

Rapid Protein Identification Using AP-MALDI TOF and the Spectrum Mill MS Proteomics Workbench

Technical Overview

Donghui Yi and Jian Bai Agilent Technologies

Introduction

Peptide mass fingerprinting (PMF) has been widely embraced as a key methodology for protein identification. With this technique, proteins are digested, peptides are analyzed by mass spectrometry (MS), and the peptide masses are searched versus theoretical digest fragments from protein and DNA databases.

The explosion of research in proteomics has necessitated more rapid, sensitive, accurate analysis of peptides. Atmospheric pressure-matrix assisted laser desorption/ionization (AP-MALDI) time-of-flight (TOF) mass spectrometry addresses this need because AP-MALDI permits rapid, sensitive analysis and TOF provides mass accuracy that exceeds that of other commonly used mass analyzers. In particular, the Agilent AP-MALDI source in combination with the Agilent LC/MSD TOF allows low femtomole and even attomole-level analyses to be accomplished in only minutes with low-ppm mass accuracy.

Because of the large volume of samples that are typically analyzed with AP-MALDI TOF, it is also important to have high-throughput software to take full advantage of the available data. The software needs to accomplish the common data processing steps in a fast and reliable manner. These processing steps include extraction of mass data from the raw data file, PMF searching, and results summary. This overview describes how the Agilent Spectrum Mill MS Proteomics Workbench fulfills this need.

Sample preparation

Tryptic digests of apotransferrin, conalbumin, myoglobin, and peroxidase were purchased from Michrom BioResources, Auburn, CA. The digests (500 pmol) were reconstituted with 500 μ L 15% acetonitrile/85% water with 0.1% formic acid. The stock solutions (1 $pmol/\mu L$) were split into aliquots (20 μ L) and stored at -20°C prior to use.

Digests were analyzed individually and in mixtures. All samples were diluted with matrix solution, which consisted of 0.6 mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) in 50% methanol/water with 0.5% acetic acid. For some samples, a mass calibrant of 20 fmol/ μL of neurotensin $(m/z \ 1672.9170)$ was added to the matrix solution.

AP-MALDI analyses

All samples were analyzed with an Agilent LC/MSD TOF equipped with an AP-MALDI source. The initial mass axis calibration and tuning were performed with an interchangeable ESI source. With the AP-MALDI source, the protein digests were analyzed at the rate of one per minute. Spectra were recalibrated using m/z values of matrix ions and the neurotensin internal standard.

Agilent Technologies

Instrument Conditions

Instrument:
Ionization mode:
Capillary voltage:
Drying gas:
Scan range:
Transients/scan:
Fragmentor:
Skimmer:
Octopole RF:
Averages (scans):
Total acquisition time:
l aser

Agilent LC/MSD TOF with AP-MALDI source Positive ion -3200 V 5 L/min at 325°C 100-3200 40000 300 V 60 V 300 V 21 1.0 min. Nitrogen laser, 10 Hz

Spectrum Mill Settings

Instrument [,]	MALDI MSD TOF
Search:	PIME Search
Database:	SwissProt
Enzyme:	Trypsin
Cys:	Carboxymethylation
Max missed cleavages:	1
N-terminus:	Hydrogen
C-terminus:	Free Acid
Peptide mass tolerance:	10 ppm

Results

Before processing data with the Spectrum Mill MS proteomics workbench, the mass accuracy of the AP-MALDI TOF was verified by comparison of theoretical and experimental masses for a tryptic digest of 20 fmol serotransferrin. The spectrum was recalibrated as described above, using the Analyst QS Software for Agilent TOF. The results, shown in Table 1, indicate excellent mass accuracy, with a mean error of -0.98 ppm, and a standard deviation of 3 ppm.

The Spectrum Mill MS proteomics workbench was then used to convert the raw data files to identified proteins. The Spectrum Mill workbench data processing consisted of extraction of a mass list file from the raw data file, PMF searching, and results summary and review.

Data Extraction

Once the raw data files were copied to the Spectrum Mill server, the Spectrum Mill data extractor was used to mine the mass peaks from the data files. The form for extraction of AP-MALDI TOF data, shown in Figure 1, requires input of only a few simple parameters. Then the software extracts the mass peaks in a completely automated fashion. A single mouse click initiates extraction of an entire folder of data files (for example, all data from a MALDI sample plate). For AP-MALDI TOF data, the extractor averages and centroids the spectra from the raw data files. No further preparation is necessary since the PMF search de-isotopes, deconvolutes, filters the spectra by signal-to-noise, and accomplishes the background subtraction.

