AO4914	PHA & OMEGA MICONDUCTOR, LTD el Enhancement Mode I e	Field Ef	fect Transis	Rev 6: M		Phoe	
General Descrip The AO4914 uses ac excellent R DS(ON) a MOSFETs make a co synchronous rectifier converters. A Schottl with the synchronous AO4914 is Pb-free (r specifications). AO49		de $Q1$ V_{DS} ($I_D = 3$ $R_{DS(0)}$ er SCH	8.5A _{DN)} < 18mΩ <		(V _{GS} = (V _{GS} =	-	
S1	1 8 D2/K 2 7 D2/K 3 6 D1 4 5 D1 SOIC-8				Q2		
Absolute Maximum F	Ratings T _A =25°C unless otherwis	e noted					
Parameter		Symbol	Max Q1	Max Q2		Units	
Drain-Source Voltage		V _{DS}	30	30)	V	
Gate-Source Voltage		V _{GS}	±20	±2	0	V	
Continuous Drain	T _A =25°C		8.5	8.5	5		
Current ^A	T _A =70°C	I _D	6.6	6.6 30		А	
Pulsed Drain Current ^E	3	I _{DM}	30				
	T _A =25°C		2	2		W	
Power Dissipation	T _A =70°C	P _D	1.28	1.2	1.28		
lunction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150		°C	
_		T		· · · ·			
Parameter		Symbol	Maximum Sc	hottky	U	nits	
Reverse Voltage		V _{DS}	30			V	
Continuous Forward	T _A =25°C		3		ļ		
Current ^A T _A =70°C		l _F	2.2		A		
Pulsed Diode Forward	l Current ^B	I _{FM}	20				

 P_D

 $\mathsf{T}_{\mathsf{J}},\,\mathsf{T}_{\mathsf{STG}}$

2

1.28

-55 to 150

W

°C

Power Dissipation^A

T_A=25°C

T_A=70°C

Junction and Storage Temperature Range

AO4912, AO4912L

Parameter: Thermal Characteris	tics MOSFET Q1	Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	- R _{θJA} -	48	62.5	
Maximum Junction-to-Ambient ^A	Steady-State	Γ _θ JA	74	110	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ heta}JL}$	35	40	
Parameter: Thermal Characteris	tics MOSEET 02	Symbol	Тур	Max	
		Oynibol	iyp	IVIAX	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s		48	62.5	Units
		$-R_{\theta JA}$			°C/W

Thermal Characteristics Schott	ky				
Maximum Junction-to-Ambient ^A	t ≤ 10s	D	47.5	62.5	
Maximum Junction-to-Ambient ^A	Steady-State	κ _{θJA}	71	110	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ hetaJL}}$	32	40	

A: The value of R $_{0JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T $_{A}$ =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

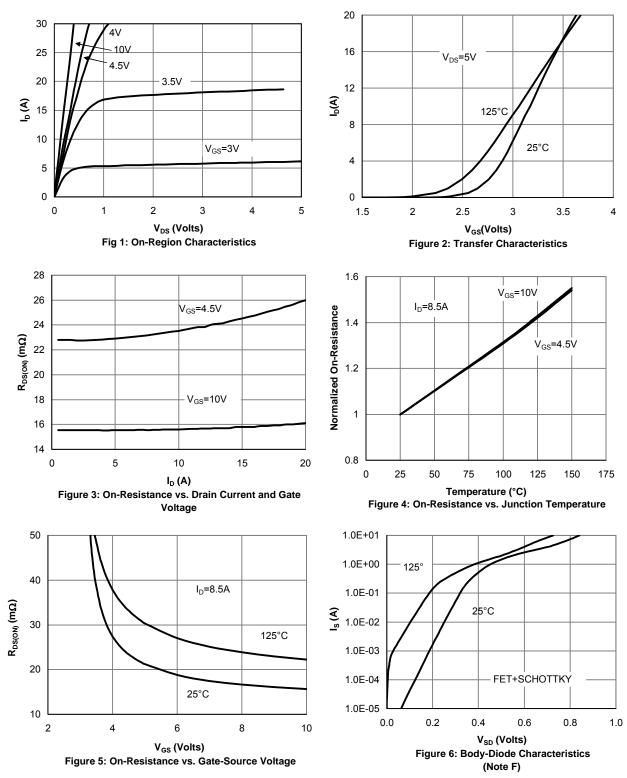
F. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

