
QII53009-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 12.0
Volume 3: Verification
June 2012

June 2012
QII53009-12.0.0
13. Design Debugging Using the
SignalTap II Logic Analyzer
Altera provides the SignalTap II Logic Analyzer to help with the process of design
debugging. This logic analyzer is a solution that allows you to examine the behavior
of internal signals, without using extra I/O pins, while the design is running at full
speed on an FPGA device.

The SignalTap II Logic Analyzer is scalable, easy to use, and is available as a
stand-alone package or included with the Quartus II software subscription. This
logic analyzer helps debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment. Defining custom
trigger-condition logic provides greater accuracy and improves the ability to isolate
problems. The SignalTap II Logic Analyzer does not require external probes or
changes to the design files to capture the state of the internal nodes or I/O pins in the
design. All captured signal data is conveniently stored in device memory until you
are ready to read and analyze the data.

The topics in this chapter include:

■ “Design Flow Using the SignalTap II Logic Analyzer” on page 13–5

■ “SignalTap II Logic Analyzer Task Flow” on page 13–6

■ “Configure the SignalTap II Logic Analyzer” on page 13–9

■ “Define Triggers” on page 13–26

■ “Compile the Design” on page 13–45

■ “Program the Target Device or Devices” on page 13–50

■ “Run the SignalTap II Logic Analyzer” on page 13–51

■ “View, Analyze, and Use Captured Data” on page 13–56

■ “Other Features” on page 13–62

■ “Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems”
on page 13–67

■ “Custom Triggering Flow Application Examples” on page 13–68

■ “SignalTap II Scripting Support” on page 13–70
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53009
http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Design+Debugging+Using+the+SignalTap+II+Logic+Analyzer+http://www.altera.com/literature/hb/qts/qts_qii53009.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53009-12.0 (QII HB, Vol 3, Ch13: Design Debugging Using the SignalTap II Logic Analyzer)

13–2 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is a next-generation, system-level debugging tool
that captures and displays real-time signal behavior in a system-on-a-programmable-
chip (SOPC) or any FPGA design. The SignalTap II Logic Analyzer supports the
highest number of channels, largest sample depth, and fastest clock speeds of any
logic analyzer in the programmable logic market. Figure 13–1 shows a block diagram
of the components that make up the SignalTap II Logic Analyzer.

This chapter is intended for any designer who wants to debug an FPGA design
during normal device operation without the need for external lab equipment. Because
the SignalTap II Logic Analyzer is similar to traditional external logic analyzers,
familiarity with external logic analyzer operations is helpful, but not necessary. To
take advantage of faster compile times when making changes to the SignalTap II
Logic Analyzer, knowledge of the Quartus II incremental compilation feature is
helpful.

f For information about using the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Figure 13–1. SignalTap II Logic Analyzer Block Diagram (1)

Note to Figure 13–1:

(1) This diagram assumes that you compiled the SignalTap II Logic Analyzer with the design as a separate design partition using the Quartus II
incremental compilation feature. This is the default setting for new projects in the Quartus II software. If incremental compilation is disabled or
not used, the SignalTap II logic is integrated with the design. For information about the use of incremental compilation with SignalTap II, refer to
“Faster Compilations with Quartus II Incremental Compilation” on page 13–46.

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG

Hub

Altera
Programming

Hardware

Quartus II
Software

Buffers (Device Memory)

FPGA Device
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–3
Hardware and Software Requirements
You need the following components to perform logic analysis with the SignalTap II
Logic Analyzer:

■ Quartus II design software
or
Quartus II Web Edition (with the TalkBack feature enabled)
or
SignalTap II Logic Analyzer standalone software, included in and requiring the
Quartus II standalone Programmer software available from the Downloads page
of the Altera website (www.altera.com)

■ Download/upload cable

■ Altera development kit or your design board with JTAG connection to device
under test

1 The Quartus II software Web Edition does not support the SignalTap II
Logic Analyzer with the incremental compilation feature.

The memory blocks of the device store captured data and transfers the data to the
Quartus II software waveform display with a JTAG communication cable, such as
EthernetBlaster or USB-BlasterTM. Table 13–1 summarizes features and benefits of the
SignalTap II Logic Analyzer.

Table 13–1. SignalTap II Logic Analyzer Features and Benefits (Part 1 of 2)

Feature Benefit

Multiple logic analyzers in a single device Captures data from multiple clock domains in a design at the same time.

Multiple logic analyzers in multiple devices in
a single JTAG chain Simultaneously captures data from multiple devices in a JTAG chain.

Plug-In Support Easily specifies nodes, triggers, and signal mnemonics for IP, such as the
Nios II processor.

Up to 10 basic or advanced trigger conditions
for each analyzer instance

Enables sending more complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-Up Trigger Captures signal data for triggers that occur after device programming, but
before manually starting the logic analyzer.

State-based Triggering Flow Enables you to organize your triggering conditions to precisely define what
your logic analyzer captures.

Incremental compilation Modifies the SignalTap II Logic Analyzer monitored signals and triggers
without performing a full compilation, saving time.

Flexible buffer acquisition modes

The buffer acquisition control allows you to precisely control the data that is
written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard data
samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX
function

Collects the SignalTap II Logic Analyzer captured data into a MATLAB
integer matrix.

Up to 2,048 channels per logic analyzer
instance Samples many signals and wide bus structures.

Up to 128K samples in each device Captures a large sample set for each channel.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://www.altera.com

13–4 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
f The Quartus II software offers a portfolio of on-chip debugging solutions. For an
overview and comparison of all tools available in the In-System Verification Tool set,
refer to Section IV. In-System Design Debugging.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving the
logic under test.

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Logic Analyzer configurations.

No additional cost The SignalTap II Logic Analyzer is included with a Quartus II subscription
and with the Quartus II Web Edition (with TalkBack enabled).

Compatibility with other on-chip debugging
utilities

You can use the SignalTap II Logic Analyzer in tandem with any JTAG-based
on-chip debugging tool, such as an In-System Memory Content editor,
allowing you to change signal values in real-time while you are running an
analysis with the SignalTap II Logic Analyzer.

Table 13–1. SignalTap II Logic Analyzer Features and Benefits (Part 2 of 2)

Feature Benefit
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–5
Design Flow Using the SignalTap II Logic Analyzer
Design Flow Using the SignalTap II Logic Analyzer
Figure 13–2 shows a typical overall FPGA design flow for using the SignalTap II Logic
Analyzer in your design. A SignalTap II file (.stp) is added to and enabled in your
project, or a SignalTap II HDL function, created with the MegaWizard™ Plug-In
Manager, is instantiated in your design. The figure shows the flow of operations from
initially adding the SignalTap II Logic Analyzer to your design to final device
configuration, testing, and debugging.

Figure 13–2. SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Analysis and Synthesis

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Assembler

Timing Analyzer

Yes

SignalTap II File (.stp)
or SignalTap II

MegaWizard File

Debug Source File No

End

Configuration

Functionality
Satisfied?
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–6 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Logic Analyzer Task Flow
SignalTap II Logic Analyzer Task Flow
To use the SignalTap II Logic Analyzer to debug your design, you perform a number
of tasks to add, configure, and run the logic analyzer. Figure 13–3 shows a typical flow
of the tasks you complete to debug your design. Refer to the appropriate section of
this chapter for more information about each of these tasks.

Add the SignalTap II Logic Analyzer to Your Design
Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the MegaWizard Plug-In Manager. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

h For information about creating an .stp, refer to Setting Up the SignalTap II Logic
Analyzer in Quartus II Help.

Figure 13–3. SignalTap II Logic Analyzer Task Flow

End

Create New Project or
Open Existing Project

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Add SignalTap II Logic
Analyzer to Design Instance

Configure
SignalTap II Logic Analyzer

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Logic Analyzer

Adjust Options,
Triggers, or both

Continue Debugging

Recompilation
Necessary?

Yes
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–7
SignalTap II Logic Analyzer Task Flow
Configure the SignalTap II Logic Analyzer
After you add the SignalTap II Logic Analyzer to your design, configure the logic
analyzer to monitor the signals you want. You can manually add signals or use a
plug-in, such as the Nios II processor plug-in, to quickly add entire sets of associated
signals for a particular intellectual property (IP). You can also specify settings for the
data capture buffer, such as its size, the method in which data is captured and stored,
and the device memory type to use for the buffer in devices that support memory
type selection.

h For information about configuring the SignalTap II Logic Analyzer, refer to Setting Up
the SignalTap II Logic Analyzer in Quartus II Help.

Define Trigger Conditions
The SignalTap II Logic Analyzer captures data continuously while the logic analyzer
is running. To capture and store specific signal data, set up triggers that tell the logic
analyzer under what conditions to stop capturing data. The SignalTap II Logic
Analyzer allows you to define trigger conditions that range from very simple, such as
the rising edge of a single signal, to very complex, involving groups of signals, extra
logic, and multiple conditions. Power-Up Triggers allow you to capture data from
trigger events occurring immediately after the device enters user-mode after
configuration.

h For information about defining trigger conditions, refer to Setting Up the SignalTap II
Logic Analyzer in Quartus II Help.

Compile the Design
With the .stp configured and trigger conditions defined, compile your project as usual
to include the logic analyzer in your design. Because you may need to change
monitored signal nodes or adjust trigger settings frequently during debugging, Altera
recommends that you use the incremental compilation feature built into the
SignalTap II Logic Analyzer, along with Quartus II incremental compilation, to reduce
recompile times.

h For information about compiling your design, refer to Compiling a Design that Contains
a SignalTap II Logic Analyzer in Quartus II Help.

Program the Target Device or Devices
When you debug a design with the SignalTap II Logic Analyzer, you can program a
target device directly from the .stp without using the Quartus II Programmer. You can
also program multiple devices with different designs and simultaneously debug
them.

1 The SignalTap II Logic Analyzer supports all current Altera FPGA device families
including Arria, Cyclone, HardCopy, and Stratix devices.

h For instructions on programming devices in the Quartus II software, refer to Running
the SignalTap II Logic Analyzer in Quartus II Help.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_compile_sigtap2.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_compile_sigtap2.htm

13–8 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Logic Analyzer Task Flow
Run the SignalTap II Logic Analyzer
In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

h For information about analyzing results from the SignalTap II Logic Analyzer, refer to
Analyzing Data in the SignalTap II Logic Analyzer in Quartus II Help.

View, Analyze, and Use Captured Data
After you have captured data and read it into the .stp, that data is available for
analysis and debugging. Set up mnemonic tables, either manually or with a plug-in,
to simplify reading and interpreting the captured signal data. To speed up debugging,
use the Locate feature in the SignalTap II node list to find the locations of problem
nodes in other tools in the Quartus II software. Save the captured data for later
analysis, or convert the data to other formats for sharing and further study.

h For information about analyzing results from the SignalTap II Logic Analyzer, refer to
Analyzing Data in the SignalTap II Logic Analyzer in Quartus II Help.

Embedding Multiple Analyzers in One FPGA
The SignalTap II Logic Analyzer Editor includes support for adding multiple logic
analyzers by creating instances in the .stp. You can create a unique logic analyzer for
each clock domain in the design.

h For information about creating instances, refer to Running the SignalTap II Logic
Analyzer in Quartus II Help.

Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage of each logic analyzer instance and total resources used in
the columns of the Instance Manager pane of the SignalTap II Logic Analyzer Editor.
Use this feature when you know that your design is running low on resources.

The logic element value reported in the resource usage estimator may vary by as
much as 10% from the actual resource usage.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–9
Configure the SignalTap II Logic Analyzer
Table 13–2 shows the SignalTap II Logic Analyzer M4K memory block resource usage
for the listed devices per signal width and sample depth.

Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer
You can create a SignalTap II Logic Analyzer instance by using the MegaWizard
Plug-In Manager. The MegaWizard Plug-In Manager generates an HDL file that you
instantiate in your design.

1 The State-based trigger flow, the state machine debugging feature, and the storage
qualification feature are not supported when using the MegaWizard Plug-In Manager
to create the logic analyzer. These features are described in the following sections:

■ “Adding Finite State Machine State Encoding Registers” on page 13–14

■ “Using the Storage Qualifier Feature” on page 13–18

■ “State-Based Triggering” on page 13–30

h For information about creating a SignalTap II instance with the MegaWizard Plug-In
Manager, refer to Setting Up the SignalTap II Logic Analyzer in Quartus II Help.

Configure the SignalTap II Logic Analyzer
There are many ways to configure instances of the SignalTap II Logic Analyzer. Some
of the settings are similar to those found on traditional external logic analyzers. Other
settings are unique to the SignalTap II Logic Analyzer because of the requirements for
configuring a logic analyzer. All settings allow you to configure the logic analyzer the
way you want to help debug your design.

1 Some settings can only be adjusted when you are viewing Run-Time Trigger
conditions instead of Power-Up Trigger conditions. To learn about Power-Up Triggers
and viewing different trigger conditions, refer to “Creating a Power-Up Trigger” on
page 13–41.

