quartus II software assigns a default frequency of 1 GHz for clocks that have not
been constrained, either in the TimeQuest GUI or an .sdc file, unless any constraint
exists in the design. In that case, all unconstrained clocks remain unconstrained.

h For more information, refer to Specifying Timing Constraints and Exceptions in
Quartus II Help.

The .sdc must contain only SDC commands. Tcl commands to manipulate the timing
netlist or control the compilation flow should be run as part of a separate Tcl script.
After you create timing constraints, update the timing netlist to apply the new
constraints. The TimeQuest analyzer applies all constraints to the netlist for
verification and removes any invalid or false paths in the design from verification.

1 The constraints in the .sdc are read in sequence. You must first make a constraint
before making any references to that constraint. For example, if a generated clock
references a base clock, the base clock constraint must be made before the generated
clock constraint.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–5
Getting Started with the TimeQuest Analyzer
The Quartus II Text Editor provides templates for SDC constraints. For more
information, refer to “Using the Quartus II Templates” on page 7–6.

Performing a Full Compilation
After creating initial timing constraints, you must fully compile your design. When
compilation is complete, you can open the TimeQuest analyzer to verify timing results
and to generate summary, clock setup and clock hold, recovery, and removal reports
for all defined clocks in the design.

Verifying Timing
The TimeQuest analyzer examines the timing paths in the design, calculates the
propagation delay along each path, checks for timing constraint violations, and
reports timing results as positive slack or negative slack. Negative slack indicates a
timing violation. If you encounter violations along timing paths, use the timing
reports to analyze your design and determine how best to optimize your design. If
you modify, remove, or add constraints, you should perform a full compilation again.
This iterative process helps resolve timing violations in your design.

h For more information, refer to Viewing Timing Analysis Results in Quartus II Help.

Figure 7–2 shows the recommended flow for constraining and analyzing your design
within the TimeQuest analyzer. Included are the corresponding Tcl commands for
each step.

Figure 7–2. The TimeQuest Timing Analyzer Flow

Open Project
project_open

Create Timing Netlist
create_timing_netlist

Apply Timing Constraints
read_sdc

Update Timing Netlist
update_timing_netlist

report_clocks_transfers
report_min_pulse_width

report_net_timing

report_sdc
report_timing
report_clocks

report_min_pulse_width
report_ucp

Verify Static Timing Analysis
Results
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm

7–6 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Using the Quartus II Templates
SDC File Precedence
The Fitter and the TimeQuest analyzer process .sdc files in the order you specify in the
Quartus II Settings File (.qsf). You can specify the files to process and the order they
are processed from the Assignments menu. Click Settings, then TimeQuest Timing
Analyzer. and specify a processing order in the SDC files to include in the project
box.

If no .sdc files are listed in the .qsf, the Quartus II software looks for an .sdc named
<current revision>.sdc in the project directory. An .sdc can also be added from a
Quartus II IP File (.qip) included in the .qsf.

Figure 7–3 shows the order in which the Quartus II software searches for an .sdc.

1 If you type the read_sdc command at the command line without any arguments, the
TimeQuest analyzer reads constraints embedded in HDL files, then follows the .sdc
file precedence order shown in Figure 7–3.

Using the Quartus II Templates
You can create an .sdc from constraint templates in the Quartus II software with the
Quartus II Text Editor, or with your preferred text editor.

Creating a Constraint File with the Quartus II Text Editor
To insert constraints with the Quartus II Text Editor, follow these steps:

1. On the File menu, click New.

2. In the New dialog box, select the Synopsys Design Constraints File type from the
Other Files group. Click OK.

3. Click the Insert Template button on the text editor menu, or, right-click in the
blank .sdc file in the Quartus II Text Editor, then click Insert Template.

4. In the Insert Template dialog box, expand the TimeQuest section, then expand the
SDC Commands section.

5. Expand a command category, for example, Clocks.

Figure 7–3. .sdc File Order of Precedence

Is one or more .sdc file
specified in the .qsf?

No

Yes

Does an .sdc named
<current revision>.sdc

exist in the project
directory?

No

Yes

Analyze the design
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–7
Constraining and Analyzing with Tcl Commands
6. Select a command. The SDC constraint appears in the Preview pane.

7. Click Insert to paste the SDC constraint into the blank .sdc you created in step 2.

8. Repeat as needed with other constraints, or click Close to close the Insert
Template dialog box.

You can now use any of the standard features of the Quartus II Text Editor to modify
the .sdc or save the .sdc to edit in a text editor.

h For more information on inserting a template with the Quartus II Text Editor, refer to
About the Quartus II Text Editor in Quartus II Help.

Constraining and Analyzing with Tcl Commands
You can use Tcl commands from the Quartus II software Tcl Application
Programming Interface (API) to constrain, analyze, and collect information for your
design. This section focuses on executing timing analysis tasks with Tcl commands;
however, you can perform many of the same functions in the TimeQuest analyzer
GUI. SDC commands are Tcl commands for constraining a design. SDC extension
commands provide additional constraint methods and are specific to the TimeQuest
analyzer. Additional TimeQuest analyzer commands are available for controlling
timing analysis and reporting. These commands are contained in the following Tcl
packages available in the Quartus II software:

■ ::quartus::sta

■ ::quartus::sdc

■ ::quartus::sdc_ext

h For more information about TimeQuest analyzer Tcl commands and a complete list of
commands, refer to ::quartus::sta in Quartus II Help. For more information about
standard SDC commands and a complete list of commands, refer to ::quartus::sdc in
Quartus II Help. For more information about Altera extensions of SDC commands
and a complete list of commands, refer to ::quartus::sdc_ext in Quartus II Help.

Collection Commands
The TimeQuest analyzer Tcl commands often return port, pin, cell, or node names in a
data set called a collection. In your Tcl scripts you can iterate over the values in
collections to analyze or modify constraints in your design.

The TimeQuest analyzer supports collection commands that provide easy access to
ports, pins, cells, or nodes in the design. Use collection commands with any valid
constraints or Tcl commands specified in the TimeQuest analyzer.

Table 7–2 describes the collection commands supported by the TimeQuest analyzer.

Table 7–2. SDC Collection Commands (Part 1 of 2)

Command Description of the collection returned

all_clocks All clocks in the design.

all_inputs All input ports in the design.

all_outputs All output ports in the design.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/design/ted/ted_view_edit.htm

7–8 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Constraining and Analyzing with Tcl Commands
Wildcard Characters
To apply constraints to many nodes in a design, use the “*” and “?” wildcard
characters. The “*” wildcard character matches any string; the “?” wildcard character
matches any single character.

If you make an assignment to node reg*, the TimeQuest analyzer searches for and
applies the assignment to all design nodes that match the prefix reg with any number
of following characters, such as reg, reg1, reg[2], regbank, and reg12bank.

If you make an assignment to a node specified as reg?, the TimeQuest analyzer
searches and applies the assignment to all design nodes that match the prefix reg and
any single character following; for example, reg1, rega, and reg4.

Adding and Removing Collection Items
Wildcards used with collection commands define collection items identified by the
command. For example, if a design contains registers named src0, src1, src2, and
dst0, the collection command [get_registers src*] identifies registers src0, src1,
and src2, but not register dst0. To identify register dst0, you must use an additional
command, [get_registers dst*]. To include dst0, you could also specify a collection
command [get_registers {src* dst*}].

To modify collections, use the add_to_collection and remove_from_collection
commands. The add_to_collection command allows you to add additional items to
an existing collection. Example 7–1 shows the add_to_collection command and
arguments.

1 The add_to_collection command creates a new collection that is the union of the two
specified collections.

all_registers All registers in the design.

get_cells
Cells in the design. All cell names in the collection match the specified pattern. Wildcards can be
used to select multiple cells at the same time.

get_clocks
Clocks in the design. When used as an argument to another command, such as the -from or -to
of set_multicycle_path, each node in the clock represents all nodes clocked by the clocks in
the collection. The default uses the specific node (even if it is a clock) as the target of a command.

get_nets
Nets in the design. All net names in the collection match the specified pattern. You can use
wildcards to select multiple nets at the same time.

get_pins
Pins in the design. All pin names in the collection match the specified pattern. You can use
wildcards to select multiple pins at the same time.

get_ports Ports (design inputs and outputs) in the design.

Table 7–2. SDC Collection Commands (Part 2 of 2)

Command Description of the collection returned

Example 7–1. add_to_collection Command

add_to_collection <first collection> <second collection>
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–9
Constraining and Analyzing with Tcl Commands
The remove_from_collection command allows you to remove items from an existing
collection. Example 7–2 shows the remove_from_collection command and
arguments.

Example 7–3 shows examples of how to add elements to collections.

1 In the Quartus II software, keepers are I/O ports or registers. An .sdc that includes
get_keepers can only be processed as part of the TimeQuest analyzer flow and is not
compatible with third-party timing analysis flows.

h For more information about the add_to_collection and remove_from_collection
commands—including full syntax information, options, and example usage—refer to
add_to_collection and remove_from_collection in Quartus II Help.

