

Manuale per l'utente

Agilent Technologies

Informazioni legali

© Agilent Technologies, Inc. 2007, 2008

Nessuna parte di questo manuale può essere riprodotta in alcun formato o con alcun mezzo (inclusa l'archiviazione e la scansione elettroniche o la traduzione in una lingua straniera) senza previo consenso scritto di Agilent Technologies, Inc. secondo le disposizioni di legge sul diritto d'autore degli Stati Uniti, internazionali e locali applicabili.

Codice del manuale

G1376-94012

Edizione

12/08

Stampato in Germania

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

Solo per ricerca.

Non utilizzabile nelle procedure diagnostiche.

Garanzia

Le informazioni contenute in questo documento sono for-nite allo stato corrente e sono soggette a modifiche senza preavviso nelle edizioni future. Agilent non rilascia alcuna altra garanzia, esplicita o implicita, comprese le garanzie implicite di commerciabilità ed idoneità ad uno uso speci-fico, relativamente al presente manuale e alle informazioni in esso contenute. Salvo il caso di dolo o colpa grave, Agilent non sarà responsabile di errori o danni diretti o indi-retti relativi alla fornitura o all'uso di questo documento o delle informazioni in esso contenute. In caso di separato accordo scritto tra Agilent e l'utente con diverse condizioni di garanzia relativamente al contenuto di questo documento in conflitto con le condizioni qui riportate prevarranno le condizioni dell'accordo separato.

Licenze tecnologia

I componenti hardware e o software descritti in questo documento vengono forniti con licenza e possono essere utilizzati o copiati solo in conformità ai termini di tale licenza.

Indicazioni di sicurezza

AVVERTENZA

L'indicazione **AVVERTENZA** segnala un rischio. Richiama l'attenzione su una procedura operativa o analoga operazione che, se non eseguita correttamente o non rispettata, può provocare danni al prodotto o la perdita di dati importanti. Non eseguite mai alcuna operazione ignorando l'**AVVERTENZA**, fatelo solo dopo aver compreso e applicato completamente le indicazioni di Agilent.

ATTENZIONE

L'indicazione ATTENZIONE segnala un rischio serio. Richiama l'attenzione su una procedura operativa o analoga operazione che, se non eseguita correttamente o non rispettata, può provocare lesioni personali o morte. Non eseguite mai alcuna operazione ignorando l'indicazione ATTENZIONE, fatelo solo dopo aver compreso e applicato completamente le indicazioni di Agilent.

Sommario

1 Introduzione alla pompa capillare 7

Introduzione alla pompa capillare8Configurazione dello strumento16Elettronica17Collegamenti elettrici18Interfacce Agilent Serie 120020

2 Requisiti ambientali e specifiche 21

Requisiti ambientali 22 Specifiche fisiche 25 Specifiche delle prestazioni 26

3 Installazione della pompa 29

Rimozione della pompa dall'imballaggio 30 Ottimizzazione della configurazione dello stack 32 Installazione della pompa capillare 35 Collegamento di moduli e software di controllo 38 Collegamenti di flusso della pompa capillare 40 Preparazione del sistema per la prima iniezione 44

4 Uso della pompa capillare 47

Suggerimenti per l'uso ottimale della pompa capillare48Informazioni sui solventi50Come evitare l'ostruzione dei filtri del solvente51Crescita di alghe nei sistemi HPLC52Iniezione del campione di controllo54

Sommario

5 Ottimizzazione delle prestazioni 57

Consigli per l'uso del micro sistema di degasaggio sotto vuoto 58 Quando utilizzare le guarnizioni alternative 59 Come selezionare il flusso primario 60 Miscelatore statico e filtro 61 Ottimizzazione dell'impostazione di compensazione della compressibilità 62

6 Risoluzione dei problemi e diagnostica 65

Software Agilent Lab Advisor 67 Panoramica degli indicatori e delle funzioni di test della pompa 68 Indicatori di stato 70 Interfacce utente 72 Messaggi di errore 73 Test della pressione in modalità micro 80 Test della pressione in modalità normale 83 Test di tenuta 86 Calibrazione del solvente del sensore di flusso 94 Test della EMPV 97 Pulizia della EMPV 98

7 Manutenzione 99

Introduzione alla manutenzione ed alla riparazione100Avviso di manutenzione preventiva (EMF)103Panoramica su manutenzione e riparazioni105Procedure di riparazione semplici107

8 Parti e materiali per la manutenzione 131

Sede della pompa e dispositivi principali 132 Comparto solventi e gruppo della testa della bottiglia 135 Percorso idraulico 136 Gruppo testa della pompa 138 Gruppo sensore di flusso 140 Kit di accessori della pompa capillare 141

9 Identificazione dei cavi 143

Descrizione generale dei cavi 144 Cavi analogici 146 Cavi remoti 149 Cavi BCD 154 Cavo ausiliario 156 Cavi CAN/LAN 157 Cavo di contatto esterno 158 Kit del cavo RS-232 159

10 Appendice 161

Informazioni generali sulla sicurezza 162 Direttiva sullo smaltimento di apparecchiature elettriche ed elettroniche usate 166 Informazioni sulle batterie al litio 167 Interferenze radio 168 Emissioni sonore 169 Informazioni sui solventi 170 Agilent Technologies su Internet 172

Sommario

Introduzione alla pompa capillare

Introduzione alla pompa capillare 8 Descrizione del percorso idraulico 9 Come funziona l'unità di pompaggio? 10 Come funziona la compensazione della compressibilità? 13 Funzionamento del volume con corsa variabile 14 Avviso di manutenzione preventiva (EMF) 15 Configurazione dello strumento 16 Elettronica 17 Collegamenti elettrici 18 Interfacce Agilent Serie 1200 20

Introduzione alla pompa capillare

La pompa capillare è costituita da due unità di pompaggio identiche inserite in un'unica sede ed è progettata per generare gradiente tramite un procedimento di miscelazione ad alta pressione. La valvola di selezione del solvente offre la possibilità di scegliere i solventi con la massima flessibilità.

La pompa capillare è una pompa binaria. La composizione della fase mobile viene prodotta miscelando le uscite della pompa A e della pompa B. La valvola di selezione del solvente consente all'uscita della pompa A di essere collegata al canale A1 o A2. L'uscita della pompa B può essere collegata al canale B1 o B2.

Il degasaggio del solvente non avviene direttamente nella pompa. Il sistema di degasaggio, a 4 canali e volume ridotto, è disponibile in modulo separato e fornisce solventi degassati agli ingressi dei canali di pompaggio. Il degasaggio del solvente è necessario per migliorare la stabilità del flusso e del rivelatore, specialmente ai flussi bassi richiesti per le applicazioni di LC capillare.

Figura 1 Descrizione della pompa capillare

Descrizione del percorso idraulico

La pompa capillare si basa sulla pompa binaria Agilent 1200 ed è in grado di eseguire tutte le funzioni necessarie per un sistema di erogazione del solvente a flusso minimo. Le funzioni di base sono:

- Misurazione a bassa pressione ed erogazione ad alta pressione
- · Compensazione della compressibilità del solvente
- Volume di mandata variabile
- Misurazione e controllo del flusso in colonna

La misurazione del solvente a bassa pressione e l'erogazione ad alta pressione vengono effettuate da due canali della pompa, ciascuno in grado di pompare fino a 2,5 ml/min di flusso fino a una pressione di 400 bar.

Ciascun canale è costituito da un'unità di pompaggio identica all'altra e controllata in modo indipendente. Ciascuna unità comprende un dispositivo di trasmissione per la misurazione e un gruppo testa della pompa. I dispositivi sono costituiti da due camere identiche, pistoni e guarnizioni, da una valvola di ingresso attiva e da una valvola a sfera di uscita.

Le uscite di flusso dai canali vengono inizialmente congiunte da un pre-miscelatore a basso volume, quindi collegate a uno smorzatore di impulsi di pressione tramite un fascio di capillari. Lo smorzatore funge anche da trasduttore di pressione, in quanto invia informazioni sulla pressione del sistema all'interfaccia utente.

L'uscita di flusso dello smorzatore di impulsi di pressione è collegata a un miscelatore. Il miscelatore standard è costituito da un tubo in acciaio inox pieno di sfere dello stesso materiale. La maggior parte delle miscelazioni di fase mobile avviene all'interno del miscelatore.

Il flusso in uscita dal miscelatore, detto anche flusso principale, è collegato al sistema di controllo elettronico del flusso (EFC). Il sistema EFC è costituito da una valvola proporzionatrice elettromagnetica (EMPV) collegata in serie a un sensore di flusso. La EMPV è protetta dalle particelle presenti nella fase mobile da un frit collocato sul filtro del solvente. In base ai valori di impostazione del flusso in colonna impostati dall'utente, il sistema EFC determina quanta parte del flusso principale deve essere inviato alla colonna. Il volume di flusso principale rimanente, non richiesto dalla colonna, viene deviato dalla EMPV al condotto di scarico.

La EMPV può, se comandata dall'utente, essere usata come valvola di spurgo, ad esempio per la sostituzione di solventi. In questo caso la EMPV è completamente aperta e tutto il flusso principale viene convogliato al condotto di scarico.

Figura 2 Il percorso idraulico

Come funziona l'unità di pompaggio?

Entrambe le unità di pompaggio (canali A e B) hanno componenti e funzioni identici. Ciascuna unità è costituita da una testa della pompa attaccata direttamente al dispositivo di misurazione. All'interno di ciascun dispositivo di misurazione vengono utilizzati un motore a riluttanza variabile controllato da servomotore e un insieme di ingranaggi per muovere le trasmissioni a profilo elicoidale. Il sistema di ingranaggi muove le due viti elicoidali in direzioni opposte (180 gradi fuori fase). Gli ingranaggi di trasmissione sono progettati in modo da consentire alla prima vite elicoidale di muoversi in modo costante a una velocità doppia rispetto alla seconda.

Il servomotore comprende un codificatore ad alta risoluzione della posizione dell'albero, che rileva continuamente la velocità e la direzione del motore in tempo reale. Le informazioni sulla velocità e la direzione vengono utilizzate dal sistema di controllo elettronico della pompa per controllare in modo preciso il movimento del servomotore.

Ciascuna testa della pompa è costituita da due camere, pistoni e guarnizioni identici, da una valvola di ingresso attiva e da una valvola a sfera di uscita. Il volume di solvente presente in ciascuna camera viene erogato dal relativo pistone. I pistoni vengono azionati direttamente dai profili elicoidali alternativi del dispositivo di misurazione della pompa. Date le caratteristiche di progettazione del sistema di trasmissione, i pistoni si muovono in direzioni opposte e il pistone 1 si sposta costantemente a un velocità doppia rispetto a quella del pistone 2. Il diametro esterno del pistone è inferiore al diametro interno della camera, per consentire al solvente di fluire nello spazio fra il pistone e le pareti della camera. Le due camere sono collegate dalla valvola a sfera di uscita dipendente dalla pressione.

La posizione della valvola di selezione del solvente determina quale solvente verrà aspirato (bassa pressione) attraverso la valvola di ingresso attiva all'interno della camera 1 durante la mandata di aspirazione del pistone 1. La valvola di ingresso attiva viene aperta e chiusa elettricamente, in modo che il suo funzionamento risulti più preciso in caso di pressioni basse. Il volume di mandata del pistone 1 è compreso tra 2 μ l e 100 μ l, a seconda del flusso.

Quando la pompa capillare viene accesa per la prima volta, il sistema chiede all'utente se è necessario inizializzarla. La sequenza di inizializzazione (per entrambe le teste delle pompe) determina dapprima i limiti precisi di movimento per entrambi i pistoni, quindi li memorizza nella memoria del controllore della pompa. Successivamente, entrambi i pistoni vengono impostati sui valori iniziali prestabiliti.

Quando inizia il pompaggio, si apre la valvola di ingresso attiva e il pistone 1 inizia la propria fase di aspirazione, aspirando il solvente nella camera 1. Contemporaneamente il pistone 2 inizia la propria mandata (alta pressione) e pompa il solvente presente nella camera 2 fuori dalla testa della pompa. La pressione prodotta dal pistone 2 chiude anche la valvola a sfera di uscita, impedendo a eventuali solventi presenti nella camera 2 di rifluire nella camera 1. Dopo una mandata di lunghezza predefinita del pistone 1, il servomotore viene arrestato e la valvola di ingresso attiva viene chiusa. A questo punto i pistoni invertono le direzioni. Il pistone 1 inizia la propria mandata (alta pressione) e il pistone 2 inizia la propria fase di aspirazione. Il pistone 2 si muove a una velocità pari alla metà di quella del pistone 1. La valvola a sfera di uscita viene forzata in apertura dalla pressione generata dal pistone 1. Il pistone 1 inizia a erogare nella camera 1 il volume precedentemente aspirato. Dato il rapporto 2:1 fra le velocità dei pistoni, metà del flusso di solvente della camera 1 viene forzato fuori dalla testa della pompa in direzione dell'interno del percorso idraulico. L'altra metà del flusso proveniente dalla camera 1 riempie contemporaneamente la camera 2.

Quando il pistone 1 ha completato la propria mandata, i pistoni invertono le direzioni e il ciclo si ripete.

Figura 3 Principio di funzionamento della testa della pompa

Materiali a contatto con la fase mobile	
Testa della pompa	Acciaio inox, oro, zaffiro, ceramica
Valvola di ingresso attiva	Acciaio inox, oro, zaffiro, rubino, ceramica, PTFE
Valvola di uscita	Acciaio inox, oro, zaffiro, rubino, tantalio
Adattatore	Acciaio inox, oro
EMPV	Acciaio inox, rubino, zaffiro, PEEK
Sensore di flusso	Acciaio inox
Unità di smorzamento	Oro, acciaio inox
Capillari	Silice fusa

 Tabella 1
 Particolari della pompa capillare (continua)

Per le specifiche sulla pompa, vedere "Requisiti ambientali", pagina 22.

Come funziona la compensazione della compressibilità?

La compressibilità dei solventi in uso influenza la stabilità dei tempi di ritenzione quando la contropressione del sistema cambia (ad esempio a causa del degrado progressivo della colonna). Per ridurre al minimo questo effetto, il sistema utilizza un dispositivo di compensazione che ottimizza la stabilità del flusso a seconda del tipo di solvente. La compensazione della compressibilità è impostata su un valore predefinito diverso per ciascuna pompa. Il valore di compensazione può essere modificato tramite l'interfaccia utente.

Senza questo tipo di dispositivo, durante la corsa del primo pistone si verificherebbe quanto segue. La pressione all'interno della camera del pistone aumenterebbe e il volume della camera sarebbe compresso in base alla contropressione e al tipo di solvente. Il volume spostato nel sistema sarebbe ridotto dal volume compresso.

Quando si imposta il valore di compensazione della compressibilità per una testa della pompa, il processore calcola un volume di compensazione che dipende dalla pressione del sistema e dal valore di compressibilità selezionato. Questo volume di compensazione viene aggiunto alla mandata del primo pistone.

Funzionamento del volume con corsa variabile

A causa della compressione del volume di solvente presente nella camera del pistone, ciascun ciclo genera una piccola pulsazione della pressione che provoca l'increspatura del flusso della pompa. L'ampiezza della pulsazione della pressione dipende principalmente dal volume della corsa e dalla compensazione di compressibilità impostata per il solvente in uso. Piccoli volumi di mandata producono pulsazioni di pressione minori rispetto a volumi di mandata più elevati con gli stessi flussi. Inoltre, la frequenza delle pulsazioni di pressione risulta più elevata. Ciò attenua l'influenza delle pulsazioni del flusso sui risultati quantitativi.

Utilizzando volumi bassi in gradiente, si ottengono pulsazioni più piccoli e quindi una migliore riproducibilità della composizione.

Per azionare i pistoni la pompa capillare utilizza un sistema a vite elicoidale controllata da un processore. Il normale volume della corsa viene ottimizzato per il flusso selezionato. Flussi ridotti utilizzano volumi di corsa minori, mentre flussi elevati utilizzano volumi di corsa maggiori.

Il volume di mandata della pompa è impostato in modalità AUTO in modo da ottimizzare la corsa per il flusso in uso. Benché sia possibile aumentare il volume della corsa, non è generalmente consigliabile effettuare questa operazione.

Quando la pompa si trova in modalità standard, la EMPV è chiusa completamente. Il flusso totale principale, fino a 2500 μ l/min, è convogliato verso il sistema LC. Il controllo/misurazione del flusso in colonna è disabilitato. Questa modalità è adatta alle applicazioni LC non capillari.

Nella modalità capillare, il sensore di flusso standard misura e controlla il flusso in colonna, da 0,01 μ l/min a 20 μ l/min. Un sensore di flusso per intervalli estesi (opzionale) consente di effettuare misurazioni e controlli nell'intervallo fra 0,01 μ l/min e 100 μ l/min. La misurazione del flusso si basa sul principio di sensibilità della temperatura del flusso di massa. Il sensore di flusso è costituito da un tubo riscaldato con due sensori di temperatura. Man mano che la fase mobile passa attraverso il tubo riscaldato, viene valutata la caratteristica della temperatura distribuita sui due sensori, che consente a sua volta di determinare l'accuratezza del flusso. La misurazione effettuata dal sensore di flusso viene calibrata per fasi mobili specifiche, selezionabili dall'utente.

Avviso di manutenzione preventiva (EMF)

La funzione di avviso di manutenzione preventiva EMF (Early Maintenance Feedback) tiene costantemente sotto controllo l'uso dei componenti specifici dello strumento e segnala il superamento dei limiti consentiti impostati dall'utente. L'avviso, visualizzato sull'interfaccia utente, indica che è necessario programmare un intervento di manutenzione.

Per ulteriori dettagli sui misuratori EMF e sul loro utilizzo, vedere Agilent Lab Advisor. 1 Introduzione alla pompa capillare Configurazione dello strumento

Configurazione dello strumento

Il modulo è stato progettato con numerose funzioni innovative. Utilizza la tecnologia E-PAC di Agilent per l'imballaggio dei gruppi elettronici e meccanici. Questa tecnologia si basa sull'utilizzo di distanziatori costituiti da strati sagomati in schiuma di polipropilene espanso (EPP) nei quali vengono inseriti i componenti meccanici e le schede elettroniche del modulo. Questo imballo viene quindi racchiuso in un contenitore interno in metallo, rivestito esternamente in materiale plastico. I vantaggi di questa tecnologia di imballaggio sono i seguenti:

- Eliminazione quasi totale di viti di fissaggio, bulloni o giunti, con conseguente riduzione del numero di componenti e semplificazione delle operazioni di montaggio/smontaggio.
- Gli strati in materiale plastico sono attraversati da canali per l'aerazione, in modo che l'aria di raffreddamento venga convogliata nel punto esatto.
- Gli strati in materiale plastico contribuiscono a proteggere le parti elettroniche e meccaniche dagli urti.
- Il rivestimento metallico interno del contenitore scherma le parti elettroniche dalle interferenze elettromagnetiche ed inoltre contribuisce a ridurre o eliminare l'emissione di radiofrequenze dallo strumento stesso.