Table 1. Mass errors for tryptic digest of 20 fmol serotransferrin

Theoretical mass	neoretical mass Measured mass			
888.399251	888.3997	0.51		
936.500951	936.5020	1.12		
1016.494151	1016.4942	0.05		
1064.595951	1064.5954	-0.52		
1074.540051	1074.5361	-3.68		
1097.505051	1097.5061	0.96		
1122.578951	1122.5791	0.13		
1157.515651	1157.5164	0.65		
1216.603051	1216.5992	-3.17		
1305.679751	1305.6761	-2.80		
1311.653951	1311.6527	-0.95		
1336.681751	1336.6831	1.01		
1347.599751	1347.6000	0.18		
1363.692651	1363.6906	-1.50		
1389.675751	1389.6741	-1.19		
1397.643951	1397.6505	4.69		
1448.643451	1448.6555	8.32		
1464.776651	1464.7696	-4.81		
1466.643451	1466.6466	2.15		
1483.684551	1483.6852	0.44		
1511.727151	1511.7267	-0.30		
1594.738351	1594.7338	-2.85		
1604.806751	1604.8022	-2.84		
1640.766351	1640.7616	-2.90		
1645.695151	1645.6938	-0.82		
1732.901651	1732.8939	-4.47		
1757.860551	1757.8528	-4.41		
1768.861251	1768.8590	-1.27		
1940.924251	1940.9154	-4.56		
1996.784051	1996.7846	0.27		
2017.920951	2017.9153	-2.80		
2263.963451	2263.9701	2.94		
2275.974651	2275.9687	-2.61		
2411.100651	2411.0806	-8.32		
	Mean	-0.98		
	Standard deviation	3.05		

Agilent Spect	trum Mill - Dat	ta Extracto	r								
Spectrum Mill	MS/MS Search	PMF Search	Peak Picker	Tool Belt Help							
Extraction											
Extract	Save Setti	ngs P	Reset Remove all prior re								
Show only MS (PMF) parameters											
N-terminus: H	ydrogen 🔽										
C-terminus: Free Acid											
Cys modified by	carboxymethy	lation 💌									
Data Directory											
Select		ы									
MS (PMF) Spec	tral Features										
MH+ 600.0	to 4000.0	Da									
Scan time rang	e: 0 to	300 min									
🗖 Agilent MS	D TOF ESI data										

Figure 1. Data extractor form set up for AP-MALDI TOF data

PMF search

The PMF search form, shown in Figure 2, illustrates typical settings. For the analyses shown below, extracted mass peaks were searched against the SwissProt protein database. A list of contaminant ions was automatically subtracted prior to searching. Mixture scoring was invoked so that both individual hits and mixtures could be scored and compared using a common set of probability scores. Again, all data files in the selected folder were processed with a single mouse click.

Agilent Spectrum Mill - PMF Search	
Spectrum Mill PMF Summary Manual PMF Extra	actor MS Edman MS Digest Tool Belt Help
Search	
Start Search Save Settings Reset	📃 🗆 Remove all prior PMF results 🔽 Mixture scoring
Data Directory	
Select APMALDI	
Search Parameters	
Database: SwissProt 💌	Cys modified by: carboxymethylation
Species: All	Possible modifications:
MW of protein: from 1000 Da to 150000 Da T Protein pl: from 3.0 to 10.0 V All Digest: Trypsin V	All Oxidation of M Protein N-terminus Acetylated Acrylamide Modified Cys User Defined 1
Maximum # missed cleavages: 1	User Defined 1: Phosphorylation of S, T and Y
Search Criteria	
Matching Tolerances	Spectral Features
Instrument: MALDI MSD TOF	Override instrument defaults
Minimum matched peptides: 5	Contaminant Masses
Pontida mass telerance:	File: Porcine Trypsin-Keratin
	Recalibrate Data
Peptide masses are: Interference -	Force data recalibration
Mass list files (/fit batch in/):	Report Details
*.*mi	Max reported hits: 5 Detailed hits: 2
*.mic	Report MOWSE scores - Pfactor: 0.4