Using the query_collection Command
You can display the contents of a collection with the query_collection command.

Example 7–4 shows how to report the contents of a collection:

You can also examine collections and experiment with collections using wildcards in
the TimeQuest analyzer by clicking Name Finder from the View menu.

Using the get_pins Command
The collection commands get_pins allow you to refine searches that include wildcard
characters.

Table 7–3 shows examples of search strings that use options to refine the search and
wildcards. The examples in Table 7–3 filter the following node and pin names to
illustrate function:

■ foo

Example 7–2. remove_from_collection Command

remove_from_collection <first collection> <second collection>

Example 7–3. Adding Items to a Collection

#Setting up initial collection of registers
set regs1 [get_registers a*]

#Setting up initial collection of keepers
set kprs1 [get_keepers b*]

#Creating a new set of registers of $regs1 and $kprs1
set regs_union [add_to_collection $kprs1 $regs1]

#OR
Creating a new set of registers of $regs1 and b*
Note that the new collection appends only registers with name b*
not all keepers
set regs_union [add_to_collection $regs1 b*]

Example 7–4. query_collection Command

query_collection -report -all $regs_union
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_remove_from_collection.htm

7–10 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Constraining and Analyzing with Tcl Commands
■ foo|dataa

■ foo|datab

■ foo|bar

■ foo|bar|datac

■ foo|bar|datad

The default method separates hierarchy levels of instances from nodes and pins with
the pipe character (|). A match occurs when the levels of hierarchy match, and the
string values including wildcards match the instance and/or pin names. For example,
the command get_pins <instance_name>|*|datac returns all the datac pins for
registers in a given instance. However, the command get_pins *|datac returns and
empty collection because the levels of hierarchy do not match.

Use the -hierarchical matching scheme to return a collection of cells or pins in all
hierarchies of your design.

For example, the command get_pins -hierarchical *|datac returns all the datac
pins for all registers in your design. However, the command get_pins -hierarchical
||datac returns an empty collection because more than one pipe character (|) is not
supported.

The -compatibility_mode option returns collections matching wildcard strings
through any number of hierarchy levels. For example, an asterisk can match a pipe
character when using -compatibility_mode.

Table 7–3. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty> (1)

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

get_pins -hierarchical *|*|datac <empty> (1)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

get_pins -hierarchical foo|*|datac <empty> (1)

get_pins -compatibility_mode *|datac foo|bar|datac

get_pins -compatibility_mode *|*|datac foo|bar|datac

Note to Table 7–3:

(1) The search result is <empty> because more than one pipe character (|) is not supported.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–11
Constraining and Analyzing with Tcl Commands
Identifying the Quartus II Software Executable from the SDC File
To identify which Quartus II software executable is currently running you can use the
$::TimeQuestInfo(nameofexecutable) variable from within an .sdc. Example 7–5
shows how to specify different SDC constraints for a specific Quartus II software
executable.

Examples of different executable names are quartus_map for Analysis & Synthesis,
quartus_fit for Fitter, and quartus_sta for the TimeQuest analyzer.

Locating Timing Paths in Other Tools
You can locate paths and elements from the TimeQuest analyzer to other tools in the
Quartus II software. Use the Locate Path command in the TimeQuest analyzer GUI or
the locate command.

h For more information about locating paths from the TimeQuest analyzer, refer to
Viewing Timing Analysis Results and locate in Quartus II Help.

Example 7–6 shows how to locate ten paths from TimeQuest analyzer to the Chip
Planner and locate all data ports in the Technology Map Viewer.

Example 7–5. Identifying the Quartus II Executable

#Identify which executable is running:
set current_exe $::TimeQuestInfo(nameofexecutable)

if { [string equal $current_exe “quartus_fit"] } {

 #Apply .sdc assignments for Fitter executable here
} else {

 #Apply .sdc assignments for non-Fitter executables here
}

if { ! [string equal "quartus_sta" $::TimeQuestInfo(nameofexecutable)] } {

 #Apply .sdc assignments for non-TimeQuest executables here
} else {

 #Apply .sdc assignments for TimeQuest executable here

Example 7–6. Locating from the TimeQuest Analyzer

Locate in the Chip Planner all of the nodes in ten paths with the
longest delay

locate [get_path -npaths 10] -chip

locate all ports that begin with data to the Technology Map Viewer

locate [get_ports data*] -tmv
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_locate.htm

7–12 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Design Constraints: An Example
Design Constraints: An Example
Figure 7–4 shows an example circuit including two clocks, a phase-locked loop (PLL),
and other common synchronous design elements.

Figure 7–4. TimeQuest Constraint Example

data1

data2

clk1

clk2

inst

inst1

inst2lpm_add_sub0 myfifo

altpll0

dataout
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–13
Design Constraints: An Example
Example 7–7 shows an .sdc file containing basic constraints for the circuit in
Figure 7–4.

The .sdc in Example 7–7 contains the following basic constraints you should include
for most designs:

■ Definitions of clockone and clocktwo as base clocks, and assignment of those
settings to nodes in the design.

■ Definitions of clockone_ext and clocktwo_ext as virtual clocks, which represent
clocks driving external devices interfacing with the FPGA.

■ Automated derivation of generated clocks on PLL outputs.

■ Derivation of clock uncertainty.

■ Specification of two clock groups, the first containing clockone and its related
clocks, the second containing clocktwo and its related clocks, and the third group
containing the output of the PLL. This specification overrides the default analysis
of all clocks in the design as related to each other. For more information about
asynchronous clock groups, refer to “Asynchronous Clock Groups” on page 7–22.

■ Specification of input and output delays for the design.

The following sections describe each of these constraint types in detail.

Example 7–7. Example Basic SDC Constraints

Create clock constraints

create_clock -name clockone -period 10.000 [get_ports {clk1}]
create_clock -name clocktwo -period 10.000 [get_ports {clk2}]

Create virtual clocks for input and output delay constraints

create clock -name clockone_ext -period 10.000
create clock -name clockone_ext -period 10.000

derive_pll_clocks

derive clock uncertainty

derive_clock_uncertainty

Specify that clockone and clocktwo are unrelated by assinging
them to seperate asynchronus groups

set_clock_groups \
-asynchronous \
-group {clockone} \
-group {clocktwo \

altpll0|altpll_component|auto_generated|pll1|clk[0]}]

set input and output delays

set_input_delay -clock { clockone_ext } -max 4 [get_ports {data1}]
set_input_delay -clock { clockone_ext } -min -1 [get_ports {data1}]

set_input_delay -clock { clockone_ext } -max 4 [get_ports {data2}]
set_input_delay -clock { clockone_ext } -min -1 [get_ports {data2}]

set_output_delay -clock { clocktwo_ext } -max 6 [get_ports {dataout}]

set_output_delay -clock { clocktwo_ext } -min -3 [get_ports {dataout}]
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–14 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Creating Clocks and Clock Constraints
To ensure accurate static timing analysis results, you must specify all clocks and any
associated clock characteristics in your design. The TimeQuest analyzer supports SDC
commands that accommodate various clocking schemes and clock characteristics.

The TimeQuest analyzer supports the following types of clocks:

■ Base clocks

■ Virtual clocks

■ Multifrequency clocks

■ Generated clocks

Clocks are used to specify requirements for synchronous transfers and guide the Fitter
optimization algorithms to achieve the best possible placement for your design.

Specify clock constraints first in the .sdc because other constraints may reference
previously defined clocks. The TimeQuest analyzer reads SDC constraints and
exceptions from top to bottom in the file.

Creating Base Clocks
Base clocks are the primary input clocks to the device. Unlike clocks from PLLs that
are generated in the device, base clocks are generated by off-chip oscillators or
forwarded from an external device. Define base clocks first because generated clocks
and other constraints often reference base clocks.

To create clock settings for the signal from any register, port, or pin, use the
create_clock command. You can create each clock with unique characteristics.

Example 7–8 shows how to create a 10 ns clock with a 50% duty cycle that is phase
shifted by 90 degrees applied to port clk_sys.

Use the create_clock command to constrain all primary input clocks. The target for
the create_clock command is usually a pin. To specify the pin as the target, use the
get_ports command. Example 7–9 shows how to specify a 100 MHz requirement on a
clk_sys input clock port.

You can apply multiple clocks on the same clock node with the -add option.
Example 7–10 shows how to specify that two oscillators drive the same clock port on
the device.

Example 7–8. 100 MHz Shifted by 90 Degrees Clock Creation

create_clock -period 10 -waveform { 2.5 7.5 } [get_ports clk_sys]

Example 7–9. create_clock Command

create_clock -period 10 -name clk_sys [get_ports clk_sys]

Example 7–10. Two Oscillators Driving the Same Clock Port

create_clock -period 10 -name clk_100 [get_ports clk_sys]

create_clock -period 5 -name clk_200 [get_ports clk_sys] -add
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–15
Creating Clocks and Clock Constraints
h For more information about the create_clock and get_ports commands—including
full syntax information, options, and example usage—refer to create_clock and
get_ports in Quartus II Help.

