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11. Design Guidelines for
HardCopy Series Devices

Introduction HardCopy® series devices provide dramatic cost savings, performance 
improvement, and reduced power consumption over their 
programmable counterparts. In order to ensure the smoothest possible 
transfer from the FPGA device to the equivalent HardCopy series device, 
you must meet certain design rules while the FPGA implementation is 
still in progress. A design that meets standard, accepted coding styles for 
FPGAs, adheres easier to recommended guidelines. This chapter 
describes some common situations that you should avoid. It also 
provides alternatives on how to design in these situations.

Design Assistant 
Tool

The Design Assistant tool in the Quartus® II software allows you to check 
for any potential design problems early in the design process. The Design 
Assistant is a design-rule checking tool that checks the compiled design 
for adherence to Altera® recommended design guidelines. It provides a 
summary of the violated rules that exist in a design together with explicit 
details of each violation instance. You can customize the set of rules that 
the tool checks to allow some rule violations in your design. This is useful 
if it is known that the design violates a particular rule that is not critical. 
However, for HardCopy design, you must enable all of the Design 
Assistant rules. All Design Assistant rules are enabled and run by default 
in the Quartus II software when using the HardCopy Timing 
Optimization Wizard in the HardCopy Utilities (Project menu). The 
HardCopy Advisor in the Quartus II software also checks to see if the 
Design Assistant is enabled.

The Design Assistant classifies messages using the four severity levels 
described in Table 11–1.

Table 11–1. Design Assistant Message Severity Levels  (Part 1 of 2)

Severity Level Description

Critical The rule violation described in the message critically affects 
the reliability of the design. Altera cannot migrate the design 
successfully to a HardCopy device without closely reviewing 
these violations.

High The rule violation described in the message affects the 
reliability of the design. Altera must review the violation 
before the design is migrated to a HardCopy device.
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A design that adheres to Altera recommended design guidelines does not 
produce any critical, high, or medium level Design Assistant messages. If 
the Design Assistant generates these kinds of messages, Altera’s 
HardCopy Design Center (which performs the migration) carefully 
reviews each message before considering implementing the FPGA design 
into a HardCopy design. After reviewing these messages with your 
design team, Altera may be able to implement the design in a HardCopy 
device. Informational messages are primarily for the benefit of the Altera 
HardCopy Design Center and are used to gather information about your 
design for the migration process from FPGA prototype to HardCopy 
production device.

Asynchronous 
Clock Domains

A design contains several clock sources, each driving a subsection of the 
design. A design subsection, driven by a single clock source is called a 
clock domain. The frequency and phase of each clock source can be 
different from the rest.

The timing diagram in Figure 11–1 shows two free-running clocks used 
to describe the nature of asynchronous clock domains. If the two clock 
signals do not have a synchronous, or fixed, relationship, they are 
asynchronous to each other. An example of asynchronous signals are two 
clock signals running at frequencies that have no obvious harmonic 
relationship.

Medium The rule violation described in the message may result in 
implementation complexity. The violation may impact the 
schedule or effort required to migrate the design to a 
HardCopy series device.

Information only The message contains information regarding a design rule.

Table 11–1. Design Assistant Message Severity Levels  (Part 2 of 2)

Severity Level Description
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Figure 11–1. Two Asynchronous Clock Signals Notes (1), (2)

Notes to Figure 11–1:
(1) clka = 10 MHz; clkb =13 MHz. 
(2) Both clocks have 50% duty cycles.

In Figure 11–1, the clka signal is defined with a rising edge at 0.0 ns, a 
falling edge at 50 ns, and the next rising edge at 100 ns 
(1/10 MHz = 100 ns). Subsequent rising edges of clka are at 200 ns, 
300 ns, 400 ns, and so on.

The clkb signal is defined with a rising edge at 0.0 ns, a falling edge at 
38.45 ns, and the next rising edge at 76.9 ns. The subsequent rising edges 
of clkb are at 153.8 ns, 230.7 ns, 307.6 ns, 384.5 ns, and so on.

Not until the thousandth clock edge of clkb (1000 × 76.9 = 76,900 ns) or 
the 7,690th clock edge of clka (7,690 × 100 = 769,000 ns), does clka and 
clkb have coincident edges. It is very unlikely that these two clocks are 
intended to synchronize with each other every 76,900 ns, so these two 
clock domains are considered asynchronous to each other.