Elettronica

L'elettronica dello strumento è costituita da quattro componenti principali:

- La scheda principale di separazione capillare(CSM)
- Alimentazione

Componenti opzionali:

- Scheda di interfacciamento (BCD/contatti esterni)
- Scheda di interfacciamento per le comunicazioni LAN

Scheda principale di separazione capillare (CSM)

La scheda controlla tutte le operazioni e i dati di tutti i componenti della pompa capillare. L'operatore può inserire parametri, modificare le modalità e controllare la pompa capillare tramite interfacce (CAN, GPIB o RS-232C) collegate a quelle per l'utente.

Il gruppo dell'alimentatore principale

L'alimentatore principale è costituito da un gruppo chiuso (che non contiene componenti la cui riparazione non può essere effettuata dall'utente.

L'alimentatore fornisce tutti i tipi di tensione DC utilizzati nella pompa capillare. La tensione di linea può variare da 100 - 120 o 220 - 240 volt AC \pm 10% e non necessita di impostazione manuale.

Schede di interfacciamento opzionali

I moduli Agilent Serie 1200 hanno uno slot per scheda opzionale che consente l'aggiunta al modulo di una scheda di interfacciamento. Le schede di interfacciamento per i moduli Agilent Serie 1200 sono:

- Scheda BCD
- Scheda di interfacciamento per le comunicazioni LAN

1 Introduzione alla pompa capillare Collegamenti elettrici

Collegamenti elettrici

- Il connettore GPIB viene usato per collegare la pompa capillare al computer. Il modulo degli interruttori di controllo e indirizzo, situato vicino al connettore GPIB, determina l'indirizzo GPIB della pompa capillare. Gli interruttori sono preimpostati sull'indirizzo predefinito, che viene rilevato dopo l'accensione.
- Il bus CAN è un bus seriale con elevata velocità di trasferimento. I due connettori per il bus CAN vengono utilizzati per il trasferimento e la sincronizzazione dei dati del modulo interno Agilent Serie 1200.
- L'uscita analogica fornisce un segnale agli integratori o ai sistemi di gestione dati.
- Il connettore REMOTE può essere usato con altri strumenti analitici Agilent Technologies se si desidera utilizzare funzioni quali l'arresto (shutdown), la preparazione e così via.
- Il connettore RS-232 può essere utilizzato per controllare la pompa capillare da un computer munito di connessione RS-232, utilizzando il software appropriato. Questo connettore deve essere attivato dal modulo degli interruttori di configurazione situati vicino al connettore GPIB. Il software necessita di driver specifici per supportare la comunicazione. Per ulteriori informazioni vedere la documentazione relativa al software.
- La presa di ingresso della corrente accetta tensioni di rete di 100-240 VCA ±10 %, con una frequenza di rete di 50 o 60 Hz. Il consumo massimo di energia è di 220 VA (Volt-Amp). Sulla pompa capillare non è presente un selettore di tensione, perché il sistema di alimentazione ha un'ampia gamma di capacità. Non esistono fusibili accessibili dall'esterno, poiché nell'alimentatore sono presenti fusibili elettronici automatici. La leva di sicurezza sulla presa di corrente in ingresso impedisce che il coperchio venga rimosso quando il collegamento alla rete elettrica è attivo.
- Lo slot della scheda di interfacciamento viene usato per l'uscita BCD, LAN e per eventuali necessità future.

Introduzione alla pompa capillare 1 Collegamenti elettrici

Interfacce Agilent Serie 1200

I moduli Serie Agilent 1200 hanno le seguenti interfacce:

Tipo di interfaccia	Pompe	Autocam- pionatore	Rivelatore DA Rivelatore MW Rivelatore LC	Rivelatore DA Rivelatore MW G1315C/ G1365C	Rivelatore VW Rivelatore RI	Comparto colonna ter- mostatato	Sistema di degasaggio sottovuoto
CAN	Sì	Sì	Sì	Sì	Sì	Sì	No
LAN (su scheda)	No	No	No	Sì	No	No	No
GPIB	Sì	Sì	Sì	No	Sì	No	No
RS-232C	Sì	Sì	Sì	Sì	Sì	Sì	No
Controllo a distanza	Sì	Sì	Sì	Sì	Sì	Sì	Sì
Analogico	Sì	No	2	2	1	No	Sì ¹
(LAN/BCD/Ext) ²	Sì	Sì	Sì	Sì	Sì	No	No

 Tabella 2
 Interfacce Agilent Serie 1200

¹ Il sistema di degasaggio sottovuoto dispone di uno speciale connettore per usi specifici. Per ulteriori informazioni, vedere la descrizione della scheda principale.

² Slot d'interfacciamento per interfacciamenti specifici (contatti esterni, BCD, LAN e altri)

Per ulteriori informazioni sulle interfacce disponibili, consultare il manuale.

2 Requisiti ambientali e specifiche

Requisiti ambientali 22 Specifiche fisiche 25 Specifiche delle prestazioni 26

Requisiti ambientali

Requisiti ambientali

Un ambiente adatto è importante per garantire prestazioni ottimali della pompa.

Cavi di alimentazione

Insieme al modulo vengono offerti, come opzione, diversi tipi di cavi di alimentazione. L'estremità femmina è sempre uguale. Deve essere inserita nell'apposita presa di alimentazione che si trova nella parte posteriore del modulo. L'estremità maschio di ciascun cavo di alimentazione è diversa ed è progettata per adattarsi alle prese utilizzate nei vari paesi.

ATTENZIONE

Assenza di messa a terra o utilizzo di cavi di alimentazione non appropriati

L'assenza di messa a terra o l'utilizzo di cavi di alimentazione non appropriati può provocare scosse elettriche o corto circuito.

- → Non utilizzare mai lo strumento con prese prive di messa a terra.
- → Non utilizzare cavi di alimentazione diversi da quelli predisposti da Agilent Technologies per i singoli paesi.

Alimentazione

L'alimentatore della pompa può essere utilizzato in un ampio intervallo di valori di tensione ed è in grado di accettare tensioni di rete comprese nell'intervallo riportato in Table 3, pagina 25. Pertanto, nella parte posteriore dello strumento non è presente alcun selettore di frequenza. Inoltre non ci sono fusibili accessibili esternamente, poiché i fusibili elettronici automatici sono inseriti all'interno dell'alimentatore.

ATTENZIONE

Il modulo riceve parzialmente energia quando è spento, purché il cavo di alimentazione sia collegato.

Gli interventi di riparazione del modulo possono provocare lesioni personali, come scosse elettriche, nel caso in cui il coperchio sia aperto e il modulo sia collegato all'alimentazione.

- → Verificare che sia sempre possibile accedere alla presa di alimentazione.
- → Scollegare il cavo di alimentazione dallo strumento prima di aprire il coperchio.
- → Non collegare il cavo di alimentazione allo strumento se il coperchio non è presente.

ATTENZIONE

Tensione di linea non corretta nello strumento

Se gli strumenti vengono collegati ad una tensione di rete più elevata di quella prevista, si incorre nel rischio di scosse elettriche o di danni alla strumentazione.

→ Collegare lo strumento alla tensione di rete specificata.

AVVERTENZA

Presa di alimentazione inaccessibile.

In caso di emergenza, deve essere possibile scollegare lo strumento dalla rete elettrica in qualsiasi momento.

- → Accertarsi che il connettore di alimentazione dello strumento sia accessibile e possa essere scollegato facilmente.
- → Garantire spazio sufficiente dietro la presa di alimentazione dello strumento in modo da poter scollegare il cavo.

Spazio necessario

Le dimensioni e il peso del modulo (vedere Table 3, pagina 25) ne consentono il posizionamento su quasi tutti i banchi da laboratorio. Lo strumento richiede un ulteriore spazio di 2,5 cm su entrambi i lati e circa 8 cm sul lato posteriore per la circolazione dell'aria e per i collegamenti elettrici.

Se il banco deve sostenere il peso di un intero sistema Agilent Serie 1200, è necessario verificare che possa sostenere il peso di tutti i moduli.

NOTA

Il modulo deve essere usato in posizione orizzontale.

Ambiente

Il modulo deve essere utilizzato entro le specifiche di temperatura ambiente e umidità relativa descritte in Table 3, pagina 25.

AVVERTENZA

Condensa all'interno del modulo

La condensa danneggia i componenti elettronici del sistema.

- → Non immagazzinare, trasportare o utilizzare il modulo in condizioni in cui eventuali variazioni di temperatura possono causare la formazione di condensa al suo interno.
- → Se il modulo è stato spedito in condizioni di bassa temperatura, lasciarlo nel contenitore di imballaggio per consentirgli di raggiungere lentamente la temperatura ambiente ed evitare la formazione di condensa.

Specifiche fisiche

Тіро	Specifica	Commenti
Peso	17 kg (38 lbs)	
Dimensioni (larghezza × profondità × altezza)	180 x 345 x 435 mm (7 x 13.5 x 17 inches)	
Tensione di rete	100–240 VCA, ± 10%	Diversi valori di tensione accettati
Frequenza di rete	50 o 60 Hz, ±5%	
Consumo elettrico	180 VA / 75 W / 256 BTU	Massimo
Temperatura ambiente operativa	4 to 55 °C (41 to 131 °F)	
Temperatura ambiente non operativa	-40–70°C	
Umidità	<95%, a 25-40°C	Assenza di condensa
Altitudine operativa	Fino a 2.000 m	
Altitudine non operativa	Fino a 4.600 m	Per l'immagazzinaggio del modulo
Standard di sicurezza: IEC, CSA, UL	Categoria di installazione II, grado di inquinamento 2	Solo per uso all'interno. Solo per scopi di ricerca. Non adatto all'uso in procedure diagnostiche.

Tabella 3 Specifiche fisiche

Specifiche delle prestazioni

Тіро	Specifica
Sistema idraulico	Due pompe in serie a doppio pistone, con sistema brevettato di trasmissione della mandata variabile controllato da servomotore, pistone flottante, valvola di ingresso attiva, valvola di selezione del solvente e controllo elettronico del flusso per flussi fino a 100 µl/min
Intervallo di flusso in colonna regolabile	Da 0,01 a 20 μl/min Da 0,01 a 100 μl/min (con kit per intervalli di flusso estesi) Da 0,001 a 2,5 μl/min (con controllo elettronico del flusso bypassato)
Intervallo di flusso in colonna consigliato	Da 1 a 20 µl/min Da 10 a 100 µl/min (con kit per intervalli di flusso estesi) Da 0,1 a 2,5 ml/min (con sensore elettronico di flusso bypassato)
Precisione del flusso in colonna	< 0,7% RSD o 0,03% SD (in genere 0,4% RSD o 0,02% SD), a 10 µl/min e 50 µl/min di flusso in colonna (basato RT, valori preimpostati)
Intervallo ottimale della composizione	Da 1 a 99% o 5 $\mu l/min$ per canale (flusso primario), a seconda del valore maggiore
Precisione della composizione	< 0,2% SD, a 10 µl/min (sensore di flusso da 20 µl), 50 µl/min (sensore di flusso da 100 µl) e 1 ml/min (modalità normale) di valore preimpostato
Volume di ritardo	In genere 3 μl dal controllo elettronico del flusso all'uscita della pompa per flussi fino a 20 μl/min. In genere 12 μl dal controllo elettronico del flusso all'uscita della pompa per flussi fino 100 μl. Per flussi fino a 100 μl/min e controllo elettronico del flusso attivo: percorso del flusso primario 180 - 480 μl senza miscelatore, 600 - 900 μl con miscelatore (a seconda della pressione del sistema) In genere da 180 a 480 μl (a seconda della pressione del sistema) senza miscelatore per flussi fino a 2,5 ml/min (volume di ritardo del miscelatore pari a 420 μl).
Intervallo di pressione	Da 20 a 400 bar (5880 psi) di pressione del sistema
Compensazione della compressibilità	Selezionabile dall'operatore in base alla compressibilità della fase mobile
Intervallo di pH consigliato	Da 1,0 a 8,5, i solventi con pH < 2,3 non devono contenere acidi in grado di corrodere l'acciaio inossidabile. Intervalli di pH superiori sono limitati dall'uso di capillari in silice fusa.
Controllo e valutazione dei dati	Software di controllo Agilent (ChemStation, EZChrom, ecc.)

Tabella 4 Pompa capillare Agilent Serie 1200 - Specifiche delle prestazioni

Tipo	Specifica
Uscita analogica	Per il monitoraggio della pressione, 2 mV/bar, uscita singola
Comunicazioni	CAN (Controller-area network), GPIB, RS-232C, APG remoto: segnali di pronto, avvio, interruzione e arresto, LAN opzionale
Sicurezza e manutenzione	Diagnostica estesa, rivelazione e visualizzazione degli errori (tramite instant pilot e), rivelazione delle perdite, gestione delle perdite in sicurezza, segnale di perdita in uscita per l'arresto del sistema di pompaggio. Bassa tensione nelle principali aree in cui si deve effettuare la manutenzione.
Funzioni GLP	Avviso di manutenzione preventiva (EMF) per il controllo continuo dello strumento in termini di usura delle guarnizioni e volume di fase mobile pompata, con limiti impostabili dall'operatore e messaggi di verifica. Record elettronici per la manutenzione e gli errori.
Involucri	Tutti i materiali sono riciclabili.

 Tabella 4
 Pompa capillare Agilent Serie 1200 - Specifiche delle prestazioni

2 Requisiti ambientali e specifiche

Specifiche delle prestazioni

Rimozione della pompa dall'imballaggio 30 Imballaggio danneggiato 30 Lista di controllo della consegna 30 Contenuto del kit degli accessori - Pompa capillare 31 Ottimizzazione della configurazione dello stack 32 Installazione della pompa capillare 35 Collegamento di moduli e software di controllo 38 Collegamento di moduli e software di controllo 38 Collegamento dei moduli Agilent Serie 1200 38 Collegamento di un sistema di degasaggio sottovuoto Agilent Serie 1200 38 Collegamento del software di controllo e/o dei moduli di controllo Collegamenti di flusso della pompa capillare 40 Preparazione del sistema per la prima iniezione 44 Adescamento del sistema LC capillare tramite pompa 45

39

Rimozione della pompa dall'imballaggio

Imballaggio danneggiato

Al ricevimento del modulo, controllare l'imballaggio e verificare che non risulti danneggiato. Se i contenitori o il materiale di imballaggio risultano danneggiati, conservarli fino al termine della verifica del contenuto e del controllo meccanico ed elettronico dello strumento. Segnalare inoltre il danno allo spedizioniere e conservare il materiale per eventuali ispezioni.

Lista di controllo della consegna

Verificare che tutte le parti e i materiali siano stati spediti insieme alla pompa capillare. La lista di controllo della consegna è riportata nella Table 5, pagina 30. Per informazioni su come identificare correttamente le parti, vedere "Parti e materiali per la manutenzione", pagina 131. Segnalare eventuali parti mancanti o danneggiate all'ufficio commerciale Agilent Technologies di zona.

Descrizione	Quantità	
Pompa capillare	1	
Comparto del solvente	1 (5062-8591)	
Bottiglia del solvente	1 9301-1450 bottiglia color ambra, 3 9301-1420 bottiglia trasparente	
Gruppo testa della bottiglia	4 (G1367-60003).	
Capillare	G1375-87310	
Cavo di alimentazione	1	
Cavo CAN , 1 m	1	
Cavo remoto	Come da ordine	
Cavo segnale	Come da ordine	
Manuale di manutenzione	1	
Kit di accessori (vedere la Table 6, pagina 31)	1	

Tabella 5 Lista di controllo della pompa capillare

Contenuto del kit degli accessori - Pompa capillare

Descrizione	Codice	Quantità
Utensile di inserimento guarnizione	01018-23702	1
Chiave da 1/4 –5/16 "	8710-0510	1
Chiave da 14 mm	8710-1924	1
Chiave da 7/16"	8710-0806	2
Bracciale antistatico ESD ¹	9300-1408	1
Chiave esagonale da 3 mm	8710-2411	1
Chiave esagonale da 2,5 mm	8710-2412	1
Tubo di scarico	0890-1760	2 m

Tabella 6 Contenuto del kit degli accessori G1376-68705

¹ ESD: Scarica elettrostatica

Ottimizzazione della configurazione dello stack

Ottimizzazione della configurazione dello stack

Se la pompa capillare fa parte di un sistema completo Agilent Serie 1200, è possibile ottimizzare le prestazioni utilizzando la configurazione del sistema descritta di seguito. Questa configurazione ottimizza il percorso del flusso nel sistema, assicurando il minimo volume di ritardo.

NOTA

Per una rappresentazione dettagliata dei collegamenti di flusso, consultare la sezione corrispondente nel Capitolo 1 del Manuale di riferimento dei singoli moduli.

NOTA

Se la configurazione a un solo stack o il banco hanno un'altezza eccessiva, ad esempio nel caso in cui si aggiunga un modulo come il termostato G1327A ALS, è preferibile disporre i moduli in due stack. Separare la pompa e l'autocampionatore, collocando lo stack dei moduli con la pompa a destra di quello con l'autocampionatore.

Ottimizzazione della configurazione dello stack

Ottimizzazione della configurazione dello stack

Installazione della pompa capillare

Parti richieste	Quantità	Codice	Descrizione	
	1		Pompa	
	1		Cavo di alimentazione; per gli altri cavi vedere il testo seguente e "Descrizione generale dei cavi" , pagina 144	
	1	G4208A	Software di controllo (ChemStation, EZChrom, OL, ecc.)	
	1	G1323B	e/o un controllore palmare (Instant Pilot o modulo di controllo)	
Preparazioni	IndividuPreparaRimuov	iare lo spazio sul l ire i collegamenti ere la pompa dall'	banco. alla rete elettrica. 'imballaggio.	
ATTENZIONE	ll modulo riceve parzialmente energia quando è spento, purché il cavo di alimentazione sia collegato.			
	Gli interventi di riparazione del modulo possono provocare lesioni personali, scosse elettriche, nel caso in cui il coperchio sia aperto e il modulo sia colle all'alimentazione.			
	→ Verificare che sia sempre possibile accedere alla presa di alimentazione.			
	→ Scollegare il cavo di alimentazione dallo strumento prima di aprire il coperchio.			
	→ Non co	ollegare il cavo	di alimentazione allo strumento se il coperchio non è presente.	
AVVERTENZA	Problemi	di "difetti alla c	consegna"	
	Se vi sono segni di danni, non installare il modulo. È necessaria un'ispezione da parte di Agilent per valutare se lo strumento è in buone condizioni o è danneggiato.			
	→ Inform	are l'ufficio cor	mmerciale Agilent in merito al danno.	
	→ Un res e pren	ponsabile Agile derà le misure	ent effettuerà l'ispezione dello strumento nella sede del cliente opportune.	

Installazione della pompa capillare

- 1 Collocare la pompa orizzontalmente sul banco del laboratorio.
- **2** Verificare che l'interruttore di alimentazione sul lato anteriore della pompa capillare sia posizionato su OFF (sporgente).