Creating Virtual Clocks
A virtual clock is a clock that does not have a real source in the design or that does not
interact directly with the design. Virtual clocks are used in most I/O constraints, they
represent the clock at the external device connected to the FPGA.

To create virtual clocks, use the create_clock command with no value specified for
the <targets> option. Use virtual clocks for the reference clocks of set_input_delay
and set_output_delay constraints.

Example 7–11 shows how to create a 10 ns virtual clock. The example is a virtual clock
because no target is specified.

h For more information about the set_input_delay, and set_output_delay
commands—including full syntax information, options, and example usage—refer to
set_input_delay, and set_output_delay in Quartus II Help.

Figure 7–5 shows a design where a virtual clock is required for the TimeQuest
analyzer to properly analyze the relationship between the external register and the
registers in the design. Because the oscillator, virt_clk, does not interact with the
Altera device, but acts as the clock source for the external register, you must declare
the clock as a virtual clock. After you create the virtual clock, you can perform a
register-to-register analysis between the register in the Altera device and the register
in the external device.

Example 7–11. Create Virtual Clock

create_clock -period 10 -name my_virt_clk

Figure 7–5. Virtual Clock Board Topology

Altera FPGA External Device

system_clk virt_clk

reg_a reg_b
dataout

datain
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_get_ports.htm

7–16 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Example 7–12 shows how to create a 10 ns virtual clock named virt_clk with a 50%
duty cycle where the first rising edge occurs at 0 ns. The virtual clock is then used as
the clock source for an output delay constraint.

I/O Interface Uncertainty
Virtual clocks are recommended for I/O constraints because the
derive_clock_uncertainty command can add different uncertainty values on clocks
that interface with an external I/O port than uncertainty values between register
paths fed by a clock inside the FPGA.

To specify I/O interface uncertainty, you must create a virtual clock and constrain the
input and output ports with the set_input_delay and set_output_delay commands
that reference the virtual clock. When the set_input_delay or set_output_delay
commands reference a clock port or PLL output, the virtual clock allows the
derive_clock_uncertainty command to apply separate clock uncertainties for
internal clock transfers and I/O interface clock transfers

Create the virtual clock with the same properties as the original clock that is driving
the I/O port. Figure 7–6 shows a typical input I/O interface with clock specifications.

Example 7–12. Virtual Clock Example

#create base clock for the design
create_clock -period 5 [get_ports system_clk]

#create the virtual clock for the external register
create_clock -period 10 -name virt_clk

#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
set_output_delay -clock virt_clk -min 0.0 [get_ports dataout]

Figure 7–6. I/O Interface Clock Specifications

Altera FPGAExternal Device
data_in

clk_in

Q Q

reg1

D

reg1

D

100 MHz
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–17
Creating Clocks and Clock Constraints
Example 7–13 shows the SDC commands to constrain the I/O interface shown in
Figure 7–6.

f For more information about clock uncertainty and clock transfers, refer to “Clock
Uncertainty” on page 7–23

Creating Multifrequency Clocks
You must create a multifrequency clock if your design has more than one clock source
feeding a single clock node in your design. The additional clock may act as a
low-power clock, with a lower frequency than the primary clock. If your design uses
multifrequency clocks, use the set_clock_groups command to define clocks that are
exclusive. For more information about creating exclusive clock groups, refer to
“Creating Clock Groups” on page 7–22.

To create multifrequency clocks, use the create_clock command with the -add option
to create multiple clocks on a clock node. Example 7–14 shows how to create a 10 ns
clock applied to clock port clk, and then add an additional 15 ns clock to the same
clock port. The TimeQuest analyzer uses both clocks when it performs timing
analysis.

Creating Generated Clocks
Generated clocks are applied in the design when you modify the properties of a
source synchronous clock signal, including phase, frequency, offset, and duty cycle. In
the .sdc, generated clocks, which can be the outputs of PLLs or register clock dividers,
are constrained after all base clocks. Generated clocks capture all clock delays and
clock latency where the generated clock target is defined, ensuring that all base clock
properties are accounted for in the generated clock.

Use the create_generated_clock command to constrain generated clocks in your
design. The source of the create_generated_clock command should be a node in
your design and not a previously constrained clock.

Example 7–13. SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]

Create a virtual clock with the same properties of the base clock
driving the source register
create_clock -period 10 -name virt_clk_in

Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay -clock clk_in <delay value>
[get_ports data_in]
set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]

Example 7–14. Multifrequency Clock Example

create_clock –period 10 –name clock_primary –waveform { 0 5 } \
[get_ports clk]

create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } \
[get_ports clk] -add
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–18 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
A common form of generated clock is a clock divider. Example 7–15 creates a base
clock, clk_sys, then defines a generated clock clk_div_2, which is the clock frequency
of clk_sys divided by two.

When you use the create_generated_clock command, the -source option specifies a
node with a clock used as a reference for your generated clock. Best practice is to
specify the input clock pin of the target node for your new generated clock. You can
also specify the target node of the reference clock. In Example 7–15, the -source
option specifies the clock port clk feeding the clock pin of register reg.

If you have multiple base clocks feeding a node that is the source for a generated
clock, you must define multiple generated clocks. Each generated clock is associated
to one base clock using the -master_clock option in each generated clock statement.

The TimeQuest analyzer provides the derive_pll_clocks command to automatically
generate clocks for all PLL clock outputs. The properties of the generated clocks on
the PLL outputs match the properties defined for the PLL. For more information
about deriving PLL clock outputs, refer to “Deriving PLL Clocks” on page 7–19.

h For more information about the create_generated_clock and derive_pll_clocks
commands—including for full syntax information, options, and example usage—refer
to create_generate_clock and derive_pll_clocks in Quartus II Help.

Example 7–15. Clock Divider

create_clock -period 10 -name clk_sys [get_ports clk_sys]

create_generated_clock -name clk_div_2 -divide_by 2 -source
[get_ports clk_sys] [get_pins reg|regout]

1 2 3 4 5 6 7 8Edges

clk_sys

clk_div_2

0 10 20 30
Time
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–19
Creating Clocks and Clock Constraints
The inverse of a clock divider is a clock multiplier. Figure 7–7 shows the effect of
applying a multiplication factor to the generated clock.

An uncommon but useful type of generated clock is one with shifted edges.
Figure 7–8 shows how to modify the generated clock by defining and shifting the
edges.

h For information about creating generated clocks, refer to create_generated_clocks and
Specifying Timing Constraints and Exceptions in Quartus II Help.

Deriving PLL Clocks
Use the derive_pll_clocks command to direct the TimeQuest analyzer to
automatically search the timing netlist for all unconstrained PLL output clocks. The
derive_pll_clocks command automatically creates generated clocks on the outputs
of every PLL by calling the create_generated_clock command. The source for the
create_generated_clock command is the input clock pin of the PLL.

Figure 7–7. Multiplying a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]

Creates a multiply-by-two clock
create_generated_clock -source [get_ports clk] -multiply_by 2 [get_registers \
clkmult|clkreg]

clk

clkmult|clkreg

0 10 20 30
Time

Figure 7–8. Edge Shifting a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]

Creates a divide-by-two clock
create_generated_clock -source [get_ports clk] -edges { 1 3 5 } [get_registers \
clkdivA|clkreg]

Creates a divide-by-two clock independent of the master clock’s duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges { 1 1 5 } \
-edge_shift { 0 2.5 0 } [get_registers clkdivB|clkreg]

1 2 3 4 5 6 7 8Edges

clk

clkdivA|clkreg

clkdivB|clkreg

0 10 20 30
Time
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm

7–20 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Example 7–16 shows the command to create a base clock for the PLL input clock port
and call derive_pll_clocks to create PLL output clocks.

1 If your design contains LVDS transmitters, LVDS receivers, or transceivers, Altera
recommends using the derive_pll_clocks command. The command automatically
constrains this logic in your design by adding the appropriate multicycle constraints
to account for any deserialization factors.

h For more information about the derive_pll_clocks command—including full syntax
information, options, and example usage—refer to derive_pll_clocks and Derive PLL
Clocks in Quartus II Help.

You can include the derive_pll_clocks command in your .sdc, which automatically
detects any changes to the PLL settings. Each time the TimeQuest analyzer reads your
.sdc, the appropriate create_generated_clocks command is generated for the PLL
output clock pin.

Figure 7–9 shows a simple PLL design with a register-to-register path.

Example 7–17 shows the messages generated by the TimeQuest analyzer when you
use the derive_pll_clocks command to automatically constrain the PLL for the
design shown in Figure 7–9.

The input clock pin of the PLL is the node
pll_inst|altpll_component|pll|inclk[0] is used for the -source option. The name
of the output clock of the PLL is the PLL output clock node,
pll_inst|altpll_component|pll|clk[0].

