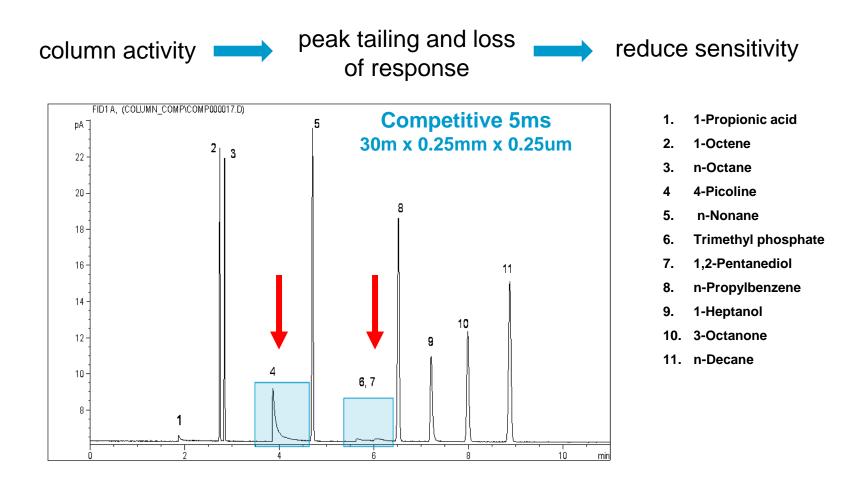
Ultra-Inert chemistry for Trace Level Analysis

Cikui Liang, Ph.D.

Challenges and Needs of Today's Laboratories

• Challenges

- Qualification/quantification of trace samples
- Keep instrument up and running


• Needs

- Lower detection limits
- Improved stability in GC or GC/MS system

Lower Detection Limit			
Reduce noise	Increase signal		
Injection system (septa, liners, connections)	Sample concentration		
Carrier gas and detector gases	Sample size		
Leaks	Inert injection and detection port sleeves/liner		
Temperature setting	Gas velocity or temp program rate		
Stationary phase and column bleed	Column inertness		

What Does Column Activity look like?

Column activity is the loss of detectable analytes to the GC column through non-ideal chemical reactions and interactions.

How Important Column Inertness to Overall Flow Path Inertness?

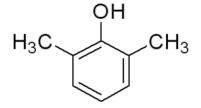
GC Flow Path Surface Areas:

				Surface Area
	l (cm)	d (cm)	pi	(cm ²)
Liner	7	0.2	3.142	4.4
Seal	0.4	0.8	3.142	1.0
Column	3000	0.025	3.142	235.6

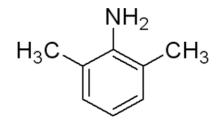
What is an Ultra Inert GC Column?

- Not just another column claims better performance
- Not hand picked from standard production based on "exceptional performance"
- <u>New approach</u> to column manufacturing with significantly improved sensitivity and accuracy for trace samples
- Treated with new, proprietary processes for surface treatment and deactivation, resulting in much better peak shape for acidic, basic, and other active compounds
- The deactivated surface coupled with the low-bleed bonded phases lead to much improved analyses and lower detection limits

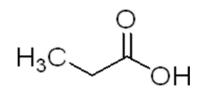
Test Probes and Column Activity QC Testing

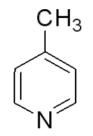

• Test probes are vital to ensure the quality and reproducibility of GC columns

- Properly deactivated
- Contain the correct amount of stationary phase
- consistent column-to-column relative retention time
- Test probes can either highlight or mask the deficiencies of a column
 - An organic acid
 - A base
 - An alcohol
 - Non-active probes (e.g. alkanes)


* Peak tailing or loss response of an acid (or base) indicates the column is basic (or acidic).