Table 13–2. SignalTap II Logic Analyzer M4K Block Utilization (1)

Signals (Width)
Samples (Depth)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 13–2:

(1) When you configure a SignalTap II Logic Analyzer, the Instance Manager reports an estimate of the memory bits
and logic elements required to implement the given configuration.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

13–10 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Assigning an Acquisition Clock
Assign a clock signal to control the acquisition of data by the SignalTap II Logic
Analyzer. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock. You can use any signal in your design as the
acquisition clock. However, for best results, Altera recommends that you use a global,
non-gated clock synchronous to the signals under test for data acquisition. Using a
gated clock as your acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design. The Quartus II static timing analysis
tools show the maximum acquisition clock frequency at which you can run your
design. Refer to the Timing Analysis section of the Compilation Report to find the
maximum frequency of the logic analyzer clock.

h For information about assigning an acquisition clock, refer to Working with Nodes in the
SignalTap II Logic Analyzer in Quartus II Help.

1 Altera recommends that you exercise caution when using a recovered clock from a
transceiver as an acquisition clock for the SignalTap II Logic Analyzer. Incorrect or
unexpected behavior has been noted, particularly when a recovered clock from a
transceiver is used as an acquisition clock with the power-up trigger feature.

If you do not assign an acquisition clock in the SignalTap II Logic Analyzer Editor, the
Quartus II software automatically creates a clock pin called auto_stp_external_clk.

You must make a pin assignment to this pin independently from the design. Ensure
that a clock signal in your design drives the acquisition clock.

f For information about assigning signals to pins, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Adding Signals to the SignalTap II File
While configuring the logic analyzer, add signals to the node list in the .stp to select
which signals in your design you want to monitor. You can also select signals to
define triggers. You can assign the following two types of signals to your .stp file:

■ Pre-synthesis—These signals exists after design elaboration, but before any
synthesis optimizations are done. This set of signals should reflect your Register
Transfer Level (RTL) signals.

■ Post-fitting—This signal exists after physical synthesis optimizations and
place-and-route.

1 If you are not using incremental compilation, add only pre-synthesis signals to the
.stp. Using pre-synthesis helps when you want to add a new node after you change a
design. Source file changes appear in the Node Finder after you perform an Analysis
and Elaboration. On the Processing Menu, point to Start and click Start Analysis &
Elaboration.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–11
Configure the SignalTap II Logic Analyzer
The Quartus II software does not limit the number of signals available for monitoring
in the SignalTap II window waveform display. However, the number of channels
available is directly proportional to the number of logic elements (LEs) or adaptive
logic modules (ALMs) in the device. Therefore, there is a physical restriction on the
number of channels that are available for monitoring. Signals shown in blue text are
post-fit node names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, invalid signals are displayed in red. Unless
you are certain that these signals are valid, remove them from the .stp for correct
operation. The SignalTap II Status Indicator also indicates if an invalid node name
exists in the .stp.

You can tap signals if a routing resource (row or column interconnects) exists to route
the connection to the SignalTap II instance. For example, signals that exist in the I/O
element (IOE) cannot be directly tapped because there are no direct routing resources
from the signal in an IOE to a core logic element. For input pins, you can tap the signal
that is driving a logic array block (LAB) from an IOE, or, for output pins, you can tap
the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, make all connections to the SignalTap II Logic
Analyzer before synthesis. Logic and routing resources are allocated during
recompilation to make the connection as if a change in your design files had been
made. Pre-synthesis signal names for signals driving to and from IOEs coincide with
the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the SignalTap II Logic
Analyzer are the signal names from the actual atoms in your post-fit netlist. You can
only make a connection if the signals are part of the existing post-fit netlist and
existing routing resources are available from the signal of interest to the SignalTap II
Logic Analyzer. In the case of post-fit output signals, tap the COMBOUT or REGOUT signal
that drives the IOE block. For post-fit input signals, signals driving into the core logic
coincide with the signal name assigned to the pin.

1 Because NOT-gate push back applies to any register that you tap, the signal from the
atom may be inverted. You can check this by locating the signal in either the Resource
Property Editor or the Technology Map Viewer. The Technology Map viewer and the
Resource Property Editor can also be used to help you find post-fit node names.

f For information about cross-probing to source design files and other Quartus II
windows, refer to the Analyzing Designs with Quartus II Netlist Viewers chapter in
volume 1 of the Quartus II Handbook.

For more information about the use of incremental compilation with the SignalTap II
Logic Analyzer, refer to “Faster Compilations with Quartus II Incremental
Compilation” on page 13–46.

Signal Preservation
Many of the RTL signals are optimized during the process of synthesis and
place-and-route. RTL signal names frequently may not appear in the post-fit netlist
after optimizations. For example, the compilation process can add tildes (“~”) to nets
that fan-out from a node, making it difficult to decipher which signal nets they
actually represent. These process results can cause problems when you use the
incremental compilation flow with the SignalTap II Logic Analyzer. Because you can
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

13–12 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
only add post-fitting signals to the SignalTap II Logic Analyzer in partitions of type
post-fit, RTL signals that you want to monitor may not be available, preventing their
use. To avoid this issue, use synthesis attributes to preserve signals during synthesis
and place-and-route. When the Quartus II software encounters these synthesis
attributes, it does not perform any optimization on the specified signals, forcing them
to continue to exist in the post-fit netlist. However, if you do this, you could see an
increase in resource utilization or a decrease in timing performance. The two
attributes you can use are:

■ keep—Ensures that combinational signals are not removed

■ preserve—Ensures that registers are not removed

f For more information about using these attributes, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you
might need to preserve nodes from the core to make them available for debugging
with the SignalTap II Logic Analyzer. Preserving nodes is often necessary when a
plug-in is used to add a group of signals for a particular IP.

If you use incremental compilation flow with the SignalTap II Logic Analyzer,
pre-synthesis nodes may not be connected to the SignalTap II Logic Analyzer if the
affected partition is of the post-fit type. A critical warning is issued for all pre-
synthesis node names that are not found in the post-fit netlist.

h For more information about node preservation or how to avoiding these warnings,
refer to Working with Nodes in the SignalTap II Logic Analyzer in Quartus II Help.

Assigning Data Signals Using the Technology Map Viewer
You can easily add post-fit signal names that you find in the Technology map viewer.
To do so, launch the Technology map viewer (post-fitting) after compiling your
design. When you find the desired node, copy the node to either the active .stp for
your design or a new .stp.

Node List Signal Use Options
When a signal is added to the node list, you can select options that specify how the
signal is used with the logic analyzer. You can turn off the ability of a signal to trigger
the analyzer by disabling the Trigger Enable option for that signal in the node list in
the .stp. This option is useful when you want to see only the captured data for a signal
and you are not using that signal as part of a trigger.

You can turn off the ability to view data for a signal by disabling the Data Enable
column. This option is useful when you want to trigger on a signal, but have no
interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II trigger
conditions, refer to “Define Triggers” on page 13–26.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–13
Configure the SignalTap II Logic Analyzer
Untappable Signals
Not all of the post-fitting signals in your design are available in the SignalTap II :
post-fitting filter in the Node Finder dialog box. The following signal types cannot be
tapped:

■ Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

■ Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

■ JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS) signals.

■ ALTGXB megafunction—You cannot directly tap any ports of an ALTGXB
instantiation.

■ LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

■ DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

Adding Signals with a Plug-In
Instead of adding individual or grouped signals through the Node Finder, you can
add groups of relevant signals of a particular type of IP with a plug-in. The
SignalTap II Logic Analyzer comes with one plug-in already installed for the Nios II
processor. Besides easy signal addition, plug-ins also provide features such as
pre-designed mnemonic tables, useful for trigger creation and data viewing, as well as
the ability to disassemble code in captured data.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and two
tables in the Data tab:

■ Nios II Instruction (Setup tab)—Capture all the required signals for triggering on
a selected instruction address.

■ Nios II Instance Address (Data tab)—Display address of executed instructions in
hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

■ Nios II Disassembly (Data tab)—Displays disassembled code from the
corresponding address.

For information about the other features plug-ins provide, refer to “Define Triggers”
on page 13–26 and “View, Analyze, and Use Captured Data” on page 13–56.

To add signals to the .stp using a plug-in, perform the following steps after running
Analysis and Elaboration on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In submenu, choose the
plug-in you want to use, such as the included plug-in named Nios II.

1 If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–14 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
2. The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. Select the IP that contains the signals you want to monitor with the plug-in
and click OK.

3. If all the signals in the plug-in are available, a dialog box might appear, depending
on the plug-in selected, where you can specify options for the plug-in. With the
Nios II plug-in, you can optionally select an .elf containing program symbols from
your Nios II Integrated Development Environment (IDE) software design. Specify
options for the selected plug-in as desired and click OK.

1 To make sure all the required signals are available, in the Quartus II Analysis &
Synthesis settings, turn on Create debugging nodes for IP cores.

All the signals included in the plug-in are added to the node list.

Adding Finite State Machine State Encoding Registers
Finding the signals to debug Finite State Machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, as FSM encoding signals may be
changed or optimized away during synthesis and place-and-route. If you can find all
of the relevant nodes in the post-fit netlist or you used the nodes from the
pre-synthesis netlist, an additional step is required to find and map FSM signal values
to the state names that you specified in your HDL.

The SignalTap II Logic Analyzer GUI can detect FSMs in your compiled design. The
SignalTap II Logic Analyzer configuration automatically tracks the FSM state signals
as well as state encoding through the compilation process. Shortcut menu commands
from the SignalTap II Logic Analyzer GUI allow you to add all of the FSM state
signals to your logic analyzer with a single command. For each FSM added to your
SignalTap II configuration, the FSM debugging feature adds a mnemonic table to map
the signal values to the state enumeration that you provided in your source code. The
mnemonic tables enable you to visualize state machine transitions in the waveform
viewer. The FSM debugging feature supports adding FSM signals from both the
pre-synthesis and post-fit netlists.

Figure 13–4 shows the waveform viewer with decoded signal values from a state
machine added with the FSM debugging feature.

f For coding guidelines for specifying FSM in Verilog and VHDL, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

h For information about adding FSM signals to the configuration file, refer to Setting Up
the SignalTap II Logic Analyzer in Quartus II Help.

Figure 13–4. Decoded FSM Mnemonics
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–15
Configure the SignalTap II Logic Analyzer
Modifying and Restoring Mnemonic Tables for State Machines
When you add FSM state signals via the FSM debugging feature, the SignalTap II
Logic Analyzer GUI creates a mnemonic table using the format
<StateSignalName>_table, where StateSignalName is the name of the state signals
that you have declared in your RTL. You can edit any mnemonic table using the
Mnemonic Table Setup dialog box.

If you want to restore a mnemonic table that was modified, right-click anywhere in
the node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you
modified. To restore a FSM mnemonic table to a new record, turn off Overwrite
existing mnemonic table in the Recreate State Machine Mnemonics dialog box.

1 If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

For more information about using Mnemonics, refer to “Creating Mnemonics for Bit
Patterns” on page 13–60.

Additional Considerations
The SignalTap II configuration GUI recognizes state machines from your design only
if you use Quartus II Integrated Synthesis (QIS). The state machine debugging feature
is not able to track the FSM signals or state encoding if you use other EDA synthesis
tools.

If you add post-fit FSM signals, the SignalTap II Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process. If
the following two specific optimizations are enabled, the SignalTap II FSM debug
feature may not list mnemonic tables for state machines in the design:

■ If you have physical synthesis turned on, state registers may be resource balanced
(register retiming) to improve fMAX. The FSM debug feature does not list post-fit
FSM state registers if register retiming occurs.

■ The FSM debugging feature does not list state signals that have been packed into
RAM and DSP blocks during QIS or Fitter optimizations.

You can still use the FSM debugging feature to add pre-synthesis state signals.

Specifying the Sample Depth
The sample depth specifies the number of samples that are captured and stored for
each signal in the captured data buffer. To specify the sample depth, select the desired
number of samples to store in the Sample Depth list. The sample depth ranges from
0 to 128K.

If device memory resources are limited, you may not be able to successfully compile
your design with the sample buffer size you have selected. Try reducing the sample
depth to reduce resource usage.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–16 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Capturing Data to a Specific RAM Type
When you use the SignalTap II Logic Analyzer with some devices, you have the
option to select the RAM type where acquisition data is stored. Once SignalTap II
Logic Analyzer is allocated to a particular RAM block, the entire RAM block becomes
a dedicated resource for the logic analyzer. RAM selection allows you to preserve a
specific memory block for your design and allocate another portion of memory for
SignalTap II Logic Analyzer data acquisition. For example, if your design has an
application that requires a large block of memory resources, such a large instruction
or data cache, you would choose to use MLAB, M512, or M4k blocks for data
acquisition and leave the M9k blocks for the rest of your design.