Example 7–16. Create Base Clock for PLL input Clock Ports

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk]
derive_pll_clocks

Figure 7–9. Simple PLL Design

Example 7–17. derive_pll_clocks Command Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source
pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|clk[0]
pll_inst|altpll_component|pll|clk[0]
Info:

reg_1 reg_2

pll_inclk pll_inst

dataout
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_derive_pll_clocks.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_derive_pll_clocks.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–21
Creating Clocks and Clock Constraints
If the PLL is in clock switchover mode, multiple clocks are created for the output clock
of the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). You should create exclusive clock
groups for the primary and secondary output clocks.

For more information about creating exclusive clock groups, refer to “Creating Clock
Groups” on page 7–22.

Automatically Detecting Clocks and Creating Default Clock Constraints
To automatically create clocks for all clock nodes in your design, use the
derive_clocks command. The derive_clocks command is equivalent to using the
create_clock command for each register or port feeding the clock pin of a register.
The derive_clocks command creates clock constraints on ports or registers to ensure
every register in your design has a clock constraints, and it applies one period to all
base clocks in your design.

If there are no clock constraints in your design, the TimeQuest analyzer automatically
creates default clock constraints for all detected unconstrained clock nodes to provide
a complete clock analysis. The TimeQuest analyzer automatically creates clocks only
when all synchronous elements have no associated clocks. For example, the
TimeQuest analyzer does not create a default clock constraint if your design contains
two clocks and you assigned constraints to one of the clocks. However, if you do not
assign constraints to either clock, then the TimeQuest analyzer creates a default clock
constraint.

Example 7–18 shows how the TimeQuest analyzer creates a base clock with a 1 GHz
requirement for unconstrained clock nodes.

1 Do not use the derive_clocks command for final timing sign-off; instead, you should
create clocks for all clock sources with the create_clock and
create_generated_clock commands. If your design has more than a single clock, the
derive_clocks command constrains all the clocks to the same specified frequency. To
achieve a thorough and realistic analysis of your design’s timing requirements, you
should make individual clock constraints for all clocks in your design.

You can also use the command derive_pll_clocks -create_base_clocks to create
the input clocks for all PLL inputs automatically.

h For more information about the derive_clocks command—including full syntax
information, options, and example usage—refer to derive_clocks in Quartus II Help.

Example 7–18. Create Base Clock for Unconstrained Clock Nodes

derive_clocks -period 1
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm

7–22 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Creating Clock Groups
The TimeQuest analyzer assumes all clocks are related unless constrained otherwise.
To specify clocks in your design that are exclusive or asynchronous, use the
set_clock_groups command. The set_clock_groups command cuts timing between
clocks in different groups, and performs the same analysis regardless of whether you
specify -exclusive or -asynchronous. This is important if your design is migrating to
HardCopy®, since other ASIC tools perform different analyses based on whether you
specify-exclusive or -asynchronous.

h For more information about the set_clock_groups command—including full syntax
information, options, and example usage—refer to set_clock_groups in Quartus II Help.

Exclusive Clock Groups
Use the -exclusive option to declare that two clocks are mutually exclusive. You may
want to declare clocks as mutually exclusive when multiple clocks are created on the
same node or for multiplexed clocks. For example, a port can be clocked by either a
25-MHz or a 50-MHz clock. To constrain this port, you should create two clocks on the
port, and then create clock groups to declare that they cannot coexist in the design at
the same time. Declaring the clocks as mutually exclusive eliminates any clock
transfers that may be derived between the 25-MHz clock and the 50-MHz clock.
Example 7–19 shows how to create mutually exclusive clock groups.

A group is defined with the -group option. The TimeQuest analyzer excludes the
timing paths between clocks for each of the separate groups.

If you apply multiple clocks to the same port, use the set_clock_groups command
with the -exclusive option to place the clocks into separate groups and declare that
the clocks are mutually exclusive. The clocks cannot physically exist in your design at
the same time.

Asynchronous Clock Groups
Use the -asynchronous option to create asynchronous clock groups. Clocks contained
within an asynchronous clock group are considered asynchronous to clocks in other
clock groups; however, any clocks within a clock group are considered synchronous
to each other.

For example, if your design has three clocks, clk_A, clk_B, and clk_C, and you
establish that clk_A and clk_B are related to each other, but clock clk_C operates
completely asynchronously, you can set up clock groups to define the clock behavior.
If set_clock_groups is used with only one group, the clocks in that group are
asynchronous with all other clocks in the design. For example, you can create a clock
group containing only clk_C to ensure that clk_A and clk_B are synchronous with
each other and asynchronous with clk_C. Because clk_C is the only clock in the
constraint, it is asynchronous with every other clock in the design.

Example 7–19. Create Mutually Exclusive Clock Groups

create_clock -period 40 -name clk_A [get_ports {port_A}]
create_clock -add -period 20 -name clk_B [get_ports {port_A}]
set_clock_groups -exclusive -group {clk_A} -group {clk_B}
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–23
Creating Clocks and Clock Constraints
Example 7–20 shows how to create a clock group containing clocks clk_A and clk_B
and a second unrelated clock group containing clk_C.

h For more information about the set_clock_groups command—including full syntax
information, options, and example usage—refer to set_clock_groups in Quartus II Help.

Accounting for Clock Effect Characteristics
The clocks you create with the TimeQuest analyzer are ideal clocks that do not
account for any board effects. You can account for clock effect characteristics with
clock latency and clock uncertainty.

Clock Latency
There are two forms of clock latency, clock source latency and clock network latency.
Source latency is the propagation delay from the origin of the clock to the clock
definition point (for example, a clock port). Network latency is the propagation delay
from a clock definition point to a register’s clock pin. The total latency at a register’s
clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the
set_clock_latency command.

1 The TimeQuest analyzer automatically computes network latencies; therefore, you
only can characterize source latency with the set_clock_latency command. You
must use the -source option.

h For more information about the set_clock_latency command—including full syntax
information, options, and example usage—refer to set_clock_latency in Quartus II
Help.f

Clock Uncertainty
The TimeQuest analyzer accounts for uncertainty clock effects for three types of
clock-to-clock transfers; intraclock transfers, interclock transfers, and I/O interface
clock transfers.

■ Intraclock transfers occur when the register-to-register transfer takes place in the
core of the device and the source and destination clocks come from the same PLL
output pin or clock port.

■ Interclock transfers occur when a register-to-register transfer takes place in the
core of the device and the source and destination clocks come from a different PLL
output pin or clock port.

■ I/O interface clock transfers occur when data transfers from an I/O port to the
core of the device or from the core of the device to the I/O port.

Example 7–20. Create Asynchronous Clock Groups

set_clock_groups -asynchronous -group {clk_A clk_B} -group {clk_C}
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_latency.htm

7–24 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating I/O Requirements
To manually specify clock uncertainty, or skew, for clock-to-clock transfers, use the
set_clock_uncertainty command. You can specify the uncertainty separately for
setup and hold, and you can specify separate rising and falling clock transitions. The
TimeQuest analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path.

To automatically apply interclock, intraclock, and I/O interface uncertainties, use the
derive_clock_uncertainty command. The TimeQuest analyzer automatically
applies clock uncertainties to clock-to-clock transfers in the design, and calculates
both setup and hold uncertainties for each clock-to-clock transfer.

Any clock uncertainty constraints applied to source and destination clock pairs with
the set_clock_uncertainty command have a higher precedence than the clock
uncertainties derived with the derive_clock_uncertainty command for the same
source and destination clock pairs. For example, if you use the
set_clock_uncertainty command to set clock uncertainty between clka and clkb,
the TimeQuest analyzer ignores the values for the clock transfer calculated with the
derive_clock_uncertainty command. The TimeQuest analyzer reports the values
calculated with the derive_clock_uncertainty command even if they are not used.

Use set_clock_uncertainty or derive_clock_uncertainty with the -overwrite
option to overwrite previously applied clock uncertainty assignments. Use
set_clock_uncertainty or derive_clock_uncertainty with the -add option to apply
additional clock uncertainty to previously applied clock uncertainty. Use the
remove_clock_uncertainty command to remove previous clock uncertainty
assignments.

h For more information about the set_clock_uncertainty, derive_clock_uncertainty,
and remove_clock_uncertainty commands—including full syntax information,
options, and example usage—refer to set_clock_uncertainty, remove_clock_uncertainty
and derive_clock_uncertainty, in Quartus II Help.

Creating I/O Requirements
The TimeQuest analyzer reviews setup and hold relationships for designs in which an
external source interacts with a register internal to the design. The TimeQuest
analyzer supports input and output external delay modeling with the
set_input_delay and set_output_delay commands. You can specify the clock and
minimum and maximum arrival times relative to the clock.

You must specify timing requirements, including internal and external timing
requirements, before you fully analyze a design. With external timing requirements
specified, the TimeQuest analyzer verifies the I/O interface, or periphery of the
device, against any system specification.