Weak Probes vs. Strong Probes


2,6-Dimethylphenol

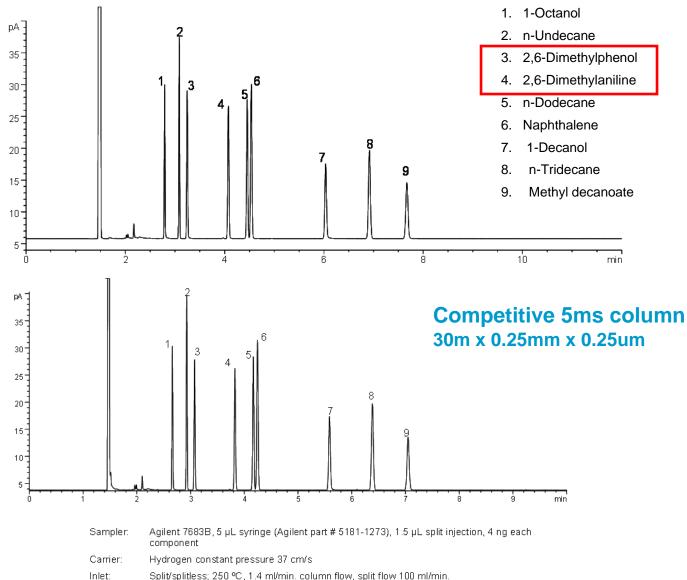

2,6-Dimethylaniline

Weak Probes

Acidic and basic portion of the molecules are shielded by the methyl groups of the 2,6-dimethyl substituted phenyl ring

1-Propionic acid

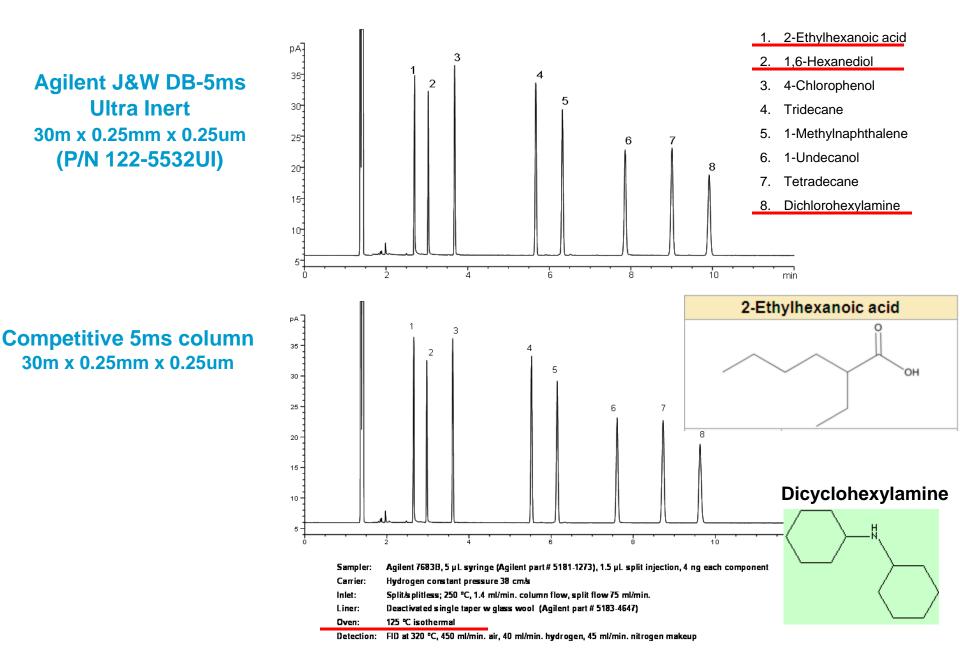
4-Picoline


Strong Probes

Active end of each compound is available to interact with any active sites on the columns

Grob-Type Test Mixture - Not Probative

Agilent J&W DB-5ms Ultra Inert 30m x 0.25mm x 0.25um (P/N 122-5532UI)

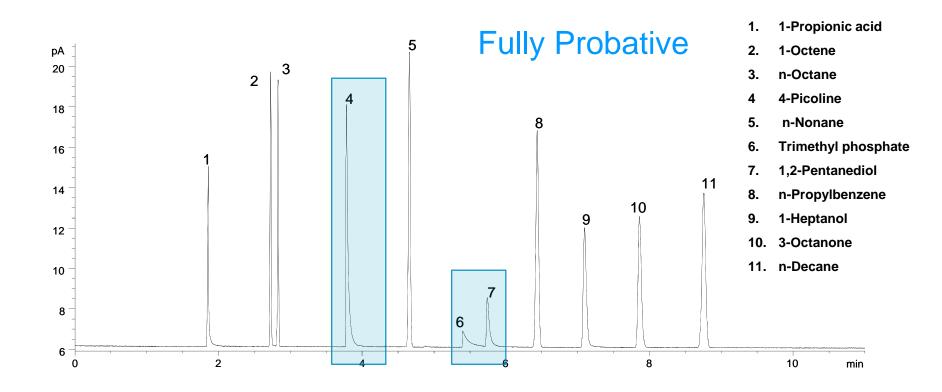


- Elevated oven temperature at 120°C
- Probes sweep past active sites and can mask solute/column interactions.
- Least probative probes for column activity

