
known as well as for determining
other characteristics of the oil
such as product purity, suitability
for deep-frying, etc.

Traditionally, they have been
analyzed by hydrolyzing the
triglycerides to yield the fatty
acids, which are then derivatized
and analyzed as methyl esters by
GC/MS.1 This offers only indirect
analysis of the original triglyc-
erides. Triglycerides can be
chromatographed intact by HPLC
but their lack of a chromophore

unless conjugated makes detec-
tion difficult.2 In addition, in order
to identify each individual triglyc-
eride in an oil, a larger number of
standards than is practical would
be required and the analysis time
would be quite lengthy.

LC/MS analysis offered the ease 
of an LC separation plus the
specificity of mass detection. 
Due to the non-polar nature of the
molecules, atmospheric pressure
chemical ionization (APCI) was
employed.
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the type of information available.

Introduction

Triglycerides are found in both
plant oils and animal fats. Their
characterization is important for
nutritional reasons, where the
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Figure 1. TIC showing separation obtained for four C18 triglyceride standards.

Note that cis and trans isomers are well resolved.
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Experimental

The system was comprised of 
an 1100 Series binary pump,
vacuum degasser, autosampler,
thermostatted column compart-
ment, and LC/MSD. The LC/MSD
was used with the atmospheric
pressure chemical ionization
(APCI) source. Complete system
control and data evaluation was
done on the ChemStation for
LC/MS. Earlier work to demon-
strate feasibility was done on the
1090 HPLC and 5989B MS Engine
equipped with the  5987A
Electrospray Accessory and 
the G1075A Atmospheric Pressure
Chemical Ionization source.

A variety of vegetable oils as well
as animal fat products such as
butter were purchased at local
supermarkets. All products were
dissolved in isopropanol at a
concentration of 20 µl of oil per 
10 ml of IPA or 20 mg of fat per 
10 ml IPA. Triglyceride standards
were purchased from Sigma and

prepared by dissolving 10 mg 
of standard in 5 ml chloroform
then further diluted to the desired
concentration with IPA.

Results and Discussion

Separation and Ionization

In order to have the non-polar
triglycerides elute in a reasonable
mobile phase composition; a
Hypersil MOS (C8) column was
used. Even this column required
using isopropanol and n-butanol 
to elute the larger triglycerides.
The final gradient was able to
resolve cis and trans isomers of
C18:1 triglyceride standards as
shown in Figure 1.

It was found that the addition of
ammonium formate to the mobile
phase allowed the formation of an
ammonium adduct [M+18]+ which
was more stable than the proto-
nated [M+1]+ species formed
without the ammonium formate.
The effect of adding ammonium

formate is shown in Figure 2.
Additionally, the vaporizer had to
be lowered to 300°C to minimize
fragmentation and enhance the
molecular signal. If structural
information was desired, in-source
collision induced dissociation
(CID) was employed by raising 
the fragmentor from 80 volts to 
150 volts.

Qualitative Spectral

Information

Under these analytical conditions,
each triglyceride shows predomi-
nantly an M+18 adduct ion and 
few other major fragments. Since
triglycerides in plants are made up
predominantly of fatty acids with
even numbers of carbons (C12,
C14, etc) and either 0, 1 or 2 dou-
ble bonds per acid, much can be
determined from this single adduct
ion. A spreadsheet was created to
determine the possible combina-
tions of double bonds and carbon
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Figure 2. Effect of ammonium formate on the spectrum of trilaurin from 

coconut oil.
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chain length. This was determined
from the basic formula:

M = 218.03 + 28.03*m + 26.02*n

Where M is the mass of the
observed adduct ion, m is the
number of ethylene (–CH2–CH2–)
groups and n is the number of
ethenyl (–CH=CH–) groups. Since

only integer solutions are allowed,
the number of possible answers 
is typically very short. The choice
is reduced even further if you
assume fatty acids of the same
length and unsaturation as the
most likely solution, followed 
by only small differences in 
the fatty acids. For example, an

unsaturated butyric acid with two
oleic acids is not a likely solution.
Figure 3 shows a typical TIC trace
for coconut oil with the masses of
the base ion annotated over each
peak. Inserting these masses into
the spreadsheet produces the
results shown in Table 1. Further
confirmation, if needed, can be

Observed  Ion Calc. MW Backbone Removed m n Possible Sidechains # Double Bonds

516.50 498.52 280.42 10 0 C8,C8,C10 0

544.55 526.52 308.42 11 0 C8,C10,C10 or C8,C8,C12 0

572.55 554.52 336.42 12 0 3 X C10 0

600.55 582.52 364.44 13 0 C10,C10,C12 0

628.55 610.52 392.44 14 0 C10,C12,C12 or C10,C10,C14 0

656.70 638.67 420.59 15 0 3 X C12 0

684.75 666.72 448.64 16 0 C12,C12,C14 0

712.75 694.72 476.64 17 0 C12,C14,C14 or C12,C12,C16 0

740.80 722.77 504.69 18 0 3 X C14 0

768.75 750.72 532.64 19 0 C14,C14,C16 0

796.75 778.72 560.64 20 0 C14,C16,C16 or C14,C14,C18 0
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Figure 3. TIC showing mass of the base peak of the spectrum from peak apex.

Peaks differ by m/z 28 corresponding to difference in the number of –(CH2CH2)–

groups on sidechains.

Table 1. Structure calculations for the major peaks in coconut oil.
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extracted ion chromatograms
(EICs), much more can be deter-
mined. Figure 6 shows the results
from extracting the signals for 
m/z 908.8, 906.8, 904.8, 902.8, 900.8
and 888.8. These correspond to
triglycerides made up from 3 C18
fatty acids with 0, 1, 2, 3, 4 and 5
double bonds respectively. Not

surprisingly, the dominant ion is 
at m/z 902.8, which corresponds 
to the ammonium adduct ion for
triolein (3 C18:1). Oleic acid is the
major fatty acid component in
olive oil. Using EICs in this way,
different oils can be compared 
to see how they differ in degree 
of unsaturation.

obtained using in-source CID. 
This is shown in Figure 4.

Most oils do not produce as 
simple a TIC trace as coconut oil.
Figure 5 shows a trace for two
grades of olive oil. Some differ-
ences are visible in the TIC but 
not much useful information is
apparent. However, by looking at
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Figure 4. The effect of raising the Fragmentor voltage on a mixed triglyceride 

in coconut oil. The fragment masses and ratios are consistent with two C12 fatty

acids and one C14.
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m/z 908.8 - 0 double bonds

m/z 906.8 - 1 double bond

m/z 904.8 - 2 double bonds

m/z 902.8 - 3 double bonds

m/z 900.8 - 4 double bonds

m/z 898.8 - 5 double bonds
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Figure 5. The TIC of extra lite and spanish virgin olive oils. The data indicates

lite oil is more unsaturated or has shorter fatty acids. Further examination of

EICs indicate more unsaturation.

Figure 6. Extracted ion chromatograms (EICs) for olive oil corresponding to the 3 C18 series. Triolein

is the major component.
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m/z 904.8 – 2 double bonds
m/z 902.8 – 3 double bonds
m/z 900.8 – 4 double bonds
m/z 898.8 – 5 double bonds



Conclusion

LC/MS using APCI as an ionization
process provides a simple way 
to analyze oils and fats for
triglycerides. Information can 
be obtained directly rather than
indirectly on the type of fatty acids
including the degree of unsatura-
tion. This information can be used
for determining nutritional value
and other physical properties of
the oil or fat. It also has the poten-
tial of determining the amount of
processing the oil has undergone
(extra virgin versus pure). Little 
or no sample cleanup is required,
allowing for a rapid analysis.
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