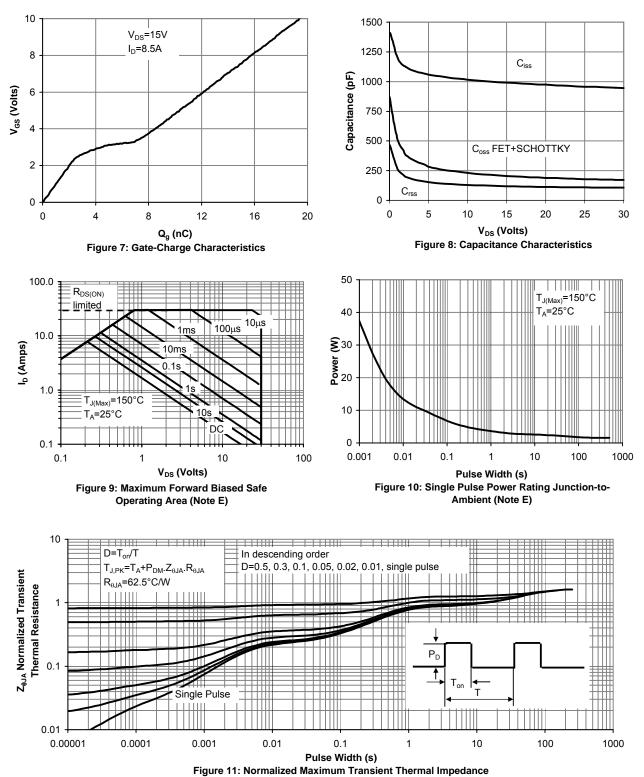
Q1 Electr	ical Characteristics (T _J =25°C unless otherwise not	ed)				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS	- · · · ·				
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
I _{DSS}	Zero Gate Voltage Drain Current. (Set by Schottky leakage)	V _R =30V		0.007	0.05	
		V _R =30V, T _J =125°C		3.2	10	mA
		V _R =30V, T _J =150°C		12	20	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} = ±20V			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ I _D =250µA	1	1.8	3	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	30			Α
R _{DS(ON)}		V _{GS} =10V, I _D =8.5A		15.5	18	
	Static Drain-Source On-Resistance	T _J =125°C		22.3	27	mΩ
		V _{GS} =4.5V, I _D =6A		23	28	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =8.5A		23		S
V _{SD}	Diode + Schottky Forward Voltage	I _S =1A,V _{GS} =0V		0.45	0.5	V
I _S	Maximum Body-Diode + Schottky Continuous Currer	nt			3.5	Α
DYNAMIC	C PARAMETERS			•		
C _{iss}	Input Capacitance			971	1165	pF
C _{oss}	Output Capacitance (FET + Schottky)	V _{GS} =0V, V _{DS} =15V, f=1MHz		190		pF
C _{rss}	Reverse Transfer Capacitance			110		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.7	0.85	Ω
SWITCHI	NG PARAMETERS	· ·		•		
Q _g (10V)	Total Gate Charge			19.2	23	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =8.5A		9.36	11.2	nC
Q _{gs}	Gate Source Charge	$V_{GS} = 10V, V_{DS} = 15V, I_D = 0.5A$		2.6		nC
Q _{gd}	Gate Drain Charge			4.2		nC
t _{D(on)}	Turn-On DelayTime			5.2	7.5	ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =15V, R _L =1.8Ω,		4.4	6.5	ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		17.3	26	ns
t _f	Turn-Off Fall Time			3.3	5	ns
t _{rr}	Body Diode + Schottky Reverse Recovery Time	I _F =8.5A, dI/dt=100A/μs		18.8	23	ns
Q _{rr}	Body Diode + Schottky Reverse Recovery Charge	I _F =8.5A, dI/dt=100A/µs		9.2	11	nC

A: The value of R_{ouA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.


C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80 \mu s$ pulses, duty cycle 0.5% max.