- Liner: Deactivated single taper w glass wool (Agilent part # 5183-4647)
- Oven: 120 °C isothermal

Detection: FID at 325 °C, 450 ml/min. air, 40 ml/min. hydrogen, 45 ml/min. nitrogen makeup

DB-5ms Test Mix – More Probative



Ultra Inert Test Probe Mixture – QC Testing for Today's Demanding Applications

Probe	(ng on column)	Column functional test
1. 1-Propionic acid	1.0	Basicity
2 1-Octene	0.5	Polarity
3. n-Octane	0.5	Hydrocarbon marker
4. 4-Picoline	1.0	Acidity
5. n-Nonane	1.0	Hydrocarbon marker
6. Trimethyl phosphate	1.0	Acidity
7. 1,2-Pentanediol	1.0	Silanol
8. n-Propylbenzene	1.0	Hydrocarbon marker
9. 1-Heptanol	1.0	Silanol
10. 3-Octanone	1.0	Polarity
11. n-Decane	1.0	Hydrocarbon marker

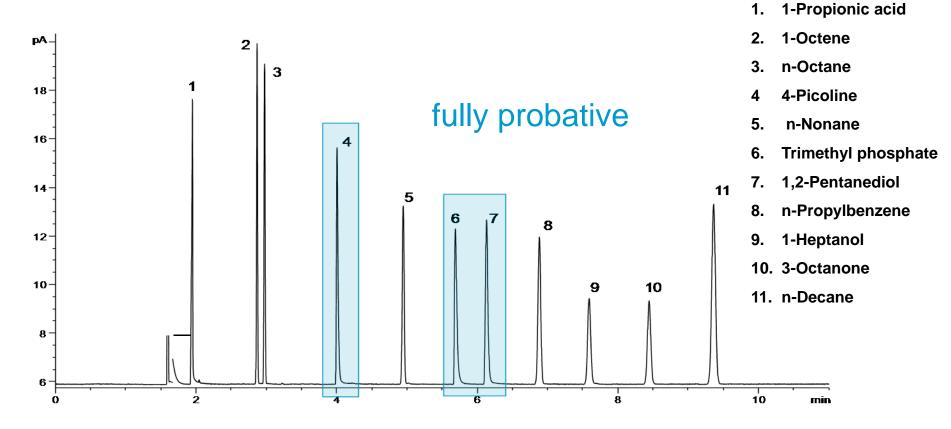
Ultra Inert Test Probe Mixture on a Competitive Column

Sampler: Agilent 7683B, 0.5 µL syringe (Agilent part # 5188-5246), 0.02 µL split injection

Carrier: Hydrogen constant pressure, 38 cm/s

Inlet: Split/splitless; 250 °C, 1.4 ml/min. column flow, split flow 900 ml/min., gas saver flow 75 ml/min. on at 2.0 min.

Liner: Deactivated single taper w glass wool (Agilent part # 5183-4647)

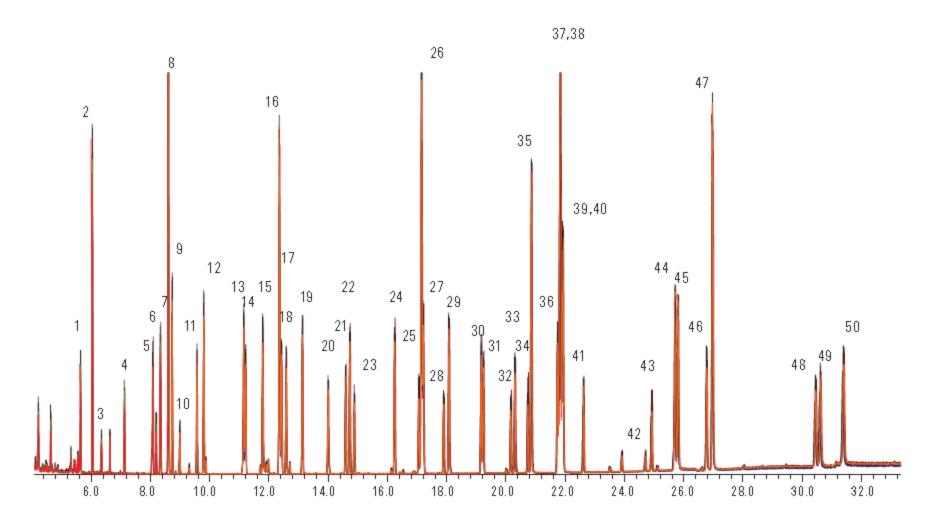

Oven: 65 °C isothermal

Detection: FID at 325 °C, 450 ml/min. air, 40 ml/min. hydrogen, 45 ml/min., nitrogen makeup

• Agilent Technologies

Ultra Inert Test Probe Mixture on an Agilent J&W DB-5ms Ultra Inert column

Sampler:	Agilent 7683B, 0.5 μL syringe (Agilent part # 5188-5246), 0.02 μL split injection
Carrier:	Hydrogen constant pressure, 38 cm/s
Inlet:	Split/splitless; 250 ºC, 1.4 ml/min. column flow, split flow 900 ml/min., gas saver flow 75 ml/min. on at 2.0 min.
Liner:	Deactivated single taper w glass wool (Agilent part # 5183-4647)
Oven:	65 ºC isothermal
Detection:	FID at 325 ℃, 450 ml/min. air, 40 ml/min. hydrogen, 45 ml/min., nitrogen makeup

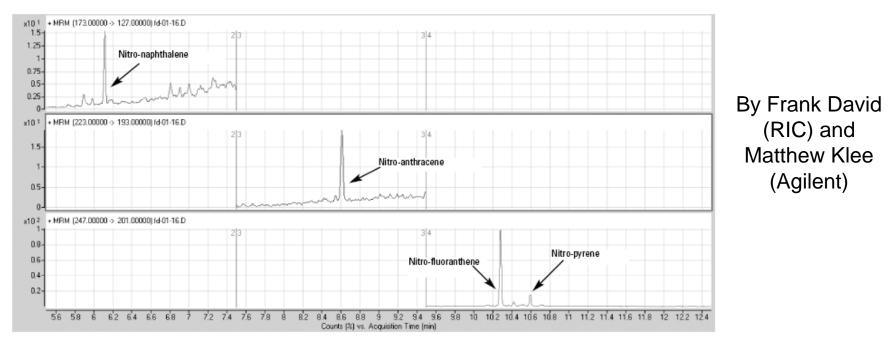

Test Probes – What Do We Learn?

- Test probes can highlight or mask the deficiencies of column activity
- Grob-type mix is not probative for inertness
- DB-5ms text mix is a good test for the 90s
- Ultra Inert test mix probes inertness and <u>differentiates an excellent column</u> from a mediocre one
- Well designed test mix uncovers potential adsorption of acid and base analytes and raises the bar in inertness QC

Column Inertness - Proof in EVERY GC column box – Performance Summary Sheet.

Excellent Inertness and Same Selectivity

10 overlaid TIC for semivolatiles, 2 ng on-column (black-DB-5ms Ultra Inert, red DB-5ms)


Peak		Ava. RT of DB-5 ms	Ava. RT of DB-5 ms Ultra inert	*RSD%	Rs of	Rs of DB-5 ms	
number	Compound	(n=5)	(n=5)	of RT	DB-5 ms	Ultra inert	m/z
1	Isophorone	5.647	5.642	0.068	-	-	82
2	1,3 Dimethyl-2-nitrobenzene(SS)	6.047	6.044	0.061	8.4	8.41	134
3	Dichlovos	6.351	6.349	0.059	9.05	9.03	109
4	Hexachlorocyclo-pentadiene	7.129	7.126	0.065	21.58	21.8	237
5	Dimethyl phthalate	8.084	8.087	0.071	23.14	24.1	163
6	2,6-Dinitrotoluene	8.195	8.196	0.074	2.51	2.52	165
7	Acenaphthylene	8.342	8.342	0.080	3.18	3.17	152
8	Acenaphthylene-d10(IS #1)	8.611	8.612	0.076	5.57	5.74	164
9	2-Chlorobiphenyl	8.737	8.739	0.088	2.6	2.74	188
10	2,4-Dinitrotoluene	8.993	8.996	0.085	5.44	5.6	165
11	Diethyl phthalate	9.572	9.579	0.098	12.21	12.35	149
12	Fluorene	9.804	9.808	0.088	4.65	4.6	166
13	2,3-Dichlorobiphenyl	11.153	11.159	0.095	24.87	25.63	222/152
14	Hexachlorobenzene	11.218	11.219	0.090	1.14	1.12	284
15	Pentachlorophenol	11.795	11.798	0.092	9.78	10.07	266
16	Phenanthrene-d10(IS #2)	12.357	12.363	0.088	9.28	9.34	188
17	Phenanthrene	12.426	12.432	0.091	1.16	1.13	178
18	Anthracene	12.585	12.591	0.091	2.66	2.71	178
19	2,4,5-Trichlorobiphenyl	13.133	13.140	0.089	9.27	9.61	256
20	Heptachlor	14.001	14.008	0.090	14.36	14.80	100
21	Di-n-butyl phthalate	14.587	14.600	0.095	9.99	10.14	149
22	2,2',4,4'-Tetrachlorobiphenyl	14.733	14.741	0.085	2.51	2.42	292
23	chlorpyrifos	14.882	14.892	0.088	2.50	2.53	197/97
24	2,2',3',4,6-Pentachlorobiphenyl	16.247	16.255	0.083	22.89	23.28	326
25	Butachlor	17.058	17.070	0.081	13.17	13.74	176/160
26	Pyrene-d10(SS)	17.153	17.163	0.078	1.49	1.41	212
27	Pyrene	17.214	17.223	0.076	0.87	0.91	202
28	p,p'-DDE	17.901	17.913	0.075	11.03	11.34	246
29	2,2',4,4',5,6'-Hexachlorobiphenyl	18.077	18.088	0.074	2.79	2.74	360
30	p,p'-DDD	19.162	19.176	0.075	7.54	7.04	235/165
31	o,p'-DDT	19.235	19.250	0.078	1.17	1.18	235/165
32	Benzyl butyl phthalate	20.157	20.177	0.078	14.76	15.08	149
33	p,p'-DDT	20.301	20.316	0.073	2.39	2.35	235/165
34	bis(2-Ethylhexyl)adipate	20.731	20.755	0.084	7.17	7.25	129
35	Triphenylphosphate (SS)	20.851	20.873	0.082	1.95	1.95	326/325
36	2,2'3,3',4,4'6-Heptachrolobiphenyl	21.737	21.754	0.070	13.80	13.79	394/396
37	Ben[α]anthracene	21.805	21.806	0.033	1.18	1.23	228
38	Chrysene-d12 (IS #3)	21.834	21.835	0.039	0.74	0.75	240
39	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	21.903	21.904	0.036	0.94	1.04	430/428
40	Chrysene	21.928	21.928	0.034	0.80	0.80	228
41	bis(2-Ethylhexyl)phithalate	22.605	22.632	0.081	9.44	10.04	149
42	cis-Permethrine	24.692	24.720	0.077	35.23	36.04	183
43	trans-Permethrin	24.906	24.936	0.080	3.58	3.63	183
44	Benzo[b]fluoranthene	25.704	25.725	0.064	12.10	12.29	252
45	Benzo[k]fluoranthene	25.802	25.824	0.067	1.30	1.40	252
46	Benzo[a]pyrene	26.766	26.789	0.064	12.69	13.60	252
47	Perylene-d12(SS)	26.966	26.991	0.067	2.60	2.74	264
48	Indeno[1,2,3-c,d]pyrene	30.434	30.470	0.077	40.75	40.99	276
49	Dibenz[a,h]anthracene	30.594	30.635	0.086	1.69	1.76	278
50	Benzo[g,h,i]perylene	31.373	31.414	0.088	7.74	8.07	276

.

*RSD% was calculated by using the retention times for each compound on the DB-5 ms and DB-5 ms Ultra Inert columns.

Nitro-PAHs

- Column: DB-5ms Ultra Inert 15 m x 0.25 mm x 0.25 µm (Agilent part # 122-5512UI)
- Carrier: Helium 43.8 cm/sec constant flow
- Oven: 70°C (1min) to 310°C at 20°C/min
- Inlet: splitness at 250 °C
- MSD: 7000A Triple Quadrupole GC/MS, ion source at 300°C and Quadrupole at 150°C

MRM chromatograms of nitro-PAHs in extract of urban air particulate sample where the concentrations for nitro-naphthalene, nitro-anthracene, nitro-fluranthene, and nitro-pyrene were 21 pg/m3, 10 pg/m3, 77 pg/m3, and 14 pg/m3, respectively.

- Deliver high sensitivity.
- Reliable determination of trace level nitro-PAHs in complex air particulate extract matrices without labor-intensive sample preparation.
- The solutes are selectively detected at pg/uL level, corresponding to pg/m3 in air.

Column Technology for Reliable Trace Analysis

- Column bleed is only half the story in trace analysis.
- Only when a column exhibits **both low bleed** and **low activity** are results reliable.
- Ultra Inert columns set a new industry standard for column inertness QC testing
 - Best columns available for reactive analytes and trace analysis
 - Active analytes adsorbing on the column stops productivity in its tracks.
 - Start with an Ultra Inert Column for guaranteed performance upon installation.