Figure 2. PMF search form set up for AP-MALDI TOF data

Results summary

A number of mixtures were summarized using the default settings on the Spectrum Mill PMF summary page shown in Figure 3. Typical summary results are shown in Figures 4 and 5. Figure 4

shows PMF search results for a mixture of apotransferrin and myoglobin. The protein names (highlighted area 1) indicate that the correct proteins were identified. The mixture score (highlighted area 2) is quite good; the large negative

Agilent Spectrum Mill - PMF Summary											
Spectrum Mill Summary Settings PMF Search Tool Belt Help											
Summarize Results	for Review	Sorting	Review Fields								
Summarize	Save Settings Res	Filter hits by score:	 ✓ Filename ✓ Score ✓ MOWSE score 	 Excel export Protein MW Protein pl 							
Data Directory			Mass error	Species							
Select	APMALDI		□ Recalibration	 Accession # Protein name 							
Search result files:				1 Totoli Hamo							
*.spo	X										

Figure 3. PMF summary form

Figure 4. PMF search results for AP-MALDI TOF analysis of 5 fmol apotransferrin digest in the presence of 100 fmol myoglobin digest, yielding correct identifications exponent indicates that this result has a very low probability of chance occurrence. Note that the mixture score is better than the scores of either of the individual components; the fact that these scores can be easily compared provides increased confidence that the sample is indeed a mixture. The spectrum (highlighted area 3) shows the transferrin peaks in red and the myoglobin peaks in blue, with unmatched peaks in black.

Figure 5 shows PMF search results for a mixture of four protein digests, three of which were readily identified. The fourth protein, myoglobin, was likely missed because with MALDI, smaller proteins such as myoglobin generate fewer peptides for detection.

For rapid results review, the Spectrum Mill workbench incorporates both high-level PMF summary results and more detailed results, with easy switch between the two. Figure 6 shows more detailed results for one of the components of the four-component digest mixture. The top shows the matched peptides, all with very small mass errors (see **Delta ppm** column). The bottom shows the sequence coverage in red.

Figure 5. PMF search results for a mixture of four protein digests (apotransferrin, conalbumin, myoglobin, and peroxidase), 5 fmol each. Three of the four proteins were identified

