
101 Innovation Drive
San Jose, CA 95134
www.altera.com

HB_DSPB_INTRO-3.0

Volume 1: Introduction to DSP Builder

DSP Builder Handbook

Document last updated for Altera Complete Design Suite version:
Document publication date:

12.0
June 2012

Feedback Subscribe

DSP Builder Handbook Volume 1: Introduction to DSP
Builder

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=HB_DSPB_INTRO
message URL mailto:TechDocFeedback@altera.com?subject=Feedback on HB_DSPB_INTRO-3.0 (DSP Builder Handbook Volume 1: Introduction to DSP Builder)

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

June 2012 Altera Corporation DSP Builder Handbook
Volume 1: Introduction to DSP Builder

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

June 2012 Altera Corporation
Contents
Chapter 1. Introducing DSP Design
DSP Systems in FPGAs . 1–1
FPGA Architecture Features . 1–1
Software Design Flow with DSP Processors . 1–3
DSP Design Flow in FPGAs . 1–3

Software Flow in FPGAs . 1–5
Software with Hardware Acceleration Flow . 1–5
Hardware Design Flow . 1–5

Chapter 2. Introducing DSP Builder
Advanced and Standard Blocksets . 2–1

Advanced Blockset . 2–2
Standard Blockset . 2–2

Tool Integration . 2–3
Simulink . 2–3
ModelSim . 2–3
Quartus II Software . 2–3
Qsys . 2–3

Chapter 3. Installing DSP Builder
System Requirements . 3–1
Obtaining and Installing DSP Builder . 3–2

DSP Builder Start Up Dependencies . 3–4
Licensing DSP Builder . 3–4
Upgrading from Earlier Versions . 3–4

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
DSP Builder Handbook
Volume 1: Introduction to DSP Builder

iv Contents
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

June 2012 Altera Corporation
1. Introducing DSP Design
This chapter introduces DSP Builder for implementing digital signal processing (DSP)
designs on Altera FPGAs.

DSP Systems in FPGAs
The DSP market includes the following rapidly evolving applications, which cover a
broad spectrum of performance and cost requirements:

■ 3G wireless

■ Voice over Internet protocol (VoIP)

■ Multimedia systems

■ Radar and satellite systems

■ Medical systems

■ Image-processing applications

■ Consumer electronics.

Specialized DSP processors can implement many of these applications. Although
these DSP processors are programmable through software, their hardware
architecture is not flexible. Therefore, fixed hardware architecture such as bus
performance bottlenecks, a fixed number of multiply accumulate (MAC) blocks, fixed
memory, fixed hardware accelerator blocks, and fixed data widths limit DSP
processors. The DSP processor’s fixed hardware architecture is not suitable for some
applications that require customized DSP function implementations.

FPGAs provide a reconfigurable solution for implementing DSP applications, higher
DSP throughput, and more raw data processing power than DSP processors. Because
you can reconfigure FPGAs, they offer complete hardware customization while
implementing various DSP applications. You can customize the architecture, bus
structure, memory, hardware accelerator blocks, and the number of MAC blocks in an
FPGA system.

FPGA Architecture Features
You can configure FPGAs to operate in different modes corresponding to a required
functionality. You can use a suitable hardware description language (HDL) such as
VHDL or Verilog HDL to implement any hardware design. Thus, the same FPGA can
implement a DSL router, a DSL modem, a JPEG encoder, a digital broadcast system, or
a backplane switch fabric interface.

High-density FPGAs incorporate embedded silicon features that can implement
complete systems inside an FPGA, creating a system on a programmable chip (SOPC)
implementation. Embedded silicon features such as embedded memory, DSP blocks,
and embedded processors are ideally suited for implementing DSP functions such as
finite impulse response (FIR) filters, fast Fourier transforms (FFTs), correlators,
equalizers, encoders, and decoders.
DSP Builder Handbook
Volume 1: Introduction to DSP Builder

1–2 Chapter 1: Introducing DSP Design
FPGA Architecture Features
The embedded DSP blocks also provide other functionality such as addition,
subtraction, and multiplication, which are common arithmetic operations in DSP
functions. Altera FPGAs offer much more multiplier bandwidth than DSP processors,
which only offer a limited number of multipliers.

One determining factor of the overall DSP bandwidth is the multiplier bandwidth,
therefore the overall DSP bandwidth of FPGAs can be much higher using FPGAs than
with DSP processors.

Many DSP applications use external memory devices to manage large amounts of
data processing. The embedded memory in FPGAs meets these requirements and also
eliminates the need for external memory devices in some cases.