A more subtle case of asynchronous clock domains occurs when two 
clock domains have a very obvious frequency and phase relationship, 
especially when one is a multiple of the other. Consider a system with 
clocks running at 100 MHz and 50 MHz. The edges of one of these clocks 
are always a fixed distance away, in time, from the edges of the other 
clock. In this case, the clock domains may or may not be asynchronous, 
depending on what your original intention was regarding the 
interactions of these two clock domains. 

Similarly, two clocks running at the same nominal frequency may be 
asynchronous to each other if there is no synchronization mechanism 
between them. For example, two crystal oscillators, each running at 
100 MHz on a PC board, have some frequency variations due to 
temperature fluctuations, and this may be different for each oscillator. 
This results in the two independent clock signals drifting in and out of 
phase with each other. 
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Transferring Data between Two Asynchronous Clock Domains

If two asynchronous clock domains need to communicate with each 
other, you need to consider how to reliably perform this operation. The 
following three examples shows how to transfer data between two 
asynchronous clock domains.: 

■ Using a double synchronizer
■ Using a first-in first-out (FIFO) buffer
■ Using a handshake protocol

The choice of which to use depends on the particular application, the 
number of asynchronous signals crossing clock boundaries, and the 
resources available to perform the cross-domain transfers. 

Using a Double Synchronizer for Single-Bit Data Transfer

Figure 11–2 shows a double synchronizer for single-bit data transfer 
consisting of a 2-bit shift register structure clocked by the receiving clock. 
The second stage of the shift register reduces the probability of 
metastability (unknown state) on the data output from the first register 
propagating through to the output of the second register. The data from 
the transmitting clock domain should come directly from a register. This 
technique is recommended only if single-data signals (for example, 
non-data buses) need to be transferred across clock domains. This is 
because it is possible that some bits of a data bus are captured in one clock 
cycle while other bits get captured in the next. More than two stages of 
the synchronizer circuit can be used at the expense of increased latency. 
The benefit of more stages is that the mean time between failures (MTBF) 
is increased with each additional stage.

Figure 11–2.  A Double Synchronizer Circuit
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Using a FIFO Buffer

The advantage of using a FIFO buffer, shown in Figure 11–3, is that 
Altera’s MegaWizard® Plug-In Manager makes it very easy to design a 
FIFO buffer. A FIFO buffer is useful when you need to transfer a data bus 
signal across an asynchronous clock domain, and it is beneficial to 
temporary storage of this data. A FIFO buffer circuit should not generate 
any Design Assistant warnings unless an asynchronous clear is used in 
the circuit. An asynchronous clear in the FIFO buffer circuit results in a 
warning stating that a reset signal generated in one clock domain is not 
being synchronized before being used in another clock domain. This 
occurs because a dual-clock FIFO megafunction only has one aclr pin to 
reset the entire FIFO buffer circuit. You cannot remove this warning in the 
case of a dual-clock FIFO buffer circuit. As a safeguard, Altera 
recommends using a reset signal that is synchronous to the clock domain 
of the write side of the FIFO buffer circuit. 

Figure 11–3.  A FIFO Buffer

Using a Handshake Protocol

A handshake protocol circuit uses a small quantity of logic cells to 
implement and guarantee that all bits of a data bus crossing 
asynchronous clock domains are registered by the same clock edge in the 
receiving clock domain. This circuit, shown in Figure 11–4, is best used in 
cases where there is no memory available to be used as FIFO buffers, and 
the design has many data buses to transfer between clock domains.
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Figure 11–4. A Handshake Protocol Circuit

This circuit is initiated by a data ready signal going high in the 
transmitting clock domain tx_clk. This is clocked into the data ready 
sampling registers and causes the Ready_Status signal to go high. The 
Data Ready signal must be long enough in duration so that it is 
successfully sampled in the receiver domain. This is important if the 
rx_clk signal is slower than tx_clk. 

At this point, the receiving clock domain rx_clk can read the data from 
the transmitting clock domain tx_clk. After this read operation has 
finished, the receiving clock domain (rx_clk) generates a synchronous 
Read_Ack signal, which gets registered by the read acknowledge 
register. This registered signal is sampled by the Read_Ack sampling 
circuit in the transmitter domain. The Read_Ack signal must be long 
enough in duration so that it is successfully sampled in the transmitter 
domain. This is important if the transmitter clock is slower than the 
receiver clock. After this event, the data transfer between the two 
asynchronous domains is complete, as shown by the timing diagram in 
Figure 11–5. 
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Figure 11–5. Data Transfer Between Two Asynchronous Clock Domains

Gated Clocks Clock gating is sometimes used to “turn off” parts of a circuit to reduce 
the total power consumption of a device. The gated clock signal prevents 
any of the logic driven by it from switching so the logic does not consume 
any power. This works best if the gating is done at the root of the clock 
tree. If the clock is gated at the leaf-cell level (for example, immediately 
before the input to the register), the device does not save much power 
because the whole clock network still toggles. The disadvantage in using 
this type of circuit is that it can lead to unexpected glitches on the 
resultant gated clock signal if certain rules are not adhered to. Rules are 
provided in the following subsections:

■ Preferred Clock Gating Circuit
■ Alternative Clock Gating Circuits
■ Inverted Clocks
■ Clocks Driving Non-Clock Pins
■ Clock Signals Should Use Dedicated Clock Resources
■ Mixing Clock Edges

Preferred Clock Gating Circuit

The preferred way to gate a clock signal is to use a purely synchronous 
circuit, as shown in Figure 11–6. In this implementation, the clock is not 
gated at all. Rather, the data signal into a register is gated. This circuit is 
sometimes represented as a register with a clock enable (CE) pin. This 
circuit is not sensitive to any glitches on the gate signal, so it gets 
generated directly from a register or any complex combinational 
function. The constraints on the gate or clock enable signal are exactly the 
same as those on the ‘d’ input of the gating multiplexer. Both of these 
signals must meet the setup and hold times of the register that they feed 
into.
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Figure 11–6.  Preferred Clock-Gating Circuit

This circuit only takes a few lines of VHDL or Verilog hardware 
description language (HDL) to describe.

The following is a VHDL code fragment for a synchronous clock gating 
circuit.

architecture rtl of vhdl_enable is
begin

process (rst, clk)
begin

if (rst = '0') then
q <= '0';

elsif clk'event and clk = '1' then
if (gate = '1') then

q <= d;
end if;

end if;
end process;

end rtl;

The following is a Verilog HDL code fragment for a synchronous clock 
gating circuit.

always @ (posedge clk or negedge rst)
begin

if (!rst)
q <= 1'b0;

else if (gate)
q <= d;

else
q <= q;

end

clk

d
q
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DFF0
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Alternative Clock Gating Circuits

If a clock gating circuit is absolutely necessary in the design, one of the 
following two circuits may also be used. The Design Assistant does not 
flag a violation for these circuits.

Clock Gating Circuit Using an AND Gate

Designs can use a two-input AND gate for a gated clock signal that feeds 
into positive-edge-triggered registers. One input to the AND gate is the 
original clock signal. The other input to the AND gate is the gating signal, 
which should be driven directly from a register clocked by the negative 
edge of the same original clock signal. Figure 11–7 shows this type of 
circuit.

Figure 11–7.  Clock Gating Circuit Using an AND Gate

Because the register that generates the gate signal is triggered off of the 
negative edge of the same clock, the effect of using both edges of the same 
clock in the design should be considered. The timing diagram in 
Figure 11–8 shows the operation of this circuit. The gate signal occurs 
after the negative edge of the clock and comes directly from a register. 
The logical AND of this gate signal, with the original un-inverted clock, 
generates a clean clock signal. 

Figure 11–8.  Timing Diagram for Clock Gating Circuit Using an AND Gate

If the delay between the register that generates the gate signal and the 
gate input to the AND gate is greater than the low period of the clock, 
(one half of the clock period for a 50% duty cycle clock), the clock pulse 
width is narrowed. 
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Clock Gating Circuit Using an OR Gate

Use a two-input OR gate for a gated clock signal that feeds into a 
negative-edge-triggered register. One input to the OR gate is the original 
clock signal. The other input to the OR gate is the gating signal, which 
should be driven directly from a register clocked by the positive edge of 
the same original clock signal. Figure 11–9 shows this circuit.

Figure 11–9. Clock Gating Circuit Using an OR Gate

Because the register that generates the gate signal is triggered off the 
positive edge of the same clock, you need to consider the effect of using 
both edges of the same clock in your design. The timing diagram in 
Figure 11–10 shows the operation of this circuit. The gate signal occurs 
after the positive edge of the clock, and comes directly from a register. 
The logical OR of this gate signal with the original, un-inverted clock 
generates a clean clock signal. This clean, gated clock signal should only 
feed registers that use the negative edge of the same clock.

Figure 11–10. Timing Diagram for Clock Gating Circuit Using an OR Gate

If the delay between the register that generates the gate signal and the 
gate input to the AND gate is greater than the low period of the clock, 
(one half of the clock period for a 50% duty cycle clock), the clock pulse 
width is narrowed. 