Input Constraints
Input constraints allow you to specify all the external delays feeding into the device.
Specify input requirements for all input ports in your design.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_clock_uncertainty.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_uncertainty.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_remove_clock_uncertainty.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–25
Creating I/O Requirements
You can use the set_input_delay command to specify external input delay
requirements. Use the -clock option to reference a virtual clock. Using a virtual clock
allows the TimeQuest analyzer to correctly derive clock uncertainties for interclock
and intraclock transfers. The virtual clock defines the launching clock for the input
port. The TimeQuest analyzer automatically determines the latching clock inside the
device that captures the input data, because all clocks in the device are defined.
Figure 7–10 shows an example of an input delay referencing a virtual clock.

Equation 7–1 shows a typical input delay calculation.

Output Constraints
Output constraints allow you to specify all external delays from the device for all
output ports in your design.

You can use the set_output_delay command to specify external output delay
requirements. Use the -clock option to reference a virtual clock. The virtual clock
defines the latching clock for the output port. The TimeQuest analyzer automatically
determines the launching clock inside the device that launches the output data,
because all clocks in the device are defined. Figure 7–11 shows an example of an
output delay referencing a virtual clock.

Figure 7–10. Input Delay

Equation 7–1. Input Delay Calculation

External Device Altera Device

Oscillator

dd

cd_altrcd_ext

tco_ext

input delayMAX cd_extMAX cd_altrMIN– tco_extMAX ddMAX+ +=

input delayMIN cd_extMIN cd_altrMAX– tco_extMIN ddMIN+ +=

Figure 7–11. Output Delay

External DeviceAltera Device

Oscillator

dd

cd_altr

cd_ext

tsu_ext/th_ext
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–26 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Delay and Skew Constraints
Equation 7–2 shows a typical output delay calculation.

h For more information about the set_input_delay and set_output_delay
commands—including full syntax information, options, and example usage—refer to
set_input_delay and set_output_delay in Quartus II Help.

Creating Delay and Skew Constraints
The TimeQuest analyzer supports the Synopsys Design Constraint format for
constraining timing for the ports in your design. These constraints allow the
TimeQuest analyzer to perform a system static timing analysis that includes not only
the device internal timing, but also any external device timing and board timing
parameters.

Advanced I/O Timing and Board Trace Model Delay
The TimeQuest analyzer can use advanced I/O timing and board trace model
assignments to model I/O buffer delays in your design.

If you change any advanced I/O timing settings or board trace model assignments,
recompile your design before you analyze timing, or use the -force_dat option to
force delay annotation when you create a timing netlist. Example 7–21 shows how to
force delay annotation when creating a timing netlist.

h For more information about using advanced I/O timing, refer to Using Advanced I/O
Timing in Quartus II Help.

f For more information about advanced I/O timing, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Maximum Skew
To specify the maximum path-based skew requirements for registers and ports in the
design and report the results of maximum skew analysis, use the set_max_skew
command in conjunction with the report_max_skew command.

By default, the set_max_skew command excludes any input or output delay
constraints.

h For more information about the set_max_skew and report_max_skew commands—
including full syntax information, options, and example usage—refer to set_max_skew
report_max_skew in Quartus II Help.

Equation 7–2. output Delay Calculation

output delayMAX ddMAX tsu_ext cd_altrMAX cd_extMIN– + +=

output delayMIN ddMIN th_ext + cd_altrMIN cd_extMAX– + =

Example 7–21. Forcing Delay Annotation

create_timing_netlist -force_dat r
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_max_skew.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_max_skew.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–27
Creating Timing Exceptions
Creating Timing Exceptions
Timing exceptions in the TimeQuest analyzer provide a way to modify the default
timing analysis behavior to match the analysis required by your design. Specify
timing exceptions after clocks and input and output delay constraints because timing
exceptions can modify the default analysis.

Precedence
If a conflict of node names occurs between timing exceptions, the following order of
precedence applies:

1. False path

2. Minimum delays and maximum delays

3. Multicycle path

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. Finally,
the remaining precedence for additional conflicts is order-dependent, such that the
assignments most recently created overwrite, or partially overwrite, earlier
assignments.

False Paths
Specifying a false path in your design removes the path from timing analysis. Use the
set_false_path command to specify false paths in your design. You can specify
either a point-to-point or clock-to-clock path as a false path. For example, a path you
should specify as false path is a static configuration register that is written once
during power-up initialization, but does not change state again. Although signals
from static configuration registers often cross clock domains, you may not want to
make false path exceptions to a clock-to-clock path, because some data may transfer
across clock domains. However, you can selectively make false path exceptions from
the static configuration register to all endpoints.

Example 7–22 shows how to make false path exceptions from all registers beginning
with A to all registers beginning with B.

The TimeQuest analyzer assumes all clocks are related unless you specify otherwise.
The “Creating Clock Groups” on page 7–22 describes how you can use clock groups.
Clock groups are a more efficient way to make false path exceptions between clocks,
compared to writing multiple set_false_path exceptions between every clock
transfer you want to eliminate.

h For more information about the set_false_path command—including full syntax
information, options, and example usage—refer to set_false_path in Quartus II Help.

Example 7–22. False Path

set_false_path -from [get_pins A*] -to [get_pins B*]
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm

7–28 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Minimum and Maximum Delays
To specify an absolute minimum or maximum delay for a path, use the
set_min_delay command or the set_max_delay commands, respectively. Specifying
minimum and maximum delay directly overwrites existing setup and hold
relationships with the minimum and maximum values.

Use the set_max_delay and set_min_delay commands to create constraints for
asynchronous signals that do not have a specific clock relationship in your design, but
require a minimum and maximum path delay. You can create minimum and
maximum delay exceptions for port-to-port paths through the device without a
register stage in the path. If you use minimum and maximum delay exceptions to
constrain the path delay, specify both the minimum and maximum delay of the path;
do not constrain only the minimum or maximum value.

If the source or destination node is clocked, the TimeQuest analyzer takes into account
the clock paths, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included in the
minimum or maximum delay check.

If you specify a minimum or maximum delay between timing nodes, the delay
applies only to the path between the two nodes. If you specify a minimum or
maximum delay for a clock, the delay applies to all paths where the source node or
destination node is clocked by the clock.

You can create a minimum or maximum delay exception for an output port that does
not have an output delay constraint. You cannot report timing for the paths associated
with the output port; however, the TimeQuest analyzer reports any slack for the path
in the setup summary and hold summary reports. Because there is no clock associated
with the output port, no clock is reported for timing paths associated with the output
port.

1 To report timing with clock filters for output paths with minimum and maximum
delay constraints, you can set the output delay for the output port with a value of
zero. You can use an existing clock from the design or a virtual clock as the clock
reference.

h For more information about the set_min_delay, and set_max_delay, commands—
including full syntax information, options, and example usage—refer to set_min_delay,
and set_max_delay, in Quartus II Help.

Delay Annotation
To modify the default delay values used during timing analysis, use the
set_annotated_delay and set_timing_derate commands. You must update the
timing netlist to see the results of these commands

To specify different operating conditions in a single .sdc, rather than having multiple
.sdc files that specify different operating conditions, use the set_annotated_delay
command with the -operating_conditions option.

h For more information about the set_annotated_delay and set_timing_derate
commands—including full syntax information, options, and example usage—refer to
set_annotated_delay and set_timing_derate in Quartus II Help.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_timing_derate.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–29
Creating Timing Exceptions
Multicycle Paths
By default, the TimeQuest analyzer performs a single-cycle analysis, which is the
most restrictive type of analysis. When analyzing a path, the setup launch and latch
edge times are determined by finding the closest two active edges in the respective
waveforms. For a hold analysis, the timing analyzer analyzes the path against two
timing conditions for every possible setup relationship, not just the worst-case setup
relationship. Therefore, the hold launch and latch times may be completely unrelated
to the setup launch and latch edges. The TimeQuest analyzer does not report negative
setup or hold relationships. When either a negative setup or a negative hold
relationship is calculated, the TimeQuest analyzer moves both the launch and latch
edges such that the setup and hold relationship becomes positive.

A multicycle constraint adjusts setup or hold relationships by the specified number of
clock cycles based on the source (-start) or destination (-end) clock. An end setup
multicycle constraint of 2 extends the worst-case setup latch edge by one destination
clock period. If -start and -end values are not specified, the default constraint is -
end.

Hold multicycle constraints are based on the default hold position (the default value
is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock
period from the default hold latch edge.

When the objects are timing nodes, the multicycle constraint only applies to the path
between the two nodes. When an object is a clock, the multicycle constraint applies to
all paths where the source node (-from) or destination node (-to) is clocked by the
clock. When you adjust a setup relationship with a multicycle constraint, the hold
relationship is adjusted automatically.

Table 7–4 shows the commands you can use to modify either the launch or latch edge
times that the TimeQuest analyzer uses to determine a setup relationship or hold
relationship.

Common Multicycle Variations
Multicycle exceptions adjust the timing requirements for a register-to-register path,
allowing the Fitter to optimally place and route a design in a device. Multicycle
exceptions also can reduce compilation time and improve the quality of results, and
can be used to change timing requirements. Two common multicycle variations are
relaxing setup to allow a slower data transfer rate, and altering the setup to account
for a phase shift.

Relaxing Setup with set_multicyle_path
A common type of multicycle exception occurs when the data transfer rate is slower
than the clock cycle.

Table 7–4. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end <value> Latch edge time of the setup relationship

set_multicycle_path -setup -start<value> Launch edge time of the setup relationship

set_multicycle_path -hold -end <value> Latch edge time of the hold relationship

set_multicycle_path -hold -start <value> Launch edge time of the hold relationship
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–30 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
In this example, the source clock has a period of 10 ns, but a group of registers are
enabled by a toggling clock, so they only toggle every other cycle. Since they are fed
by a 10 ns clock, the TimeQuest analyzer reports a set up of 10 ns and a hold of 0 ns,
However, since the data is transferring every other cycle, the relationships should be
analyzed as if the clock were operating at 20 ns, which would result in a setup of
20 ns, while the hold remains 0 ns, in essence, extending the window of time when the
data can be recognized.

Example 7–23 shows a pair of multicycle assignments that relax the setup relationship
by specifying the -setup value of N and the -hold value as N-1. You must specify the
hold relationship with a -hold assignment to prevent a positive hold requirement.

Figure 7–12 shows how the exception relaxes the setup by two or three cycles.

This pattern can be extended to create larger setup relationships in order to ease
timing closure requirements. A common use for this exception is when writing to
asynchronous RAM across an I/O interface. The delay between address, data, and a
write enable may be several cycles. A multicycle exception to I/O ports can allow
extra time for the address and data to resolve before the enable occurs.

Example 7–24 shows how a relaxing the setup by three cycles can be achieved.

Example 7–23. Relaxing Setup while Maintaining Hold

set_multicycle_path -setup -from src_reg* -to dst_reg* 2
set_multicycle_path -hold -from src_reg* -to dst_reg* 1

Figure 7–12. Relaxing Setup by Multiple Cycles

Example 7–24. Three Cycle I/O Interface Exception

set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Setup = 3
Hold = 2

Setup = 30 ns
Hold = 0 ns
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–31
Creating Timing Exceptions
Accounting for a Phase Shift
In this example, the design contains a PLL that performs a phase-shift on a clock
whose domain exchanges data with domains that do not experience the phase shift.
For example, when the destination clock is phase-shifted forward and the source clock
is not, the default setup relationship becomes that phase-shift.

Example 7–25 shows a circumstance where a PLL phase-shifts one output forward by
a small amount, for example 0.2 ns.

The default setup relationship for this phase-shift is 0.2 ns, shown in Figure A,
creating a scenario where the hold relationship is negative, which makes achieving
timing closure nearly impossible.

Adding the constraint shown in Example Y allows the data to transfer to the following
edge.

The hold relationship is derived from the setup relationship, making a multicyle hold
constraint unnecessary. For a more complete example refer to “Same Frequency
Clocks with Destination Clock Offset” on page 7–44.

h For more information about the set_multicycle_path command—including full
syntax information, options, and example usage—refer to set_multicycle_path in
Quartus II Help.

Example 7–25. Cross Domain Phase-Shift

create_generated_clock -source pll|inclk[0] -name pll|clk[0] pll|clk[0]
create_generated_clock -source pll|inclk[0] -name pll|clk[1] -phase 30 pll|clk[1]

Figure 7–13. Phase-Shifted Setup and Hold

-10 ns 0 ns 10 ns 20 ns

-10 ns 0 ns 10 ns 20 ns

No Multicycles
(Default Relationship)

Setup = 0.2 ns
Hold = -9.8 ns

Setup = 2

Setup = 10.2 ns
Hold = 0.2 ns

Example 7–26. Adjusting the Phase-Shift with a set_multicycle_path Constraint

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm

7–32 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Multicycle Clock Setup Check and Hold Check Analysis
You can modify the setup and hold relationship when you apply a multicycle
exception to a register-to-register path. Figure 7–14 shows a register-to-register path
with various timing parameters labeled.

Multicycle Clock Setup
The setup relationship is defined as the number of clock periods between the latch
edge and the launch edge. By default, the TimeQuest analyzer performs a single-cycle
path analysis, which results in the setup relationship being equal to one clock period
(latch edge – launch edge). Applying a multicycle setup assignment, adjusts the setup
relationship by the multicycle setup value. The adjustment value may be negative.

An end multicycle setup assignment modifies the latch edge of the destination clock
by moving the latch edge the specified number of clock periods to the right of the
determined default latch edge. Figure 7–15 shows various values of the end
multicycle setup assignment and the resulting latch edge.

Figure 7–14. Register-to-Register Path

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

CLK

Tclk1

TCO TSU / TH

Tdata

Tclk2

Figure 7–15. End Multicycle Setup Values

-10 0 10 20

REG1.CLK

REG2.CLK

EMS = 2

EMS = 1
(default)

EMS = 3
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–33
Creating Timing Exceptions
A start multicycle setup assignment modifies the launch edge of the source clock by
moving the launch edge the specified number of clock periods to the left of the
determined default launch edge. Figure 7–16 shows various values of the start
multicycle setup assignment and the resulting launch edge.

Figure 7–17 shows the setup relationship reported by the TimeQuest analyzer for the
negative setup relationship shown in Figure 7–16.

Multicycle Clock Hold
The setup relationship is defined as the number of clock periods between the launch
edge and the latch edge. By default, the TimeQuest analyzer performs a single-cycle
path analysis, which results in the hold relationship being equal to one clock period
(launch edge – latch edge). When analyzing a path, the TimeQuest analyzer performs
two hold checks. The first hold check determines that the data launched by the
current launch edge is not captured by the previous latch edge. The second hold check
determines that the data launched by the next launch edge is not captured by the
current latch edge. The TimeQuest analyzer reports only the most restrictive hold
check. Equation 7–3 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

Figure 7–16. Start Multicycle Setup Values

100 20 30 40

SMS = 2

SMS = 3
SMS = 1
(default)

Source Clock

Destination Clock

Figure 7–17. Start Multicycle Setup Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

SMS = 2

SMS = 1
(default)

SMS = 3

Equation 7–3. Hold Check

hold check 1 current launch edge= previous latch edge–

hold check 2 next launch edge= current latch edge–
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–34 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
1 If a hold check overlaps a setup check, the hold check is ignored.

A start multicycle hold assignment modifies the launch edge of the destination clock
by moving the latch edge the specified number of clock periods to the right of the
determined default launch edge. Figure 7–18 shows various values of the start
multicycle hold assignment and the resulting launch edge.

An end multicycle hold assignment modifies the latch edge of the destination clock by
moving the latch edge the specific ed number of clock periods to the left of the
determined default latch edge. Figure 7–19 shows various values of the end
multicycle hold assignment and the resulting latch edge.

Figure 7–18. Start Multicycle Hold Values

-10 0 10 20

Source Clock

Destination Clock

SMH = 1
SMH = 0
(default) SMH = 2

Figure 7–19. End Multicycle Hold Values

-10-20 0 10 20

Source Clock

Destination Clock

EMH = 2

EMH= 0
(default)EMH = 1
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–35
Creating Timing Exceptions
Figure 7–20 shows the hold relationship reported by the TimeQuest analyzer for the
negative hold relationship shown in Figure 7–19.

Examples of Basic Multicycle Exceptions
This section describes the following examples of combinations of multicycle
exceptions:

■ “Default Settings” on page 7–35

■ “End Multicycle Setup = 2 and End Multicycle Hold = 0” on page 7–38

■ “End Multicycle Setup = 2 and End Multicycle Hold = 1” on page 7–41

Each example explains how the multicycle exceptions affect the default setup and
hold analysis in the TimeQuest analyzer. The multicycle exceptions are applied to a
simple register-to-register circuit. Both the source and destination clocks are set to
10 ns.

Default Settings
By default, the TimeQuest analyzer performs a single-cycle analysis to determine the
setup and hold checks. Also, by default, the TimeQuest analyzer sets the end
multicycle setup assignment value to one and the end multicycle hold assignment
value to zero.

Figure 7–20. End Multicycle Hold Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

EMH = 2EMH = 0
default)

EMH = 1
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–36 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–21 shows the source and the destination timing waveform for the source
register and destination register, respectively where HC1 and HC2 are hold checks
one and two and SC is the setup check.

Equation 7–4 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with the default single-cycle analysis, that is, a
setup relationship with an end multicycle setup assignment of one, is 10 ns.

Figure 7–21. Default Timing Diagram

-10 0 10 20

Current Launch

Current Latch

0 1 2

HC1 HC2SC

REG1.CLK

REG2.CLK

Equation 7–4. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10 ns 0 ns–

10 ns
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–37
Creating Timing Exceptions
Figure 7–22 shows the setup report for the default setup in the TimeQuest analyzer
with the launch and latch edges highlighted.

Equation 7–5 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with the default single-cycle analysis, that a
hold relationship with an end multicycle hold assignment of zero, is 0 ns.

Figure 7–22. Setup Report

Equation 7–5. Hold Check

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–38 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–23 shows the hold report for the default setup in the TimeQuest analyzer
with the launch and latch edges highlighted.

End Multicycle Setup = 2 and End Multicycle Hold = 0
In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is zero. Example 7–27 shows the multicycle
exceptions applied to the register-to-register design for this example.

1 An end multicycle hold value is not required because the default end multicycle hold
value is zero.

In this example, the setup relationship is relaxed by a full clock period by moving the
latch edge to the next latch edge. The hold analysis is unchanged from the default
settings.

Figure 7–23. Hold Report

Example 7–27. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_\
dst] -setup -end 2
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–39
Creating Timing Exceptions
Figure 7–24 shows the setup timing diagram. The latch edge is a clock cycle later than
in the default single-cycle analysis.

Equation 7–6 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with an end multicycle setup assignment of
two is 20 ns.

Figure 7–25 shows the setup report in the TimeQuest analyzer with the launch and
latch edges highlighted.

Figure 7–24. Setup Timing Diagram

-10 0 10 20

Current Launch

Current Latch

SC

REG1.CLK

REG2.CLK

Equation 7–6. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

20 ns 0 ns–

20 ns

Figure 7–25. Setup Report
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–40 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Because the multicycle hold latch and launch edges are the same as the results of hold
analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. Figure 7–26 shows the timing diagram for
the hold checks for this example. The hold checks are relative to the setup check.
Usually, the TimeQuest analyzer performs hold checks on every possible setup check,
not only on the most restrictive setup check edges.

Equation 7–7 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of zero is 10 ns.

Figure 7–26. Hold Timing DIagram

-10 0 10 20

Current Launch

Current Latch

REG1.CLK

REG2.CLK

SCHC1Data HC2

Equation 7–7. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 10 ns–

10 ns–

hold check 2 next launch edge current latch edge–

10 ns 20 ns–

10 ns–
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–41
Creating Timing Exceptions
Figure 7–27 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

End Multicycle Setup = 2 and End Multicycle Hold = 1
In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is one. Example 7–28 shows the multicycle
exceptions applied to the register-to-register design for this example.

In this example, the setup relationship is relaxed by two clock periods by moving the
latch edge to the left two clock periods. The hold relationship is relaxed by a full
period by moving the latch edge to the previous latch edge.

Figure 7–27. Hold Report

Example 7–28. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2
set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-hold -end 1
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–42 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–28 shows the setup timing diagram.

Equation 7–8 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive hold relationship with an end multicycle setup assignment value
of two is 20 ns.

Figure 7–29 shows the setup report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Figure 7–28. Setup Timing Diagram

-10 0

0 1 2

10 20

SC

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

Equation 7–8. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

20 ns 0 ns–

20 ns

Figure 7–29. Setup Report
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–43
Creating Timing Exceptions
Figure 7–30 shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Equation 7–9 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of one is 0 ns.

Figure 7–30. Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC

HC1

HC2

Equation 7–9. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–44 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–31 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Application of Multicycle Exceptions
This section shows the following examples of applications of multicycle exceptions:

■ “Same Frequency Clocks with Destination Clock Offset” on page 7–44

■ “The Destination Clock Frequency is a Multiple of the Source Clock Frequency” on
page 7–47

■ “The Destination Clock Frequency is a Multiple of the Source Clock Frequency
with an Offset” on page 7–50

■ “The Source Clock Frequency is a Multiple of the Destination Clock Frequency” on
page 7–52

■ “The Source Clock Frequency is a Multiple of the Destination Clock Frequency
with an Offset” on page 7–55

Each example explains how the multicycle exceptions affect the default setup and
hold analysis in the TimeQuest analyzer. All of the examples are between related
clock domains. If your design contains related clocks, such as PLL clocks, and paths
between related clock domains, you can apply multicycle constraints.

Same Frequency Clocks with Destination Clock Offset
In this example, the source and destination clocks have the same frequency, but the
destination clock is offset with a positive phase shift. Both the source and destination
clocks have a period of 10 ns. The destination clock has a positive phase shift of 2 ns
with respect to the source clock. Figure 7–32 shows an example of a design with same
frequency clocks and a destination clock offset.

Figure 7–31. Hold Report
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–45
Creating Timing Exceptions
Figure 7–33 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–10 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–33 is too pessimistic and is not the setup
relationship required for typical designs. To correct the default analysis, you must use
an end multicycle setup exception of two. Example 7–29 shows the multicycle
exception used to correct the default analysis in this example.

Figure 7–32. Same Frequency Clocks with Destination Clock Offset

Figure 7–33. Setup Timing Diagram

Equation 7–10. Setup Check

=

=

=

Example 7–29. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

clk1

In

clk0

Out

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edge closest previous launch edge–

2 ns 0 ns–

2 ns
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–46 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–34 shows the timing diagram for the preferred setup relationship for this
example.
.

Figure 7–35 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of two.

Equation 7–11 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, the default hold analysis returns the preferred hold requirements and
no multicycle hold exceptions are required.

Figure 7–34. Preferred Setup Relationship

Figure 7–35. Default Hold Check

Equation 7–11. Hold Check

=

=

=

=

=

=

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

hold check 1 current launch edge previous latch edge–

0 ns 2 ns–

2 ns–

hold check 2 next launch edge current latch edge–

10 ns 12 ns–

2 ns–
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–47
Creating Timing Exceptions
Figure 7–36 shows the associated setup and hold analysis if the phase shift is –2 ns. In
this example, the default hold analysis is correct for the negative phase shift of 2 ns,
and no multicycle exceptions are required.

The Destination Clock Frequency is a Multiple of the Source Clock
Frequency
In this example, the destination clock frequency value of 5 ns is an integer multiple of
the source clock frequency of 10 ns. The destination clock frequency can be an integer
multiple of the source clock frequency when a PLL is used to generate both clocks
with a phase shift applied to the destination clock. Figure 7–37 shows an example of a
design where the destination clock frequency is a multiple of the source clock
frequency.

Figure 7–36. Negative Phase Shift

Figure 7–37. Destination Clock is Multiple of Source Clock

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–48 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–38 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–12 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–38 demonstrates that the data does not need
to be captured at edge one, but can be captured at edge two; therefore, you can relax
the setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of two. Example 7–30 shows
the multicycle exception used to correct the default analysis in this example.

Figure 7–38. Setup Timing Diagram

Equation 7–12. Setup Check

=

=

=

Example 7–30. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edge closest previous launch edge–

5 ns 0 ns–

5 ns
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–49
Creating Timing Exceptions
Figure 7–39 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–40 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of two.

Equation 7–13 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 0 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

Figure 7–39. Preferred Setup Analysis

Figure 7–40. Default Hold Check

Equation 7–13. Hold Check

=

=

=

=

=

=

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

hold check 1 current launch edge previous latch edge–

0 ns 5 ns–

5 ns–

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–50 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
The Destination Clock Frequency is a Multiple of the Source Clock
Frequency with an Offset
This example is a combination of the previous two examples. The destination clock
frequency is an integer multiple of the source clock frequency and the destination
clock has a positive phase shift. The destination clock frequency is 5 ns and the source
clock frequency is 10 ns. The destination clock also has a positive offset of 2 ns with
respect to the source clock. The destination clock frequency can be an integer multiple
of the source clock frequency with an offset when a PLL is used to generate both
clocks with a phase shift applied to the destination clock. Figure 7–41 shows an
example of a design in which the destination clock frequency is a multiple of the
source clock frequency with an offset.

Figure 7–42 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–14 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.
.

The setup relationship shown in Figure 7–42 demonstrates that the data does not need
to be captured at edge one, but can be captured at edge two; therefore, you can relax
the setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of three.

Figure 7–41. Destination Clock is Multiple of Source Clock with Offset

Figure 7–42. Setup Timing Diagram

Equation 7–14. Setup Check

=

=

=

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edgeˆ closest previous launch edge–

2 ns 0 ns–

2 ns
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–51
Creating Timing Exceptions
Example 7–31 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–43 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–44 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of three.

Example 7–31. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 3

Figure 7–43. Preferred Setup Analysis

Figure 7–44. Default Hold Check

SC

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1
HC2
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–52 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Equation 7–15 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 2 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

The Source Clock Frequency is a Multiple of the Destination Clock
Frequency
In this example, the source clock frequency value of 5 ns is an integer multiple of the
destination clock frequency of 10 ns. The source clock frequency can be an integer
multiple of the destination clock frequency when a PLL is used to generate both
clocks and different multiplication and division factors are used. Figure 7–45 shows
an example of a design where the source clock frequency is a multiple of the
destination clock frequency.