Embedded processors in FPGAs provide overall system integration and flexibility
while partitioning the system between hardware and software. You can implement
the system’s software components in the embedded processors and implement the
hardware components in the FPGA's general logic resources. Altera devices provide a
choice between embedded soft core processors and embedded hard core processors.

You can implement soft core processors such as the Nios® II embedded processor in
FPGAs and add multiple system peripherals. The Nios II processor supports a
user-determinable multi-master bus architecture that optimizes the bus bandwidth
and removes potential bottlenecks found in DSP processors. You can use multimaster
buses to define as many buses and as much performance as needed for a particular
application. Off-the-shelf DSP processors make compromises between size and
performance when they choose the number of data buses on the chip, potentially
limiting performance.

Soft embedded processors in FPGAs provide access to custom instructions such as the
MUL instruction in Nios II processors that can perform a multiplication operation in
two clock cycles using hardware multipliers. FPGA devices provide a flexible
platform to accelerate performance-critical functions in hardware because of the
configurability of the device’s logic resources. DSP processors have predefined
hardware accelerator blocks, but FPGAs can implement hardware accelerators for
each application, allowing the best achievable performance from hardware
acceleration. You can implement hardware accelerator blocks with parameterizable IP
functions or from scratch using HDL.

f Altera offers many IP cores for DSP design, for more information about these IP cores,
refer to Chapter 2, Introducing DSP Builder.

You can parameterize Altera DSP IP cores for the most efficient hardware
implementation and to provide maximum flexibility. You can easily port the IP to new
FPGA families, leading to higher performance and lower cost. The flexibility of
programmable logic and soft IP cores allows you to quickly adapt your designs to
new standards without waiting for long lead times usually associated with DSP
processors.
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

Chapter 1: Introducing DSP Design 1–3
Software Design Flow with DSP Processors
Software Design Flow with DSP Processors
Figure 1–1 shows the typical software design flow that DSP programmers follow.

You can use algorithm development tools such as MATLAB to optimize DSP
algorithms and Simulink for system-level modeling. The algorithms and the
system-level models are then implemented in C/C++ or assembly code with an
integrated development environment that provides design, simulation, debug, and
real-time verification tools. You can use standard C-based DSP libraries to shorten
design cycles and derive the benefits of design re-use.

DSP Design Flow in FPGAs
Traditionally, system engineers use a hardware flow based on a HDL language, such
as Verilog HDL or VHDL, to implement DSP systems in FPGAs. Altera tools such as
DSP Builder, Qsys, and the Nios II embedded design suite (EDS) enable you to follow
a software-based design flow while targeting FPGAs.

Figure 1–1. Software-Based DSP Design Flow

Use
MATLAB or Simulink
to Design Algorithm

Write Assembly
or C Code

Add DSP
Libraries

Use DSP Processor
Tools (Compiler,

Assembler, Linker,
and Debugger)

to Implement Algorithm
June 2012 Altera Corporation DSP Builder Handbook
Volume 1: Introduction to DSP Builder

1–4 Chapter 1: Introducing DSP Design
DSP Design Flow in FPGAs
The DSP Builder tool simplifies hardware implementation of DSP functions, provides
a system-level verification tool to the system engineer who is not necessarily familiar
with HDL design flow, and allows the system engineer to implement DSP functions in
FPGAs without learning HDL. DSP Builder provides an interface from Simulink
directly to the FPGA hardware (Figure 1–2). Additionally, you can incorporate the
designs created by DSP Builder into a Qsys system for a complete DSP system
implementation
.

Figure 1–3 shows the various design-flow options available for FPGAs.

Figure 1–2. DSP Builder General Design Flow for Altera FPGAs

Add Functions
in DSP Builder

Perform Synthesis,
Place-and-Route

(Quartus IISoftware)

Use
MATLAB or Simulink to

Design Algorithm

Evaluate Hardware
in a DSP

Development Kit

DSP
Libraries

Figure 1–3. FPGA-Based DSP Design Flow Options

[

� Develop DSP
 Algorithm
� Model System

� Develop DSP
 Algorithm
� Model System

� Develop DSP
 Algorithm
� Model System

Software Flow Hardware Flow
Software and Hardware

Acceleration Flow

Configure FPGAConfigure FPGA

Build
System

Develop
Software

Configure FPGA

Use
Software
Library

Build
System

Design DSP
Hardware

Accelerator
Functions

Develop
Software

Translate
to HDLUse

Software
Library
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

Chapter 1: Introducing DSP Design 1–5
DSP Design Flow in FPGAs
Software Flow in FPGAs
Altera FPGAs with embedded processors support a software-based design flow.
Altera provides the Nios II EDS development tools for compiling, debugging,
assembling, and linking software designs. You can then use either on-chip RAM or an
external memory device to download these software designs to an FPGA.