1 Altera recommends using a synchronous clock gating circuit 
because it is the only way to guarantee the duty cycle of the 
clock and to align the clock to the data.
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Inverted Clocks

A design may require both the positive edge and negative edge of a clock, 
as shown in Figure 11–11. In Altera FPGAs, each logic element (LE) has a 
programmable clock inversion feature. Use this feature to generate an 
inverted clock. 

1 Do not instantiate a LE look-up-table (LUT) configured as an 
inverter to generate the inverted clock signal.

Figure 11–11.  An LE LUT Configured as an Inverter

Using a LUT to perform the clock inversion may lead to a clock insertion 
delay and skew, which poses a significant challenge to timing closure of 
the design. It also consumes more device resources than are necessary. 
Refer to “Mixing Clock Edges” on page 11–14 for more information on 
this topic.

1 Do not generate schematics or register transfer level (RTL) code 
that instantiates LEs used to invert clocks. Instead, let the 
synthesis tool decide on the implementation of inverted clocks.

Clocks Driving Non-Clock Pins

As a general guideline, clock sources should only be used to drive the 
register clock pins. There are exceptions to this rule, but every effort 
should be taken to minimize these exceptions or remove them altogether. 

One category of exception is for various gated clocks, which are described 
in “Preferred Clock Gating Circuit” on page 11–7.

You should avoid another exception, when possible, in which you use a 
clock multiplexer circuit to select one clock from a number of different 
clock sources, to drive non-clock pins. This type of circuit introduces 
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complexity into the static timing analysis of HardCopy and FPGA 
implementations. For example, as shown in Figure 11–12, in order to 
investigate the timing of the sel_clk clock signal, it is necessary to make 
a clock assignment on the multiplexer output pin, which has a specific 
name. This name may change during the course of the design unless you 
preserve the node name in the Quartus II software settings. Refer to the 
Quartus II Help for more information on preserving node names.

Figure 11–12. A Circuit Showing a Multiplexer Implemented in a LUT

In the FPGA, a clock multiplexing circuit is built out of one or more LUTs, 
and the resulting multiplexer output clock may possibly no longer use 
one of the dedicated clock resources. Consequently, the skew and 
insertion delay of this multiplexed clock is potentially large, adversely 
impacting performance. The Quartus II Design Assistant traces clocks to 
their destination and, if it encounters a combinational gate, it issues a 
gated clock warning.

If the design requires this type of functionality, ensure that the 
multiplexer output drives one of the global routing resources in the 
FPGA. For example, this output should drive a fast line in an 
APEX™ 20KE device, or a global or regional clock in a Stratix® or Stratix II 
device.

Enhanced PLL Clock Switchover

Clock source multiplexing can be done using the enhanced PLL clock 
switchover feature in Stratix and Stratix II FPGAs, and in HardCopy 
Stratix and HardCopy II structured ASICs. The clock switchover feature 
allows multiple clock sources to be used as the reference clock of the 
enhanced PLL. The clock source switchover can be controlled by an input 
pin or internal logic. This generally eliminates the need for routing a 
multiplexed clock signal out to a board trace and bringing it back into the 
device, as shown in Figure 11–13. 

Routing a multiplexed clock signal, as shown in Figure 11–13, is only 
intended for APEX 20K FPGA and HardCopy APEX devices. This 
alternative to a clock multiplexing circuit ensures that a global clock 
resource is used to distribute the clock signal over the entire device by 
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routing the multiplexed clock signal to a primary output pin. Outside of 
the device, this output pin then drives one of the dedicated clock inputs 
of the same device, possibly through a phase-locked loop (PLL) to reduce 
the clock insertion delay. Although there is a large delay through the 
multiplexing circuit and external board trace, the resulting clock skew is 
very small because the design uses the dedicated clock resource for the 
selected clock signal. The advantage that this circuit has over the other 
implementations is that the timing analysis becomes very simple, with 
only a single-clock domain to analyze, whose source is a primary input 
pin to the APEX 20K FPGA or HardCopy APEX device.