To select the RAM type to use for the SignalTap II Logic Analyzer buffer, select it from
the RAM type list. Use this feature when the acquired data (as reported by the
SignalTap II resource estimator) is not larger than the available memory of the
memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode
The Buffer Acquisition Type Selection feature in the SignalTap II Logic Analyzer lets
you choose how the captured data buffer is organized and can potentially reduce the
amount of memory that is required for SignalTap II data acquisition. There are two
types of acquisition buffer within the SignalTap II Logic Analyzer—a non-segmented
buffer and a segmented buffer. With a non-segmented buffer, the SignalTap II Logic
Analyzer treats entire memory space as a single FIFO, continuously filling the buffer
until the logic analyzer reaches a defined set of trigger conditions. With a segmented
buffer, the memory space is split into a number of separate buffers. Each buffer acts as
a separate FIFO with its own set of trigger conditions. Only a single buffer is active
during an acquisition. The SignalTap II Logic Analyzer advances to the next segment
after the trigger condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space. Figure 13–5 illustrates the
differences between the two buffer types.

Figure 13–5. Buffer Type Comparison in the SignalTap II Logic Analyzer (1), (2)

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1(a) Circular Buffer

(b) Segmented Buffer
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–17
Configure the SignalTap II Logic Analyzer
For more information about the storage qualification feature, refer to “Using the
Storage Qualifier Feature” on page 13–18.

Non-Segmented Buffer
The non-segmented buffer (also known as a circular buffer) shown in Figure 13–5 (a)
is the default buffer type used by the SignalTap II Logic Analyzer. While the logic
analyzer is running, data is stored in the buffer until it fills up, at which point new
data replaces the oldest data. This continues until a specified trigger event, consisting
of a set of trigger conditions, occurs. When the trigger event happens, the logic
analyzer continues to capture data after the trigger event until the buffer is full, based
on the trigger position setting in the Signal Configuration pane in the .stp. To capture
the majority of the data before the trigger occurs, select Post trigger position from the
list. To capture the majority of the data after the trigger, select Pre-trigger position. To
center the trigger position in the data, select Center trigger position. Alternatively,
use the custom State-based triggering flow to define a custom trigger position within
the capture buffer.

For more information, refer to “Specifying the Trigger Position” on page 13–41.

Segmented Buffer
A segmented buffer allows you to debug systems that contain relatively infrequent
recurring events. The acquisition memory is split into evenly sized segments, with a
set of trigger conditions defined for each segment. Each segment acts as a non-
segmented buffer. Figure 13–6 shows an example of a segmented buffer system.

Notes to Figure 13–5:

(1) Both non-segmented and segmented buffers can use a predefined trigger (Pre-Trigger, Center Trigger, Post-Trigger) position or define a custom
trigger position using the State-Based Triggering tab. Refer to “Specifying the Trigger Position” on page 13–41 for more details.

(2) Each segment is treated like a FIFO, and behaves as the non-segmented buffer shown in (a).

Figure 13–5. Buffer Type Comparison in the SignalTap II Logic Analyzer (1), (2)

Figure 13–6. Example System that Generates Recurring Events

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]
WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–18 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer verifies the functionality of the design shown in
Figure 13–6 to ensure that the correct data is written to the SRAM controller. Buffer
acquisition in the SignalTap II Logic Analyzer allows you to monitor the RDATA port
when H'0F0F0F0F is sent into the RADDR port. You can monitor multiple read
transactions from the SRAM device without running the SignalTap II Logic Analyzer
again. The buffer acquisition feature allows you to segment the memory so you can
capture the same event multiple times without wasting allocated memory. The
number of cycles that are captured depends on the number of segments specified
under the Data settings.

To enable and configure buffer acquisition, select Segmented in the SignalTap II Logic
Analyzer Editor and select the number of segments to use. In the example in
Figure 13–6, selecting sixty-four 64-sample segments allows you to capture 64 read
cycles when the RADDR signal is H'0F0F0F0F.

h For more information about buffer acquisition mode, refer to Configuring the Trigger
Flow in the SignalTap II Logic Analyzer in the Quartus II Help.

Using the Storage Qualifier Feature
Both non-segmented and segmented buffers described in the previous section offer a
snapshot in time of the data stream being analyzed. The default behavior for writing
into acquisition memory with the SignalTap II Logic Analyzer is to sample data on
every clock cycle. With a non-segmented buffer, there is one data window that
represents a comprehensive snapshot of the datastream. Similarly, segmented buffers
use several smaller sampling windows spread out over more time, with each
sampling window representing a contiguous data set.

With carefully chosen trigger conditions and a generous sample depth for the
acquisition buffer, analysis using segmented and non-segmented buffers captures a
majority of functional errors in a chosen signal set. However, each data window can
have a considerable amount of redundancy associated with it; for example, a capture
of a data stream containing long periods of idle signals between data bursts. With
default behavior using the SignalTap II Logic Analyzer, you cannot discard the
redundant sample bits.

The Storage Qualification feature allows you to filter out individual samples not
relevant to debugging the design. With this feature, a condition acts as a write enable
to the buffer during each clock cycle of data acquisition. Through fine tuning the data
that is actually stored in acquisition memory, the Storage Qualification feature allows
for a more efficient use of acquisition memory in the specified number of samples
over a longer period of analysis.

Use of the Storage Qualification feature is similar to an acquisition using a segmented
buffer, in that you can create a discontinuity in the capture buffer. Because you can
create a discontinuity between any two samples in the buffer, the Storage
Qualification feature is equivalent to being able to create a customized segmented
buffer in which the number and size of segment boundaries are adjustable.
Figure 13–7 illustrates three ways the SignalTap II Logic Analyzer writes into
acquisition memory.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_proc_cust_trig_flow.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_proc_cust_trig_flow.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–19
Configure the SignalTap II Logic Analyzer
1 You can only use the Storage Qualification feature with a non-segmented buffer. The
MegaWizard Plug-In Manager instantiated flow only supports the Input Port mode
for the Storage Qualification feature.

There are six storage qualifier types available under the Storage Qualification feature:

■ Continuous

■ Input port

■ Transitional

■ Conditional

■ Start/Stop

■ State-based

Continuous (the default mode selected) turns the Storage Qualification feature off.

Each selected storage qualifier type is active when an acquisition starts. Upon the start
of an acquisition, the SignalTap II Logic Analyzer examines each clock cycle and
writes the data into the acquisition buffer based upon storage qualifier type and
condition. The acquisition stops when a defined set of trigger conditions occur.

Figure 13–7. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to Figure 13–7:

(1) Non-segmented Buffers capture a fixed sample window of contiguous data.
(2) Segmented buffers divide the buffer into fixed sized segments, with each segment having an equal sample depth.
(3) Storage Qualification allows you to define a custom sampling window for each segment you create with a qualifying condition. Storage

qualification potentially allows for a larger time scale of coverage.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–20 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
1 Trigger conditions are evaluated independently of storage qualifier conditions. The
SignalTap II Logic Analyzer evaluates the data stream for trigger conditions on every
clock cycle after the acquisition begins.

Trigger conditions are defined in “Define Trigger Conditions” on page 13–7.

The storage qualifier operates independently of the trigger conditions.

The following subsections describe each storage qualification mode from the
acquisition buffer.

Input Port Mode
When using the Input port mode, the SignalTap II Logic Analyzer takes any signal
from your design as an input. When the design is running, if the signal is high on the
clock edge, the SignalTap II Logic Analyzer stores the data in the buffer. If the signal is
low on the clock edge, the data sample is ignored. A pin is created and connected to
this input port by default if no internal node is specified.

If you are using an .stp to create a SignalTap II Logic Analyzer instance, specify the
storage qualifier signal using the input port field located on the Setup tab. You must
specify this port for your project to compile.

If you use the MegaWizard Plug-In Manager flow, the storage qualification input port,
if specified, appears in the MegaWizard-generated instantiation template. You can
then connect this port to a signal in your RTL.

Figure 13–8 shows a data pattern captured with a segmented buffer. Figure 13–9
shows a capture of the same data pattern with the storage qualification feature
enabled.

Transitional Mode
In Transitional mode, you choose a set of signals for inspection using the node list
check boxes in the Storage Qualifier column. During acquisition, if any of the signals
marked for inspection have changed since the previous clock cycle, new data is
written to the acquisition buffer. If none of the signals marked have changed since the
previous clock cycle, no data is stored. Figure 13–10 shows the transitional storage

Figure 13–8. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to illustrate Input port mode)

Figure 13–9. Data Acquisition of a Recurring Data Pattern Using an Input Signal as a Storage Qualifier
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–21
Configure the SignalTap II Logic Analyzer
qualifier setup. Figure 13–11 and Figure 13–12 show captures of a data pattern in
continuous capture mode and a data pattern using the Transitional mode for storage
qualification.

Conditional Mode
In Conditional mode, the SignalTap II Logic Analyzer evaluates a combinational
function of storage qualifier enabled signals within the node list to determine whether
a sample is stored. The SignalTap II Logic Analyzer writes into the buffer during the
clock cycles in which the condition you specify evaluates TRUE.

Figure 13–10. Transitional Storage Qualifier Setup

Figure 13–11. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to
illustrate Transitional mode)

Figure 13–12. Data Acquisition of Recurring Data Pattern Using a Transitional Mode as a Storage
Qualifier

Node List Storage Enable Transitional Enable
Storage Qualifier
Dialog Box
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–22 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
You can select either Basic or Advanced storage qualifier conditions. A Basic storage
qualifier condition matches each signal to one of the following:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Either Edge

If you specify a Basic Storage qualifier condition for more than one signal, the
SignalTap II Logic Analyzer evaluates the logical AND of the conditions.

Any other combinational or relational operators that you may want to specify with
the enabled signal set for storage qualification can be done with an advanced storage
condition. Figure 13–13 details the conditional storage qualifier setup in the .stp.

You can specify up storage qualification conditions similar to the manner in which
trigger conditions are specified. For details about basic and advanced trigger
conditions, refer to the sections “Creating Basic Trigger Conditions” on page 13–26
and “Creating Advanced Trigger Conditions” on page 13–27. Figure 13–14 and
Figure 13–15 show a data capture with continuous sampling, and the same data
pattern using the conditional mode for analysis, respectively.

Figure 13–13. Conditional Storage Qualifier Setup

Figure 13–14. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to
illustrate Conditional capture)
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–23
Configure the SignalTap II Logic Analyzer
Start/Stop Mode
The Start/Stop mode is similar to the Conditional mode for storage qualification.
However, in this mode there are two sets of conditions, one for start and one for stop.
If the start condition evaluates to TRUE, data begins is stored in the buffer every clock
cycle until the stop condition evaluates to TRUE, which then pauses the data capture.
Additional start signals received after the data capture has started are ignored. If both
start and stop evaluate to TRUE at the same time, a single cycle is captured.

1 You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 13–16 shows the Start/Stop mode storage qualifier setup. Figure 13–17 and
Figure 13–18 show captures data pattern in continuous capture mode and a data
pattern in using the Start/Stop mode for storage qualification.

Figure 13–15. Data Acquisition of a Recurring Data Pattern in Conditional Capture Mode

Figure 13–16. Start/Stop Mode Storage Qualifier Setup

Figure 13–17. Data Acquisition of a Recurring Data Pattern in Continuous Mode (to illustrate
Start/Stop mode)
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–24 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
State-Based
The State-based storage qualification mode is used with the State-based triggering
flow. The state based triggering flow evaluates an if-else based language to define
how data is written into the buffer. With the State-based trigger flow, you have
command over boolean and relational operators to guide the execution flow for the
target acquisition buffer. When the storage qualifier feature is enabled for the
State-based flow, two additional commands are available, the start_store and
stop_store commands. These commands operate similarly to the Start/Stop capture
conditions described in the previous section. Upon the start of acquisition, data is not
written into the buffer until a start_store action is performed. The stop_store
command pauses the acquisition. If both start_store and stop_store actions are
performed within the same clock cycle, a single sample is stored into the acquisition
buffer.

For more information about the State-based flow and storage qualification using the
State-based trigger flow, refer to the section “State-Based Triggering” on page 13–30.

Showing Data Discontinuities
When you turn on Record data discontinuities, the SignalTap II Logic Analyzer
marks the samples during which the acquisition paused from a storage qualifier. This
marker is displayed in the waveform viewer after acquisition completes.

Disable Storage Qualifier
You can turn off the storage qualifier quickly with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable; that
is, the setting can be changed without recompiling the project. Changing storage
qualifier mode from the Type field requires a recompilation of the project.

1 For a detailed explanation of Runtime Reconfigurable options available with the
SignalTap II Logic Analyzer, and storage qualifier application examples using
runtime reconfigurable options, refer to “Runtime Reconfigurable Options” on
page 13–53.

Figure 13–18. Data Acquisition of a Recurring Data Pattern with Start/Stop Storage Qualifier
Enabled
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–25
Configure the SignalTap II Logic Analyzer
Managing Multiple SignalTap II Files and Configurations
You may have more than one .stp in one design. Each file potentially has a different
group of monitored signals. These signal groups make it possible to debug different
blocks in your design. In turn, each group of signals can also be used to define
different sets of trigger conditions. Along with each .stp, there is also an associated
programming file (SRAM Object File [.sof]). The settings in a selected SignalTap II file
must match the SignalTap II logic design in the associated .sof for the logic analyzer to
run properly when the device is programmed. Use the Data Log feature and the
SOF Manager to manage all of the .stp files and their associated settings and
programming files.

The Data Log allows you to store multiple SignalTap II configurations within a single
.stp. Figure 13–19 shows two signal set configurations with multiple trigger
conditions in one .stp. To toggle between the active configurations, double-click on an
entry in the Data Log. As you toggle between the different configurations, the signal
list and trigger conditions change in the Setup tab of the .stp. The active configuration
displayed in the .stp is indicated by the blue square around the signal specified in the
Data Log. To store a configuration in the Data Log, on the Edit menu, click Save to
Data Log or click Save to Data Log at the top of the Data Log.

The SOF Manager allows you to embed multiple SOFs into one .stp. Embedding an
SOF in an .stp lets you move the .stp to a different location, either on the same
computer or across a network, without the need to include the associated .sof as a
separate. To embed a new SOF in the .stp, right-click in the SOF Manager, and click
Attach SOF File (Figure 13–20).

Figure 13–19. Data Log

Figure 13–20. SOF Manager

Save to Data Log

Enable
Data Log
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–26 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that particular configuration. You can use the programmer in the
SignalTap II Logic Analyzer to download the new SOF to the FPGA, ensuring that the
configuration of your .stp always matches the design programmed into the target
device.

Define Triggers
When you start the SignalTap II Logic Analyzer, it samples activity continuously from
the monitored signals. The SignalTap II Logic Analyzer “triggers”—that is, the logic
analyzer stops and displays the data—when a condition or set of conditions that you
specified has been reached. This section describes the various types of trigger
conditions that you can specify using the SignalTap II Logic Analyzer on the Signal
Configuration pane.

Creating Basic Trigger Conditions
The simplest kind of trigger condition is a basic trigger. Select this from the list at the
top of the Trigger Conditions column in the node list in the SignalTap II Logic
Analyzer Editor. If you select the Basic trigger type, you must specify the trigger
pattern for each signal you have added in the .stp. To specify the trigger pattern, right-
click in the Trigger Conditions column and click the desired pattern. Set the trigger
pattern to any of the following conditions:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Rising Edge

■ Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals added to the
.stp that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

For more information about creating and using mnemonic tables, refer to “View,
Analyze, and Use Captured Data” on page 13–56, and to the Quartus II Help.

For signals added with certain plug-ins, you can create basic triggers easily using
predefined mnemonic table entries. For example, with the Nios II plug-in, if you have
specified an .elf from your Nios II IDE design, you can type the name of a function
from your Nios II code. The logic analyzer triggers when the Nios II instruction
address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical AND of all the
signals for a given trigger condition evaluates to TRUE.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–27
Define Triggers
Creating Advanced Trigger Conditions
With the basic triggering capabilities of the SignalTap II Logic Analyzer, you can build
more complex triggers with extra logic that enables you to capture data when a
combination of conditions exist. If you select the Advanced trigger type at the top of
the Trigger Conditions column in the node list of the SignalTap II Logic Analyzer
Editor, a new tab named Advanced Trigger appears where you can build a complex
trigger expression using a simple GUI. Drag-and-drop operators into the Advanced
Trigger Configuration Editor window to build the complex trigger condition in an
expression tree. To configure the operators’ settings, double-click or right-click the
operators that you have placed and select Properties. Table 13–3 lists the operators
you can use.

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
You can also use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

Table 13–3. Advanced Triggering Operators (1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 13–3:

(1) For more information about each of these operators, refer to the Quartus II Help.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–28 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Examples of Advanced Triggering Expressions
The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb (Figure 13–21).

■ Trigger when bus outa is greater than or equal to bus outb, and when the enable
signal has a rising edge (Figure 13–22).

Figure 13–21. Bus outa is Greater Than or Equal to Bus outb

Figure 13–22. Enable Signal has a Rising Edge
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–29
Define Triggers
■ Trigger when bus outa is greater than or equal to bus outb, or when the enable
signal has a rising edge. Or, when a bitwise AND operation has been performed
between bus outc and bus outd, and all bits of the result of that operation are equal
to 1 (Figure 13–23).

Trigger Condition Flow Control
The SignalTap II Logic Analyzer offers multiple triggering conditions to give you
precise control of the method in which data is captured into the acquisition buffers.
Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. The SignalTap II Logic Analyzer Signal Configuration pane
offers two flow control mechanisms for organizing trigger conditions:

■ Sequential Triggering—The default triggering flow. Sequential triggering allows
you to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

■ State-Based Triggering—Allows you the greatest control over your acquisition
buffer. Custom-based triggering allows you to organize trigger conditions into
states based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

Sequential Triggering
Sequential triggering flow allows you to cascade up to 10 levels of triggering
conditions. The SignalTap II Logic Analyzer sequentially evaluates each of the
triggering conditions. When the last triggering condition evaluates to TRUE, the
SignalTap II Logic Analyzer triggers the acquisition buffer. For segmented buffers,
every acquisition segment after the first segment triggers on the last triggering
condition that you have specified. Use the Simple Sequential Triggering feature with
basic triggers, advanced triggers, or a mix of both. Figure 13–24 illustrates the simple
sequential triggering flow for non-segmented and segmented buffers.

Figure 13–23. Bitwise AND Operation
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–30 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
1 The external trigger is considered as trigger level 0. The external trigger must be
evaluated before the main trigger levels are evaluated.

To configure the SignalTap II Logic Analyzer for Sequential triggering, in the
SignalTap II editor on the Trigger flow control list, select Sequential. Select the
desired number of trigger conditions from the Trigger Conditions list. After you
select the desired number of trigger conditions, configure each trigger condition in the
node list. To disable any trigger condition, turn on the trigger condition at the top of
the column in the node list.

State-Based Triggering
Custom State-based triggering provides the most control over triggering condition
arrangement. The State-Based Triggering flow allows you to describe the relationship
between triggering conditions precisely, using an intuitive GUI and the SignalTap II
Trigger Flow Description Language, a simple description language based upon
conditional expressions. Tooltips within the custom triggering flow GUI allow you to
describe your desired flow quickly. The custom State-based triggering flow allows for
more efficient use of the space available in the acquisition buffer because only specific
samples of interest are captured.

Figure 13–24. Sequential Triggering Flow (1), (2)

Notes to Figure 13–24:

(1) The acquisition buffer stops capture when all n triggering levels are satisfied, where .
(2) An external trigger input, if defined, is evaluated before all other defined trigger conditions are evaluated. For more information about external

triggers, refer to “Using External Triggers” on page 13–43.

Non-segmented Buffer Segmented Buffer

Acquisition Segment 1
trigger

Acquisition Segment 2
trigger

Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n 10
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–31
Define Triggers
Figure 13–25 illustrates the custom State-based triggering flow. Events that trigger the
acquisition buffer are organized by a state diagram that you define. All actions
performed by the acquisition buffer are captured by the states and all transition
conditions between the states are defined by the conditional expressions that you
specify within each state.

Each state allows you to define a set of conditional expressions. Each conditional
expression is a Boolean expression dependent on a combination of triggering
conditions (configured within the Setup tab), counters, and status flags. Counters and
status flags are resources provided by the SignalTap II Logic Analyzer custom-based
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–32 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
The State-Based Trigger Flow tab is the control interface for the custom state-based
triggering flow. To enable this tab, select State-based on the Trigger Flow Control list.
(Note that when Trigger Flow Control is specified as Sequential, the State-Based
Trigger Flow tab is hidden.)

The State-Based Trigger Flow tab is partitioned into the following three panes:

■ State Diagram Pane

■ Resources Pane

■ State Machine Pane

State Diagram Pane

The State Diagram pane provides a graphical overview of the triggering flow that
you define. It shows the number of states available and the state transitions between
the states. You can adjust the number of available states by using the menu above the
graphical overview.

State Machine Pane

The State Machine pane contains the text entry boxes where you can define the
triggering flow and actions associated with each state. You can define the triggering
flow using the SignalTap II Trigger Flow Description Language, a simple language
based on “if-else” conditional statements. Tooltips appear when you move the mouse
over the cursor, to guide command entry into the state boxes. The GUI provides a
syntax check on your flow description in real-time and highlights any errors in the
text flow.

1 For a full description of the SignalTap II Trigger Flow Description Language, refer to
“SignalTap II Trigger Flow Description Language” on page 13–33.

h You can also refer to SignalTap II Trigger Flow Description Language in Quartus II Help.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window, select
the appropriate option under State Display mode.

Resources Pane

The Resources pane allows you to declare Status Flags and Counters for use in the
conditional expressions in the Custom Triggering Flow. Actions to decrement and
increment counters or to set and clear status flags are performed within the triggering
flow that you define.

You can specify up to 20 counters and 20 status flags. Counter and status flags values
may be initialized by right-clicking the status flag or counter name after selecting a
number of them from the respective pull-down list, and selecting Set Initial Value. To
specify a counter width, right-click the counter name and select Set Width. Counters
and flag values are updated dynamically after acquisition has started to assist in
debugging your trigger flow specification.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_proc_trigflow_lang.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–33
Define Triggers
The configurable at runtime options in the Resources pane allows you to configure
the custom-flow control options that can be changed at runtime without requiring a
recompilation. Table 13–4 contains a description of options for the State-based trigger
flow that can be reconfigured at runtime.

1 For a broader discussion about all options that can be changed without incurring a
recompile refer to “Runtime Reconfigurable Options” on page 13–53.

You can restrict changes to your SignalTap configuration to include only the options
that do not require a recompilation by using the menu above the trigger list in the
Setup tab. Allow trigger condition changes only restricts changes to only the
configuration settings that have the configurable at runtime specified. With this
option enabled, to modify Trigger Flow conditions in the Custom Trigger Flow tab,
click the desired parameter in the text box and select a new parameter from the menu
that appears.

1 The runtime configurable settings for the Custom Trigger Flow tab are on by default.
You may get some performance advantages by disabling some of the runtime
configurable options. For details about the effects of turning off the runtime
modifiable options, refer to “Performance and Resource Considerations” on
page 13–49.

SignalTap II Trigger Flow Description Language
The Trigger Flow Description Language is based on a list of conditional expressions
per state to define a set of actions. Each line in Example 13–1 shows a language
format. Keywords are shown in bold. Non-terminals are delimited by “<>” and are
further explained in the following sections. Optional arguments are delimited by
“[]“ (Example 13–1).

Table 13–4. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In addition, you
can modify the segment_trigger and trigger action post-fill count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–34 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
1 Examples of Triggering Flow descriptions for common scenarios using the
SignalTap II Custom Triggering Flow are provided in “Custom Triggering Flow
Application Examples” on page 13–68.

The priority for evaluation of conditional statements is assigned from top to bottom.
The <boolean_expression> in an if statement can contain a single event, or it can
contain multiple event conditions. The action_list within an if or an else if clause
must be delimited by the begin and end tokens when the action list contains multiple
statements. When the boolean expression is evaluated TRUE, the logic analyzer
analyzes all of the commands in the action list concurrently. The possible actions
include:

■ Triggering the acquisition buffer

■ Manipulating a counter or status flag resource

■ Defining a state transition

State Labels
State labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated when this state is
reached.

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

Boolean_expression
Boolean_expression is a collection of logical operators, relational operators, and their
operands that evaluate into a Boolean result. Depending on the operator, the operand
can be a reference to a trigger condition, a counter and a register, or a numeric value.
Within an expression, parentheses can be used to group a set of operands.

Example 13–1. Trigger Flow Description Language Format (1)

state <State_label>:
<action_list>

if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
<action_list>] (1)

[else
<action_list>]

Note to Example 13–1:

(1) Multiple else if conditions are allowed.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–35
Define Triggers
Logical operators accept any boolean expression as an operand. The supported
logical operators are shown in Table 13–5.

Relational operators are performed on counters or status flags. The comparison
value, the right operator, must be a numerical value. The supported relational
operators are shown in Table 13–6.

Action_list
Action_list is a list of actions that can be performed when a state is reached and a
condition is also satisfied. If more than one action is specified, they must be enclosed
by begin and end. The actions can be categorized as resource manipulation actions,
buffer control actions, and state transition actions. Each action is terminated by a
semicolon (;).

Resource Manipulation Action
The resources used in the trigger flow description can be either counters or status
flags. Table 13–7 shows the description and syntax of each action.

Table 13–5. Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 13–6. Relational Operators

Operator Description Syntax (1) (2)

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal to <identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to Table 13–6:

(1) <identifier> indicates a counter or status flag.
(2) <numerical_value> indicates an integer.

Table 13–7. Resource Manipulation Action

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status Flag to 1 set <register_flag_identifier>;

clear Sets a status Flag to 0 clear <register_flag_identifier>;
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–36 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Buffer Control Action
Buffer control actions specify an action to control the acquisition buffer. Table 13–8
shows the description and syntax of each action.

Both trigger and segment_trigger actions accept an optional post-fill count
argument. If provided, the current acquisition acquires the number of samples
provided by post-fill count and then stops acquisition. If no post-count value is
specified, the trigger position for the affected buffer defaults to the trigger position
specified in the Setup tab.

1 In the case of segment_trigger, acquisition of the current buffer stops immediately if a
subsequent triggering action is issued in the next state, regardless of whether or not
the post-fill count has been satisfied for the current buffer. The remaining unfilled
post-count acquisitions in the current buffer are discarded and displayed as
grayed-out samples in the data window.

State Transition Action
The State Transition action specifies the next state in the custom state control flow. It is
specified by the goto command. The syntax is as follows:

goto <state_label>;

Using the State-Based Storage Qualifier Feature
When you select State-based for the storage qualifier type, the start_store and
stop_store actions are enabled in the State-based trigger flow. These commands,
when used in conjunction with the expressions of the State-based trigger flow, give
you maximum flexibility to control data written into the acquisition buffer.

Table 13–8. Buffer Control Action

Action Description Syntax

trigger
Stops the acquisition for the current buffer and
ends analysis. This command is required in
every flow definition.

trigger <post-fill_count>;

segment_trigger

Ends the acquisition of the current segment.
The SignalTap II Logic Analyzer starts
acquiring from the next segment on evaluating
this command. If all segments are filled, the
oldest segment is overwritten with the latest
sample. The acquisition stops when a trigger
action is evaluated.

This action cannot be used in non-segmented
acquisition mode.

segment_trigger <post-fill_count>;

start_store

Asserts the write_enable to the SignalTap II
acquisition buffer. This command is active
only when the State-based storage qualifier
mode is enabled.

start_store

stop_store

De-asserts the write_enable signal to the
SignalTap II acquisition buffer. This command
is active only when the State-based storage
qualifier mode is enabled.

stop_store
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–37
Define Triggers
1 The start_store and stop_store commands can only be applied to a non-segmented
buffer.

The start_store and stop_store commands function similar to the start and stop
conditions when using the start/stop storage qualifier mode conditions. If storage
qualification is enabled, the start_store command must be issued for SignalTap II to
write data into the acquisition buffer. No data is acquired until the start_store
command is performed. Also, a trigger command must be included as part of the
trigger flow description. The trigger command is necessary to complete the
acquisition and display the results on the waveform display.

The following examples illustrate the behavior of the State-based trigger flow with the
storage qualification commands.

Figure 13–26 shows a hypothetical scenario with three trigger conditions that happen
at different times after you click Start Analysis. The trigger flow description in
Example 13–2, when applied to the scenario shown in Figure 13–26, illustrates the
functionality of the storage qualification feature for the state-based trigger flow.

In this example, the SignalTap II Logic Analyzer does not write into the acquisition
buffer until sample a, when Condition 1 occurs. Once sample b is reached, the
trigger value command is evaluated. The logic analyzer continues to write into the
buffer to finish the acquisition. The trigger flow specifies a stop_store command at
sample c, m samples after the trigger point occurs.

The logic analyzer finishes the acquisition and displays the contents of the waveform
if it can successfully finish the post-fill acquisition samples before Condition 3 occurs.
In this specific case, the capture ends if the post-fill count value is less than m.

Example 13–2. Trigger Flow Description 1

State 1: ST1:

if (condition1)

start_store;

else if (condition2)

trigger value;

else if (condition3)

stop_store;

Figure 13–26. Capture Scenario for Storage Qualification with the State-Based Trigger Flow
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–38 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
If the post-fill count value specified in Trigger Flow description 1 is greater than m
samples, the buffer pauses acquisition indefinitely, provided there is no recurrence of
Condition 1 to trigger the logic analyzer to start capturing data again. The SignalTap II
Logic Analyzer continues to evaluate the stop_store and start_store commands even
after the trigger command is evaluated. If the acquisition has paused, you can click
Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state are updated in real-time during a data
acquisition.

Figure 13–27 and Figure 13–28 show a real data acquisition of the scenario.
Figure 13–27 illustrates a scenario where the data capture finishes successfully. It uses
a buffer with a sample depth of 64, m = n = 10, and the post-fill count value = 5.
Figure 13–28 illustrates a scenario where the logic analyzer pauses indefinitely even
after a trigger condition occurs due to a stop_store condition. This scenario uses a
sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 13–27. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–39
Define Triggers
Figure 13–28. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)

Figure 13–29. Waveform After Forcing the Analysis to Stop
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–40 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.
Example 13–3 shows a trigger flow description that skips three clock cycles of samples
after hitting condition 1. Figure 13–30 shows the data transaction on a continuous
capture and Figure 13–32 shows the data capture with the Trigger flow description in
Example 13–3 applied.

Example 13–3. Trigger Flow Description 2

State 1: ST1
start_store
if (condition1)
begin

stop_store;
goto ST2;

end

State 2: ST2
if (c1 < 3)

increment c1; //skip three clock cycles; c1 initialized to 0

else if (c1 == 3)
begin

start_store; //start_store necessary to enable writing to finish
//acquisition

trigger;
end

Figure 13–30. Continuous Capture of Data Transaction for Example 2

Figure 13–31. Capture of Data Transaction with Trigger Flow Description Applied
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–41
Define Triggers
Specifying the Trigger Position
The SignalTap II Logic Analyzer allows you to specify the amount of data that is
acquired before and after a trigger event. You can specify the trigger position
independently between a Runtime and Power-Up Trigger. Select the desired ratio of
pre-trigger data to post-trigger data by choosing one of the following ratios:

■ Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

■ Center—Saves 50% pre-trigger and 50% post-trigger data.

■ Post—Saves signal activity that occurred before the trigger (88% pre-trigger, 12%
post-trigger).

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

If you use the custom-state based triggering flow, you can specify a custom trigger
position. The segment_trigger and trigger actions accept a post-fill count argument.
The post-fill count specifies the number of samples to capture before stopping data
acquisition for the non-segmented buffer or a data segment when using the trigger
and segment_trigger commands, respectively. When the captured data is displayed
in the SignalTap II data window, the trigger position appears as the number of post-
count samples from the end of the acquisition segment or buffer. Refer to
Equation 13–1:

In this case, N is the sample depth of either the acquisition segment or non-segmented
buffer.

For segmented buffers, the acquisition segments that have a post-count argument
define use of the post-count setting. Segments that do not have a post-count setting
default to the trigger position ratios defined in the Setup tab.

For more details about the custom State-based triggering flow, refer to “State-Based
Triggering” on page 13–30.

Creating a Power-Up Trigger
Typically, the SignalTap II Logic Analyzer is used to trigger on events that occur
during normal device operation. You start an analysis manually once the target device
is fully powered on and the JTAG connection for the device is available. However,
there may be cases when you would like to capture trigger events that occur during
device initialization, immediately after the FPGA is powered on or reset. With the
SignalTap II Power-Up Trigger feature, you arm the SignalTap II Logic Analyzer and
capture data immediately after device programming.

Equation 13–1.

Sample Number of Trigger Position N Post-Fill Count– =
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–42 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Enabling a Power-Up Trigger
You can add a different Power-Up Trigger to each logic analyzer instance in the
SignalTap II Instance Manager pane. To enable the Power-Up Trigger for a logic
analyzer instance, right-click the instance and click Enable Power-Up Trigger, or
select the instance, and on the Edit menu, click Enable Power-Up Trigger. To disable a
Power-Up Trigger, click Disable Power-Up Trigger in the same locations. Power-Up
Trigger is shown as a child instance below the name of the selected instance with the
default trigger conditions specified in the node list. Figure 13–32 shows the
SignalTap II Logic Analyzer Editor when Power-Up Trigger is enabled.

Managing and Configuring Power-Up and Runtime Trigger Conditions
When the Power-Up Trigger is enabled for a logic analyzer instance, you can create
basic and advanced trigger conditions for the trigger as you do with a Run-Time
Trigger. Power-Up Trigger conditions that you can adjust are color coded light blue,
while Run-Time Trigger conditions you cannot adjust remain white. Since each
instance now has two sets of trigger conditions—the Power-Up Trigger and the
Run-Time Trigger—you can differentiate between the two with color coding. To
switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

You cannot make changes to Power-Up Trigger conditions that would normally
require a full recompile with Runtime Trigger conditions, such as adding signals,
deleting signals, or changing between basic and advanced triggers. To apply these
changes to the Power-Up Trigger conditions, first make the changes using the
Runtime Trigger conditions.

Figure 13–32. SignalTap II Logic Analyzer Editor with Power-Up Trigger Enabled
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–43
Define Triggers
1 Any change made to the Power-Up Trigger conditions requires that you recompile the
SignalTap II Logic Analyzer instance, even if a similar change to the Runtime Trigger
conditions does not require a recompilation.

While creating or making changes to the trigger conditions for the Run-Time Trigger
or the Power-Up Trigger, you may want to copy these conditions to the other trigger.
This enables you to look for the same trigger during both power-up and runtime. To
do this, right-click the instance name or the Power-Up Trigger name in the Instance
Manager and click Duplicate Trigger, or select the instance name or the Power-Up
Trigger name and on the Edit menu, click Duplicate Trigger.

You can also use In-System Sources and Probes in conjunction with the SignalTap II
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected nets over the JTAG chain. For
more information, refer to the Design Debugging Using In-System Sources and Probes
chapter in volume 3 of the Quartus II Handbook.

Using External Triggers
You can create a trigger input that allows you to trigger the SignalTap II Logic
Analyzer from an external source. The external trigger input behaves like trigger
condition 1, is evaluated, and must be TRUE before any other configured trigger
conditions are evaluated. The logic analyzer supplies a signal to trigger external
devices or other SignalTap II Logic Analyzer instances. These features allow you to
synchronize external logic analysis equipment with the internal logic analyzer.
Power-Up Triggers can use the external triggers feature, but they must use the same
source or target signal as their associated Run-Time Trigger.

h For more information about setting up external triggers, refer to Signal Configuration
Pane in Quartus II Help.

Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer
An advanced feature of the SignalTap II Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
http://www.altera.com/literature/hb/qts/qts_qii53021.pdf

13–44 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Target list of the Trigger out trigger, select the targeted logic analyzer
instance. For example, if the instance named auto_signaltap_0 should trigger
auto_signaltap_1, select auto_signaltap_1|trigger_in from the list (Figure 13–33).

Figure 13–33. Configuring the Trigger Out Signal

Target Set to Trigger in of
auto_signaltap_1
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–45
Compile the Design
■ Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Source field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Source field of
auto_signaltap_1 is automatically filled in with auto_signaltap_0|trigger_out
(Figure 13–34).

Compile the Design
When you add an .stp to your project, the SignalTap II Logic Analyzer becomes part
of your design. You must compile your project to incorporate the SignalTap II logic
and enable the JTAG connection you use to control the logic analyzer. When you are
debugging with a traditional external logic analyzer, you must often make changes to
the signals monitored as well as the trigger conditions. Because these adjustments
require that you recompile your design when using the SignalTap II Logic Analyzer,
use the SignalTap II Logic Analyzer feature along with incremental compilation in the
Quartus II software to reduce recompilation time.

h For more information on reducing your recompilation burden with incremental
compilation, refer to Using the Incremental Compilation Design Flow in Quartus II Help.

Figure 13–34. Configuring the Trigger In Signal

Source Set to Trigger out of
auto_signaltap_1

Enabling
Trigger in
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

13–46 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
Faster Compilations with Quartus II Incremental Compilation
When you compile your design with an .stp, the sld_signaltap and sld_hub entities
are automatically added to the compilation hierarchy. These two entities are the main
components of the SignalTap II Logic Analyzer, providing the trigger logic and JTAG
interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting results of
your original design and add the SignalTap II Logic Analyzer to your design without
recompiling your original source code. Incremental compilation is also useful when
you want to modify the configuration of the .stp. For example, you can modify the
buffer sample depth or memory type without performing a full compilation after the
change is made. Only the SignalTap II Logic Analyzer, configured as its own design
partition, must be recompiled to reflect the changes.

To use incremental compilation, first enable Full Incremental Compilation for your
design if it is not already enabled, assign design partitions if necessary, and set the
design partitions to the correct preservation levels. Incremental compilation is the
default setting for new projects in the Quartus II software, so you can establish design
partitions immediately in a new project. However, it is not necessary to create any
design partitions to use the SignalTap II incremental compilation feature. When your
design is set up to use full incremental compilation, the SignalTap II Logic Analyzer
acts as its own separate design partition. You can begin taking advantage of
incremental compilation by using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis.

Enabling Incremental Compilation for Your Design
Your project is fully compiled the first time, establishing the design partitions you
have created. When enabled for your design, the SignalTap II Logic Analyzer is
always a separate partition. After the first compilation, you can use the SignalTap II
Logic Analyzer to analyze signals from the post-fit netlist. If your partitions are
designed correctly, subsequent compilations due to SignalTap II Logic Analyzer
settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you wish to tap as
Post-fit.

f For more information about configuring and performing incremental compilation,
refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Using Incremental Compilation with the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is automatically configured to work with the
incremental compilation flow. For all signals that you want to connect to the
SignalTap II Logic Analyzer from the post-fit netlist, set the netlist type of the
partition containing the desired signals to Post-Fit or Post-Fit (Strict) with a Fitter
Preservation Level of Placement and Routing using the Design Partitions window.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–47
Compile the Design
Use the SignalTap II: post-fitting filter in the Node Finder to add the signals of
interest to your SignalTap II configuration file. If you want to add signals from the
pre-synthesis netlist, set the netlist type to Source File and use the SignalTap II:
pre-synthesis filter in the Node Finder. Do not use the netlist type Post-Synthesis
with the SignalTap II Logic Analyzer.

c Be sure to conform to the following guidelines when using post-fit and pre-synthesis
nodes:

■ Read all incremental compilation guidelines to ensure the proper partition of a
project.

■ To speed compile time, use only post-fit nodes for partitions specified as to
preservation-level post-fit.

■ Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap
pre-synthesis nodes for a particular partition, make all tapped nodes in that
partition pre-synthesis nodes and change the netlist type to source in the
design partitions window.

Node names may be different between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of
combinational signals in your RTL. If the type of node name chosen does not match
the netlist type, the compiler may not be able to find the signal to connect to your
SignalTap II Logic Analyzer instance for analysis. The compiler issues a critical
warning to alert you of this scenario. The signal that is not connected is tied to ground
in the SignalTap II data tab.

If you do use incremental compile flow with the SignalTap II Logic Analyzer and
source file changes are necessary, be aware that you may have to remove
compiler-generated post-fit net names. Source code changes force the affected
partition to go through resynthesis. During synthesis, the compiler cannot find
compiler-generated net names from a previous compilation.

1 Altera recommends using only registered and user-input signals as debugging taps in
your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the
pre-synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your SignalTap II
Logic Analyzer configuration.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–48 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
You can check the nodes that are connected to each SignalTap II instance using the
In-System Debugging compilation reports. These reports list each node name you
selected to connect to a SignalTap II instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If incremental compile
is turned off, the In-System Debugging reports are located in the Analysis & Synthesis
folder. If incremental compile is turned on, this report is located in the Partition Merge
folder. Figure 13–35 shows an example of an In-System Debugging compilation report
for a design using incremental compilation.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report. Figure 13–36 shows an example of
the messages displayed.

Figure 13–35. Compilation Report Showing Connectivity to SignalTap II Instance

Figure 13–36. Compilation Report Messages
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–49
Compile the Design
Unless you make changes to your design partitions that require recompilation, only
the SignalTap II design partition is recompiled. If you make subsequent changes to
only the .stp, only the SignalTap II design partition must be recompiled, reducing
your recompilation time.

Preventing Changes Requiring Recompilation
You can configure the .stp to prevent changes that normally require recompilation. To
do this, select a lock mode from above the node list in the Setup tab. To lock your
configuration, choose to allow only trigger condition changes, regardless of whether
you use incremental compilation.

h For more information about the use of lock modes, refer to Setup Tab (SignalTap II Logic
Analyzer) in Quartus II Help.

Timing Preservation with the SignalTap II Logic Analyzer
In addition to verifying functionality, timing closure is one of the most crucial
processes in successfully completing a design. When you compile a project with a
SignalTap II Logic Analyzer without the use of incremental compilation, you add IP
to your existing design. Therefore, you can affect the existing placement, routing, and
timing of your design. To minimize the effect that the SignalTap II Logic Analyzer has
on your design, Altera recommends that you use incremental compilation for your
project. Incremental compilation is the default setting in new designs and can be
easily enabled and configured in existing designs. With the SignalTap II Logic
Analyzer instance in its own design partition, it has little to no affect on your design.

In addition to using the incremental compilation flow for your design, you can use the
following techniques to help maintain timing:

■ Avoid adding critical path signals to your .stp.

■ Minimize the number of combinational signals you add to your .stp and add
registers whenever possible.

■ Specify an fMAX constraint for each clock in your design.

f For an example of timing preservation with the SignalTap II Logic Analyzer, refer to
the Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Performance and Resource Considerations
There is a necessary trade-off between the runtime flexibility of the SignalTap II Logic
Analyzer, the timing performance of the SignalTap II Logic Analyzer, and resource
usage. The SignalTap II Logic Analyzer allows you to select the runtime configurable
parameters to balance the need for runtime flexibility, speed, and area. The default
values have been chosen to provide maximum flexibility so you can complete
debugging as quickly as possible; however, you can adjust these settings to determine
whether there is a more optimal configuration for your design.

The following tips provide extra timing slack if you have determined that the
SignalTap II logic is in your critical path, or to alleviate the resource requirements that
the SignalTap II Logic Analyzer consumes if your design is resource-constrained.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm

13–50 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Program the Target Device or Devices
If SignalTap II logic is part of your critical path, follow these tips to speed up the
performance of the SignalTap II Logic Analyzer:

■ Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fMAX
of the SignalTap II logic. If you are using State-based triggering flow, try disabling
the Goto state destination option and performing a recompilation before
disabling the other runtime configurable options. The Goto state destination
option has the greatest impact on fMAX, as compared to the other runtime
configurable options.

■ Minimize the number of signals that have Trigger Enable selected—All signals
that you add to the .stp have Trigger Enable turned on. Turn off Trigger Enable
for signals that you do not plan to use as triggers.

■ Turn on Physical Synthesis for register retiming—If you have a large number of
triggering signals enabled (greater than the number of inputs that would fit in a
LAB) that fan-in logic to a gate-based triggering condition, such as a basic trigger
condition or a logical reduction operator in the advanced trigger tab, turn on
Perform register retiming. This can help balance combinational logic across LABs.

If your design is resource constrained, follow these tips to reduce the amount of logic
or memory used by the SignalTap II Logic Analyzer:

■ Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in using fewer LEs.

■ Minimize the number of segments in the acquisition buffer—You can reduce the
number of logic resources used for the SignalTap II Logic Analyzer by limiting the
number of segments in your sampling buffer to only those required.

■ Disable the Data Enable for signals that are used for triggering only—By
default, both the data enable and trigger enable options are selected for all
signals. Turning off the data enable option for signals used as trigger inputs only
saves on memory resources used by the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in different
combinations until you achieve the desired balance between functionality,
performance, and utilization.

f For more information about area and timing optimization, refer the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Program the Target Device or Devices
After you compile your project, including the SignalTap II Logic Analyzer, configure
the FPGA target device. When you are using the SignalTap II Logic Analyzer for
debugging, configure the device from the .stp instead of the Quartus II Programmer.
Because you configure from the .stp, you can open more than one .stp and program
multiple devices to debug multiple designs simultaneously.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–51
Run the SignalTap II Logic Analyzer
The settings in an .stp must be compatible with the programming .sof used to
program the device. An .stp is considered compatible with an .sof when the settings
for the logic analyzer, such as the size of the capture buffer and the signals selected for
monitoring or triggering, match the way the target device is programmed. If the files
are not compatible, you can still program the device, but you cannot run or control the
logic analyzer from the SignalTap II Logic Analyzer Editor.

1 When the SignalTap II Logic Analyzer detects incompatibility after analysis is started,
a system error message is generated containing two CRC values, the expected value
and the value retrieved from the .stp instance on the device. The CRC values are
calculated based on all SignalTap II settings that affect the compilation.

To ensure programming compatibility, make sure to program your device with the
latest .sof created from the most recent compilation. Checking whether or not a
particular SOF is compatible with the current SignalTap II configuration is achieved
quickly by attaching the SOF to the SOF manager. For more details about using the
SOF manager, refer to “Managing Multiple SignalTap II Files and Configurations” on
page 13–25.

Before starting a debugging session, do not make any changes to the .stp settings that
would requires recompiling the project. You can check the SignalTap II status display
at the top of the Instance Manager pane to verify whether a change you made
requires recompiling the project, producing a new .sof. This gives you the
opportunity to undo the change, so that you do not need to recompile your project. To
prevent any such changes, select Allow trigger condition changes only to lock the
.stp.

Although the Quartus II project is not required when using an .stp, it is
recommended. The project database contains information about the integrity of the
current SignalTap II Logic Analyzer session. Without the project database, there is no
way to verify that the current .stp matches the .sof that is downloaded to the device. If
you have an .stp that does not match the .sof, incorrect data is captured in the
SignalTap II Logic Analyzer.

h For instructions on programming devices in the Quartus II software, refer to Running
the SignalTap II Logic Analyzer in Quartus II Help.

Run the SignalTap II Logic Analyzer
After the device is configured with your design that includes the SignalTap II Logic
Analyzer, perform debugging operations in a manner similar to when you use an
external logic analyzer. You initialize the logic analyzer by starting an analysis. When
your trigger event occurs, the captured data is stored in the memory buffer on the
device and then transferred to the .stp with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.
Figure 13–37 illustrates a flow that shows how you operate the SignalTap II Logic
Analyzer. The flowchart indicates where Power-Up and Runtime Trigger events occur
and when captured data from these events is available for analysis.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm

13–52 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
h For information on running the analyzer from the Instance Manager pane, refer to
Running the SignalTap II Logic Analyzer in Quartus II Help.

f You can also use In-System Sources and Probes in conjunction with the SignalTap II
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain. For
more information, refer to the Design Debugging Using In-System Sources and Probes
chapter in volume 3 of the Quartus II Handbook.

Figure 13–37. Power-Up and Runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

Data
Downloaded?
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53021.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–53
Run the SignalTap II Logic Analyzer
Runtime Reconfigurable Options
Certain settings in the .stp are changeable without recompiling your design when you
use Runtime Trigger mode. Runtime Reconfigurable features are described in
Table 13–9.

Runtime Reconfigurable options can potentially save time during the debugging cycle
by allowing you to cover a wider possible scenario of events without the need to
recompile the design. You may experience a slight impact to the performance and
logic utilization of the SignalTap II IP core. You can turn off Runtime
re-configurability for Advanced Trigger Conditions and the State-based trigger flow
parameters, boosting performance and decreasing area utilization.

You can configure the .stp to prevent changes that normally require recompilation. To
do this, in the Setup tab, select Allow Trigger Condition changes only above the
node list.

Table 13–9. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic
Storage Qualifier Conditions

All signals that have the Trigger condition turned on can be
changed to any basic trigger condition value without
recompiling.

Advanced Trigger Conditions and
Advanced Storage Qualifier
Conditions

Many operators include runtime configurable settings. For
example, all comparison operators are
runtime-configurable. Configurable settings are shown with
a white background in the block representation.This
runtime reconfigurable option is turned on in the Object
Properties dialog box.

Switching between a storage-qualified
and a continuous acquisition

Within any storage-qualified mode, you can switch to
continuous capture mode without recompiling the design.
To enable this feature, turn on disable storage qualifier.

State-based trigger flow parameters Table 13–4 lists Reconfigurable State-based trigger flow
options.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–54 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
Example 13–4 illustrates a potential use case for Runtime Reconfigurable features.
This example provides a storage qualified enabled State-based trigger flow
description and shows how you can modify the size of a capture window at runtime
without a recompile. This example gives you equivalent functionality to a segmented
buffer with a single trigger condition where the segment sizes are runtime
reconfigurable.

Figure 13–38 shows a segmented buffer described by the trigger flow in
Example 13–4.

During runtime, the values m and n are runtime reconfigurable. By changing the m
and n values in the preceding trigger flow description, you can dynamically adjust the
segment boundaries without incurring a recompile.

Example 13–4. Trigger Flow Description Providing Runtime Reconfigurable “Segments”

state ST1:
if (condition1 && (c1 <= m)) // each "segment" triggers on condition

//1
begin // m = number of total "segments"

start_store;
increment c1;
goto ST2:

End

else (c1 > m) //This else condition handles the last
//segment.

begin
start_store
Trigger (n-1)

end

state ST2:
if (c2 >= n) //n = number of samples to capture in each

//segment.
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end

Note to Example 13–4:

(1) m x n must equal the sample depth to efficiently use the space in the sample buffer.

Figure 13–38. Segmented Buffer Created with Storage Qualifier and State-Based Trigger (1)

Note to Figure 13–38:

(1) Total sample depth is fixed, where m x n must equal sample depth.

Segment 1 Segment 2 Segment m

1 n 1 n 1 n
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–55
Run the SignalTap II Logic Analyzer
You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

Example 13–5 shows a modified description of Example 13–4 with an additional state
inserted. You use this extra state to specify a different trigger condition that does not
use the storage qualifier feature. You insert status flags into the conditional statements
to control the execution of the trigger flow.

Example 13–5. Modified Trigger Flow Description of Example 16-4 with Status Flags to Selectively Enable States

state ST1 :

if (condition2 && f1) //additional state added for a non-segmented
//acquisition Set f1 to enable state

begin
 start_store;
 trigger
end

else if (! f1)
 goto ST2;

state ST2:
if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state. Set f2

//to enable.
begin

start_store;
increment c1;
goto ST3:

end

else (c1 > m)
start_store
Trigger (n-1)

end

state ST3:
if (c2 >= n)
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–56 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
SignalTap II Status Messages
Table 13–10 describes the text messages that might appear in the SignalTap II Status
Indicator in the Instance Manager pane before, during, and after a data acquisition.
Use these messages to monitor the state of the logic analyzer or what operation it is
performing.

1 In segmented acquisition mode, pre-trigger and post-trigger do not apply.

View, Analyze, and Use Captured Data
Once a trigger event has occurred or you capture data manually, you can use the
SignalTap II interface to examine the data, and use your findings to help debug your
design.

h For information about what you can do with captured data, refer to Analyzing Data in
the SignalTap II Logic Analyzer in Quartus II Help.

Table 13–10. Text Messages in the SignalTap II Status Indicator

Message Message Description

Not running
The SignalTap II Logic Analyzer is not running. There is no connection to a
device or the device is not configured.

(Power-Up Trigger) Waiting for
clock (1)

The SignalTap II Logic Analyzer is performing a Runtime or Power-Up Trigger
acquisition and is waiting for the clock signal to transition.

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data is collected
if using the non-segmented buffer acquisition mode and storage qualifier type is
continuous.

Trigger In conditions met
Trigger In condition has occurred. The SignalTap II Logic Analyzer is waiting for
the condition of the first trigger condition to occur. This can appear if Trigger In
is specified.

Waiting for (Power-up) trigger
(1) The SignalTap II Logic Analyzer is now waiting for the trigger event to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The SignalTap II Logic
Analyzer is waiting for the condition specified in condition x + 1 to occur.

Acquiring (power-up)
post-trigger data (1)

The entire trigger event has occurred. The SignalTap II Logic Analyzer is
acquiring the post-trigger data. The amount of post-trigger data collected is you
define between 12%, 50%, and 88% when the non-segmented buffer
acquisition mode is selected.

Offload acquired (Power-Up) data
(1) Data is being transmitted to the Quartus II software through the JTAG chain.

Ready to acquire The SignalTap II Logic Analyzer is waiting for you to initialize the analyzer.

Note to Table 13–10:

(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in parentheses is
added.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–57
View, Analyze, and Use Captured Data
Capturing Data Using Segmented Buffers
Segmented Acquisition buffers allow you to perform multiple captures with a
separate trigger condition for each acquisition segment. This feature allows you to
capture a recurring event or sequence of events that span over a long period time
efficiently. Each acquisition segment acts as a non-segmented buffer, continuously
capturing data when it is activated. When you run an analysis with the segmented
buffer option enabled, the SignalTap II Logic Analyzer performs back-to-back data
captures for each acquisition segment within your data buffer. The trigger flow, or the
type and order in which the trigger conditions evaluate for each buffer, is defined by
either the Sequential trigger flow control or the Custom State-based trigger flow
control. Figure 13–39 shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

The SignalTap II Logic Analyzer finishes an acquisition with a segment, and advances
to the next segment to start a new acquisition. Depending on when a trigger condition
occurs, it may affect the way the data capture appears in the waveform viewer.
Figure 13–39 illustrates the method in which data is captured. The Trigger markers in
Figure 13–39—Trigger 1, Trigger 2, Trigger 3 and Trigger 4—refer to the evaluation of
the segment_trigger and trigger commands in the Custom State-based trigger flow.
If you use a sequential flow, the Trigger markers refer to trigger conditions specified
within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the SignalTap II
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment
2 buffer starts when either Segment Buffer 1 finishes its post-fill count, or when
Trigger 2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the SignalTap II Logic Analyzer to
accurately capture all of the trigger conditions that have occurred. Samples that have
not been used appear as a blank space in the waveform viewer.

Figure 13–39. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–58 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
Figure 13–40 shows an example of a capture using sequential flow control with the
trigger condition for each segment specified as Don’t Care. Each segment before the
last captures only one sample, because the next trigger condition immediately
preempts capture of the current buffer. The trigger position for all segments is
specified as pre-trigger (10% of the data is before the trigger condition and 90% of the
data is after the trigger position). Because the last segment starts immediately with the
trigger condition, the segment contains only post-trigger data. The three empty
samples in the last segment are left over from the pre-trigger samples that the
SignalTap II Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. For maximum flexibility on how the trigger position is defined, use the
custom state-based trigger flow. By adjusting the trigger position specific to your
debugging requirements, you can help maximize the use of the allocated buffer space.

Differences in Pre-fill Write Behavior Between Different Acquisition
Modes

The SignalTap II Logic Analyzer uses one of the following three modes when writing
into the acquisition memory:

■ Non-segmented buffer

■ Non-segmented buffer with a storage qualifier

■ Segmented buffer

There are subtle differences in the amount of data captured immediately after running
the SignalTap II Logic Analyzer and before any trigger conditions occur. A non-
segmented buffer, running in continuous mode, completely fills the buffer with
sampled data before evaluating any trigger conditions. Thus, a non-segmented
capture without any storage qualification enabled always shows a waveform with a
full buffer's worth of data captured.

Filling the buffer provides you with as much data as possible within the capture
window. The buffer gets pre-filled with data samples prior to evaluating the trigger
condition. As such, SignalTap requires that the buffer be filled at least once before any
data can be retrieved through the JTAG connection and prevents the buffer from being
dumped during the first acquisition prior to a trigger condition when you perform a
Stop Analysis.

Figure 13–40. Segmented Capture with Preemption of Acquisition Segments (1)

Note to Figure 13–40:

(1) A segmented acquisition buffer using the sequential trigger flow with a trigger condition specified as Don’t Care. All segments, with the exception
of the last segment, capture only one sample because the next trigger condition preempts the current buffer from filling to completion.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–59
View, Analyze, and Use Captured Data
For segmented buffers and non-segmented buffers using any storage qualification
mode, the SignalTap II Logic Analyzer immediately evaluates all trigger conditions
while writing samples into the acquisition memory. The logic analyzer evaluates each
trigger condition before acquiring a full buffer's worth of samples. This evaluation is
especially important when using any storage qualification on the data set. The logic
analyzer may miss a trigger condition if it waits until a full buffer's worth of data is
captured before evaluating any trigger conditions.

If the trigger event occurs on any data sample before the specified amount of pre-
trigger data has occurred, then the SignalTap II Logic Analyzer triggers and begins
filling memory with post-trigger data, regardless of the amount of pre-trigger data
you specify. For example, if you set the trigger position to 50% and set the logic
analyzer to trigger on a processor reset, start the logic analyzer, and then power on
your target system, the logic analyzer triggers. However, the logic analyzer memory is
filled only with post-trigger data, and not any pre-trigger data, because the trigger
event, which has higher precedence than the capture of pre-trigger data, occurred
before the pre-trigger condition was satisfied.

Figure 13–41 and Figure 13–42 on page 13–60 show the difference between a non-
segmented buffer in continuous mode and a non-segmented buffer using a storage
qualifier. The logic analyzer for the waveforms below is configured with a sample
depth of 64 bits, with a trigger position specified as Post trigger position.

Figure 13–41. SignalTap II Logic Analyzer Continuous Data Capture (1)

Note to Figure 13–41:

(1) Continuous capture mode with post-trigger position.
(2) Capture of a recurring pattern using a non-segmented buffer in continuous mode. The SignalTap II Logic Analyzer is configured with a basic trigger

condition (shown in the figure as "Trig1") with a sample depth of 64 bits.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–60 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
Notice in Figure 13–41 that Trig1 occurs several times in the data buffer before the
SignalTap II Logic Analyzer actually triggers. A full buffer's worth of data is captured
before the logic analyzer evaluates any trigger conditions. After the trigger condition
occurs, the logic analyzer continues acquisition until it captures eight additional
samples (12% of the buffer, as defined by the "post-trigger" position).

Notice in Figure 13–42 that the logic analyzer triggers immediately. As in
Figure 13–41, the logic analyzer completes the acquisition with eight samples, or 12%
of 64, the sample capacity of the acquisition buffer.

Creating Mnemonics for Bit Patterns
The mnemonic table feature allows you to assign a meaningful name to a set of bit
patterns, such as a bus. To create a mnemonic table, right-click in the Setup or Data
tab of an .stp and click Mnemonic Table Setup. You create a mnemonic table by
entering sets of bit patterns and specifying a label to represent each pattern. Once you
have created a mnemonic table, assign the table to a group of signals. To assign a
mnemonic table, right-click on the group, click Bus Display Format and select the
desired mnemonic table.

You use the labels you create in a table in different ways on the Setup and Data tabs.
On the Setup tab, you can create basic triggers with meaningful names by
right-clicking an entry in the Trigger Conditions column and selecting a label from
the table you assigned to the signal group. On the Data tab, if any captured data
matches a bit pattern contained in an assigned mnemonic table, the signal group data
is replaced with the appropriate label, making it easy to see when expected data
patterns occur.

Automatic Mnemonics with a Plug-In
When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click on the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

Figure 13–42. SignalTap II Logic Analyzer Conditional Data Capture (1)

Note to Figure 13–42:

(1) Conditional capture, storage always enabled, post-fill count.
(2) SignalTap II Logic Analyzer capture of a recurring pattern using a non-segmented buffer in conditional mode. The logic analyzer is configured with

a basic trigger condition (shown in the figure as "Trig1"), with a sample depth of 64 bits. The “Trigger in” condition is specified as "Don't care",
which means that every sample is captured.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–61
View, Analyze, and Use Captured Data
As an example, the Nios II plug-in helps you to monitor signal activity for your
design as the code is executed. If you set up the logic analyzer to trigger on a function
name in your Nios II code based on data from an .elf, you can see the function name
in the Instance Address signal group at the trigger sample, along with the
corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13–43. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Locating a Node in the Design
When you find the source of an error in your design using the SignalTap II Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Quartus II software, as well as in your design files. This lets you find the
source of the problem quickly so you can modify your design to correct the flaw. To
locate a signal from the SignalTap II Logic Analyzer in one of the Quartus II software
tools or your design files, right-click on the signal in the .stp, and click Locate in
<tool name>.

You can locate a signal from the node list with the following tools:

■ Assignment Editor

■ Pin Planner

■ Timing Closure Floorplan

■ Chip Planner

■ Resource Property Editor

■ Technology Map Viewer

■ RTL Viewer

■ Design File

f For more information about using these tools, refer to each of the corresponding
chapters in the Quartus II Handbook.

Figure 13–43. Data Tab when the Nios II Plug-In is Used
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://www.altera.com/literature/lit-qts.jsp

13–62 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
Saving Captured Data
The data log shows the history of captured data and the triggers used to capture the
data. The SignalTap II Logic Analyzer acquires data, stores it in a log, and displays it
as waveforms. When the logic analyzer is in auto-run mode and a trigger event occurs
more than once, captured data for each time the trigger occurred is stored as a
separate entry in the data log. This allows you to review the captured data for each
trigger event. The default name for a log is based on the time when the data was
acquired. Altera recommends that you rename the data log with a more meaningful
name.

The logs are organized in a hierarchical manner; similar logs of captured data are
grouped together in trigger sets. To open the Data Log pane, on the View menu, select
Data Log. To turn on data logging, turn on Enable data log in the Data Log
(Figure 13–19). To recall and activate a data log for a given trigger set, double-click the
name of the data log in the list.

You can use the Data Log feature for organizing different sets of trigger conditions
and different sets of signal configurations. For more information, refer to “Managing
Multiple SignalTap II Files and Configurations” on page 13–25.

Exporting Captured Data to Other File Formats
You can export captured data to the following file formats, for use with other EDA
simulation tools:

■ Comma Separated Values File (.csv)

■ Table File (.tbl)

■ Value Change Dump File (.vcd)

■ Vector Waveform File (.vwf)

■ Graphics format files (.jpg, .bmp)

To export the captured data from SignalTap II Logic Analyzer, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

Creating a SignalTap II List File
Captured data can also be viewed in an .stp list file. An .stp list file is a text file that
lists all the data captured by the logic analyzer for a trigger event. Each row of the list
file corresponds to one captured sample in the buffer. Columns correspond to the
value of each of the captured signals or signal groups for that sample. If a mnemonic
table was created for the captured data, the numerical values in the list are replaced
with a matching entry from the table. This is especially useful with the use of a
plug-in that includes instruction code disassembly. You can immediately see the order
in which the instruction code was executed during the same time period of the trigger
event. To create an .stp list file in the Quartus II software, on the File menu, select
Create/Update and click Create SignalTap II List File.

Other Features
The SignalTap II Logic Analyzer has other features that do not necessarily belong to a
particular task in the task flow.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–63
Other Features
Using the SignalTap II MATLAB MEX Function to Capture Data
If you use MATLAB for DSP design, you can call the MATLAB MEX function
alt_signaltap_run, built into the Quartus II software, to acquire data from the
SignalTap II Logic Analyzer directly into a matrix in the MATLAB environment. If
you use the MATLAB MEX function in a loop, you can perform as many acquisitions
in the same amount of time as you can when using SignalTap II in the Quartus II
software environment.

1 The SignalTap II MATLAB MEX function is available only in the Windows version of
the Quartus II software. It is compatible with MATLAB Release 14 Original Release
Version 7 and later.

To set up the Quartus II software and the MATLAB environment to perform
SignalTap II acquisitions, perform the following steps:

1. In the Quartus II software, create an .stp file.

2. In the node list in the Data tab of the SignalTap II Logic Analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix. Each column of the imported matrix represents a single
SignalTap II acquisition sample, while each row represents a signal or group of
signals in the order they are organized in the Data tab.

1 Signal groups acquired from the SignalTap II Logic Analyzer and
transferred into the MATLAB MEX function are limited to a width of
32 signals. If you want to use the MATLAB MEX function with a bus or
signal group that contains more than 32 signals, split the group into smaller
groups that do not exceed the 32-signal limit.

3. Save the .stp and compile your design. Program your device and run the
SignalTap II Logic Analyzer to ensure your trigger conditions and signal
acquisition work correctly.

4. In the MATLAB environment, add the Quartus II binary directory to your path
with the following command:

addpath <Quartus install directory>\win r
You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run r
Use the MATLAB MEX function to open the JTAG connection to the device and run
the SignalTap II Logic Analyzer to acquire data. When you finish acquiring data, close
the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]); r
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–64 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
When capturing data you must assign a filename, for example, <stp filename> as a
requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in Table 13–11.

You can enable or disable verbose mode to see the status of the logic analyzer while it
is acquiring data. To enable or disable verbose mode, use the following commands:

alt_signaltap_run('VERBOSE_ON'); r
alt_signaltap_run('VERBOSE_OFF'); r
When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION'); r

f For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

Using SignalTap II in a Lab Environment
You can install a stand-alone version of the SignalTap II Logic Analyzer. This version
is particularly useful in a lab environment in which you do not have a workstation
that meets the requirements for a complete Quartus II installation, or if you do not
have a license for a full installation of the Quartus II software. The standalone version
of the SignalTap II Logic Analyzer is included with and requires the Quartus II stand-
alone Programmer which is available from the Downloads page of the Altera website
(www.altera.com).

Remote Debugging Using the SignalTap II Logic Analyzer
You can use the SignalTap II Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

■ The Quartus II software installed on the local PC

■ Stand-alone SignalTap II Logic Analyzer or the full version of the Quartus II
software installed on the remote PC

■ Programming hardware connected to the device on the PCB at the remote location

■ TCP/IP protocol connection

Table 13–11. SignalTap II MATLAB MEX Function Options

Option Usage Description

signed

unsigned
'signed'

'unsigned'

The signed option turns signal group data into 32-bit
two’s-complement signed integers. The MSB of the group as
defined in the SignalTap II Data tab is the sign bit. The unsigned
option keeps the data as an unsigned integer. The default is signed.

<instance name>
'auto_signaltap_0'

Specify a SignalTap II instance if more than one instance is defined.
The default is the first instance in the .stp, auto_signaltap_0.

<signal set name>

<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the SignalTap II data log if
multiple configurations are present in the .stp. The default is the
active signal set and trigger in the file.
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–65
Other Features
Equipment Setup
On the PC in the remote location, install the standalone version of the SignalTap II
Logic Analyzer, included in the Quartus II standalone Programmer, or the full version
of the Quartus II software. This remote computer must have Altera programming
hardware connected, such as the EthernetBlaster or USB-Blaster.

On the local PC, install the full version of the Quartus II software. This local PC must
be connected to the remote PC across a LAN with the TCP/IP protocol.

h For information about enabling remote access to a JTAG server, refer to Using the JTAG
Server in Quartus II Help.

Using the SignalTap II Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an
on-device AES decryption engine. You can still use the SignalTap II Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is
not possible after the security key has been programmed into the device.

Altera recommends that you use an unencrypted bitstream during the prototype and
debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the SignalTap II Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design
must contain at least one instance of the SignalTap II Logic Analyzer. After the FPGA
is configured with a SignalTap II Logic Analyzer instance in the design, when you
open the SignalTap II Logic Analyzer in the Quartus II software, you then scan the
chain and are ready to acquire data with the JTAG connection.

Backward Compatibility with Previous Versions of Quartus II Software
You can open an .stp created in a previous version in a current version of the
Quartus II software. However, opening an .stp modifies it so that it cannot be opened
in a previous version of the Quartus II software.

If you have a Quartus II project file from a previous version of the software, you may
have to update the .stp configuration file to recompile the project. You can update the
configuration file by opening the SignalTap II Logic Analyzer. If you need to update
your configuration, a prompt appears asking if you would like to update the .stp to
match the current version of the Quartus II software.
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm

13–66 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
SignalTap II Command-Line Options
To compile your design with the SignalTap II Logic Analyzer using the command
prompt, use the quartus_stp command. Table 13–12 shows the options that help you
use the quartus_stp executable.

Example 13–6 illustrates how to compile a design with the SignalTap II Logic
Analyzer at the command line.

The quartus_stp --stp_file stp1.stp --enable command creates the QSF variable
and instructs the Quartus II software to compile the stp1.stp file with your design.
The --enable option must be applied for the SignalTap II Logic Analyzer to compile
properly into your design.

Table 13–12. SignalTap II Command-Line Options

Option Usage Description

stp_file quartus_stp

--stp_file <stp_filename>

Assigns the specified .stp to the
USE_SIGNALTAP_FILE in the .qsf.

enable quartus_stp --enable Creates assignments to the specified .stp in
the .qsf and changes ENABLE_SIGNALTAP
to ON. The SignalTap II Logic Analyzer is
included in your design the next time the
project is compiled. If no .stp is specified in
the .qsf, the --stp_file option must be
used. If the --enable option is omitted, the
current value of ENABLE_SIGNALTAP in the
.qsf is used.

disable quartus_stp --disable Removes the .stp reference from the .qsf
and changes ENABLE_SIGNALTAP to OFF.
The SignalTap II Logic Analyzer is removed
from the design database the next time you
compile your design. If the --disable
option is omitted, the current value of
ENABLE_SIGNALTAP in the .qsf is used.

create_signaltap_hdl_file quartus_stp

--create_signaltap_hdl_file

Creates an .stp representing the
SignalTap II instance in the design
generated by the SignalTap II Logic
Analyzer megafunction created with the
MegaWizard Plug-In Manager. The file is
based on the last compilation. You must
use the --stp_file option to create an
.stp properly. Analogous to the Create
SignalTap II File from Design Instance(s)
command in the Quartus II software.

Example 13–6.

quartus_stp filtref --stp_file stp1.stp --enable r
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_asm filtref r
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–67
Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
Example 13–7 shows how to create a new .stp after building the SignalTap II Logic
Analyzer instance with the MegaWizard Plug-In Manager.

f For information about the other command line executables and options, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Tcl Commands
The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Quartus II GUI. You cannot execute SignalTap II Tcl commands
from within the Tcl console in the Quartus II software. They must be executed from
the command line with the quartus_stp executable. To execute a Tcl file that has
SignalTap II Logic Analyzer Tcl commands, use the following command:

quartus_stp -t <Tcl file> r

h For information about Tcl commands that you can use with the SignalTap II Logic
Analyzer Tcl package, refer to ::quartus::stp in Quartus II Help.

Example 13–8 is an excerpt from a script you can use to continuously capture data.
Once the trigger condition is met, the data is captured and stored in the data log.

When the script is completed, open the .stp that you used to capture data to examine
the contents of the Data Log.

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder
Systems

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. In this example, the Nios processor executes a simple C program
from on-chip memory and waits for you to press a button. After you press a button,
the processor initiates a DMA transfer, which you analyze using the SignalTap II
Logic Analyzer.

Example 13–7.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp r

Example 13–8.

#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_stp_ver_1.0.htm
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

13–68 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Custom Triggering Flow Application Examples
f For more information about this example and using the SignalTap II Logic Analyzer
with SOPC builder systems, refer to AN 323: Using SignalTap II Logic Analyzers in
SOPC Builder Systems and AN 446: Debugging Nios II Systems with the SignalTap II Logic
Analyzer.

Custom Triggering Flow Application Examples
The custom triggering flow in the SignalTap II Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the SignalTap II Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

1 For additional triggering flow design examples for on-chip debugging, refer to the
On-chip Debugging Design Examples page on the Altera website.

Design Example 1: Specifying a Custom Trigger Position
Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer. Example 13–9 shows an example that applies a
trigger position to all segments in the acquisition buffer. The example describes a
triggering flow for an acquisition buffer split into four segments. If each acquisition
segment is 64 samples in depth, the trigger position for each buffer will be at sample
#34. The acquisition stops after all four segments are filled once.

Example 13–9.

if (c1 == 3 && condition1)
trigger 30;

else if (condition1)
begin

segment_trigger 30;
increment c1;

end
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–69
Custom Triggering Flow Application Examples
Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values. The last acquisition before stopping the buffer is
displayed on the Data tab as the last sample number in the affected segment. The
trigger position in the affected segment is then defined by N – post count fill, where N
is the number of samples per segment. Figure 13–44 illustrates the triggering position.

Design Example 2: Trigger When triggercond1 Occurs Ten Times between
triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. Example 13–10 shows such a sample flow.
This example uses three basic triggering conditions configured in the SignalTap II
Setup tab.

Figure 13–44. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

13–70 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Scripting Support
This example triggers the acquisition buffer when condition1 occurs after condition3
and occurs ten times prior to condition3. If condition3 occurs prior to ten repetitions
of condition1, the state machine transitions to a permanent wait state.

SignalTap II Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook

h You can also refer to About Quartus II Tcl Scripting in Quartus II Help.

Conclusion
As the FPGA industry continues to make technological advancements, outdated
methodologies are replaced with new technologies that maximize productivity. The
SignalTap II Logic Analyzer gives you the same benefits as a traditional logic
analyzer, without the many shortcomings of a piece of dedicated test equipment. The
SignalTap II Logic Analyzer provides many new and innovative features that allow
you to capture and analyze internal signals in your FPGA, allowing you to quickly
debug your design.

Example 13–10.

state ST1:

if (condition2)
begin

reset c1;
goto ST2;

end

State ST2 :
if (condition1)

increment c1;

else if (condition3 && c1 < 10)
goto ST3;

else if (condition3 && c1 >= 10)
trigger;

ST3:
goto ST3;
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–71
Document Revision History
Document Revision History
Table 13–13 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 13–13. Document Revision History

Date Version Changes Made

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the SignalTap II File” on
page 13–10.

November 2011 11.0.1
Template update.

Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0

■ Add new acquisition buffer content to the “View, Analyze, and Use Captured Data” section.

■ Added script sample for generating hexadecimal CRC values in programmed devices.

■ Created cross references to Quartus II Help for duplicated procedural content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0

■ Updated Table 13–1

■ Updated “Using Incremental Compilation with the SignalTap II Logic Analyzer” on
page 13–46

■ Added new Figure 13–35

■ Made minor editorial updates

November 2008 8.1.0

Updated for the Quartus II software version 8.1 release:

■ Added new section “Using the Storage Qualifier Feature” on page 14–25

■ Added description of start_store and stop_store commands in section “Trigger
Condition Flow Control” on page 14–36

■ Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0

Updated for the Quartus II software version 8.0:

■ Added “Debugging Finite State machines” on page 14-24

■ Documented various GUI usability enhancements, including improvements to the
resource estimator, the bus find feature, and the dynamic display updates to the counter
and flag resources in the State-based trigger flow control tab

■ Added “Capturing Data Using Segmented Buffers” on page 14–16

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
June 2012 Altera Corporation Quartus II Handbook Version 12.0
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

13–72 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Document Revision History
Quartus II Handbook Version 12.0 June 2012 Altera Corporation
Volume 3: Verification

	13. Design Debugging Using the SignalTap II Logic Analyzer
	Hardware and Software Requirements
	Design Flow Using the SignalTap II Logic Analyzer
	SignalTap II Logic Analyzer Task Flow
	Add the SignalTap II Logic Analyzer to Your Design
	Configure the SignalTap II Logic Analyzer
	Define Trigger Conditions
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	View, Analyze, and Use Captured Data
	Embedding Multiple Analyzers in One FPGA
	Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer
	Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer

	Configure the SignalTap II Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Signal Preservation
	Assigning Data Signals Using the Technology Map Viewer
	Node List Signal Use Options
	Untappable Signals

	Adding Signals with a Plug-In
	Adding Finite State Machine State Encoding Registers
	Modifying and Restoring Mnemonic Tables for State Machines
	Additional Considerations

	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Non-Segmented Buffer
	Segmented Buffer

	Using the Storage Qualifier Feature
	Input Port Mode
	Transitional Mode
	Conditional Mode
	Start/Stop Mode
	State-Based
	Showing Data Discontinuities
	Disable Storage Qualifier

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Trigger Condition Flow Control
	Sequential Triggering
	State-Based Triggering
	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action
	Using the State-Based Storage Qualifier Feature

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus II Incremental Compilation
	Enabling Incremental Compilation for Your Design
	Using Incremental Compilation with the SignalTap II Logic Analyzer

	Preventing Changes Requiring Recompilation
	Timing Preservation with the SignalTap II Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	Runtime Reconfigurable Options
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Capturing Data Using Segmented Buffers
	Differences in Pre-fill Write Behavior Between Different Acquisition Modes
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Exporting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Logic Analyzer
	Equipment Setup

	Using the SignalTap II Logic Analyzer in Devices with Configuration Bitstream Security
	Backward Compatibility with Previous Versions of Quartus II Software
	SignalTap II Command-Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	SignalTap II Scripting Support
	Conclusion
	Document Revision History