Software with Hardware Acceleration Flow
Embedded processors and hardware acceleration offer the flexibility, performance,
and cost effectiveness in a development flow that is familiar to software developers.
You can combine a software design flow with hardware acceleration. In this flow, you
first profile C code and identify the functions that are the most performance critical.
Then, you can use Altera's DSP IP or develop your own custom instructions to
accelerate those tasks in the FPGA.

You can run the system control code with the other low-performance DSP algorithms
on a Nios II embedded processor.

Altera also provides system integration tools such as Qsys for system-level
partitioning and interconnection. You can use Qsys to build entire hardware systems
by combining the embedded processor, such as a Nios II embedded processor, with
other system peripherals and IP cores.

Hardware Design Flow
You can use an HDL-based hardware design flow to develop a pure hardware
implementation of a DSP system. Altera provides a complete set of FPGA
development tools including the Quartus® II software and interfaces to other EDA
tools such as Synopsys, Synplify, and Precision Synthesis. These tools enable
hardware design, simulation, debug, and in-system verification of the DSP system.
You can also follow the DSP Builder design flow (Figure 1–2) and implement
hardware-only DSP systems in FPGAs without learning HDL.

f For information about the DSP Builder design flow, refer to Chapter 2, Introducing
DSP Builder.
June 2012 Altera Corporation DSP Builder Handbook
Volume 1: Introduction to DSP Builder

1–6 Chapter 1: Introducing DSP Design
DSP Design Flow in FPGAs
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

June 2012 Altera Corporation
2. Introducing DSP Builder
DSP Builder shortens DSP design cycles by helping you create the hardware
representation of a DSP design in an algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of MathWorks MATLAB and Simulink system-level design tools with the
Altera Quartus II software and third-party synthesis and simulation tools. You can
combine Simulink blocks with DSP Builder blocks to verify system level specifications
and perform simulation. Figure 2–1 shows the DSP Builder system-level design flow.

Advanced and Standard Blocksets
The DSP Builder installer installs two separate blocksets (advanced and standard),
which you can use separately or together from the Simulink library browser.

1 The DSP Builder standard blockset is a legacy product and Altera recommends you
do not use it for new designs, except as a wrapper for advanced blockset designs.

The DSP Builder advanced blockset does not interface directly with the DSP IP cores
but instead includes its own timing-driven IP blocks that can generate high
performance FIR, CIC, and NCO models.

The advanced blockset has the following features:

■ Automatic pipelining to enable timing closure at clock rates of 300 to 400 MHz

■ Automatic folding

■ Automatic resource sharing

■ Easy to compare and target different device families

Figure 2–1. DSP Builder System-Level Design Flow

Create System in
MATLAB or Simulink

Run HDL Synthesis
(Quartus II Software)

Simulate System
with Testbench

(ModelSim)

Verify System in Hardware
(SignalTap II Logic Analyzer)
DSP Builder Handbook
Volume 1: Introduction to DSP Builder

2–2 Chapter 2: Introducing DSP Builder
Advanced and Standard Blocksets
■ High-performance floating-point designs

Advanced Blockset
The DSP Builder advanced blockset consists of several Simulink libraries that allow
you to implement DSP designs quickly and easily. The blockset is based on a
high-level synthesis technology that optimizes the untimed netlist into low-level,
pipelined hardware for the target FPGA device and clock rate. DSP Builder
implements the hardware as VHDL with scripts that integrate with the Quartus II
software and the ModelSim simulator.

The combination of these features allows you to create a design without intimate
device knowledge, which can run on a variety of FPGA families with different
hardware architectures.

After specifying the desired clock frequency, number of channels, and other top-level
design constraints, the generated RTL is automatically pipelined to achieve timing
closure. By analyzing the system-level constraints, DSP Builder also optimizes folding
to balance latency versus resources, with no need for manual RTL editing.

The advanced blockset includes the following two component libraries—ModelIP and
ModelPrim:

■ The ModelIP library consists of a set of multichannel, multirate cycle- accurate
filters, mixers, and a numerically controlled oscillator (NCO) that allow you to
quickly create designs for digital front end applications. Altera provides several
design examples including up and down converters.

■ The ModelPrim library allows you to create fast efficient designs captured in the
behavioral domain rather than the implementation domain by combining zero
latency primitive blocks.

The advanced blockset is particularly suited for streaming algorithms characterized
by continuous data streams and occasional control. For example, RF card designs that
comprise long filter chains.

f For more information about the advanced blockset, refer to Volume 3: DSP Builder
Advanced Blockset in the DSP Builder Handbook.

Standard Blockset
You can use blocks from the standard blockset to create a hardware implementation of
a system modeled in Simulink. DSP Builder contains bit- and cycle-accurate Simulink
blocks—which cover basic operations such as arithmetic or storage functions—and
takes advantage of key device features such as built-in PLLs, DSP blocks, and
embedded memory.

You can integrate complex functions by including IP cores in your DSP Builder model.
You can also use the faster performance and richer instrumentation of hardware
cosimulation by implementing parts of your design in an FPGA.

The standard blockset supports imported HDL subsystems including HDL defined in
a Quartus II project file.

f For more information about the standard blockset, refer to Volume 2: DSP Builder
Standard Blockset in the DSP Builder Handbook.
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

http://www.altera.com/literature/hb/dspb/hb_dspb_adv.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_adv.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std.pdf

Chapter 2: Introducing DSP Builder 2–3
Tool Integration
Tool Integration
DSP Builder works with Simulink, the ModelSim software, and the Quartus II
software (including Qsys).

Simulink
DSP Builder is interoperable with other Simulink blocksets. In particular, you can use
the basic Simulink blockset to create interactive testbenches. The testbench block
allows you to generate a VHDL model, so that you can compare Simulink simulation
results with the ModelSim simulator.

f For information about Simulink fixed point types, the signal processing blockset and
the communications blockset, refer to the MATLAB Help.

ModelSim
You can run the ModelSim simulator from within DSP Builder, if the ModelSim
executable is in your path. You can use a script to integrate between the DSP Builder
advanced blockset and the ModelSim simulator. The script runs the automatic
testbench flow for a block. It reads some stimulus files at run time to verify a
hardware block. The automatic testbench flow runs a rigorous test and returns a result
whether or not the outputs match.

Quartus II Software
The advanced blockset allows you to build high-speed, high-performance DSP
datapaths. In most production designs there is an RTL layer surrounding this
datapath to perform interfacing to processors, high speed I/O, memories, and so on.

To complete the design, use Qsys or RTL to assign board level components. The
Quartus II software can then complete the synthesis and place-and-route process.

You can automatically load a design into the Quartus II software by clicking on the
Run Quartus II block in the top-level model.

Qsys
DSP Builder creates a memory-mapped interface and hw.tcl file for each advanced
blockset design. This file can expose the processor bus for connection in Qsys. A DSP
Builder advanced blockset subsystem is available from the System Contents tab in
Qsys after you add the path to the hw.tcl file to the Qsys IP search path.
June 2012 Altera Corporation DSP Builder Handbook
Volume 1: Introduction to DSP Builder

2–4 Chapter 2: Introducing DSP Builder
Tool Integration
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

June 2012 Altera Corporation
3. Installing DSP Builder
This chapter describes how to install DSP Builder.

System Requirements
DSP Builder integrates with the The MathWorks MATLAB and Simulink tools and
with the Altera Quartus® II software.

f For Quartus II system requirements and installation instructions, refer to Altera
Software Installation and Licensing.

Ensure at least one version of The MathWorks MATLAB and Simulink tool is
available on your workstation before you install DSP Builder. Table 3–1 lists the tool
dependencies for DSP Builder.

1 You should use the same version of the Quartus II software and DSP Builder.

Table 3–1. DSP Builder Tool Dependencies

Tool Software Version

DSP Builder 12.0 11.1 11.0

The MathWorks (MATLAB
and Simulink) (1)

R2010a
R2010b
R2011a
R2011b

R2009b
R2010a
R2010b
R2011a

R2009b
R2010a
R2010b
R2011a

Notes to Table 3–1:

(1) The DSP Builder advanced blockset uses Simulink fixed-point types for all operations and requires licensed
versions of Simulink Fixed Point. Altera also recommends DSP System Toolbox and the Communications System
Toolbox, which some design examples use.
DSP Builder Handbook
Volume 1: Introduction to DSP Builder

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

3–2 Chapter 3: Installing DSP Builder
Obtaining and Installing DSP Builder
Obtaining and Installing DSP Builder
You install DSP Builder from the Altera Complete Design Suite DVD. In the Altera
software installer, ensure you turn on DSP Builder in the Select components window
(Figure 3–1).

Figure 3–1. Select Components—DSP Builder
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

Chapter 3: Installing DSP Builder 3–3
Obtaining and Installing DSP Builder
Figure 3–2 shows the DSP Builder directory structure, where <path> is the installation
directory that contains the Quartus II software. The default installation directory is
c:\altera\<version>\quartus on Windows or /opt/altera<version>/quartus on Linux.

After installing DSP Builder, the Altera DSP Builder standard blockset and the Altera
DSP Builder advanced blockset libraries are available in the Simulink library browser
in the MATLAB software.

To start DSP Builder, follow one of these steps:

■ On Windows OS, click on Start, point to All Programs, click Altera <version>,
click DSP Builder, and click Start in MATLAB version XX.

1 If you have multiple versions of MATLAB installed, you can start DSP
Builder in your desired version from this menu.

■ On Linux OS, use the following command, which automatically finds MATLAB.

<path to the Quartus II software>/dsp_builder/dsp_builder.sh

1 You can use the following options after the dsp_builder.sh command:

■ -m <path to MATLAB> to specify another MATLAB path

■ -glnx86 to run 32-bit DSP Builder

Figure 3–2. DSP Builder Directory Structure

<path>
Installation directory containing the Quartus II software.

dsp_builder
Contains the DSP Builder standard blockset (legacy).

blocksets
Contains binary files and MATLAB scripts.

dspba
Contains the DSP Builder advanced blockset.

devices
Contains the device specifications.
docs
Contains the Simulink integrated help files.
dspba_cockpit
Contains GUI support files.
examples
Contains the design examples.
libraries
Contains extra HDL libraries.
messages
Contains error messages.
polycache
Contains floating-point support files.
SysConAPI
Contains the API fles.
June 2012 Altera Corporation DSP Builder Handbook
Volume 1: Introduction to DSP Builder

3–4 Chapter 3: Installing DSP Builder
Licensing DSP Builder
DSP Builder Start Up Dependencies
DSP Builder uses the Quartus II libraries to share functionality that exists in the
Quartus II software, which places explicit dependencies on the Quartus II versions.

You can use DSP Builder blocks to create DSP designs and you can run Simulink
simulations without any requirements on the Quartus II software. However, when
you want to generate VHDL for the DSP design and to fit the design into an FPGA,
DSP Builder requires the Quartus II synthesis, and Fitter tools.

Licensing DSP Builder
Before using DSP Builder, you must request a license file from the Altera website at
www.altera.com/licensing and install it on your computer.

f For more information about licensing DSP Builder, refer to the Altera Software
Installation and Licensing Manual.

Upgrading from Earlier Versions
If you have a pre-v7.1 design, update to v7.2 before you update the v7.2 design to v8.x
or v9.0 or later.
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/licensing

June 2012 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Date Version Changes Made

June 2012 12.0

■ Updated MATLAB version support

■ Deleted Upgrading from v7.1 chapter

■ Updated installation instructions

■ Updated instructions for starting DSP Builder

November 2011 11.1 Updated MATLAB version support.

April 2011 11.0

■ Updated MATLAB version support

■ Added support for 64-bit MATLAB

■ Updated installation instructions

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
DSP Builder Handbook
Volume 1: Introduction to DSP Builder

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

m The multimedia icon directs you to a related multimedia presentation.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

The feedback icon allows you to submit feedback to Altera about the document.
Methods for collecting feedback vary as appropriate for each document.
DSP Builder Handbook June 2012 Altera Corporation
Volume 1: Introduction to DSP Builder

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	DSP Builder Handbook Volume 1: Introduction to DSP Builder
	Contents
	1. Introducing DSP Design
	DSP Systems in FPGAs
	FPGA Architecture Features
	Software Design Flow with DSP Processors
	DSP Design Flow in FPGAs
	Software Flow in FPGAs
	Software with Hardware Acceleration Flow
	Hardware Design Flow

	2. Introducing DSP Builder
	Advanced and Standard Blocksets
	Advanced Blockset
	Standard Blockset

	Tool Integration
	Simulink
	ModelSim
	Quartus II Software
	Qsys

	3. Installing DSP Builder
	System Requirements
	Obtaining and Installing DSP Builder
	DSP Builder Start Up Dependencies

	Licensing DSP Builder
	Upgrading from Earlier Versions

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