Equation 7–15. Hold Check

=

=

=

=

=

=

Figure 7–45. Source Clock Frequency is Multiple of Destination Clock Frequency

hold check 1 current launch edge previous latch edge–

0 ns 5 ns–

5 ns–

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–53
Creating Timing Exceptions
Figure 7–46 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–16 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–46 demonstrates that the data launched at
edge one does not need to be captured, and the data launched at edge two must be
captured; therefore, you can relax the setup requirement. To correct the default
analysis, you must shift the launch edge by one clock period with a start multicycle
setup exception of two.

Example 7–32 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–46. Default Setup Check Analysis

Equation 7–16. Setup Check

=

=

=

Example 7–32. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 2

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

setup check current latch edge closest previous launch edge–

10 ns 5 ns–

5 ns
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–54 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–47 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–48 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with a start multicycle setup value of two.

Equation 7–17 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.
.

In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
10 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

Figure 7–47. Preferred Setup Check Analysis

Figure 7–48. Default Hold Check

Equation 7–17. Hold Check

=

=

=

=

=

=

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1 HC2

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

5 ns 10 ns–

5 ns–
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–55
Creating Timing Exceptions
The Source Clock Frequency is a Multiple of the Destination Clock
Frequency with an Offset
In this example, the source clock frequency is an integer multiple of the destination
clock frequency and the destination clock has a positive phase offset. The source clock
frequency is 5 ns and destination clock frequency is 10 ns. The destination clock also
has a positive offset of 2 ns with respect to the source clock. The source clock
frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL is used to generate both clocks, different multiplication and division
factors are used, and a phase shift applied to the destination clock. Figure 7–49 shows
an example of a design where the source clock frequency is a multiple of the
destination clock frequency with an offset.

Figure 7–50 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–18 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.
.

The setup relationship shown in Figure 7–50 demonstrates that the data is not
launched at edge one, and the data that is launched at edge three must be captured;
therefore, you can relax the setup requirement. To correct the default analysis, you
must shift the launch edge by two clock periods with a start multicycle setup
exception of three.

Figure 7–49. Source Clock Frequency is Multiple of Destination Clock Frequency with Offset

Figure 7–50. Setup Timing Diagram

Equation 7–18. setup Check

=

=

=

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

C

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

setup check current latch edge closest previous launch edge–

12 ns 10 ns–

2 ns
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

7–56 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Example 7–33 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–51 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–52 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with a start multicycle setup value of three.

Equation 7–19 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

Example 7–33. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 3

Figure 7–51. Preferred Setup Check Analysis

Figure 7–52. Default Hold Check Analysis

Equation 7–19. Hold Check

=

=

=

=

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1

HC2

SC

hold check 1 current launch edge previous latch edge–

0 ns 2 ns–

2 ns–

hold check 2 next launch edge current latch edge–
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–57
Timing Reports
In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
12 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

Timing Reports
The TimeQuest analyzer provides real-time static timing analysis result reports. The
TimeQuest analyzer does not automatically generate reports; you must create each
report individually in the TimeQuest analyzer GUI or with command-line commands.
You can customize in which report to display specific timing information, excluding
fields that are not required.

Table 7–5 shows some of the different command-line commands you can use to
generate reports in the TimeQuest analyzer and the equivalent reports shown in the
TimeQuest analyzer GUI.

h For more information—including a complete list of commands to generate timing
reports and full syntax information, options, and example usage—refer to
::quartus::sta in Quartus II Help.

During compilation, the Quartus II software generates timing reports on different
timing areas in the design. You can configure various options for the TimeQuest
analyzer reports generated during compilation.

h For more information about the options you can set to customize the reports, refer to
TimeQuest Timing Analyzer Page in Quartus II Help.

You can also use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS assignment to
generate a report of the worst-case timing paths for each clock domain. This report
contains worst-case timing data for setup, hold, recovery, removal, and minimum
pulse width checks.

Use the TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignment to specify the
number of paths to report for each clock domain.

=

=

Equation 7–19. Hold Check

5 ns 12 ns–

7 ns–

Table 7–5. TimeQuest Analyzer Reports

Command-Line Command Report

report_timing Timing report

report_exceptions Exceptions report

report_clock_transfers Clock Transfers report

report_min_pulse_width Minimum Pulse Width report

report_ucp Unconstrained Paths report
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

7–58 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Document Revision History
Example 7–34 shows an example of how to use the
TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS and
TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignments in the .qsf to
generate reports.

f For more information about timing closure recommendations, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Document Revision History
Table 7–6 shows the revision history for this chapter.

Example 7–34. Generating Worst-Case Timing Reports

#Enable Worst-Case Timing Report
set_global_assignment -name TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS ON
#Report 10 paths per clock domain
set_global_assignment -name TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS 10

Table 7–6. Document Revision History (Part 1 of 2)

Date Version Changes

June 2012 12.0.0

■ Reorganized chapter.

■ Added “Using the Quartus II Templates” section on creating an SDC constraints file with
the Insert Template dialog box.

■ Added “Identifying the Quartus II Software Executable from the SDC File” section.

■ Revised multicycle exceptions section.

November 2011 11.1.0
■ Consolidated content from the Best Practices for the Quartus II TimeQuest

Timing Analyzer chapter.

■ Changed to new document template.

May 2011 11.0.0 ■ Updated to improve flow. Minor editorial updates.

December 2010 10.1.0

■ Changed to new document template.

■ Revised and reorganized entire chapter.

■ Linked to Quartus II Help.

July 2010 10.0.0 Updated to link to content on SDC commands and the TimeQuest analyzer GUI in Quartus II
Help.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–59
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2009 9.1.0

Updated for the Quartus II software version 9.1, including:

■ Added information about commands for adding and removing items from collections

■ Added information about the set_timing_derate and report_skew commands

■ Added information about worst-case timing reporting

■ Minor editorial updates

November 2008 8.1.0

Updated for the Quartus II software version 8.1, including:

■ Added the following sections:

■ “set_net_delay” on page 7–42

■ “Annotated Delay” on page 7–49

■ “report_net_delay” on page 7–66

■ Updated the descriptions of the -append and -file <name> options in tables
throughout the chapter

■ Updated entire chapter using 8½” × 11” chapter template

■ Minor editorial updates

Table 7–6. Document Revision History (Part 2 of 2)

Date Version Changes
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

7–60 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Document Revision History
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

	7. The Quartus II TimeQuest Timing Analyzer
	Getting Started with the TimeQuest Analyzer
	Running the TimeQuest Analyzer
	Recommended Flow
	Creating and Setting Up your Design
	Performing an Initial Compilation
	Specifying Timing Requirements
	Performing a Full Compilation
	Verifying Timing

	SDC File Precedence

	Using the Quartus II Templates
	Creating a Constraint File with the Quartus II Text Editor

	Constraining and Analyzing with Tcl Commands
	Collection Commands
	Wildcard Characters
	If you make an assignment to a node specified as reg?, the TimeQuest analyzer searches and applies the assignment to all design nodes that match the prefix reg and any single character following; for example, reg1, rega, and reg4.
	Adding and Removing Collection Items
	Using the query_collection Command
	Using the get_pins Command

	Identifying the Quartus II Software Executable from the SDC File
	Locating Timing Paths in Other Tools

	Design Constraints: An Example
	Creating Clocks and Clock Constraints
	Creating Base Clocks
	Creating Virtual Clocks
	I/O Interface Uncertainty

	Creating Multifrequency Clocks
	Creating Generated Clocks
	Deriving PLL Clocks
	Automatically Detecting Clocks and Creating Default Clock Constraints
	Creating Clock Groups
	Exclusive Clock Groups
	Asynchronous Clock Groups

	Accounting for Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty

	Creating I/O Requirements
	Input Constraints
	Output Constraints

	Creating Delay and Skew Constraints
	Advanced I/O Timing and Board Trace Model Delay
	Maximum Skew

	Creating Timing Exceptions
	Precedence
	False Paths
	Minimum and Maximum Delays
	Delay Annotation
	Multicycle Paths
	Common Multicycle Variations
	Relaxing Setup with set_multicyle_path
	Accounting for a Phase Shift

	Multicycle Clock Setup Check and Hold Check Analysis
	Multicycle Clock Setup
	Multicycle Clock Hold

	Examples of Basic Multicycle Exceptions
	Default Settings
	End Multicycle Setup = 2 and End Multicycle Hold = 0
	End Multicycle Setup = 2 and End Multicycle Hold = 1

	Application of Multicycle Exceptions
	Same Frequency Clocks with Destination Clock Offset
	The Destination Clock Frequency is a Multiple of the Source Clock Frequency
	The Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	The Source Clock Frequency is a Multiple of the Destination Clock Frequency
	The Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	Timing Reports
	Document Revision History