Figure 11–13. Routing a Multiplexed Clock Signal to a Primary Output Pin

Clock Signals Should Use Dedicated Clock Resources

All clock signals in a design should be assigned to the global clock 
networks that exist in the target FPGA. Clock signals that are mapped to 
use non-dedicated clock networks can negatively affect the performance 
of the design. This is because the clock must be distributed using regular 
FPGA routing resources, which can be slower and have a larger skew 
than the dedicated clock networks. If your design has more clocks than 
are available in the target FPGA, you should consider reducing the 
number of clocks, so that only dedicated clock resources are used in the 
FPGA for clock distribution. If you need to exceed the number of 
dedicated clock resources, implement the clock with the lowest fan-out 
with regular (non-clock network) routing resources. Give priority to the 
fastest clock signals when deciding how to allocate dedicated clock 
resources.
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In the Quartus II software, you can use the Global Signal Logic option to 
specify that a clock signal is a global signal. You can also use the auto 
Global Clock Logic option to allow the Fitter to automatically choose 
clock signals as global signals.

1 Altera recommends using the FPGA’s built-in clock networks 
because they are pre-routed for low skew and for short insertion 
delay.

Mixing Clock Edges

You can use both edges of a single clock in a design. An example where 
both edges of a clock must be used in order to get the desired 
functionality is with a double data rate (DDR) memory interface. In 
Stratix II, Stratix, HardCopy II, and HardCopy Stratix devices, this 
interface logic is built into the I/O cell of the device, and rigorous 
simulation and characterization is performed on this interface to ensure 
its robustness. Consequently, this circuitry is an exception to the rule of 
using both edges of a clock. However, for general data transfers using 
generic logic resources, the design should only use a single edge of the 
clock. A circuit needs to use both edges of a single clock, then the duty 
cycle of the clock has to be accurately described to the Static Timing 
Analysis tool, otherwise inaccurate timing analysis could result. 
Figure 11–14 shows two clock waveforms. One has a 50% duty-cycle, the 
other has a 10% duty cycle.

Figure 11–14.  Clock Waveforms with 50% and 10% Duty Cycles
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Figure 11–15 shows a circuit that uses only the positive edge of the clock. 
The distance between successive positive clock edges is always the same; 
for example, the clock period. For this circuit, the duty cycle of the clock 
has no effect on the performance of the circuit.

Figure 11–15.  Circuit Using the Positive Edge of a Clock

Figure 11–16 shows a circuit that used the positive clock edge to launch 
data and the negative clock edge to capture this data. Since this particular 
clock has a 10% duty cycle, the amount of time between the launch edge 
and capture edge is small. This small gap makes it difficult for the 
synthesis tool to optimize the cloud of logic so that no setup-time 
violations occur at the capture register.

Figure 11–16. Circuit Using the Positive and Negative Edges of a Clock
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If you design a circuit that uses both clock edges, you could get the Design 
Assistant warning “Registers are Triggered by Different Edges of Same 
Clock.” You do not get this warning under the following conditions:

■ If the opposite clock edge is used in a clock gating circuit
■ A double data rate memory interface circuit is used

1 Try to only use a single edge of a clock in a design.

Combinational 
Loops

A combinational loop exists (Figure 11–17) if the output of a logic gate (or 
gates) feeds back to the input of the same gate without first encountering 
a register. A design should not contain any combinational loops.

Figure 11–17.  A Circuit Using a Combinational Loop

It is also possible to generate a combinational loop using a register 
(Figure 11–18) if the register output pin drives the reset pin of the same 
register.

Figure 11–18.  Generation of a Combinational Loop Using a Register

The timing diagram for this circuit is shown in Figure 11–19. When a 
logic 1 value on the register D input is clocked in, the logic 1 value 
appears on the Q output pin after the rising clock edge. The same clock 
event causes the QN output pin to go low, which in turn, causes the 
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register to be reset through RN. The Q register output consequently goes 
low. This circuit may not operate if there isn’t sufficient delay in the 
QN-to-RN path, and is not recommended. 

Figure 11–19.  Timing Diagram for the Circuit Shown in Figure 11–18

Combinational feedback loops are either intentionally or unintentionally 
introduced into a design. Intentional feedback loops are typically 
introduced in the form of instantiated latches. An instantiated latch is an 
example of a combinational feedback loop in Altera FPGAs because its 
function has to be built out of a LUT, and there are no latch primitives in 
the FPGA logic fabric. Unintentional combinational feedback loops 
usually exist due to partially specified IF-THEN or CASE constructs in 
the register transfer level (RTL). The Design Assistant checks your design 
for these circuit structures. If any are discovered, you should investigate 
and implement a fix to your RTL to remove unintended latches, or re-
design the circuit so that no latch instantiation is required. In Altera 
FPGAs, many registers are available, so there should never be any need 
to use a latch.

Combinational loops can cause significant stability and reliability 
problems in a design because the behavior of a combinational loop often 
depends on the relative propagation delays of the loop’s logic. This 
combinational loop circuit structure behaves differently under different 
operation conditions. A combinational loop is asynchronous in nature, 
and EDA tools operate best with synchronous circuits. 

A storage element such as a level-sensitive latch or an edge-triggered 
register has particular timing checks associated with it. For example, 
there is a setup-and-hold requirement for the data input of an 
edge-triggered register. Similarly, there is also a setup-and-hold timing 
requirement for the data to be stable in a transparent latch when the gate 
signal turns the latch from transparent to opaque. When latches are built 
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out of combinational gates, these timing checks do not exist, so the static 
timing analysis tool is not able to perform the necessary checks on these 
latch circuits. 

1 Check your design for intentional and unintentional 
combinational loops, and remove them.

Intentional 
Delays

Altera does not recommend instantiating a cell that does not benefit a 
design. This type of cell only delays the signal. For a synchronous circuit 
that uses a dedicated clock in the FPGA (Figure 11–20), this delay cell is 
not needed. In an ASIC, a delay cell is used to fix hold-time violations that 
occur due to the clock skew between two registers, being larger than the 
data path delay between those same two registers. The FPGA is designed 
with the clock skew and the clock-to-Q time of the FPGA registers in 
mind, to ensure that there is no need for a delay cell.

Figure 11–20 shows two versions of the same shift registers. Both circuits 
operate identically. The first version has a delay cell, possibly 
implemented using a LUT, in the data path from the Q output of the first 
register to the D input of the second register. The function of the delay cell 
is a non-inverting buffer. The second version of this circuit also shows a 
shift register function, but there is no delay cell in the data path. Both 
circuits operate identically.

Figure 11–20. Shift Register With and Without an Intentional Delay

D

CK

Q

DFF

D

CK

Q

DFF

I ODelay

D

CK

Q

DFF

D

CK

Q

DFF

Circuit With Delay

Circuit Without Delay

d q

d q



Altera Corporation 11–19
September 2008  

Intentional Delays

If delay chains exist in a design, they are possibly symptomatic of an 
asynchronous circuit. One such case is shown in the circuit in 
Figure 11–21. This circuit relies on the delay between two inputs of an 
AND gate to generate a pulse on the AND gate output. The pulse may or 
may not be generated, depending on the shape of the waveform on the 
A input pin.

Figure 11–21.  A Circuit and Corresponding Timing Diagram Showing a Delay 
Chain

Using delay chains can cause various design problems, including an 
increase in a design’s sensitivity to operating conditions and a decrease in 
design reliability. 

Be aware that not all cases of delay chains in a design are due to 
asynchronous circuitry. If the Design Assistant report states that you 
have delay chains that you are unaware of (or are not expecting), the 
delay chains may be a result of using pre-built intellectual property (IP) 
functions. Pre-built IP functions may contain delay chains which the 
Design Assistant reports. These functions are usually parameterizable, 
and have thousands of different combinations of parameter settings. The 
synthesis tool may not remove all unused LEs from these functions when 
particular parameter settings are used, but the resulting circuit is still 
synchronous. Check all Design Assistant delay chain warnings carefully. 

1 Avoid designing circuits that rely on the use of delay chains, and 
always carefully check any Design Assistant delay chain 
warnings. 

I ODelay
A B

C

The existence of this
glitch is unpredictable.



11–20 Altera Corporation
 September 2008

HardCopy Series Handbook, Volume 1

Ripple Counters Designs should not contain ripple counters. A ripple counter, shown in 
Figure 11–22, is a circuit structure where the Q output of the first counter 
stage drives into the clock input of the following counter stage. Each 
counter stage consists of a register with the inverted QN output pin 
feeding back into the D input of the same register. 

Figure 11–22.  A Typical Ripple Counter

This type of structure is used to make a counter out of the smallest 
amount of logic possible. However, the LE structure in Altera FPGA 
devices allows you to construct a counter using one LE per counter-bit, so 
there is no logic savings in using the ripple counter structure. Each stage 
of the counter in a ripple counter contributes some phase delay, which is 
cumulative in successive stages of the counter. Figure 11–23 shows the 
phase delay of the circuit in Figure 11–22.

Figure 11–23.  Timing Diagram Showing Phase Delay of Circuit Shown in Figure 11–22
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Pulse Generators

Figure 11–24 shows detailed view of the phase delay shown in 
Figure 11–23.

Figure 11–24. Detailed View of the Phase Delay Shown in Figure 11–23

This phase delay is problematic if the ripple counter outputs are used as 
clock signals for other circuits. Those other circuits are clocked by signals 
that have large skews.

Ripple counters are particularly challenging for static timing analysis 
tools to analyze as each stage in the ripple counter causes a new clock 
domain to be defined. The more clock domains that the static timing 
analysis tool has to deal with, the more complex and time-consuming the 
process becomes.

1 Altera recommends that you avoid using ripple counters under 
any circumstances.

Pulse 
Generators

A pulse generator is a circuit that generates a signal that has two or more 
transitions within a single clock period. Figure 11–25 shows an example 
of a pulse generator waveform.

1 For more information on pulse generators, refer to “Intentional 
Delays” on page 11–18.
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Figure 11–25. Example of a Pulse Generator Waveform

Creating Pulse Generators

Pulse generators can be created in two ways. The first way to create a 
pulse generator is to increase the width of a glitch using a 2-input AND, 
NAND, OR, or NOR gate, where the source for the two gate inputs are the 
same, but the design delays the source for one of the gate inputs, as 
shown in Figure 11–26.

Figure 11–26.  A Pulse Generator Circuit Using a 2-Input AND

The second way to create a pulse generator is by using a register where 
the register output drives its own asynchronous reset signal through a 
delay chain, as shown in Figure 11–27.

Figure 11–27. Pulse Generator Circuit Using a Register Output to Drive a Reset 
Signal Through a Delay Chain

These pulse generators are asynchronous in nature and are detected by 
the Design Assistant as unacceptable circuit structures. If you need to 
generate a pulsed signal, you should do it in a purely synchronous 
manner. That is, where the duration of the pulse is equal to one or more 
clock periods, as shown in Figure 11–28.
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Pulse Generators

Figure 11–28.  An Example of a Synchronous Pulse Generator

A synchronous pulse generator can be created with a simple section of 
Verilog HDL or VHDL code. The following is a Verilog HDL code 
fragment for a synchronous pulse generator circuit.

reg [2:0] count;
reg pulse;
always @ (posedge clk or negedge rst)
begin

if (!rst)
begin

count[2:0] <= 3'b000;
pulse <= 1'b0;

end
else

begin
count[2:0] <= count[2:0] + 1'b1;
if (count == 3'b000)

begin
pulse <= 1'b1;

end
else

begin
pulse <= 1'b0;

end
end

end
end

end

clk

pulsing signal
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Combinational 
Oscillator 
Circuits

The circuit shown in Figure 11–29 on page 11–24 consists of a 
combinational logic gate whose inverted output feeds back to one of the 
inputs of the same gate. This feedback path causes the output to change 
state and; therefore, oscillate. 

Figure 11–29. A Combinational Ring Oscillator Circuit

This circuit is sometimes built out of a series of cascaded inverters in a 
structure known as a ring oscillator. The frequency at which this circuit 
oscillates depends on the temperature, voltage, and process operating 
conditions of the device, and is completely asynchronous to any of the 
other clock domains in the device. Worse, the circuit may fail to oscillate 
at all, and the output of the inverter goes to a stable voltage at half of the 
supply voltage, as shown in Figure 11–30. This causes both the PMOS and 
NMOS transistors in the inverter chain to be switched on concurrently 
with a path from VCC to GND, with no inverter function and consuming 
static current.

Figure 11–30.  An Inverter Biased at 0.5 VCC

1 Avoid implementing any kind of combinational feedback 
oscillator circuit.

VCC

Input at
0.5 VCC

Output at
0.5 VCC
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Reset Circuitry Reset signals are control signals that synchronously or asynchronously 
affect the state of registers in a design. The special consideration given to 
clock signals also needs to be given to reset signals. Only the term “reset” 
is used in this document, but the information described here also applies 
to “set,” “preset,” and “clear” signals. Reset signals should only be used 
to put a circuit into a known initial condition. Also, both the set and 
reset pins of the same register should never be used together. If the 
signals driving them are both activated at the same time, the logic state of 
the register may be indeterminate.

Gated Reset

A gated reset is generated when combinational logic feeds into the 
asynchronous reset pin of a register. The gated reset signal may have 
glitches on it, causing unintentional resetting of the destination register. 
Figure 11–31 shows a gated reset circuit where the signal driving into the 
register reset pin has glitches on it causing unintentional resetting.

Figure 11–31.  A Gated Reset Circuit and its Associated Timing Diagram
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Figure 11–32 shows a better approach to implement a gated reset circuit, 
by placing a register on the output of the reset-gating logic, thereby 
synchronizing it to a clock. The register output then becomes a glitch-free 
reset signal that drives the rest of the design. However, the resulting reset 
signal is delayed by an extra clock cycle.

Figure 11–32. A Better Approach to the Gated Reset Circuit in Figure 11–31

Asynchronous Reset Synchronization

If the design needs to be put into a reset state in the absence of a clock 
signal, the only way to achieve this is through the use of an asynchronous 
reset. However, it is possible to generate a synchronous reset signal from 
an asynchronous one by using a double-buffer circuit, as shown in 
Figure 11–33. 
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Reset Circuitry

Figure 11–33.  A Double-Buffer Circuit

Synchronizing Reset Signals Across Clock Domains

In a design, an internally generated reset signal that is generated in one 
clock domain, and used in one or more other asynchronous clock 
domains, should be synchronized. A reset signal that is not synchronized 
can cause metastability problems.

The synchronization of the gated reset should follow these guidelines, as 
shown in Figure 11–34.

■ The reset signal should be synchronized with two or more cascading 
registers in the receiving asynchronous clock domain.

■ The cascading registers should be triggered on the same clock edge.
■ There should be no logic between the output of the transmitting 

clock domain and the cascaded registers in the receiving 
asynchronous clock domain.
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Figure 11–34. Circuit for a Synchronized Reset Signal Across Two Clock Domains

With either of the reset synchronization circuits described in 
Figures 11–33 and 11–34, when the reset is applied, the Q output of the 
registers in the design may send a wrong signal, momentarily causing 
some primary output pins to also send wrong signals. The circuit and its 
associated timing diagram, shown in Figure 11–35, demonstrate this 
phenomenon.
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Figure 11–35. Common Problem with Reset Synchronization Circuits

A purely synchronous reset circuit does not exhibit this behavior. The 
following Verilog HDL RTL code shows how to do this.

always @ (posedge clk)
begin
if (!rst)

q <= 1'b0;
else

q <= d; end

1 Avoid using reset signals for anything other than circuit 
initialization, and be aware of the reset signal timing if 
reset-synchronizing circuitry is used. 
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Asynchronous 
RAM

Altera FPGA devices contain flexible embedded memory structures that 
can be configured into many different modes. One possible mode is 
asynchronous RAM. The definition of an asynchronous RAM circuit is 
one where the write-enable signal driving into the RAM causes data to be 
written into it, without a clock being required, as shown in Figure 11–36. 
This means that the RAM is sensitive to corruption if any glitches exist on 
the write-enable signal. Also, the data and write address ports of the 
RAM should be stable before the write pulse is asserted, and must remain 
stable until the write pulse is de-asserted. These limitations in using 
memory structures in this asynchronous mode imply that synchronous 
memories are always preferred. Synchronous memories also provide 
higher design performance.

Figure 11–36. Potential Problems of Using Asynchronous RAM Structures

1 Stratix, Stratix II, HardCopy Stratix, and HardCopy II device 
architectures do not support asynchronous RAM behavior. 
These devices always use synchronous RAM input registers. 
Altera recommends using RAM output registering; this is 
optional, however, not using output registering degrades 
performance.

APEX 20K FPGA and HardCopy APEX support both 
synchronous and asynchronous RAM using the embedded 
system block (ESB). Altera recommends using synchronous 
RAM structures. Immediately registering both input and output 
RAM interfaces improves performance and timing closure.

write enable (active high)

din/waddr

This glitch on the write enable signal  
means that 

RAM contents may be corrupted.

Because the data and write
addresses are changing here

means unknown information is
written into the memory.



Altera Corporation 11–31
September 2008  

Conclusion

Conclusion Most issues described in this document can be easily avoided while a 
design is still in its early stages. These issues not only apply to HardCopy 
devices, but to any digital logic integrated circuit design, whether it is a 
standard cell ASIC, gate array, or FPGA.

Sometimes, violating one or more of the above guidelines is unavoidable, 
but understanding the implications of doing so is very important. One 
must be prepared to justify to Altera the need to break those rules in this 
case, and to support it with as much documentation as possible.

Following the guidelines outlined in this document can ultimately lead to 
the design being more robust, quicker to implement, easier to debug, and 
fitted more easily into the target architecture, increasing the likelihood of 
success. 
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