1									C)eta	iled Results	•				
	1. 20/1	00 ma	atches (2	20%)	. BOVIN	l. Serotran	sferrin	precurso	r (Tra	insfe	errin) (Sider	ophilin) (Beta-1	I-metal binding	g globulin) (77	753.7 Da)) pl = 6.75
	rr subri	ı/z nitted	MH [.] match	+ ned	Delta ppm	Score Counted	Tolera Bin In (0-1	ince dex sta 1)	art e	end	Peptide S	equence (coun	ted in score)	Modifications		
	630	.3570	630.3	575	-0.8	1	0	43	4	17	(R)ENVLR	(1)				
	644	.3726	644.3	731	-0.9	1	0	12	7 1	31	(K)LNELR(G)				
	705	.3674	705.3	718	-6.2	1	0	68	36	688	(R)AMTNL	R(Q)				
	888	.4046	888.3	998	5.4	1	1	13	51	42	(K)SCHTG	LGR(S)				
	936	.5024	936.5	015	0.9	1	1	60	86	616	(R)GPNHA	VVSR(K)				
	1016	.4985	1016.4	947	3.7	1	1	13	4 1	42	(K)KSCHT	GLGR(S)				
	1064	.5981	1064.5	965	1.5	1	1	60	86	617	(R)GPNHA	VVSRK(D)				
	1074	.5096	1074.5	002	8.7	1	1	47	1 4	179	(K)KSCHT	AVDR(T)				
	1097	.5063	1097.5	056	0.6	1	1	54	0 5	548	(R)YYGYTO	GAFR(C)				
	1157	.5197	1157.5	162	3.0	1	1	36	6 3	374	(K)WCAIG	HQER(T)				
	1167	.5798	1167.5	720	6.7	1	1	58	2 5	590	(K)KENFE	/LCK(D)				
	1311	.6518	1311.6	545	-2.0	1	0	15	61	66	(K)ELPDP	QESIQR(A)				
	1347	.6050	1347.6	003	3.5	1	1	27	З	37	(R)WCTIS	THEANK(C)				
	1389	.6650	1389.6	763	-8.1	1	0	45	74	168	(K)TSDAN	INWINNLK(D)				
	1448	.6429	1448.6	440	-0.7	1	0	52	7 5	539	(K)GTGKE	CVPNSNER(Y)				
	1466	.6488	1466.6	440	3.3	1	1	67	16	682	(K)TYDSYI	.gddyvr(a)				
	1483	.6755	1483.6	851	-6.5	1	0	24	4 2	255	(R)KNYELI	_CGDNTR(K)				
	1511	.7356	1511.7	277	5.3	1	1	59	56	607	(R)KPVTD	AENCHLAR(G)				
	1594	.7452	1594.7	389	3.9	1	1	67	0 6	682	(K)KTYDS	YLGDDYVR(A)				
	1645	.6994	1645.6	957	2.3	1	1	49	9 5	513	(K)FDEFFS	AGCAPGSPR(4)			
			M	ean:	1.2											
			Std	dev:	4.3											
	1	MRPAN	<u>R</u> ALLA	CAV	LGL <mark>CL</mark> A	D PE <u>R</u> TV	RWCTI	STHEAN	KCAS	FI	ENVLRILE	SGPFVS <mark>CV<u>KK</u></mark>	TSHMDCIKAI	SNNEADAVTL	80	
	81	DGGL	TYEAGL	KPN	NLKPVV	A EFHGT	KDNPQ	THYYAV.	AVV <u>K</u>	KD	TDF <u>KLNEL</u>	<u>R</u> G <u>KK</u> SCHTGL	GRSAGUNIPM	A <u>K</u> LY <u>K</u> ELPDP	160	
	161	QESIC	RAAAN	FFS.	ASCVPC	A DQSSF	PKLCQ	LCAGKG	TDKC	AC	SNHEPYFG	YSGAF <u>K</u> CLME	gagdvafv <u>k</u> h	STVFDNLPNP	240	
	241	EDRE	IYELLC	GDN	TRKSVD	D YQECY	LAMVP	SHAVVA	RTVG	GH	EDVIWELL	NHAQEHFG <u>K</u> D	KPDNFQLFQS	PHGKDLLFKD	320	
	321	SADGE	LKIPS	KMD	FELYLG	Y EYVTA	LQNL <u>R</u>	ESKPPD:	SSKD	EC	MVKWCAIG	HQERTKCDRW	SGFSGGAIEC	ETAENTEECI	400	
	401	AKIME	GEADA	MSL	DGGYLY	I AGKCG	LABAT	AENY <u>K</u> T	EGES	CR	NTPEKCYL	AVAVV <u>K</u> TSDR	NINWNNLKDK	<u>KSCHTAVDR</u> T	480	
	481	AGWNI	PMGLL	YS <u>K</u>	INNCKE	D EFFSA	GCAPG	SPRNSS:	LCAL	CI	GSEKGTGK	ECVPNSNERY	YGYTGAFRCL	VE <u>k</u> gdvafv <u>k</u>	560	
	561	DQTVI	QNTDG	NNN	eawa <u>k</u> n	L KKENFI	EATCR	DGTRE	TDA	EN	CHLARGPN	HAVVSREDEA	TCVEKILNKQ	QDDFC <u>K</u> SVTD	640	
ļ	641	CISNH	CLFQS	NSE	DLLF <u>R</u> D	D TRCLA	SIAKK	TYDSYL	GDDY	VE	AMTNLROC	STSKLLEACT	FHKP		704	

Figure 6. Detailed PMF search results for 5 fmol apotransferrin analyzed as part of a four-component digest mixture

Conclusions

The Spectrum Mill workbench enables fast, reliable processing for AP-MALDI TOF data. The software automates the preparation of multiple data files for PMF searching, as well as the PMF search itself. For rapid results review, the software features a results summary that provides both overview and detailed results. The Spectrum Mill workbench delivers reliable results for fast, highthroughput protein analysis with AP-MALDI TOF.

Authors

Donghui Yi and Jian Bai are scientists at Agilent Technologies in Santa Clara, California U.S.A.

www.agilent.com/chem

© Agilent Technologies, Inc. 2004

Information, descriptions and specifications in this publication are subject to change without notice. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

Printed in the U.S.A. October 22, 2004 5989-1778EN

Agilent Technologies