E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

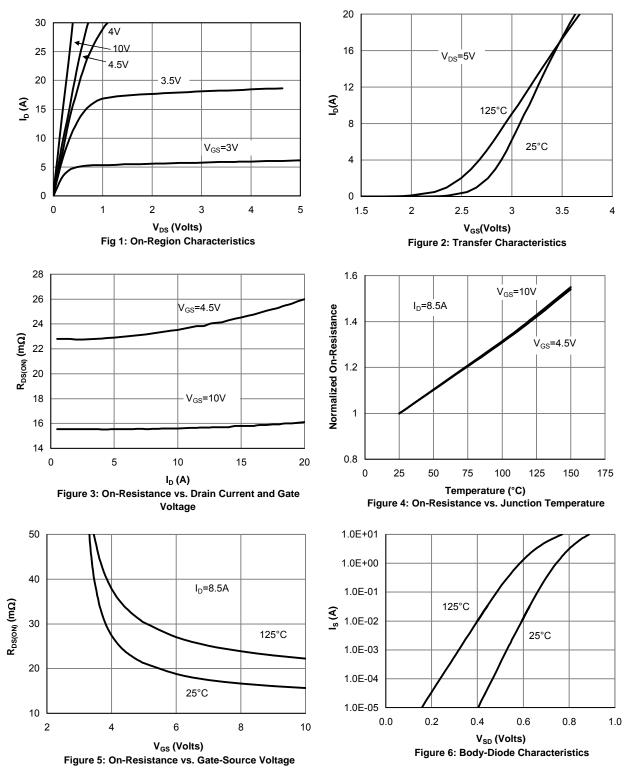
F. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

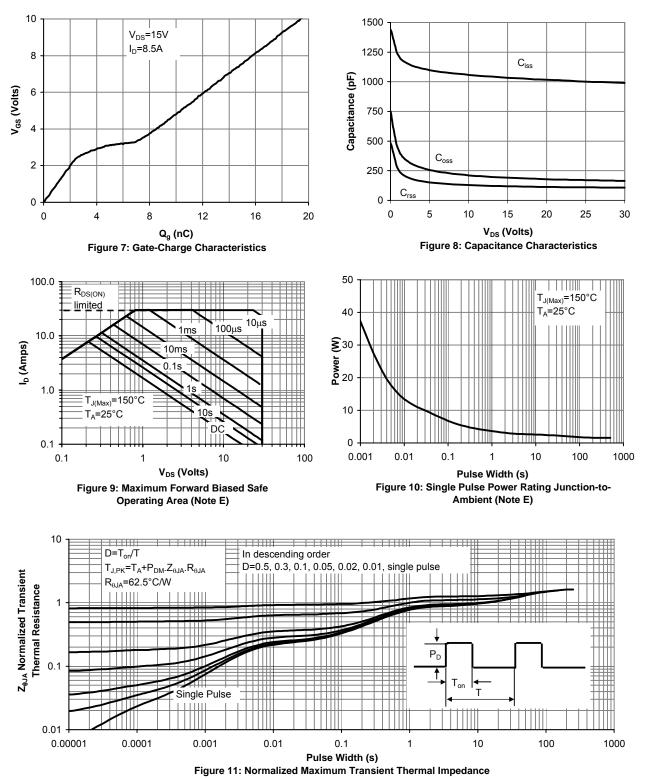
Q1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Q1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS	÷					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			0.003	1	μA
DSS	Zelo Gale Voltage Drain Current		T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} = ±20V				100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		1	1.8	3	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V		30			Α
		V _{GS} =10V, I _D =8.5A			15.5	18	m 0
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		22.3	27	mΩ
		V _{GS} =4.5V, I _D =6A			23	28	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =8.5A		23		S	
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.75	1	V	
ls	Maximum Body-Diode Continuous Cur	rrent				3	А
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				1040	1250	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			180		pF
C _{rss}	Reverse Transfer Capacitance				110		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.7	0.85	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				19.2	23	nC
Q _g (4.5V)	Total Gate Charge	–V _{GS} =10V, V _{DS} =15V, I _D =8.5A			9.36	11.2	nC
Q _{gs}	Gate Source Charge				2.6		nC
Q _{gd}	Gate Drain Charge				4.2		nC
t _{D(on)}	Turn-On DelayTime				5.2	7.5	ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =1.8 Ω ,			4.4	6.5	ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω	Γ		17.3	26	ns
t _f	Turn-Off Fall Time				3.3	5	ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =8.5A, dl/dt=100A/μ	ιS		16.7	21	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =8.5A, dl/dt=100A/µ	ιS		6.7	10	nC


A: The value of $R_{0,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm \theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm \theta JL}$ and lead to ambient.


D. The static characteristics in Figures 1 to 6 are obtained using 80μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Q2 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Q2 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS