NOTICE: This document contains references to Varian. Please note that Varian, Inc. is now part of Agilent Technologies. For more information, go to **www.agilent.com/chem.**

Maxcy Stroman and Tiffany Payne Varian, Inc.

Introduction

It is well known that plasma or serum levels of vitamin D and its metabolites reflect the nutritional status of vitamin D in humans.¹ In this analysis, the active forms of vitamin D, vitamin D₂ and D₃, are separated and analyzed using LC/MS/MS on the Varian 320-MS Triple Quadrupole mass spectrometer. LC/MS/MS is a very sensitive and accurate tool for vitamin D screening, and gives clear chromatographic peaks that could easily be applied to quantitative analysis in blood plasma or serum.

Figure 1. Chemical structure of vitamin D₂ (left) and vitamin D₃ (right).²

Standards of vitamin D_2 and D_3 were infused and the analytical conditions were optimized. Then, an injection at a concentration of 10 ppm was performed to yield MS/MS data for each of the analytes.

Instrumentation

- Varian 320-MS Triple Quadrupole LC/MS/MS with APCI source
- Varian 210-LC Binary Solvent Delivery Modules
- Varian Prostar[™] 430 AutoSampler

Materials & Reagents

Vitamin D_2 and D_3 standards were purchased from Sigma (St. Louis, MO).

HPLC Conditions

Column:	Polaris [™] C18-A 3 μm, 100 x 2.0 mm ID (Varian Part No. A2001100X020)					
Solvent A:	50:50 Water:CH₃OH					
Solvent B:	Acetonitrile					
LC Program:	Time (min:sec)	% A	%B	Flow (µL/min)		
	00:00	100	0	400		
	10:00	100	0	400		

Injection Volume: $25 \ \mu L$

Application Note 01511

Vitamin D₂ and D₃ Analysis on the Varian 320–MS Triple Quadrupole LC/MS/MS

MS Parameters	
Ionization Mode:	APCI (positive)
API Drying Gas:	18 psi at 200 °C
API Nebulizing Gas:	55 psi
Vaporizer Gas:	18 psi at 100 °C
Needle:	5000 V
Corona Current:	2.00 μA
Shield:	600 V

Table 1. MS Segment Parameters.

Seg #	Analyte	Transition	Ret. Time	Collision Energy
1	Vitamin D ₂	389>270	4.01 min.	15.0 V
1	Vitamin D₃	377>258	4.27 min.	15.0 V

Results & Discussion

Figure 2 shows the mass chromatogram of vitamin D_2 and D_3 . This is MS/MS data using the precursor-product transitions listed in Table 1. This analysis was performed using an isocratic flow, so an LC gradient would undoubtedly provide increased chromatographic separation. However, the rapid analysis of multiple transitions is easily achieved on the Varian 320-MS, thus chromatographic separation is not required with a complex mixture of compounds.

Figure 2. MS/MS chromatogram of Vitamin D_2 and D_3 .

References

- Kamao, M.; Tsugawa, N.; Suhara, Y.; Okano, T.; "Determination of Fat-Soluble Vitamins in Human Plasma, Breast Milk and Food Samples: Application in Nutrition Survey for Establishment of 'Dietary Reference Intakes for Japanese'." Jour nal of Health Science 2007, 53(3), 257-262.
- 2. Images from Sigma Aldrich website: <u>http://www.sigmaaldrich.com/Area_of_Interest/The_Americas/Unit_ed_States.html</u>. Accessed on March 3, 2008.

ProStar, Pursuit, Varian and the Varian logo are trademarks or registered trademarks of Varian, Inc. in the U.S. and other countries. © 2008 Varian, Inc.

These data represent typical results. For further information, contact your local Varian Sales Office.

> Varian, Inc. www.varianinc.com North America: 800.926.3000 – 925.939.2400 Europe The Netherlands: 31.118.67.1000 Asia Pacific Australia: 613.9560.7133 Latin America Brazil: 55.11.3238.0400