Numero di serie

- **3** Sulla parte posteriore del modulo, spostare la leva di sicurezza nella posizione più a destra possibile.
- **4** Collegare il cavo di alimentazione al connettore situato nella parte posteriore del modulo. La leva di sicurezza impedisce che il coperchio venga aperto mentre il cavo di alimentazione è collegato al modulo.
5 Collegare i cavi di alimentazione necessari nella parte posteriore della pompa capillare, vedere "Collegamento dei moduli Agilent Serie 1200", pagina 38.

Leva di sicurezza

FIGURA 8 Parte posteriore della pomp

- 6 Collegare il capillare, i tubi del solvente e quelli di scarico (vedere "Collegamenti di flusso della pompa capillare", pagina 40).
- 7 Premere l'interruttore di alimentazione per accendere la pompa.

NOTA

Quando la pompa capillare è accesa, il pulsante di alimentazione è in posizione rientrata e si accende il LED verde. Quando la pompa è spenta, il pulsante di alimentazione sporge e il LED verde è spento.

8 Spurgare la pompa capillare (vedere "Adescamento del sistema LC capillare tramite pompa", pagina 45).

NOTA

La pompa viene consegnata con impostazioni di configurazione predefinite. Per modificare tali impostazioni, vedere la sezione relativa alla configurazione della pompa capillare sul manuale relativo alla manutenzione.

Collegamento di moduli e software di controllo

Collegamento di moduli e software di controllo

ATTENZIONE

Uso di cavi non forniti

L'uso di cavi non forniti da Agilent Technologies può provocare danni ai componenti elettronici o lesioni personali.

→ Per un funzionamento ottimale e per la conformità alle normative EMC, è indispensabile utilizzare sempre i cavi forniti da Agilent Technologies.

Collegamento dei moduli Agilent Serie 1200

- 1 Posizionare i singoli moduli nella configurazione a colonna come indicato in Figure 5, pagina 33.
- **2** Verificare che l'interruttore di alimentazione sul lato anteriore della pompa sia in posizione OFF (sporgente).
- **3** Collegare un cavo CAN all'apposito connettore posto sul retro del modulo rispettivo (tranne per il sistema di degasaggio sottovuoto).
- **4** Collegare il cavo CAN al connettore del modulo successivo, vedere Figure 6, pagina 34.
- **5** Premere l'interruttore per accendere la pompa.

Collegamento di un sistema di degasaggio sottovuoto Agilent Serie 1200

- 1 Posizionare il sistema di degasaggio nella configurazione a colonna come indicato in Figure 5, pagina 33.
- **2** Verificare che l'interruttore di alimentazione sul lato anteriore del sistema di degasaggio sottovuoto sia posizionato su OFF (sporgente).
- **3** Collegare il cavo APG al connettore sul retro del modulo.

- **4** Collegare il cavo APG al connettore del modulo successivo, vedere Figure 6, pagina 34.
- 5 Premere gli interruttori per accendere il sistema di degasaggio sottovuoto.

L'uscita AUX consente all'operatore di controllare il livello di vuoto nella camera di degasaggio.

Collegamento del software di controllo e/o dei moduli di controllo

- 1 Verificare che gli interruttori di alimentazione nella parte anteriore dei moduli dello stack siano in posizione OFF (sporgente).
- **2** Collegare il cavo GPIB all'apposito connettore di uno dei moduli, preferibilmente il rivelatore (OBBLIGATORIO per il DAD).
- 3 Collegare il cavo GPIB al software di controllo Agilent in uso.
- 4 Collegare il cavo CAN al connettore corrispondente del modulo di controllo.

NOTA Non collegare il software di controllo Agilent o il modulo di controllo al sistema di degasaggio sottovuoto.

- 5 Collegare il cavo CAN al connettore corrispondente di uno dei moduli.
- **6** Premere l'interruttore per accendere la pompa.

NOTA II software di controllo Agilent (ChemStation, EZChrom, OL, ecc.) può essere collegato al sistema anche tramite una connessione LAN, a condizione che sia disponibile una scheda LAN. Per ulteriori informazioni sul collegamento del modulo di controllo o del software di controllo Agilent, consultare i rispettivi manuali di riferimento. Per informazioni sul collegamento di strumenti Agilent Serie 1200 a strumenti non Agilent Serie 1200, vedere "Introduzione alla pompa capillare", pagina 8.

NOTA

Collegamenti di flusso della pompa capillare

Collegamenti di flusso della pompa capillare

Parti richieste	Quantità	Codice	Descrizione		
		G1376-68705	Parti del kit di accessori (vedere "Contenuto del kit degli accessori - Pompa capillare" , pagina 31)		
	2		chiavi da 1/4 e 5/16" per i collegamenti capillari		
Preparazioni	na LC.				
ATTENZIONE	L'apertura dei capillari o dei raccordi dei tubi potrebbe provocare la fuoriuscita del solvente.				
	l solventi e reagenti tossici o pericolosi possono essere dannosi per la salute.				
	→ Rispettare le procedure di sicurezza adatte (indossare gli occhiali protettivi, i guanti e gli abiti antinfortunistici) come descritto nelle istruzioni sulla manipolazione e nelle schede sulla sicurezza dei materiali fornite dal produttore dei solventi, specialmente in caso di utilizzo di sostanze tossiche o pericolose.				

1 Rimuovere il coperchio anteriore premendo i ganci a scatto su entrambi i lati.

Figura 9 Rimozione del coperchio anteriore

- 2 Posizionare il comparto dei solventi sopra la pompa capillare.
- **3** Posizionare le bottiglie nel comparto solventi e inserire un gruppo testa della bottiglia su ciascuna bottiglia.
- **4** Collegare i tubi di solvente dai gruppi testa delle bottiglie ai connettori di ingresso A1, A2, B1 e B2 della valvola di selezione del solvente; quindi etichettare i tubi correttamente. Fissare i tubi ai ganci del comparto solventi e fissare la pompa capillare.
- **5** Utilizzando un pezzo di carta smerigliata, collegare il tubo di scarico alla EMPV e inserirlo nel sistema di scarico.
- **6** Se la micropompa non fa parte di un sistema Agilent Serie 1200 o non è inserita alla fine di uno stack di moduli, collegare il tubo di scarico corrugato al condotto di uscita del sistema di gestione delle perdite della pompa.
- 7 Spurgare il sistema prima di iniziare a utilizzarlo (vedere "Adescamento del sistema LC capillare tramite pompa", pagina 45).

Collegamenti di flusso della pompa capillare

Figura 10 Collegamenti di flusso della pompa capillare

Collegamenti di flusso della pompa capillare

1	G1375-87301
2	01090-87308
3	01090-87308
4	G1375-87400
5	G1375-87310
6	G1312-67304
7	G1312-67302
8	G1311-67304
9	G1311-60003

Preparazione del sistema per la prima iniezione

Preparazione del sistema per la prima iniezione

Se si usa il sistema per la prima volta, si consiglia di adescarlo per eliminare l'aria e le possibili contaminazioni del percorso di flusso introdotte durante l'installazione.

NOTA La pompa non deve mai essere usata per adescare tubi vuoti (non lasciare mai asciugare completamente la pompa). Usare la siringa per aspirare una quantità di solvente sufficiente per riempire completamente i tubi all'iniettore della pompa prima di continuare l'adescamento tramite pompa.

Adescamento del sistema LC capillare tramite pompa

ATTENZIONE

L'apertura dei capillari o dei raccordi dei tubi potrebbe provocare la fuoriuscita del solvente.

I solventi e reagenti tossici o pericolosi possono essere dannosi per la salute.

- Rispettare le procedure di sicurezza adatte (indossare gli occhiali protettivi, i guanti e gli abiti antinfortunistici) come descritto nelle istruzioni sulla manipolazione e nelle schede sulla sicurezza dei materiali fornite dal produttore dei solventi, specialmente in caso di utilizzo di sostanze tossiche o pericolose.
- **1** Dalla pompa attivare la modalità *Purge Mode* e impostare un flusso 2,5 ml/min.
- **2** Lavare il sistema di degasaggio sottovuoto e tutti i tubi con almeno 5 ml di solvente.
- **3** Impostare il flusso sul valore richiesto dall'applicazione e attivare la modalità *micro mode*.
- 4 Pompare per circa 5 minuti prima di avviare l'applicazione.
- **5** Ripetere punto 1 pagina 45 le stesse operazioni punto 2 pagina 45 per gli altri canali della pompa capillare.
- NOTA Quando il sistema di pompaggio rimane spento per un un lungo periodo di tempo (ad esempio di notte), l'ossigeno si diffonde nuovamente nei canali del solvente tra il sistema di degasaggio e la pompa. I solventi che contengono ingredienti volatili ne perderanno una piccola parte se lasciati nel sistema senza flusso per un periodo di tempo prolungato. È quindi necessario spurgare ciascun canale a 2,5 ml/min per 1 minuto prima di avviare qualsiasi applicazione.

Preparazione del sistema per la prima iniezione

Uso della pompa capillare

Suggerimenti per l'uso ottimale della pompa capillare 48 Informazioni sui solventi 50 Come evitare l'ostruzione dei filtri del solvente 51 Crescita di alghe nei sistemi HPLC 52 Come prevenire e/o ridurre il problema delle alghe 53 Iniezione del campione di controllo 54 Condizioni 54 Procedura 55 Cromatogramma tipico 55

4 Uso della pompa capillare

Suggerimenti per l'uso ottimale della pompa capillare

Suggerimenti per l'uso ottimale della pompa capillare

Problemi della pompa

- Lavare accuratamente la pompa. Utilizzare prima la modalità "*Purge Mode*", quindi applicare una pressione appropriata per eliminare tutte le bolle di gas. Per effettuare queste operazioni, è consigliabile usare prima il solvente A al 100%, quindi il solvente B al 100%.
- La pressione del sistema deve essere superiore a 20 bar all'uscita della pompa.
- In *"Micro Mode"* eventuali e inattese variazioni del flusso in colonna di notevoli proporzioni indicano la presenza di sporco all'interno del sistema oppure di frit bloccati o valvole della pompa allentate.
- Posizionare il comparto dei solventi con i flaconi sopra la pompa capillare (oppure a un livello superiore).
- Evitare l'ostruzione dei filtri del sistema di iniezione del solvente (non usare mai la pompa senza filtri). Evitare la formazione di alghe.
- Se si usano soluzioni tampone, è necessario lavare il sistema con acqua prima di spegnerlo.
- Quando si sostituiscono le guarnizioni, è necessario anche controllare le tenute del pistone per verificare che non siano graffiate. I pistoni graffiati possono provocare microperdite e ridurre la vita utile delle guarnizioni.
- Dopo aver sostituito le guarnizioni dei pistoni, eseguire la procedura di adattamento.
- Collocare i solventi acquosi nel canale A e quelli organici nel canale B. La compressibilità e il sensore di flusso vengono impostati in base ai solventi. Utilizzare sempre i valori di calibrazione corretti.
- Per produrre gradienti veloci su colonne di lunghezza limitata, rimuovere il miscelatore, inserire la configurazione della nuova pompa e selezionare l'intervallo di gradiente veloce per il flusso primario (ciò non ha alcun impatto sulle prestazioni cromatografiche).
- Quando si esegue "*Micro mode*" controllare che lo strumento sia impostato correttamente (tipo di sensore, miscelatore e filtri utilizzati).

Capillari in silice fusa

• Quando si collega un capillare (in particolare alla colonna), occorre spingerlo delicatamente nel raccordo in modo da evitare vuoti d'aria. Un'impostazione scorretta provoca dispersioni con conseguenti scodamenti o allargamenti alla base dei picchi.

NOTA

Non serrare eccessivamente i capillari in silice fusa. Per informazioni su come installare correttamente i capillari, vedere il capitolo dedicato ai capillari e raccordi in questo manuale.

• Piegare i capillari in silice fusa con molta attenzione. Il diametro non deve essere inferiore a 40 mm.

- Pulire tutte le parti sostituite e in particolare i capillari con acetone.
- Se si notano perdite su un capillare in silice fusa, non cercare di serrarlo con il flusso attivato. Impostare a zero il flusso in colonna, reinserire il capillare, serrarlo e impostare nuovamente il flusso per la colonna.
- Evitare di usare soluzioni alcaline (pH >8.5) che possono intaccare la silice fusa dei capillari.
- Fare attenzione a non rompere i capillari durante il montaggio degli sportelli dei moduli.
- Un capillare spezzato potrebbe immettere particelle di silice nel sistema (ad es. nella cella) e causare problemi a valle del punto di rottura.
- I capillari bloccati possono nella maggior parte dei casi essere puliti inviando il flusso al contrario. Per questa operazione è consigliabile utilizzare acetone.

4

4 Uso della pompa capillare Informazioni sui solventi

Informazioni sui solventi

Filtrare sempre i solventi utilizzando filtri da 0,4 μ m. Piccole particelle possono ostruire capillari e valvole in modo permanente. Evitare l'uso dei seguenti solventi corrosivi dell'acciaio:

- Soluzioni di alogenuri di alcali e relativi acidi (ad esempio, ioduro di litio, cloruro di potassio, ecc.).
- Concentrazioni elevate di acidi inorganici, come l'acido solforico e l'acido nitrico, specialmente ad alte temperature (se il metodo cromatografico lo consente, sostituirli con soluzioni tampone di acido fosforico o fosfati, meno corrosivi per l'acciaio inossidabile).
- Solventi alogenati o miscele che formano radicali e/o acidi, ad esempio:

 $2\mathrm{CHCl}_3 + \mathrm{O}_2 \twoheadrightarrow 2\mathrm{COCl}_2 + 2\mathrm{HCl}$

Questa reazione, nella quale l'acciaio inossidabile agisce da catalizzatore, avviene rapidamente in presenza di cloroformio anidro, se il processo di disidratazione elimina l'alcool stabilizzatore.

- Eteri di grado cromatografico contenenti perossidi (ad esempio, THF, diossano, diisopropiletere). Tali eteri devono essere filtrati con ossido di alluminio che assorbe i perossidi.
- Solventi contenenti agenti complessanti forti (come EDTA).
- Miscele di tetracloruro di carbonio con 2-propanolo o THF, in grado di dissolvere l'acciaio inossidabile.
- Evitare l'uso di soluzioni alcaline (pH > 8.5) in grado di attaccare la silice fusa dei capillari.

Come evitare l'ostruzione dei filtri del solvente

La contaminazione dei solventi o la proliferazione di alghe all'interno della bottiglia del solvente riducono la vita utile del filtro e le prestazioni del modulo, soprattutto se si tratta di solventi acquosi o soluzioni tampone di fosfato (pH da 4 a 7). Le seguenti raccomandazioni consentono di estendere la vita utile del filtro del solvente e di mantenere inalterate le prestazioni del modulo.

- Per rallentare la formazione di alghe, usare una bottiglia di solvente sterile, possibilmente di colore ambra.
- Filtrare i solventi con filtri o membrane che consentano di eliminare le alghe.
- Sostituire i solventi ogni due giorni o filtrarli nuovamente.
- Se l'applicazione lo consente, aggiungere al solvente 0,0001 0,001 M di sodio azide.
- Tenere il solvente sotto uno strato di argon.
- Evitare l'esposizione della bottiglia con il solvente alla luce diretta del sole.

NOTA

Non utilizzare mai il sistema senza aver installato il filtro per il solvente.

Crescita di alghe nei sistemi HPLC

La presenza di alghe nei sistemi HPLC può causare vari problemi, che potrebbero erroneamente essere attribuiti a errori della strumentazione o delle applicazioni. Le alghe si sviluppano in mezzi acquosi, preferibilmente con pH compreso tra 4 e 8. La loro crescita è accelerata dai tamponi, ad esempio fosfato o acetato. Poiché la crescita delle alghe è legata alla fotosintesi, anche la luce ne favorisce lo sviluppo. Dopo qualche tempo è possibile notare la presenza di minuscole alghe anche in acqua distillata.

Problemi strumentali associati alla presenza di alghe

Le alghe si depositano e crescono ovunque nei sistemi HPLC causando:

- Depositi sulle valvole a sfera, in ingresso e uscita, con conseguente instabilità del flusso o arresto della pompa.
- Ostruzione dei filtri d'ingresso del solvente a pori piccoli, con conseguente instabilità del flusso o arresto della pompa.
- Ostruzione dei filtri del solvente per alta pressione a pori piccoli, posti solitamente prima dell'iniettore, con conseguente aumento della pressione nel sistema.
- Ostruzione dei filtri per colonna, con conseguente aumento della pressione nel sistema.
- Contaminazione delle finestre della cella di flusso del rivelatore, con conseguente aumento del livello di rumore (poiché il rivelatore è l'ultimo modulo nel percorso del flusso, questo problema è meno comune)

Sintomi osservati con HPLC Agilent Serie 1200

A differenza dei sistemi HPLC Serie HP 1090 e HP 1050, che utilizzano elio per il degasaggio, le alghe hanno maggiori possibilità di sviluppo nei sistemi Agilent Serie 1200, nei quali per tale operazione non viene usato elio (la maggior parte delle alghe necessitano di ossigeno e di luce per crescere).

La presenza di alghe nei sistemi Agilent Serie 1200 può causare i seguenti inconvenienti:

- Blocco dei filtri frit in PTFE, codice 01018-22707 (gruppo valvola di spurgo), e dei filtri per colonna, con conseguente aumento della pressione nel sistema. Le alghe si presentano come un deposito bianco o bianco-giallastro sui filtri. Solitamente le particelle nere dovute a normale usura delle guarnizioni del pistone non causano il blocco dei filtri frit in PTFE dopo un breve periodo di utilizzo. Per ulteriori informazioni, vedere la sezione "Sostituzione della valvola di selezione del solvente", pagina 117 di questo manuale.
- Ridotta durata dei filtri del solvente (gruppo testa della bottiglia). Un filtro del solvente bloccato nella bottiglia, soprattutto se il blocco è solo parziale, è più difficile da identificare e può apparire come un problema di prestazioni del gradiente, fluttuazioni intermittenti della pressione, ecc.
- La crescita delle alghe può anche essere la causa di malfunzionamenti delle valvole a sfera e di altri componenti nel percorso del flusso.

Come prevenire e/o ridurre il problema delle alghe

- Usare sempre solventi appena preparati, in particolare usare acqua demineralizzata filtrata tramite filtri da circa 0,2 $\mu m.$
- Non lasciare mai la fase mobile nello strumento per molti giorni in assenza di flusso.
- Eliminare sempre la fase mobile "usata".
- Per le fasi mobili acquose usare le bottiglie per solvente ambrate (codice 9301-1450) fornite con lo strumento.
- Se possibile, aggiungere alla fase mobile acquosa alcuni mg/l di sodio azide o piccole percentuali di solvente organico.

Iniezione del campione di controllo

Lo scopo di questa verifica dello strumento è quello di stabilire se tutti i moduli sono stati installati e collegati correttamente. La verifica non fornisce indicazioni sulle prestazioni dello strumento.

Effettuare una sola iniezione di standard per test isocratico Agilent Technologies alle condizione descritte di seguito.

Condizioni

Flusso:	15,0 μl/minuto
Durata:	~ 7,00 minuti
Solvente A:	30% (Acqua per HPLC)
Solvente B:	70% (Acetonitrile per HPLC)
Lunghezza d'onda DAD/MWD:	Campione: 254/4 nm, Riferimento: 360 / 80 nm
Volume di iniezione:	200 nl
Temperatura della colonna:	25,0 °C o ambiente
Strumento per LC capillare Agilent Serie 1200	Sistema di degasaggio Pompa capillare - con sensore 20 µl/minuto installato Micro autocampionatore Comparto colonna - opzionale Rivelatore - DAD con cella di flusso da 500 nL installata Software di controllo Agilent (ChemStation, EZChrom, OL, ecc.)
Colonna:	ZORBAX SB C18, 5 μm, 150 x 0,5 mm Codice Agilent 5064-8256
Standard:	Codice Agilent 01080-68704 0,15 peso% dimetilftalato, 0,15 peso% dietilftalato 0,01 peso% bifenile, 0,03 peso% o-terfenile in metanolo Diluizione 1:10 in acetonitrile

Tabella 7 Condizioni

Per configurazioni di strumenti diverse da quelle indicate, modificare le condizioni in base alle specifiche dello strumento.

Procedura

- 1 Effettuare una sola iniezione di standard isocratico di prova, alle condizioni descritte in precedenza.
- **2** Confrontare il cromatogramma ottenuto con quello illustrato nella Figure 11, pagina 55.

Cromatogramma tipico

Il cromatogramma tipico per questa analisi è illustrato nella Figure 11, pagina 55. L'esatto profilo del cromatogramma dipende dalle specifiche condizioni cromatografiche. Eventuali variazioni di qualità del solvente, impaccamento della colonna, concentrazione dello standard e temperatura della colonna possono incidere su tempi di ritenzione e risposta dei picchi.

Figura 11 Cromatogramma

4 Uso della pompa capillare

Iniezione del campione di controllo

Ottimizzazione delle prestazioni

Consigli per l'uso del micro sistema di degasaggio sotto vuoto 58 Quando utilizzare le guarnizioni alternative 59 Come selezionare il flusso primario 60 Miscelatore statico e filtro 61 Ottimizzazione dell'impostazione di compensazione della compressibilità 62

Consigli per l'uso del micro sistema di degasaggio sotto vuoto

Consigli per l'uso del micro sistema di degasaggio sotto vuoto

Se si usa il dispositivo per la prima volta dopo un periodo di inattività prolungato (ad esempio durante la notte) o se le linee del sistema di degasaggio sono vuote, è necessario adescarlo prima di effettuare l'analisi.

Il sistema di degasaggio sotto vuoto può essere adescato pompando solvente con la pompa capillare a un flusso piuttosto elevato (2,5 ml/min). Si consiglia di adescare sempre il sistema quando:

- il sistema di degasaggio viene usato per la prima volta o le camere da vuoto sono vuote
- Si ha l'esigenza di usare solventi immiscibili con il solvente presente nei tubi
- La pompa capillare è rimasta spenta per un certo periodo di tempo (ad esempio durante la notte) e vengono utilizzate miscele di solventi volatili

Per ulteriori informazioni consultare il "Manuale di riferimento" del micro sistema di degasaggio sotto vuoto Agilent Serie 1200.

Quando utilizzare le guarnizioni alternative

Le guarnizioni standard per la pompa possono essere utilizzate per la maggior parte delle applicazioni. Tuttavia, alcune applicazioni che utilizzano solventi in fase normale (ad esempio l'esano) non sono adatte per le guarnizioni standard e richiedono una tenuta di tipo diverso, soprattutto se usate per lunghi periodi di tempo.

Per le applicazioni con solventi per fase normale (ad esempio l'esano), è generalmente consigliabile usare guarnizioni in polietilene, codice 0905-1420 (confezione da 2). Queste guarnizioni sono meno soggette ad abrasione rispetto a quelle standard.

NOTA

Le guarnizioni in polietilene possono però essere utilizzate entro un intervallo di pressione limitato (0-200 bar). La loro vita utile è molto minore se vengono utilizzate a pressioni superiori a 200 bar. *NON* usare la procedura di adattamento (wear-in) delle guarnizioni per le nuove guarnizioni standard a 400 bar.

Come selezionare il flusso primario

Il flusso primario può essere impostato su tre intervalli:

• Intervallo preimpostato

Si tratta del miglior compromesso fra prestazioni e consumo di solventi.

• Intervallo a basso consumo di solvente

Questo intervallo è consigliato per analisi in gradiente lunghe e poco profonde (es. le mappature peptidiche). È invece meglio non sceglierlo per le applicazioni che richiedono gradienti veloci. La selezione di questo intervallo potrebbe infatti ridurre le prestazioni.

• Intervallo per gradienti veloci

Questo intervallo è consigliato per i gradienti veloci (es.< 3 min). Il tempo di equilibrazione viene ottimizzato.

NOTA

Il flusso primario dipende in gran parte dalla pressione del sistema e dalla configurazione della pompa, cioè dal filtro, dal sensore di flusso e dal miscelatore eventualmente installati.

La Table 8, pagina 60 riporta i valori approssimativi dei flussi primari in funzione della pressione del sistema e dell'intervallo di flusso primario impostato.

	0 bar di pressione del sistema	100 bar di pressione del sistema	200 bar di pressione del sistema	300 bar di pressione del sistema	400 bar di pressione del sistema
Intervallo a basso consumo di solvente	200	225	250	275	300
Intervallo preimpostato	500	570	640	710	780
Intervallo per gradienti veloci	800	995	1190	1385	1580

 Tabella 8
 Tabella riassuntiva dei flussi primari per configurazioni standard della pompa

NOTA

Ogni volta che la configurazione primaria viene modificata, il flusso primario può essere superiore rispetto ai valori riportati nella tavola.

Miscelatore statico e filtro

La pompa capillare è dotata di un miscelatore statico e di un filtro in linea situato davanti alla EMPV.

Il miscelatore statico standard

In genere ha un volume di 420 µl. Per ridurre i volumi di ritardo della pompa è possibile rimuovere il miscelatore.

Situazioni nelle quali è consigliabile rimuovere il miscelatore:

- il volume di ritardo della pompa deve essere ridotto al minimo per risposte rapide in gradiente.
- Il rivelatore viene usato a una sensibilità media o bassa.

NOTA

Lo smontaggio del miscelatore provoca un aumento dell'oscillazione del composto e un incremento del rumore del rivelatore.

Il filtro standard

In genere ha un volume di 100 μ l. Se l'applicazione richiede un volume ridotto (ad esempio per gradienti veloci), è consigliabile utilizzare il filtro a volume ridotto da 20 μ l (01090-68703). Si noti che che l'efficienza e la capacità del filtro saranno ridotte in maniera significativa rispetto a quelle del filtro standard.

NOTA

Non usare mai la pompa capillare senza un filtro in linea.

Ottimizzazione dell'impostazione di compensazione della compressibilità

Ottimizzazione dell'impostazione di compensazione della compressibilità

Le impostazioni predefinite di compensazione della compressibilità sono 50×10^{-6} /bar (ideale per la maggior parte delle soluzioni acquose) per la testa della pompa A e 115×10^{-6} /bar (per i solventi organici) per la testa della pompa B. Le impostazioni rappresentano valori medi per i solventi acquosi (lato A) e i solventi organici (lato B). Pertanto, è consigliabile usare sempre il lato A della pompa per i solventi acquosi e il lato B per i solventi organici. In condizioni normali le impostazioni predefinite riducono la pulsazione della pressione a valori (meno dell'1% della pressione del sistema) sufficienti per la maggior parte delle applicazioni. Se i valori di compressibilità dei solventi usati differiscono dalle impostazioni predefinite, è consigliabile modificare i valori di compressibilità in base ai solventi. Le impostazioni di compressibilità possono essere ottimizzate utilizzando i valori dei diversi solventi riportati in Table 9, pagina 63. Se il solvente utilizzato non è riportato nella tavola di compressibilità, quando si utilizzano miscele di solventi e se le impostazioni predefinite non sono sufficienti per l'applicazione da avviare, può essere utilizzata la procedura seguente per ottimizzare le impostazioni di compressibilità.

NOTA

Utilizzare la pompa capillare in modalità normale (Normal Mode) ad almeno 100 µl/min.

- 1 Avviare il canale A della pompa capillare al flusso richiesto. La pressione del sistema deve essere compresa fra 50 e 250 bar.
- **2** Prima di avviare la procedura di ottimizzazione, verificare che il flusso sia stabile. Utilizzare solo solventi degassati. Controllare la tenuta del sistema effettuando una verifica della pressione.
- **3** Collegare la pompa a un software di controllo (Chemstation, EZChrom, OL, ecc.) o al controllore palmare, in modo che la pressione e la percentuale di pulsazione possano essere monitorate con uno di questi strumenti. In alternativa, è possibile anche collegare un cavo di segnale fra l'uscita della pressione della pompa e uno strumento di registrazione (ad esempio, un integratore 339X) e impostare i parametri.

Zero 50%

Att 2^{3} Velocità

Grafico 10 cm/min

Ottimizzazione dell'impostazione di compensazione della compressibilità

- 4 Avviare il dispositivo di registrazione in modalità grafica.
- 5 Se si inizia con un'impostazione della compressibilità di 10 × 10⁻⁶ /bar, il valore aumenta di 10 unità alla volta. Riazzerare l'integratore se richiesto. L'impostazione di compensazione della compressibilità che genera la minima ondulazione della pressione rappresenta il valore ottimale per la composizione del solvente.
- **6** Ripetere le operazioni dal punto 1 pagina 62 al punto 5 pagina 63 per il canale B della pompa capillare.

Acetone	126
Acetonitrile	115
Benzene	95
Tetracloruro di carbonio	110
Cloroformio	100
Cicloesano	118
Etanolo	114
Etilacetato	104
Etano	120
Esano	150
sobutanolo	100
sopropanolo	100
Metanolo	120
-propanolo	100
Toluene	87
THF	95
Acqua	46

Tabella 9 Compressibilità del solvente

5 Ottimizzazione delle prestazioni

Ottimizzazione dell'impostazione di compensazione della compressibilità

6

Risoluzione dei problemi e diagnostica

Software Agilent Lab Advisor 67 Panoramica degli indicatori e delle funzioni di test della pompa 68 Indicatori di stato 68 Messaggi di errore 68 Test della pressione 68 Test di tenuta 68 Calibrazione del sensore di flusso 69 Test della EMPV 69 Pulizia della EMPV 69 Indicatori di stato 70 Indicatore dell'alimentazione 70 Indicatore di stato dello strumento 71 Interfacce utente 72 Messaggi di errore 73 Test della pressione in modalità micro 80 Descrizione 80 Esecuzione del test dal software Agilent Lab Advisor 81 Risultati del test della pressione in modalità micro 81 Test della pressione in modalità normale 83 Test della pressione della pompa capillare in modalità normale 83 Esecuzione del test della pressione 84 Valutazione dei risultati 85 Test di tenuta 86 Descrizione del test di tenuta della pompa capillare 86 Esecuzione del test di tenuta 88 Valutazione dei risultati 89

6 Risoluzione dei problemi e diagnostica

Ottimizzazione dell'impostazione di compensazione della compressibilità

Calibrazione del solvente del sensore di flusso 94

Descrizione 94 Esecuzione della procedura di calibrazione 95 Test della EMPV 97 Descrizione del test della EMPV 97 Esecuzione del test della EMPV 97 Pulizia della EMPV 98

Descrizione della pulizia della EMPV della pompa capillare 98 Esecuzione del test 98

Software Agilent Lab Advisor

Il software Agilent Lab Advisor è un prodotto standalone che può essere utilizzato con o senza sistema di dati. Agilent Lab Advisor aiuta a gestire il laboratorio per risultati cromatografici di alta qualità e può monitorare in tempo reale un singolo LC Agilent o tutti i GC e LC Agilent configurati sull'intranet del laboratorio.

Il software Agilent Lab Advisor fornisce capacità diagnostiche per tutti i moduli Agilent Serie 1200 HPLC. Queste capacità comprendono diagnostica e procedure di calibrazione per tutte le operazioni di manutenzione.

Il software Agilent Lab Advisor consente inoltre agli utenti di controllare lo stato dei loro strumenti LC. La funzione di Avviso di manutenzione preventiva (EMF) aiuta ad effettuare la manutenzione preventiva. Inoltre, gli utenti possono produrre un report dello stato dello strumento per ogni singolo LC. Le funzioni di test e diagnostica fornite dal software Agilent Lab Advisor possono differire dalle descrizioni riportate in questo manuale. Per ulteriori dettagli vedere i file della guida del software Agilent Lab Advisor.

Questo manuale fornisce un elenco con i nomi dei messaggi di errore, dei messaggi di non pronto e di altri comuni problemi.

Panoramica degli indicatori e delle funzioni di test della pompa

Indicatori di stato

La pompa capillare è dotata di due indicatori che ne segnalano lo stato operativo (preanalisi, analisi e situazioni di errore). Gli indicatori di stato consentono di controllare visivamente e rapidamente il funzionamento della pompa (vedere la sezione "Indicatori di stato", pagina 70).

Messaggi di errore

Se si verifica un guasto elettronico, meccanico o idraulico, lo strumento visualizza un messaggio di errore sull'interfaccia utente. Per informazioni sui messaggi d'errore e sulla gestione degli errori, fare riferimento al software Agilent Lab Advisor.

Test della pressione

Il test della pressione permette di determinare rapidamente la tenuta della pressione all'interno del sistema. Dopo la sostituzione di componenti del percorso di flusso (come le guarnizioni della pompa o di iniezione), è possibile usare questo test per verificare che il sistema sia in tenuta fino a una pressione di 400 bar (vedere "Descrizione", pagina 80 e "Test della pressione della pompa capillare in modalità normale", pagina 83).

Test di tenuta

Questo test diagnostico permette di determinare la tenuta della pressione all'interno della pompa capillare. Quando si sospetta la presenza di un problema all'interno della pompa, è possibile utilizzare questo test per ricercare la soluzione del problema dalla pompa e controllarne le prestazioni (vedere "Descrizione del test di tenuta della pompa capillare", pagina 86).

Calibrazione del sensore di flusso

La procedura di calibrazione del sensore di flusso consente di ottenere dati di calibrazione personalizzati. La procedura deve essere effettuata quando si pensa che il flusso non sia preciso oppure quando la combinazione di solventi desiderata non è compresa nell'elenco della tavola di calibrazione predefinita.

Test della EMPV

Questo test consente di verificare le prestazioni della valvola proporzionatrice elettromeccanica (EMPV). Deve essere effettuato sempre quando la EMPV viene sostituita. Il test deve essere effettuato anche quando si verificano problemi di stabilità del flusso in colonna (solo in modalità micro).

Pulizia della EMPV

A volte possono accumularsi particelle di materiale all'interno della valvola EMPV, a seconda delle applicazioni. La procedura di pulizia ha lo scopo di eliminare i depositi di materiale. La pulizia deve essere effettuata sempre quando si sospetta che la EMPV presenti perdite o sia contaminata da particelle. 6 Risoluzione dei problemi e diagnostica Indicatori di stato

Indicatori di stato

Sulla parte anteriore della pompa capillare ci sono due indicatori di stato. L'indicatore in basso a sinistra indica lo stato dell'alimentazione, quello in alto a destra indica lo stato dello strumento.

Figura 12 Posizione degli indicatori di stato

Indicatore dell'alimentazione

L'indicatore di alimentazione è integrato nell'interruttore di accensione principale. Se l'indicatore è illuminato (*verde*), lo strumento è acceso.

Se l'indicatore è spento, l'alimentazione non è attiva. In alternativa, è possibile anche controllare i collegamenti elettrici, verificare che ci sia corrente oppure controllare il funzionamento dell'alimentatore.

Indicatore di stato dello strumento

Indica una delle quattro possibili condizioni dello strumento.

- Se l'indicatore di stato si trova in posizione *OFF* (e la luce dell'interruttore è accesa), la pompa capillare si trova in una condizione di *preanalisi* ed è pronto per iniziare l'analisi.
- Se l'indicatore di stato è *verde*, significa che la pompa capillare sta effettuando un'analisi (modalità *run (analisi)*).
- L'indicatore *giallo* segnala che la pompa *non è pronta*. La pompa capillare è in questo stato quando è in attesa che venga raggiunta o completata una specifica condizione (ad esempio, immediatamente dopo la modifica del valore di un parametro), oppure mentre è in esecuzione una procedura di autovalutazione.
- La condizione di *errore* si verifica quando l'indicatore di stato è *rosso*. Una condizione di errore indica che la pompa capillare ha rilevato un problema interno che influenza il corretto funzionamento dello strumento. Di solito, una condizione di errore richiede attenzione immediata (ad esempio, perdita, componenti interni difettosi). Una condizione di errore interrompe sempre l'analisi.
- Un indicatore di stato *giallo lampeggiante* indica che il modulo si trova in *modalità residente*. Se si verifica questo tipo di condizione, è necessario rivolgersi al servizio di assistenza tecnica per ulteriori informazioni.
- Un indicatore di stato *rosso lampeggiante* indica un errore grave verificatosi durante la procedura di *avvio* del modulo. Se si verifica questo tipo di condizione, è necessario rivolgersi al servizio di assistenza tecnica per ulteriori informazioni.

Interfacce utente

I test disponibili variano in base all'interfaccia utente. Alcune descrizioni sono disponibili solo nel Manuale di manutenzione.

Test	ChemStation	Instant Pilot G4208A	Modulo di controllo G1323B	Software Agilent Lab Advisor
Test della pressione in modalità micro	Sì	Sì	Sì	Sì
Test della pressione in modalità normale	Si	Sì	Sì	Sì
Test di tenuta	Sì	Sì	Sì	Sì
Calibrazione del solvente del sensore di flusso	Sì	No	Sì	Sì
Test della EMPV	Sì	No	Sì	Sì
Pulizia della EMPV	Sì	Sì	Sì	Sì

Tabella 10 Funzioni di test disponibili in base all'interfaccia utente
Messaggi di errore

I messaggi di errore vengono visualizzati sull'interfaccia utente quando si verifica un guasto elettronico, meccanico o idraulico (percorso del flusso) che richiede attenzione immediata prima di poter continuare l'analisi (ad esempio piccole riparazioni, sostituzione di frit o di parti di consumo). In caso di guasto compare una luce rossa nella parte anteriore del modulo e viene inserita una segnalazione nel registro elettronico dello strumento.

Timeout

Timeout

Superamento dei limiti di tempo.

Probabile causa

- L'analisi è stata completata con successo e la funzione timeout ha spento il modulo come richiesto.
- 2 Durante una sequenza o un'iniezione multipla si è verificata una condizione di non pronto per un periodo superiore a quello impostato per la soglia di tempo.

Azioni suggerite

Controllare il registro (logbook) del sistema per individuare l'origine della condizione di non pronto. Ripetere l'analisi se necessario.

Controllare il registro (logbook) del sistema per individuare l'origine della condizione di non pronto. Ripetere l'analisi se necessario.

6 Risoluzione dei problemi e diagnostica

Messaggi di errore

Shut-Down

Arresto

Uno strumento esterno ha prodotto un segnale di arresto sulla linea remota.

Il modulo controlla costantemente i segnali di stato attraverso i connettori di input a distanza. Un segnale di input BASSO sul pin 4 del connettore a distanza produce un messaggio di errore.

Probabile causa		Azioni suggerite
1	Perdita rilevata in un altro modulo collegato al sistema tramite CAN.	Eliminare la perdita dello strumento esterno prima di riavviare il modulo.
2	Perdita segnalata in uno strumento esterno collegato a distanza al sistema.	Eliminare la perdita dello strumento esterno prima di riavviare il modulo.
3	Arresto di uno strumento esterno collegato a distanza al sistema.	Controllare l'arresto degli strumenti esterni.
4	Il sistema di degasaggio non è riuscito a produrre vuoto sufficiente per degasare il solvente.	Verificare che non ci siano condizioni di errore del sistema di degasaggio sotto vuoto. Consultare il <i>Manuale di manutenzione</i> del sistema di degasaggio sotto vuoto Agilent Serie 1200.

Remote Timeout

Timeout remoto

È presente una condizione di non pronto nelle linee remote.

Quando si inizia un'analisi, il sistema si aspetta che tutte le condizioni di non pronto (ad esempio durante la regolazione del rivelatore) passino alla condizione di funzionamento entro un minuto dall'inizio. Se la condizione di non pronto è ancora presente sulla linea remota dopo un minuto, viene visualizzato un messaggio di errore.

Probabile causa

Azioni suggerite

1	Condizione di non pronto di uno strumento collegato alla linea remota.	Verificare che lo strumento che segnala una condizione di non pronto sia installato correttamente e impostato per l'analisi in modo adeguato.
2	Cavo remoto difettoso.	Sostituire il cavo remoto.
3	Componenti difettosi dello strumento che generano messaggi di non pronto.	Controllare che lo strumento non sia difettoso (consultare la relativa documentazione).

6 Risoluzione dei problemi e diagnostica

Messaggi di errore

Synchronization Lost

Perdita di sincronizzazione

Durante l'analisi si è verificata una perdita di sincronizzazione oppure si è interrotta la comunicazione fra uno o più moduli del sistema.

I processori del sistema controllano continuamente la configurazione. Se uno o più moduli non vengono più individuati come collegati al sistema, viene visualizzato un messaggio di errore.

Probabile causa		Azioni suggerite	
1	Cavo CAN non collegato.	 Verificare che tutti i cavi CAN siano collegati correttamente. 	
		 Verificare che tutti i cavi CAN siano installati correttamente. 	
2	Cavo CAN difettoso.	Sostituire il cavo CAN.	
3	Scheda principale difettosa in un altro modulo.	Spegnere il sistema. Riavviare il sistema e determinare quali moduli non vengono riconosciuti.	

Leak Perdita

Si è verificata una perdita nel modulo.

I segnali dai due sensori di temperatura (sensore di perdita e sensore di compensazione della temperatura montato sulla scheda) vengono utilizzati dall'algoritmo di individuazione delle perdite per determinare quando si verifica questa condizione. Se si verifica una perdita, il relativo sensore viene raffreddato dal solvente. Ciò modifica la resistenza del sensore delle perdite sensibilizzato dal circuito presente sulla scheda principale.

P	robabile causa	Azioni suggerite
1	Raccordi allentati.	Verificare che tutti i raccordi siano serrati correttamente.
2	Capillari rotti.	Sostituire i capillari difettosi.
3	Valvola di ingresso attiva, valvola a sfera di uscita o EMPV allentata o con perdita.	Verificare che tutti i componenti della pompa siano collocati correttamente nelle loro sedi. Se il sistema presenta ancora segni di perdite, sostituire la guarnizione interessata (valvola di ingresso attiva, valvola a sfera di uscita, EMPV).
4	Guarnizioni della pompa difettose.	Sostituire le guarnizioni della pompa.

6 Risoluzione dei problemi e diagnostica

Messaggi di errore

Zero Solvent Counter

Contatore solvente azzerato

Le versioni A.02.32 e superiori del firmware della pompa consentono di impostare il riempimento delle bottiglie di solvente dalla ChemStation (versione 5.xx e superiori). Se il livello del volume nella bottiglia scende al di sotto del valore specificato, viene visualizzato un messaggio di errore a condizione che la funzione sia stata configurata correttamente.

Probabile causa		Azioni suggerite
1	Volume del liquido nella bottiglia al di sotto del valore specificato.	Riempire nuovamente le bottiglie e azzerare i contatori.
2	Impostazione del limite non corretta.	Controllare il limite impostato.

Pressure Above Upper Limit

Pressione al di sopra del limite superiore

La pressione del sistema ha superato il limite massimo.

Probabile causa		Azioni suggerite
1	Limite superiore della pressione impostato su un valore troppo basso.	Verificare che il limite superiore di pressione sia impostato su un valore adatto alle analisi da effettuare.
2	Blocco del flusso (a valle dello smorzatore).	Verificare che non ci siano blocchi nel percorso di flusso. I componenti che seguono sono particolarmente esposti al rischio di blocchi: frit della valvola di spurgo, ago (autocampionatore), capillare della sede (autocampionatore), loop di campionamento (autocampionatore), frit e capillari della colonna con diametri interni ristretti (es. 0,12 mm d.i.)
3	Smorzatore difettoso.	Sostituire lo smorzatore.
4	Scheda principale difettosa.	Sostituire la scheda principale.

Pressure Below Lower Limit

Pressione al di sotto del limite inferiore

La pressione del sistema è scesa al di sotto dei limiti.

Probabile causa		Azioni suggerite
1	Il limite inferiore della pressione è troppo elevato.	Verificare che il limite inferiore impostato per la pressione sia adatto alle analisi da effettuare.
2	Bolle d'aria nella fase mobile.	 Verificare che i solventi siano stati degassati. Effettuare lo spurgo del modulo. Verificare che i filtri del sistema di iniezione del solvente non siano ostruiti.
3	Perdita.	 Controllare la testa della pompa, i capillari e i raccordi per verificare che non ci siano perdite.
		• Effettuare lo spurgo del modulo. Eseguire un test della pressione per determinare se le guarnizioni o altri componenti del modulo sono difettosi.
4	Smorzatore difettoso.	Sostituire lo smorzatore.
5	Scheda principale difettosa.	Sostituire la scheda principale.

Test della pressione in modalità micro

Descrizione

Si tratta di un test rapido per la verifica della tenuta di un microsistema in cui la pompa funzioni in modalità micro e non sia stata installata una valvola di spurgo manuale. Il percorso di flusso del sistema testato viene bloccato tramite un dado cieco. La pressione viene aumentata fino a 380 bar e il flusso rimanente viene misurato dal sensore di flusso durante il blocco del sistema.

Passaggio 1

Il test inizia con l'inizializzazione delle teste della pompa. La pompa A inizia a pompare il solvente fino a raggiungere una pressione di sistema di 380 bar.

Passaggio 2

La pompa funziona in modalità di pressione controllata a 380 bar per alcuni minuti. Viene quindi misurato il flusso rimanente nel percorso della colonna fra la EMPV e il dado cieco.

Esecuzione del test dal software Agilent Lab Advisor

- 1 Selezionare il test della pressione in modalità micro dal menu di selezione.
- 2 Avviare il test e attenersi alle istruzioni.

NOTA Per istruzioni dettagliate, fare riferimento al software Agilent Lab Monitor.

NOTA

Se si blocca l'uscita del sensore di flusso al punto 10 della procedura, utilizzare il dado cieco in PEEK fornito con il kit di accessori. Non collegare dadi ciechi in acciaio inox all'uscita del sensore di flusso perché potrebbero danneggiarlo.

Risultati del test della pressione in modalità micro

I risultati del test vengono valutati automaticamente. La somma di tutte le perdite sul percorso di flusso della colonna, dalla valvola EMPV al dado cieco, deve essere inferiore a 1000 nl/min.

NOTA

Piccole perdite non visibili presenti sul percorso di flusso possono causare un risultato negativo del test.

Se il test della pressione ha esito negativo:

Verificare che tutti i raccordi tra la pompa e il dado cieco siano saldamente serrati e ripetere il test della pressione. Se il test è ancora negativo, inserire il dado cieco sul condotto di uscita del modulo precedente sullo stack ripetere il test della pressione. Escludere uno per uno tutti i moduli per determinare in quale si trova la perdita.

Cause probabili di un esito negativo del test della pressione

Una volta isolata e riparata la causa della perdita, ripetere il test della pressione per confermare che il sistema sia a tenuta di pressione.

6 Risoluzione dei problemi e diagnostica

Test della pressione in modalità micro

Tabella 11 Causa possibile (pompa)

Causa possibile (pompa)	Azione correttiva
Raccordo allentato o che perde.	Serrare il raccordo o sostituire il capillare.
EMPV non ben stretta	Eseguire il test della EMPV
Guarnizioni della pompa o stantuffi danneggiati.	Eseguire un test di tenuta per confermare la presenza della perdita.
Sensore di flusso fuori posizione	Eseguire la calibrazione dell'accuratezza del sensore di flusso e correggere la deviazione.

Tabella 12 Causa possibile (autocampionatore)

Causa possibile (autocampionatore)	Azione correttiva
Raccordo allentato o che perde.	Serrare o sostituire il raccordo o il capillare.
Sede dell'ago.	Sostituire la sede dell'ago.
Guarnizione del rotore (valvola di iniezione).	Sostituire la guarnizione del rotore.
Guarnizione del misuratore o stantuffo danneggiati.	Sostituire la guarnizione del misuratore. Verificare che lo stantuffo non sia graffiato. Se necessario, sostituire lo stantuffo.

Test della pressione in modalità normale

Test della pressione della pompa capillare in modalità normale

Il test della pressione è incorporato nel sistema e permette di controllarne la tenuta. Il test consiste nell'osservazione l'andamento della pressione mentre la pompa capillare effettua una sequenza di pompaggio predefinita. I risultati forniscono informazioni utili sulla tenuta della pressione del sistema.

Passaggio 1

Il test inizia con l'inizializzazione delle teste della pompa. Dopo l'inizializzazione i pistoni A1 e B1 sono entrambi al punto massimo della mandata. In seguito la pompa A inizia a pompare solvente con un flusso di 510 μ l/min e un ciclo di 100 μ l. La pompa continua a funzionare in questo modo fino a raggiungere una pressione di 390 bar.

NOTA

Durante l'esecuzione del test è attivo solo il canale A2. Per verificare la tenuta della pressione della pompa utilizzare il test delle perdite, vedere "Descrizione del test di tenuta della pompa capillare", pagina 86.

Passaggio 2

Quando sono stati raggiunti i 390 bar, la pompa capillare si spegne. La perdita di pressione da questo punto in poi non deve superare 2 bar/minuto.

Posizionamento del dado cieco

Se si sospetta che la perdita derivi da un componente specifico, posizionare il dado immediatamente a monte del componente sospetto ed eseguire nuovamente il test. Se il test risulta positivo, il componente difettoso si trova a valle del dado. Confermare la diagnosi posizionando il dado cieco immediatamente a valle del componente sospetto. La diagnosi è confermata se il test non viene superato. 6 Risoluzione dei problemi e diagnostica

Test della pressione in modalità normale

Esecuzione del test della pressione

Quando	Indo La verifica si usa quando si sospettano problemi di perdite oppure dopo operazioni di manutenzio sui componenti del percorso di flusso (es. guarnizioni della pompa o del sistema di iniezione) per confermare la tenuta del sistema fino a 400 bar.		
Strumenti richiesti	Chiave da 1/4	1"	
Parti richieste	Quantità	Codice	Descrizione
	1	01080-83202	Dado cieco
			Isopropanolo (IPA), 500 ml
PreparazioniPosizionare una bottiglia di isopropanolo di grado LC nel comparto dei so A 2.		propanolo di grado LC nel comparto dei solventi e collegarla al canale	
NOTA	Verificare che tutte le parti del percorso di flusso da sottoporre al test vengano lavate accuratamente con IPA prima di pressurizzare il sistema. Qualsiasi traccia di altri solventi o persino la più piccola bolla d'aria all'interno del percorso del flusso provocheranno l'esito negativo del test.		
	Esecuzione del test dal software Agilent Lab Advisor		
	1 Coloriar		le pressione del many di selezione del test
	I Selezior	hare if test del	la pressione dai menu di selezione dei test.
	2 Avviare il test e attenersi alle istruzioni.		ersi alle istruzioni.
SUGGERIMENTO	UGGERIMENTO "Valutazione dei risultati" , pagina 85 descrive la valutazione e l'interpretazione dei risultati del test della pressione.		pagina 85 descrive la valutazione e l'interpretazione dei risultati

SUGGERIMENTO

Per istruzioni dettagliate, fare riferimento allo strumento software Agilent Lab Advisor.

Valutazione dei risultati

La somma di tutte le perdite fra la pompa e il dado cieco saranno indicate da un calo di pressione >2 bar/minuto in corrispondenza del punto di stabilità. Si noti che piccole perdite di solvente possono provocare un esito negativo del test, ma potrebbero non essere visibili da un modulo.

NOTA

Ricordare che esiste una differenza fra un *errore (error)* e un *esito negativo (failure)* del test! Un *errore* significa che durante l'esecuzione del test si è verificato un evento non regolare. Se invece un test ha avuto *esito negativo* significa che i risultati erano al di fuori dei limiti specificati.

NOTA

Spesso un esito negativo può essere provocato da un dado cieco danneggiato (deformato per essere stato serrato eccessivamente). Prima di passare alla ricerca di altre possibili cause dell'esito negativo, assicurarsi che il dado cieco in uso sia in buone condizioni e sia stato serrato correttamente.

Test di tenuta

Descrizione del test di tenuta della pompa capillare

Si tratta di un test per la risoluzione dei problemi integrato che consente di verificare l'assenza di perdite nella pompa capillare. Il test consiste nel monitorare l'andamento della pressione mentre la pompa capillare effettua una sequenza di pompaggio predefinita. L'andamento della pressione in queste condizioni indica la presenza o l'assenza di perdite nella pompa e nei suoi componenti.

Rampa 1

Il test inizia con l'inizializzazione delle pompe. Dopo l'inizializzazione gli stantuffi A1 e B1 sono entrambi al punto massimo della mandata. Quindi, la pompa capillare inizia a pompare solvente a una portata di 150 μ l/min, mandata di 100 μ l e composizione 51%A, 49%B. Entrambe le pompe si attivano per un ciclo di pompaggio completo. Alla fine di questa fase, gli stantuffi A1 e B1 si trovano al massimo della mandata.

Rampa 2

La pompa capillare continua a pompare solvente a un flusso di 150 μ l/min. Il canale A pompa per un ciclo (prima lo stantuffo A2, poi quello A1) seguito dal canale B (stantuffo B2, poi stantuffo B1), entrambi con una mandata di 20 μ l.

Rampa 3

Prima dell'inizio della prima isobara, lo stantuffo A2 si attiva a un flusso di 50 $\mu l/min$ per circa 8 secondi.

Isobara 1

All'isobara 1 lo stantuffo A2 pompa a una portata di 3 μ l/min per 30 secondi.

Rampa 4

Lo stantuffo B2 pompa a 50 µl/min per circa 8 secondi.

Isobara 2

Lo stantuffo B2 pompa a un flusso di 3 $\mu l/min$ per 30 secondi.

Rampa 5

Lo stantuffo A1 pompa a 50 $\mu l/min$ per circa 8 secondi.

Isobara 3

Lo stantuffo A1 pompa a un flusso di 3 $\mu l/min$ per 30 secondi.

Rampa 6

Lo stantuffo B1 pompa a 50 $\mu l/min$ per circa 7 secondi.

Isobara 4

Il pistone B1 pompa a un flusso di 3 μ l/min per circa 30 secondi. Alla fine della quarta isobara il test termina e la pompa capillare si spegne.

Esecuzione del test di tenuta

Quando	Se si sospettano problemi della pompa capillare			
Strumenti richiesti	Chiave da 1/4"			
Parti richieste	Quantità 1 1	Codice G1313-87305 01080-83202	Descrizione Capillare di restrizione Dado cieco Isopropanolo (IPA), 500 ml	
Preparazioni	Posizionare due bottiglie di isopropanolo per HPLC nei canali A2 e B2.			
NOTA	Verificare che tutte le parti del percorso di flusso da sottoporre al test vengano lavate accuratamente con IPA prima di pressurizzare il sistema. Qualsiasi traccia di altri solventi o persino la più piccola bolla d'aria all'interno del percorso del flusso provocheranno l'esito negativo del test.			
	Esecuzione del test dal software Agilent Lab Advisor			
	1 Selezionare il test della pompa dal menu di selezione del test.			
	2 Avviare il test e attenersi alle istruzioni.			
NOTA	Al termine del test, accertarsi di rilasciare la pressione aprendo lentamente la valvola di spurgo.			
SUGGERIMENTO	"Valutazione dei risultati" , pagina 89 descrive la valutazione e l'interpretazione dei risultati del test di tenuta.			
SUGGERIMENTO	Per istruzioni dettagliate, fare riferimento allo strumento software Agilent Lab Advisor.			

Valutazione dei risultati

La presenza di componenti difettosi o con perdite nella testa della pompa modifica il diagramma della pressione durante il test di tenuta. Le modalità tipo dei guasti sono descritte qui di seguito.

- **NOTA** Ricordare che esiste una differenza fra *errore (error)* del test ed *esito negativo (failure)* del test. Un *errore* indica che l'esecuzione del test si è conclusa in modo anomalo. Un *esito negativo* indica invece che i risultati erano al di fuori dei limiti specificati.
- NOTA Spesso un esito negativo può essere provocato da un dado cieco danneggiato (deformatosi per essere stato serrato eccessivamente). Prima di passare alla ricerca di altre possibili cause dell'esito negativo, assicurarsi che il dado cieco in uso sia in buone condizioni e sia stato serrato correttamente.

No pressure increase or minimum pressure of plateau 1 not reached Nessun aumento della pressione o pressione minima della prima isobara non raggiunta

Probabile causa		Azioni suggerite
1	La pompa non funziona.	Controllare il registro elettronico per verificare se contiene messaggi di errore.
2	Collegamenti errati fra la linea del solvente e la valvola di selezione.	Verificare che le linee di solvente dal sistema di degasaggio alla valvola di selezione del solvente siano collegate correttamente.
3	Accessori allentati o che perdono.	Verificare che tutti i raccordi siano saldamente serrati, oppure sostituire il capillare.
4	Perdite consistenti (visibili) alle guarnizioni della pompa.	Sostituire le guarnizioni della pompa.
5	Perdite consistenti (visibili) dalla valvola di ingresso attiva, dalla valvola di uscita o dalla EMPV.	• Verificare che i componenti che perdono siano installati correttamente e saldamente serrati. Sostituire il componente se necessario.
		 Eseguire la procedura di pulizia EMPV.

Pressure limit not reached but plateaus horizontal or positive

Limite di pressione non raggiunto ma presenza di isobara orizzontale o positiva

Probabile causa		Azioni suggerite	
1	Il sistema di degasaggio e il canale della pompa A e/o B non sono stati spurgati a sufficienza (presenza di aria nei canali).	Spurgare bene il sistema di degasaggio e i canali della pompa con isopropanolo sotto pressione (usare il capillare di restrizione).	
2	Solvente non adatto.	Installare isopropanolo. Spurgare bene il sistema di degasaggio e i canali della pompa.	

All plateaus negative

Tutte le isobare negative

Probabile causa		Azioni suggerite	
1	Accessori allentati o che perdono.	Verificare che tutti i raccordi siano saldamente serrati o sostituire il capillare.	
2	Miscelatore che perde (se installato).	Serrare gli accessori del miscelatore e i dadi.	
3	EMPV contaminata.	Eseguire la procedura di pulizia EMPV.	
4	Viti della testa della pompa allentate nel canale A o B.	Verificare che le viti della testa della pompa dei canali A e B siano saldamente serrate.	
5	Guarnizione che perde o pistone rigato nei canali A2 o B2.	Sostituire le guarnizioni della pompa su entrambi i canali. Controllare che i pistoni non siano graffiati. Sostituirli se richiesto.	
6	Valvola di uscita che perde nei canali A o B.	Sostituire la valvola di uscita.	
7	Smorzatore che perde.	Sostituire lo smorzatore.	

First plateau negative or unstable, and at least one other plateau positive

Prima isobara negativa o instabile e almeno una positiva.

Probabile causa		Azioni suggerite
1	Valvola di uscita che perde nel canale A.	Pulire la valvola di uscita del canale A. Verificare che i setacci delle valvole di uscita siano installati correttamente. Serrare la valvola di uscita.
2	Viti della testa della pompa allentate nel canale A.	Verificare che le viti della testa della pompa del canale A siano saldamente serrate.
3	Guarnizione che perde o pistone rigato nel canale A2.	Sostituire le guarnizioni della pompa del canale A. Controllare che il pistone non sia graffiato. Sostituirli se richiesto.

Second plateau negative or unstable, and at least one other plateau positive

Seconda isobara negativa o instabile e almeno una positiva

Probabile causa		Azioni suggerite	
1	Valvola di uscita che perde nel canale B.	Pulire la valvola di uscita del canale B. Verificare che i setacci delle valvole di uscita siano installati correttamente. Serrare la valvola di uscita.	
2	Viti della testa della pompa allentate nel canale B.	Verificare che le viti della testa della pompa del canale B siano saldamente serrate.	
3	Guarnizione che perde o pistone rigato nel canale B2.	Sostituire le guarnizioni della pompa del canale B. Controllare che il pistone non sia graffiato. Sostituirli se richiesto.	

Third plateau negative or unstable and at least one other plateau positive

Terza isobara negativa o instabile e almeno una positiva

Probabile causa		Azioni suggerite
1	Presenza di aria nel canale A o di guarnizioni nuove non ancora posizionate.	Spurgare bene il canale A con isopropanolo sotto pressione (utilizzare un capillare di restrizione).
2	Valvola di ingresso attiva allentata nel canale A.	Serrare la valvola del canale A (con la chiave da 14 mm). Non applicare una coppia eccessiva.
3	Viti della testa della pompa allentate nel canale A.	Verificare che le viti della testa della pompa del canale A siano saldamente serrate.
4	Valvola di uscita allentata nel canale A.	Verificare che il setaccio della valvola di uscita sia installato correttamente. Serrare la valvola di uscita.
5	Guarnizione che perde o pistone rigato nel canale A1.	Sostituire le guarnizioni della pompa del canale A. Controllare che il pistone non sia graffiato. Sostituirli se richiesto.
6	Valvola di ingresso attiva difettosa nel canale A.	Sostituire la valvola di ingresso del canale A.

Fourth plateau negative or unstable and at least one other plateau positive

Quarta isobara negativa o instabile e almeno una positiva

Probabile causa

1	Presenza di aria nel canale B o guarnizioni nuove non ancora posizionate.	Spurgare bene il canale B con isopropanolo sotto pressione (utilizzare un capillare di restrizione).
2	Valvola di ingresso attiva allentata nel canale B.	Serrare la valvola del canale B (con la chiave da 14 mm). Non applicare una coppia eccessiva.
3	Viti della testa della pompa allentate nel canale B.	Verificare che le viti della testa della pompa del canale B siano saldamente serrate.
4	Valvola di uscita allentata nel canale B.	Verificare che il setaccio della valvola di uscita sia installato correttamente. Serrare la valvola di uscita.
5	Guarnizione che perde o pistone rigato nel canale B1.	Sostituire le guarnizioni della pompa del canale B. Controllare che il pistone non sia graffiato. Sostituirli se richiesto.
6	Valvola di ingresso attiva difettosa nel canale B	Sostituire la valvola di ingresso del canale B.

Azioni suggerite

Calibrazione del solvente del sensore di flusso

Descrizione

	Questa procedura consente di generare dati di calibrazione personalizzati e deve essere eseguita ogni volta che si pensa che il flusso non sia accurato oppure quando la combinazione di solventi desiderata non è riportata sulla tavola di calibrazione predefinita.
NOTA	l sali o piccole quantità di sostanze organiche non hanno influenza significativa sui dati di calibrazione. In questi casi possono essere utilizzate le curve predefinite relative alle sostanze acquose.
NOTA	Controllare l'accuratezza del sensore di flusso al flusso superiore utilizzando acqua.
NOTA	Un sistema con dati di calibrazione non accurati produrrà comunque risultati riproducibili.
NOTA	Prima di iniziare la procedura di calibrazione, verificare che il test delle perdite della pompa venga superato.

La procedura è impostata per calibrare solventi "incogniti" nei canali A1 e B1 della valvola di selezione del solvente.

Inizialmente il sistema viene equilibrato con acqua pura proveniente dal canale A2. A 15 μ l/min il sistema commuta il controllo della pressione e la mantiene costante nel corso dell'intera procedura. Viene effettuato un passaggio a 100 % A1 (ne risulta la risposta della fase acquosa relativamente all'acqua), quindi un passaggio in gradiente da 0 % A1 a 100 % B1 (ne risulta la risposta delle miscele incognite).

Solventi

- A1: Solvente acquoso (da calibrare)
- B1: Solvente organico (da calibrare)
- A2: Acqua pura (solvente di riferimento)

Esecuzione della procedura di calibrazione

- 1 Riempire il sistema di degasaggio con i solventi adatti e spurgare ogni canale a 2500 μ l/min per 3 minuti.
- 2 Rimuovere il capillare all'uscita del sensore di flusso.
- 3 Controllare che il sensore di flusso standard sia installato (sensore da 20 μ l).
- **4** Scollegare il capillare dallo smorzatore al miscelatore alla porta superiore dello smorzatore.
- **5** Scollegare il capillare dal miscelatore al filtro in corrispondenza del miscelatore.
- 6 Collegare il capillare dal filtro alla porta superiore dello smorzatore.
- 7 Collegare il miscelatore al capillare diretto all'uscita del sensore di flusso. Collocare il miscelatore in posizione verticale. Il condotto di ingresso del flusso deve essere rivolto verso l'alto.
- **8** Pompare l'acqua pura (canale A2) a 1000 μl/min (modalità normale) per almeno 10 min. Verificare che l'intera pompa e il miscelatore siano stati spurgati a sufficienza. Controllare gli scarichi.
- **9** Collegare all'uscita del miscelatore una colonna in grado di tollerare una pressione da 30 a 200 bar a 15 μl/min di acqua (es. 150 x 0,3 x 5um) oppure un capillare di restrizione (es. in silice fusa, 50 μm d.i., 2,5 m).
- **10** Pompare acqua pura (canale A2) a 15 μ l/min (modalità micro) finché la pressione non risulta stabile (per almeno 5 min).
- **11** Impostare la compressibilità per A1 e B1.
- 12 Eseguire la calibrazione.

NOTA

Le risposte del sensore di flusso ai vari passaggi della composizione vengono memorizzati in un file e rappresentati graficamente sullo schermo.

- **13** Prendere il valore medio di ogni passaggio e inserirlo nella tavola di calibrazione.
- 14 Salvare la tavola di calibrazione.
- **15** Rimuovere la colonna o il capillare di restrizione e il miscelatore all'uscita del sensore di flusso.
- 16 Reinstallare miscelatore fra lo smorzatore e il filtro.

6 Risoluzione dei problemi e diagnostica

Calibrazione del solvente del sensore di flusso

ΝΟΤΑ	Per solventi non miscibili con acqua come l'esano o l'isopropanolo, i valori corrispondenti per le miscele possono essere interpolati in modo lineare dai valori noti dei singoli solventi e inseriti e modificati in una nuova tavola.
NOTA	Le miscele di solventi isocratici incogniti possono essere calibrate impostando la tavola di
	misurazione volumetrica (es. riempimento di una siringa in vetro calibrata per 5 - 10 min).
ΝΟΤΛ	Viene quindi calcolato il rapporto di risposta utilizzando la seguente equazione:
NUIA	Fattore di calibrazione = Flusso inserito / flusso misurato
	Esempio per cloroformio-metanolo
	Flusso inserito: 15 µl/min
	Flusso misurato: 35 μl/min
	Fattore di calibrazione: 15 µl/min / 35 µl/min = 0428

Inserire il fattore di calibrazione nella tavola di calibrazione, quindi salvarla.

Test della EMPV

Descrizione del test della EMPV

Questo test consente di verificare le prestazioni della valvola proporzionatrice elettromeccanica (EMPV). Deve essere effettuato sempre quando la EMPV viene sostituita. Il test deve essere effettuato anche quando si verificano problemi di stabilità del flusso in colonna (solo in modalità micro).

Il test della EMPV non sostituisce i test delle perdite e della pressione. Questi ultimi devono comunque essere effettuati quando si sospettano perdite sulla testa della pompa.

Il test inizia con una breve sequenza di spurgo e la procedura di pulizia della EMPV. Quindi, è necessario controllare la EMPV a pressioni basse ed elevate e monitorare la corrente adatta. Eseguire infine una breve rampa di pressione.

Esecuzione del test della EMPV

- 1 Riempire il sistema di degasaggio con
 - A1: solvente acquoso
 - B1: solvente organico (acetonitrile / metanolo / isopropanolo, ecc.)
- **2** Se il sistema di degasaggio sotto vuoto è completamente vuoto, utilizzare la siringa per aspirare solvente nella camera in vuoto oppure spurgare il sistema prima dell'esecuzione del test (quest'ultimo richiede il riempimento delle camere del sistema di degasaggio).
- 3 Chiudere l'uscita della pompa con un dado cieco all'uscita della EMPV.
- **4** Scollegare il capillare da EMPV a sensore di flusso (G1375-87301) all'uscita della EMPV e chiudere la via di uscita dalla EMPV con un dado cieco (01080-83202).
- 5 Effettuare il test.
- 6 Rimuovere il dado cieco.
- 7 Ricollegare il capillare fra EMPV e sensore di flusso. Non applicare una coppia eccessiva.

Pulizia della EMPV

Descrizione della pulizia della EMPV della pompa capillare

A volte possono accumularsi particelle di materiale all'interno della EMPV, a seconda delle applicazioni. La procedura di pulizia ha lo scopo di eliminare i depositi di materiale. La pulizia deve essere effettuata sempre quando si sospetta che la EMPV presenti perdite o sia contaminata da particelle.

L'uscita dalla EMPV viene chiusa con un dado cieco in acciaio inossidabile. Dopo una breve procedura di spurgo la EMPV viene chiusa e la pressione aumentata a circa 380 bar. Quindi la EMPV viene aperta e la pressione viene diminuita molto velocemente. La procedura viene ripetuta più volte in sequenza.

Esecuzione del test

- 1 Riempire di solventi i canali A1 e B1 del sistema di degasaggio sottovuoto (il test richiede che le camere sottovuoto siano piene). Si consiglia di utilizzare il canale A con solvente acquoso. Se si utilizza un altro canale, è necessario assicurarsi che
 - il solvente sia miscibile
 - non si verifichi la precipitazione della soluzione tampone
- 2 Chiudere l'uscita della pompa con un dado cieco all'uscita della EMPV.
- **3** Scollegare il sensore di flusso EMPV all'uscita della valvola. Chiudere l'uscita dalla EMPV con un dado cieco (01080-83202).
- 4 Effettuare il test.
- **5** Controllare il risultato con quello della *Verifica della pressione* se necessario.
- 6 Rimuovere il dado cieco.
- **7** Ricollegare il capillare fra EMPV e sensore di flusso. Non applicare una coppia eccessiva.

Manutenzione

7

Introduzione alla manutenzione ed alla riparazione 100 **Riparazioni semplici - Manutenzione** 100 Sostituzione delle parti interne 100 Precauzioni ed avvertenze 101 Uso del bracciale antistatico ESD 102 Pulizia del modulo 102 Avviso di manutenzione preventiva (EMF) 103 Contatori EMF 103 Uso dei contatori EMF 104 Panoramica su manutenzione e riparazioni 105 Procedure di riparazione semplici 107 Verifica e pulizia dei filtri di ingresso solvente 108 Sostituzione della cartuccia della valvola di ingresso attiva o della valvola stessa 110 Sostituzione del setaccio della valvola a sfera di uscita o dell'intera valvola 114 Sostituzione della valvola di selezione del solvente 117 Rimozione e smontaggio del gruppo testa della pompa 119 Sostituzione delle guarnizioni della pompa e procedura di wear-in 121 Sostituzione degli stantuffi 124 126 Sostituzione del sensore di flusso Rimontaggio del gruppo testa della pompa 127 Sostituzione della scheda di interfacciamento opzionale 129

7

Introduzione alla manutenzione ed alla riparazione

Riparazioni semplici - Manutenzione

La pompa capillare è stata progettata per semplificare al massimo le riparazioni. Le riparazioni più frequenti, come la sostituzione della guarnizione del pistone e del frit del filtro, possono essere effettuate mantenendo la pompa capillare nella sua normale posizione nello stack di moduli. Tali riparazioni sono descritte in Table 13, pagina 107.

Sostituzione delle parti interne

Alcune riparazioni richiedono la sostituzione di parti interne difettose. In questo caso è necessario rimuovere il modulo dallo stack, togliere i coperchi e smontare il modulo. La leva di sicurezza sulla presa di corrente in ingresso impedisce che il coperchio del modulo venga rimosso quando la corrente è ancora collegata.

Precauzioni ed avvertenze

ATTENZIONE

Il modulo riceve parzialmente energia quando è spento, purché il cavo di alimentazione sia collegato.

Rischio di scosse e altre lesioni personali. Gli interventi di riparazione del modulo possono provocare lesioni personali, come scosse elettriche, nel caso in cui il coperchio del modulo sia aperto e lo strumento sia collegato all'alimentazione.

- Non eseguire mai alcuna regolazione, manutenzione o riparazione del modulo con il coperchio superiore rimosso e il cavo di alimentazione collegato.
- → La leva di sicurezza sulla presa di corrente in ingresso impedisce che il coperchio del modulo venga rimosso quando la corrente è ancora collegata. Non ricollegare mai l'alimentazione quando il coperchio è rimosso.

ATTENZIONE L'apertura dei capillari o dei raccordi dei tubi potrebbe provocare la fuoriuscita del solvente.

I solventi e reagenti tossici o pericolosi possono essere dannosi per la salute.

Rispettare le procedure di sicurezza adatte (indossare gli occhiali protettivi, i guanti e gli abiti antinfortunistici) come descritto nelle istruzioni sulla manipolazione e nelle schede sulla sicurezza dei materiali fornite dal produttore dei solventi, specialmente in caso di utilizzo di sostanze tossiche o pericolose.

AVVERTENZA

Le schede elettroniche sono esposte a pericolo elettrostatico e devono essere maneggiate con cura per evitare di danneggiarle. Il contatto con schede e componenti elettronici può causare scariche elettrostatiche (ESD).

Le scariche elettrostatiche possono danneggiare schede e componenti elettronici.

→ Fare attenzione a toccare la scheda solo sui bordi, senza entrare a contatto con i componenti elettronici. Utilizzare sempre una protezione ESD (ad esempio un bracciale antistatico) prima di toccare le schede elettroniche e i componenti.

7

Introduzione alla manutenzione ed alla riparazione

Uso del bracciale antistatico ESD

- **1** Aprire le due estremità del bracciale e avvolgere il lato adesivo saldamente attorno al polso.
- **2** Srotolare il resto del bracciale e liberare l'inserto dalla lamina di rame all'estremità opposta.
- 3 Collegare la lamina di rame alla messa a terra.

Figura 13 Uso del bracciale antistatico ESD

Pulizia del modulo

ATTENZIONE

Presenza di liquido nel comparto dell'elettronica del modulo.

La presenza di liquido nel comparto dell'elettronica può provocare il pericolo di scosse elettriche e danneggiare il modulo.

- → Evitare l'uso di un panno eccessivamente umido durante la pulizia.
- → Svuotare tutte le linee del solvente prima di aprire qualsiasi raccordo.

Il modulo deve essere tenuto pulito. La pulizia deve essere effettuata usando un panno morbido leggermente imbevuto di acqua o di una soluzione diluita di acqua e detergente. Non usare panni troppo bagnati dai quali possa cadere dell'acqua all'interno del modulo.

7

Avviso di manutenzione preventiva (EMF)

La manutenzione può richiedere la sostituzione di componenti nel percorso del flusso soggetti ad usura meccanica o a tensione. La sostituzione dei componenti non deve essere effettuata a intervalli regolari predefiniti, ma determinata in base alla frequenza di utilizzo dello strumento e alle condizioni analitiche. La funzione di avviso di manutenzione preventiva EMF (Early Maintenance Feedback) tiene costantemente sotto controllo componenti specifici dello strumento e segnala il superamento dei limiti consentiti impostati dall'utente. L'avviso, visualizzato sull'interfaccia utente, indica che è necessario programmare un intervento di manutenzione.

Contatori EMF

La pompa è dotata di una serie di contatori EMF per la testa della pompa. Ciascun contatore viene incrementato con l'uso della pompa. È possibile specificare un limite massimo in modo da visualizzare un avviso di tipo grafico sull'interfaccia utente in caso di superamento di tale limite. Ciascun contatore può essere azzerato al termine della manutenzione. La pompa è dotata dei seguenti contatori EMF:

- misuratore dei liquidi della pompa A,
- usura delle guarnizioni della pompa A,
- misuratore dei liquidi della pompa B,
- usura delle guarnizioni della pompa B,

Misuratori di liquidi

I misuratori di liquidi visualizzano il volume totale di solvente pompato dalla testa destra e sinistra della pompa a partire dall'ultimo azzeramento dei contatori. Ad entrambi i misuratori è possibile assegnare un limite EMF (massimo). Quando il limite viene superato, il sistema EMF lo segnala sull'interfaccia utente.

7 Manutenzione

Avviso di manutenzione preventiva (EMF)

Indicatori di usura delle guarnizioni

Questi indicatori visualizzano un valore derivato dalla pressione e dal flusso (entrambi contribuiscono all'usura delle guarnizioni). I valori aumentano con l'uso della pompa fino all'azzeramento dei contatori dopo la manutenzione delle guarnizioni. È possibile assegnare un valore limite EMF (massimo) ad entrambi gli indicatori. Quando il limite viene superato, il sistema EMF lo segnala sull'interfaccia utente.

Uso dei contatori EMF

I limiti impostati per i contatori EMF possono essere modificati dall'utente e consentono quindi di adattare la funzione di avviso di manutenzione preventiva a specifici requisiti. Poiché l'usura dei componenti della pompa dipende dalle condizioni di analisi, la definizione dei limiti massimi deve essere effettuata in base alle condizioni operative specifiche dello strumento.

Impostazione dei limiti EMF

L'impostazione dei limiti EMF deve essere ottimizzata su uno o due cicli di manutenzione. Inizialmente non devono essere impostati limiti EMF. Quando le prestazioni indicano che sono necessari interventi di manutenzione, prendere nota dei valori indicati dai contatori di fluidi e di usura delle guarnizioni. Inserire questi valori (o valori leggermente inferiori a quelli visualizzati) come limiti EMF, quindi reimpostare i misuratori a zero. Quando i contatori superano nuovamente i limiti stabiliti, viene visualizzato un avviso che segnala la necessità di programmare interventi di manutenzione.

7

Panoramica su manutenzione e riparazioni

La Figure 14, pagina 106 illustra i dispositivi principali della pompa capillare. Le teste della pompa e le sue parti richiedono le operazioni di manutenzione ordinaria (ad esempio la sostituzione delle guarnizioni) che possono essere effettuate dalla parte anteriore (riparazioni semplici). La sostituzione di parti interne richiederà lo spostamento del modulo dallo stack e l'apertura del coperchio superiore.

7 Manutenzione

Panoramica su manutenzione e riparazioni

Figura 14 Panoramica sulle procedure di riparazione

- 1 Sensore perdite, vedere manuale di manutenzione
- 2 Valvola di ingresso attiva, vedere "Smontaggio della valvola di ingresso attiva", pagina 110
- 3 Valvola a sfera di uscita, vedere "Sostituzione del setaccio della valvola a sfera di uscita o dell'intera valvola", pagina 114
- 4 EMPV, vedere manuale di manutenzione
- 5 Trasmissione della pompa, vedere manuale di manutenzione
- 6 Alimentazione, vedere manuale di manutenzione
- 7 Scheda CSM, vedere manuale di manutenzione
- 8 Ventola, vedere manuale di manutenzione
- 9 Smorzatore, vedere manuale di manutenzione
- 10 Sensore di flusso, vedere "Sostituzione del sensore di flusso", pagina 126
- 11 Non installato
- 12 Valvola selezione del solvente, vedere "Sostituzione della valvola di selezione del solvente", pagina 117

7

Procedure di riparazione semplici

Le procedure descritte in questa sezione possono essere effettuate con la pompa capillare nella posizione normale di funzionamento all'interno dello stack del sistema.

Tabella 13 Procedure di riparazione semplici

Procedura	Sintomo	Note
"Smontaggio della valvola di ingresso attiva" , pagina 110	Se si verificano perdite interne	Pressione instabile, effettuare un test delle perdite a scopo di verifica
"Sostituzione del setaccio della valvola a sfera di uscita o dell'intera valvola" , pagina 114	Se si verificano perdite interne	Pressione instabile, effettuare un test delle perdite a scopo di verifica
"Sostituzione della valvola di selezione del solvente" , pagina 117	Flusso in colonna o pressione del sistema instabili	
"Sostituzione della valvola di selezione del solvente" , pagina 117	Flusso in colonna o pressione del sistema che diminuiscono improvvisamente.	Una perdita di pressione > 10 bar dal frit (5 ml/min H ₂ 0 con scarico aperto) indica un blocco.
"Sostituzione delle guarnizioni della pompa e procedura di wear-in" , pagina 121	Se le prestazioni della pompa indicano che le guarnizioni sono usurate	Perdite dalla parte inferiore della testa della pompa; tempi di ritenzione instabili; andamento della pressione instabile - Eseguire il test di tenuta a scopo di verifica
"Sostituzione degli stantuffi" , pagina 124	Se graffiati	Durata delle guarnizioni inferiore al previsto — Controllare gli stantuffi durante la sostituzione delle guarnizioni
"Sostituzione del sensore di flusso" , pagina 126	Intervallo di flussi esteso (100 ul) necessario. Perdita al sensore di flusso. Flusso in colonna instabile. Sensore di flusso bloccato.	

Procedure di riparazione semplici

Verifica e pulizia dei filtri di ingresso solvente

Quando	Se il filtro del solvente è ostruito		
Parti richieste	Quantità	Descrizione	
		Acido nitrico concentrato (05%)	
		Acqua bidistillata	
	1	Beaker	
PreparazioniRimuovere il tubo di ingresso del solvente dalla porta di ingresso della valvola di selezione del solvente o dall'adattatore nella valvola di ingresso attiva.		il tubo di ingresso del solvente dalla porta di ingresso della valvola di selezione del dall'adattatore nella valvola di ingresso attiva.	
ATTENZIONE	L'apertur solvente.	a dei capillari o dei raccordi dei tubi potrebbe provocare la fuoriuscita del	
	l solventi	e reagenti tossici o pericolosi possono essere dannosi per la salute.	
	→ Rispet e gli al nelle s specia	tare le procedure di sicurezza adatte (indossare gli occhiali protettivi, i guanti biti antinfortunistici) come descritto nelle istruzioni sulla manipolazione e chede sulla sicurezza dei materiali fornite dal produttore dei solventi, Imente in caso di utilizzo di sostanze tossiche o pericolose.	
AVVERTENZA	Piccole pa	articelle possono ostruire in modo permanente i capillari e le valvole.	
	Modulo d	anneggiato.	
	→ Filtrare	e sempre i solventi.	
→ Non utilizzare mai il modulo senza aver installato il filtro p		ilizzare mai il modulo senza aver installato il filtro per il solvente.	
NOTA I filtri del solvente si trovano nella parte a bassa pressione della pompa capillare. Un filtro bloccato non influenza quindi i valori di pressione della pompa capillare. I valori di pressione non possono essere usati per verificare se il filtro è bloccato.

NOTA

Se il filtro è in buone condizioni, il solvente fuoriesce liberamente dal tubo (a causa della pressione idrostatica). Se il filtro è parzialmente ostruito, il solvente non fuoriesce dal tubo o fuoriesce solo in piccolissime quantità.

Pulizia dei filtri del solvente

- 1 Rimuovere il filtro del solvente ostruito dal gruppo testa della bottiglia e metterlo in un beaker con acido nitrico concentrato (35%) per un'ora.
- **2** Lavare bene il filtro con acqua bidistillata eliminando tutto l'acido nitrico che potrebbe danneggiare alcuni tipi di colonne capillari.
- 3 Rimontare il filtro.

Sostituzione della cartuccia della valvola di ingresso attiva o della valvola stessa

	Smontaggio della valvola di ingresso attiva			
Quando	Se si verifi	cano perdite inte	rne (ritorno di flusso)	
Strumenti richiesti	Chiave da 14 mm			
Parti richieste	Quantità	Codice	Descrizione	
	1	G1312-60025	Corpo della valvola di ingresso attiva	
	1	5062-8562	Cartuccia della valvola (400 bar)	

- 1 Scollegare il cavo della valvola di ingresso attiva dal connettore.
- **2** Scollegare il tubo di ingresso del solvente sulla valvola di ingresso (fare attenzione alle perdite di solvente).
- **3** Utilizzando una chiave da 14 mm, allentare la valvola d'ingresso attiva e rimuoverla dalla testa della pompa.

Figura 15 Parti della valvola di ingresso attiva

Procedure di riparazione semplici

Sostituzione della cartuccia della valvola

Quando	Se si verificano perdite interne (ritorno di flusso)				
Strumenti richiesti	Chiave da 14 mm				
Parti richieste	Quantità	Codice	Descrizione		
	1	G1312-60025	Corpo della valvola di ingresso attiva		
	1	5062-8562	Cartuccia della valvola (400 bar)		
	1 Utilizzando una pinzetta rimuovere la cartuccia della valvola dal gruppo dell'attuatore.				
	2 Prima di inserire la nuova cartuccia, pulire l'area del gruppo dell'attuatore. Riempire una siringa di alcool e lavare accuratamente la zona dell'attua- tore.				
	3 Inserire una nuova cartuccia della valvola nel gruppo dell'attuatore (assicurarsi che la cartuccia della valvola sia inserita completamente nel gruppo dell'attuatore).				

Procedure di riparazione semplici

Sostituzione della valvola di ingresso attiva

Quando	Se si verificano perdite interne (ritorno di flusso)				
Strumenti richiesti	nti richiesti Chiave da 14 mm				
Parti richieste	Quantità Codice	Descrizione			
	1 G1312-60025	Corpo della valvola di ingresso attiva			
	1 5062-8562	Cartuccia della valvola (400 bar)			
	 Inserire la nuova valvola nella testa della pompa. Utilizzando la chiave da 14 mm serrare a fondo il dado. 				
	2 Posizionare la valvola in modo che il condotto del tubo di ingresso del solvente sia diretto verso la parte anteriore.				
	3 Utilizzando la chiave da 14 mm serrare il dado e ruotare la valvola fino alla sua posizione finale (non oltre un quarto di giro). Non serrare eccessivamente la valvola. Il collegamento del tubo di immissione del solvente deve essere rivolto verso la testa della pompa.				
	4 Ricollegare il cavo del tubo di ingresso e della valvola di ingresso attiva al connettore situato sul pannello Z.				
NOTA	Verificare che il sistema	si trovi in modalità <i>normale</i> (normal mode).			

7

5 Dopo la sostituzione della cartuccia della valvola, può talvolta essere necessario pompare diversi ml del solvente usato nell'applicazione corrente prima che il flusso si stabilizzi a un'ondulazione % bassa, come quando il sistema funzionava correttamente.

Procedure di riparazione semplici

Sostituzione del setaccio della valvola a sfera di uscita o dell'intera valvola

Quando	Setaccio: qu	iando si sostituisc	cono le tenute	
	Valvola: se ci sono perdite interne			
Strumenti richiesti	Chiave da 1	/4"		
	Chiave da 14	4 mm		
Parti richieste	Quantità	Codice	Descrizione	
	1	G1312-60008	Valvola a sfera di uscita	
	1	5063-6505	Cappuccio (confezione da 10)	
NOTA	Prima di sostituire la valvola a sfera di uscita, è possibile cercare di pulirla utilizzando un bagno a ultrasuoni. Rimuovere la guarnizione dorata e il setaccio. Collocare la valvola in posizione verticale (nel tappo di plastica) in un piccolo beaker contenente alcool. Metterla in un bagno a ultrasuoni per 5-10 minuti. Inserire un setaccio nuovo e riposizionare la guarnizione dorata.			
	 Utilizzando una chiave da 1/4", scollegare il capillare della valvola dalla vola a sfera di uscita. 			
	2 Utilizz della p	lizzando la chiave da 14mm, allentare la valvola e smontarla dal corpo la pompa. ontare il tappo in plastica con la guarnizione dorata dalla valvola a sfer- uscita.		
	3 Smont di usci			
	4 Rimuo	vere il setacci	o con delle pinzette.	
NOTA	Controllare valvola in p guarnizion sia distant	e la guarnizione o posizione vertica e dorata con il c e dalla zona dell	dorata. Se è molto deformata deve essere sostituita. Mettere la ile, inserire il setaccio nell'apposito spazio e riposizionare la appuccio. Assicurarsi che il setaccio non possa muoversi e che a guarnizione.	

5 Posizionare il setaccio nuovo nell'apposito spazio della valvola a sfera di uscita e rimettere a posto il tappo con la guarnizione dorata.

Procedure di riparazione semplici

6 Controllare che la nuova valvola sia nella posizione corretta e che la guarnizione dorata sia presente.

7 Reinstallare la valvola a sfera di uscita e serrarla.

Procedure di riparazione semplici

8 Ricollegare il capillare della valvola.

7

Sostituzione della valvola di selezione del solvente

Procedure di riparazione semplici

- **2** Con un cacciavite Pozidriv #1 allentare le viti di tenuta delle valvole.
- 3 Estrarre il modulo della valvola dal proprio connettore.
- **4** Tenere i due corpi in plastica delle valvole e separare le due valvole di selezione del solvente.
- **5** Sostituire la valvola di selezione del solvente difettosa. Spingere la valvola sostituita (la parte nuova) e riunirla alla metà funzionante.
- **6** Collegare il modulo della valvola ai propri connettori elettrici e fissare il dispositivo con le due viti di fissaggio.
- **7** Reinstallare i tubi del solvente e i tubi di collegamento della valvola di ingresso attiva.

7

Rimozione e smontaggio del gruppo testa della pompa

Quando	Sostituzione delle guarnizioni della pompa
	Sostituzione degli stantuffi
	Quando si sostituiscono le guarnizioni dell'opzione di lavaggio della tenuta
Strumenti richiesti	Chiave da 1/4"
	Chiave esagonale da 3 mm
	Chiave esagonale da 4 mm
Preparazioni	 Spegnere la pompa capillare premendo l'interruttore. Rimuovere il coperchio anteriore per accedere alla parte meccanica della pompa.
AVVERTENZA	Danni alla trasmissione della pompa
	L'uso della pompa senza testa può provocare danni alla trasmissione.
	→ Non avviare mai la pompa senza la relativa testa.

Procedure di riparazione semplici

7

Sostituzione delle guarnizioni della pompa e procedura di wear-in

Quando	Quando si verifica una perdita delle guarnizioni, se indicato dai risultati del test della pompa (controllare entrambe le pompe singolarmente)		
Strumenti richiesti	Chiave esa Chiave esa Chiave da	gonale da 3 mm gonale da 4 mm 1/4"	
Parti richieste	Quantità	Codice	Descrizione
	2	5063-6589 (standard) o 0905-1420 (per applicazioni con fase normale)	Guarnizioni (confezione da 2)
	1	5022-2159	Per la procedura di wear-in delle guarnizioni: Capillare di restrizione
1 Smontare il grupp	o testa della	oompa che perde (vedere 2 Rimuovere la guarnizione dalla testa della pompa

Procedure di riparazione semplici

7

Procedura di wear-in delle guarnizioni

NOTA

Questa procedura deve essere effettuata solo per le guarnizioni standard (5063-6589), perché danneggerebbe in modo irreparabile le guarnizioni se utilizzato per applicazioni in fase normale (0905-1420).

- **1** Posizionare una bottiglia contenente 100 ml di isopropanolo nel comparto solventi e posizionare il tubo (compreso il gruppo della testata della bottiglia) della testa della pompa che deve essere adattato alla bottiglia.
- 2 Avvitare l'adattatore (0100-1847) alla valvola di ingresso attiva e collegare il tubo di ingresso dalla testa della bottiglia direttamente alla valvola.
- **3** Collegare il capillare di restrizione (5022-2159) all'uscita della EMPV. Inserire l'altra estremità in un contenitore di scarico.
- 4 Impostare il sistema in *modalità di spurgo* e spurgarlo per 2 minuti con isopropanolo a un flusso di 2 ml/min.
- 5 Chiudere la valvola di spurgo, riportare il sistema in modalità standard e impostare un flusso adatto a raggiungere una pressione di 350 bar. Pompare per 15 minuti a questa pressione in modo che le guarnizioni si adattino. La pressione può essere tenuta sotto controllo dal segnale di uscita analogico, con un sistema di controllo palmare, una Chemstation o qualunque altro dispositivo di controllo collegato alla pompa.
- **6** Spegnere la pompa e scollegare lentamente il capillare di restrizione dalla EMPV per diminuire la pressione del sistema. Ricollegare il capillare diretto al sensore di flusso e il tubo di collegamento fra la valvola di selezione del solvente e la AIV.
- 7 Lavare il sistema con il solvente da utilizzare per l'applicazione successiva.

Procedure di riparazione semplici

Sostituzione degli stantuffi

Quando	Quando i pistoni so	ono graffiati	
Strumenti richiesti	Chiave esagonachiave esagona	ale da 3 mm ale da 4 mm	
Parti richieste	Qu Codice ant ità	Descrizione	
	1 5063-6586	Stantuffo	
1 Smontare il grupp e smontaggio del	o testa della pompa (v gruppo testa della po	vedere "Rimozione mpa", pagina 119)	2 Controllare la superficie dello stantuffo e rimuovere qualsiasi deposito presente. Usare alcool o dentifrio

Procedure di riparazione semplici

Procedure di riparazione semplici

Sostituzione del sensore di flusso

Quando	Intervallo di flussi esteso (100 ul) necessario.				
	Perdita al sensore di flusso.				
	Flusso in c	olonna instabile.			
	Sensore di	flusso bloccato.			
Strumenti richiesti					
Parti richieste	Quantità	Codice	Descrizione		
	1		Sensore di flusso		
		G1376-60001	20 ul		
		G1376-60002	100 ul		
	1 Disattivare la pompa.				
	2 Utilizzando una chiave da 1/4" scollegare i capillari:				
	Provenienti dalla EMPVDiretti al dispositivo della porta di iniezione (porta 1)				
	3 Allentare il sensore di flusso.				
	4 Reinstallare quello nuovo.				
	5 Utilizzando una chiave da 1/4" ricollegare i capillari:				
	• Pro	ovenienti dall	a EMPV		

• Diretti al dispositivo della porta di iniezione (porta 1)

Rimontaggio del gruppo testa della pompa

Strumenti richiesti

- Chiave esagonale da 3 mm
- Chiave esagonale da 4 mm
- Lubrificante PTFE (79841-65501)

Procedure di riparazione semplici

7

Sostituzione della scheda di interfacciamento opzionale

Quando	Quando la scheda è difettosa			
Parti richieste	Quantità 1	Descrizione Scheda di interfacciamento BCD, vedere manuale		
AVVERTENZA	Le schede elettroniche sono esposte a pericolo elettrostatico e devono essere maneggiate con cura per evitare di danneggiarle. Il contatto con schede e componenti elettronici può causare scariche elettrostatiche (ESD).			
	Le scariche	elettrostatiche possono danneggiare schede e componenti elettronici.		
	→ Fare atte compon bracciale	enzione a toccare la scheda solo sui bordi, senza entrare a contatto con i enti elettronici. Utilizzare sempre una protezione ESD (ad esempio un e antistatico) prima di toccare le schede elettroniche e i componenti.		
	1 Spegnere il modulo mediante l'interruttore principale. Scollegare il mod dall'alimentazione.			
	2 Scollega	are i cavi dai connettori della scheda di interfacciamento.		
	3 Allenta	re le viti. Estrarre la scheda d'interfacciamento dal modulo.		
	4 Installare la nuova scheda di interfacciamento. Stringere le viti.5 Ricollegare i cavi al connettore della scheda.			
Scheda di interfacciamento BCD				

Figura 20 Sostituzione della scheda di interfacciamento

Procedure di riparazione semplici

Parti e materiali per la manutenzione

Sede della pompa e dispositivi principali 132 Comparto solventi e gruppo della testa della bottiglia 135 Percorso idraulico 136 Gruppo testa della pompa 138 Gruppo sensore di flusso 140 Kit di accessori della pompa capillare 141

Sede della pompa e dispositivi principali

Sede della pompa e dispositivi principali

Tabella 14 Parti per la riparazione – Alloggiamento della pompa e	e dispositivi principali
(vista frontale)	

Parte	Descrizione	Codice
1	Testa della pompa, vedere "Gruppo testa della pompa" , pagina 138	G1311-60004
2	Gruppo trasmissione della pompa Parte di ricambio — trasmissione della pompa	G1311-60001 G1311-69001
3	Insieme di cavi — dalla AIV alla scheda principale	G1311-61601
4	Scheda principale del sistema capillare (CSM) Parte di ricambio — Scheda Agilent CSM	G1376-66530 G1376-69530
5	Insieme di cavi — Valvola di selezione solvente	G1312-61602
6	Ventilatore	3160-1017
7	Unità di smorzamento	79835-60005
8	Valvola di selezione del solvente (metà di una valvola completa) Vite, valvola di selezione del solvente	G1312-60000 5022-2112
9	Contenitore di raccolta perdite - Pompa	5042-8590
10	EMPV	G1361-60000
11	Sensore di flusso 20 μl Sensore di flusso 100 μl	G1376-60001 G1376-60002

Figura 21 Panoramica dei dispositivi principali (vista frontale)

8 Parti e materiali per la manutenzione

Sede della pompa e dispositivi principali

Tabella 15 Parti per la riparazione — Alloggiamento pompa e dispositivi principali (retro)

Parte	Descrizione	Codice
1	Dado esagonale per connettore RS 232C	1251-7788
2	Dado M14 — Uscita analogica	2940-0256
3	Vite, M4, 7 mm lungh. — Sistema di alimentazione	0515-0910
4	Isolatore portante — Connettore GPIB	0380-0643

Figura 22 Visione d'insieme dei dispositivi principali (posteriore)

Comparto solventi e gruppo della testa della bottiglia

Parte	Descrizione	Codice
1	Comparto solventi, comprese tutte le parti in plastica	5065-9981
2	Targhetta con nome, Agilent 1200	5042-8901
3	Quadro anteriore, comparto solvente	5065-9954
4	Contenitore di raccolta perdite, comparto solventi	5042-8567
	Gruppo testa della bottiglia per pompa capillare (comprende voci 8,9,10 e 11)	G1311-60003
5/6	Filtro del condotto di ingresso solvente (acciaio inox)	01018-60025
7	Tubi solvente, 5 m	5062-2483
	Ferrule con anello di fissaggio (confezione da 10)	5063-6598
	Vite per tubo (confezione da 10)	5063-6599
	Bottiglia trasparente	9301-1420
	Bottiglia color ambra	9301-1450

Tabella 16 Parti gruppo della testa della bottiglia e comparto solventi

Figura 23 Parti del comparto solventi

8 Parti e materiali per la manutenzione Percorso idraulico

Percorso idraulico

Parte	Descrizione	Codice
1	Gruppo testa della bottiglia	G1311-60003
2	Tubo di connessione	G1311-67304
3	Capillare, da valvola a sfera di uscita a pistone 2	G1312-67300
4	Capillare di restrizione	G1312-67304
5	Capillare di miscelazione	G1312-67302
6	Capillare, da smorzatore a miscelatore	01090-87308
7	Miscelatore	G1312-87330
8	Capillare, da miscelatore a filtro	01090-87308
9	Gruppo del filtro (comprende il frit) Frit	5064-8273 5022-2185
10	Capillare, da filtro a EMPV	G1375-87400
11	Capillare, da EMPV a sensore di flusso (20 μl) Capillare, da EMPV a sensore di flusso (100 μl)	G1375-87301 G1375-87305
12	Capillare, da sensore di flusso a dispositivo di iniezione (20 μl) Capillare, da sensore di flusso a dispositivo di iniezione (100 μl)	G1375-87310 G1375-87306
	Tubo di scarico corrugato, 120 cm (riordinare 5 m)	5062-2463

Tabella 17 Percorso idraulico

Parti e materiali per la manutenzione 8 Percorso idraulico

Figura 24 Percorso idraulico

8 Parti e materiali per la manutenzione Gruppo testa della pompa

Gruppo testa della pompa

Parte	Descrizione	Codice
	Gruppo completo, comprese le parti segnate con*	G1311-60004
1*	Stantuffo in zaffiro	5063-6586
2*	Sede dello stantuffo (comprese le molle)	G1311-60002
3*	Anello di supporto	5001-3739
4*	Guarnizione (confezione da 2) o Guarnizione (confezione da 2), per applicazioni in fase normale	5063-6589 0905-1420
5	Capillare, da valvola di uscita a pistone 2	G1312-67300
6*	Sede della camera della pompa	G1311-25200
7	Valvola di ingresso attiva (senza cartuccia) Cartuccia di ricambio per valvola di ingresso attiva	G1312-60025 5062-8562
8	Valvola a sfera di uscita	G1312-60012
9*	Blocco a vite	5042-1303
10	Adattatore	G1312-23201
11*	Vite M5, 60 mm lungh.	0515-2118

Tabella 18 Gruppo testa della pompa

8 Parti e materiali per la manutenzione Gruppo testa della pompa

Figura 25 Gruppo testa della pompa

8 Parti e materiali per la manutenzione Gruppo sensore di flusso

Gruppo sensore di flusso

Parte	Descrizione	Codice
1	Gruppo sensore di flusso (20 µl)	G1376-60001
	Gruppo sensore di flusso (100 µl)	G1376-60002
	Capillare da EMPV a sensore di flusso (20 µl) Capillare da EMPV a sensore di flusso (100 µl)	G1375-87301 G1375-87305
	Capillare, da sensore di flusso a dispositivo di iniezione (sensore di flusso da 20 μl) Capillare, da sensore di flusso a dispositivo di iniezione (sensore di flusso da 100 μl)	G1375-87310 G1375-87306

Tabella 19 Gruppo sensore di flusso

Figura 26 Gruppo sensore di flusso

Kit di accessori della pompa capillare

Descrizione	Codice
Tubo flessibile, 2 m	0890-1760
Frit in acciaio inox 2 μm, Qtà = 1	5022-2185
Chiave a estremità aperta da 7/16 - 1/2", Qtà = 2	8710-0806
Chiave a estremità aperta da 1/4 - 5/16" Qtà = 1	8710-0510
Chiave a estremità aperta da 14 mm, Qtà = 1	8710-1924
Chiave a estremità aperta da 4 mm, Qtà = 1	8710-1534
Chiave esagonale da 2,5 mm, Qtà = 1	8710-2412
Chiave esagonale da 3,0 mm, Qtà = 1	8710-2411
Adattatore dinamometrico	G1315-45003
Utensile di inserimento, Qtà = 1	01018-23702
Bracciale antistatico ESD, Qtà = 1	9300-1408
Cavo CAN, lunghezza 1 m	5181-1519
Chiave esagonale da 4 mm, maniglia a T da 15 cm	8710-2392
Filtro del sistema di iniezione del solvente (x4)	01018-60025
Gruppo valvola di scarico	G1311-60009
Sede valvola di scarico	G1312-23200
Capillare 550 mm 50 μm	G1375-87310

Tabella 20 Kit di accessori G1376-68705

8 Parti e materiali per la manutenzione

Kit di accessori della pompa capillare

Identificazione dei cavi

Descrizione generale dei cavi 144 Cavi analogici 146 Cavi remoti 149 Cavi BCD 154 Cavo ausiliario 156 Cavi CAN/LAN 157 Cavo di contatto esterno 158 Kit del cavo RS-232 159

Descrizione generale dei cavi

Descrizione generale dei cavi

NOTA

Utilizzare solo cavi forniti da Agilent Technologies, in modo da assicurare il funzionamento corretto e la conformità alle norme di sicurezza o alle normative EMC.

Tipo	Descrizione	Codice
Cavi analogici	integratori 3390/2/3	01040-60101
	Integratori 3394/6	35900-60750
	Agilent 35900A Convertitore A/D	35900-60750
	Uso generale (capocorda a forcella)	01046-60105
Cavi remoti	Integratore 3390	01046-60203
	Integratori 3392/3	01046-60206
	Integratore 3394	01046-60210
	Integratore Agilent 3396A (Serie I)	03394-60600
	3396 Serie II / Integratore 3395A, vedere dettagli nella sezione "Cavi remoti" , pagina 149	
	Integratore Agilent 3396 Serie III / 3395B	03396-61010
	Moduli HP 1050 / HP 1046A FLD	5061-3378
	HP 1046A FLD	5061-3378
	Agilent 35900A Convertitore A/D	5061-3378
	Rivelatore a serie di diodi HP 1040	01046-60202
	Cromatografi liquidi HP 1090	01046-60202
	Modulo di distribuzione del segnale	01046-60202
Cavi BCD	Integratore 3396	03396-60560
	Uso generale (capocorda a forcella)	G1351-81600
Ausiliario	Sistema di degasaggio sottovuoto Serie Agilent 1100	G1322-61600
Identificazione dei cavi 9

Descrizione generale dei cavi

Tipo	Descrizione	Codice
Cavi CAN	Agilent 1100/1200 da modulo a modulo, lung. 0,5 m Agilent 1100/1200 da modulo a modulo, lung. 1 m	5181-1516 5181-1519
Contatti esterni	Da scheda di interfacciamento Agilent Serie 1100/1200 a connettore generale	G1103-61611
cavo GPIB	Da modulo Agilent 1100/1200 a ChemStation, lung. 1 m Da modulo Agilent 1100/1200 a ChemStation, lung. 2 m	10833A 10833B
Cavo RS-232	Da modulo Agilent 1100/1200 a computer Questo kit contiene un cavo da 9 pin femmina a 9 pin femmina Null Modem (per stampante) e un adattatore.	34398A
Cavo LAN	Cavo LAN a coppia intrecciata, schermato, 3m (per connessione da punto a punto)	5023-0203
	Cavo LAN a coppia intrecciata, schermato, 7m (per connessione da punto a punto)	5023-0202

Cavi analogici

Un'estremità di questi cavi termina con un connettore BNC da collegare ai moduli Agilent Serie 1100/1200. L'altra estremità dipende dallo strumento con cui deve essere effettuata la connessione.

Da Agilent 1100/1200 a integratori 3390/2/3

Connettore 01040-60101		Pin 3390/2/3	Pin Agilent 1100/1200	Nome del segnale
		1	Schermo	Terra
		2		Non collegato
7	5	3	Centro	Segnale +
	BRN/ RD	4		Collegato a pin 6
32	BRN	5	Schermo	Analogico -
	RD RD	6		Collegato a pin 4
		7		Chiave
		8		Non collegato

Connettore 35900-60750	Pin 3394/6	Pin Agilent 1100/1200	Nome del segnale
	1		Non collegato
	2	Schermo	Analogico -
	3	Centro	Analogico +

Da Agilent 1100/1200 a integratori 3394/6

Da Agilent 1100/1200 a connettore BNC

Connettore 8120-1840	Pin BNC	Pin Agilent 1100/1200	Nome del segnale
	Schermo	Schermo	Analogico -
	Centro	Centro	Analogico +

Connettore 01046-60105	Pin 3394/6	Pin Agilent 1100/1200	Nome del segnale
	1		Non collegato
	2	Nero	Analogico -
T T	3	Rosso	Analogico +

Da Agilent 1100/1200 a connettore generale

Cavi remoti

Ad un'estremità questi cavi terminano con un connettore APG (Analytical Products Group) remoto Agilent Technologies da collegare ai moduli Agilent Serie 1100/1200. Il connettore all'altra estremità dipende dallo strumento con cui deve essere effettuata la connessione

Da Agilent 1100/1200 a integratori 3390

Connettore 01046-60203	Pin 3390	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	2	1 - Bianco	Terra digitale	
	NC	2 - Marrone	Preparazione analisi	Bassa
	7	3 - Grigio	Inizio	Bassa
	NC	4 - Blu	Chiusura	Bassa
	NC	5 - Rosa	Non collegato	
	NC	6 - Giallo	Acceso	Alta
	NC	7 - Rosso	Pronto	Alta
	NC	8 - Verde	Stop	Bassa
	NC	9 - Nero	Richiesta di avvio	Bassa

Connettore 01046-60206	Pin 3392/3	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	3	1 - Bianco	Terra digitale	
	NC	2 - Marrone	Preparazione analisi	Bassa
	11	3 - Grigio	Inizio	Bassa
	NC	4 - Blu	Chiusura	Bassa
	NC	5 - Rosa	Non collegato	
	NC	6 - Giallo	Acceso	Alta
	9	7 - Rosso	Pronto	Alta
	1	8 - Verde	Stop	Bassa
	NC	9 - Nero	Richiesta di avvio	Bassa

Da Agilent 1100/1200 a integratori 3392/3

Da Agilent 1100/1200 a integratori 3394

Connettore 01046-60210	Pin 3394	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	9	1 - Bianco	Terra digitale	
	NC	2 - Marrone	Preparazione analisi	Bassa
	3	3 - Grigio	Inizio	Bassa
	NC	4 - Blu	Chiusura	Bassa
	NC	5 - Rosa	Non collegato	
	NC	6 - Giallo	Acceso	Alta
	5,14	7 - Rosso	Pronto	Alta
	6	8 - Verde	Stop	Bassa
	1	9 - Nero	Richiesta di avvio	Bassa
	13, 15		Non collegato	

NOTA

START e STOP sono collegati tramite un diodo al pin 3 del connettore Agilent 3394.

Connettore 03394-60600	Pin 3394	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	9	1 - Bianco	Terra digitale	
	NC	2 - Marrone	Preparazione analisi	Bassa
	3	3 - Grigio	Inizio	Bassa
	NC	4 - Blu	Chiusura	Bassa
	NC	5 - Rosa	Non collegato	
	NC	6 - Giallo	Acceso	Alta
	5,14	7 - Rosso	Pronto	Alta
	1	8 - Verde	Stop	Bassa
	NC	9 - Nero	Richiesta di avvio	Bassa
	13, 15		Non collegato	

Da Agilent 1100/1200 a integratori 3396A

Da Agilent 1100/1200 a integratori Agilent 3396 Serie II / 3395A

Usare il cavo **codice: 03394-60600** e tagliare il pin #5 sul lato dell'integratore. In caso contrario l'integratore riporta START; not ready (Avvio, non pronto).

Connettore 03396-61010	Pin 33XX	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	9	1 - Bianco	Terra digitale	
80.15	NC	2 - Marrone	Preparazione analisi	Bassa
	3	3 - Grigio	Inizio	Bassa
	NC	4 - Blu	Chiusura	Bassa
	NC	5 - Rosa	Non collegato	
	NC	6 - Giallo	Acceso	Alta
	14	7 - Rosso	Pronto	Alta
	4	8 - Verde	Stop	Bassa
	NC	9 - Nero	Richiesta di avvio	Bassa
	13, 15		Non collegato	

Da Agilent 1100/1200 a integratori Agilent 3396 Serie III / 3395B

Da Agilent 1100/1200 a HP 1050, HP 1046A o convertitori Agilent 35900 A/D $\,$

Connettore 5061-3378	Pin HP 1050/	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	1 - Bianco	1 - Bianco	Terra digitale	
	2 - Marrone	2 - Marrone	Preparazione analisi	Bassa
	3 - Grigio	3 - Grigio	Inizio	Bassa
	4 - Blu	4 - Blu	Chiusura	Bassa
	5 - Rosa	5 - Rosa	Non collegato	
	6 - Giallo	6 - Giallo	Acceso	Alta
	7 - Rosso	7 - Rosso	Pronto	Alta
	8 - Verde	8 - Verde	Stop	Bassa
	9 - Nero	9 - Nero	Richiesta di avvio	Bassa

Connettore 01046-60202	Pin HP 1090	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
	1	1 - Bianco	Terra digitale	
87	NC	2 - Marrone	Preparazione analisi	Bassa
	4	3 - Grigio	Inizio	Bassa
4 3	7	4 - Blu	Chiusura	Bassa
	8	5 - Rosa	Non collegato	
	NC	6 - Giallo	Acceso	Alta
	3	7 - Rosso	Pronto	Alta
	6	8 - Verde	Stop	Bassa
	NC	9 - Nero	Richiesta di avvio	Bassa

Da Agilent 1100/1200 a LC HP 1090 o modulo di distribuzione del segnale

Da Agilent 1100/1200 a connettore generale

Connettore 01046-60201	Pin Universal	Pin Agilent 1100/1200	Nome del segnale	Attività (TTL)
		1 - Bianco	Terra digitale	
		2 - Marrone	Preparazione analisi	Bassa
		3 - Grigio	Inizio	Bassa
		4 - Blu	Chiusura	Bassa
		5 - Rosa	Non collegato	
		6 - Giallo	Acceso	Alta
		7 - Rosso	Pronto	Alta
		8 - Verde	Stop	Bassa
		9 - Nero	Richiesta di avvio	Bassa

Cavi BCD

Ad un'estremità questi cavi terminano con un connettore BCD a 15 pin da collegare ai moduli Agilent Serie 1200. Il connettore all'altra estremità dipende dallo strumento con cui deve essere effettuata la connessione

Da Agilent 1200 a connettore generale

Connettore G1351-81600	Colore del conduttore	Pin Agilent 1200	Nome del segnale	Codifica BCD
	Verde	1	BCD 5	20
	Viola	2	BCD 7	80
	Blu	3	BCD 6	40
	Giallo	4	BCD 4	10
	Nero	5	BCD 0	1
	Arancione	6	BCD 3	8
	Rosso	7	BCD 2	4
	Marrone	8	BCD 1	2
	Grigio	9	Terra digitale	Grigio
	Grigio/rosa	10	BCD 11	800
	Rosso/blu	11	BCD 10	400
	Bianco/verde	12	BCD 9	200
	Marrone/verd e	13	BCD 8	100
	non collegato	14		
	non collegato	15	+ 5 V	Bassa

Connettore 03396-60560	Pin 3392/3	Pin Agilent 1200	Nome del segnale	Codifica BCD
	1	1	BCD 5	20
8. 15	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Terra digitale	
	NC	15	+ 5 V	Bassa

Da Agilent 1200 a integratori 3396

Cavo ausiliario

Ad un'estremità questo cavo termina con un connettore modulare da collegare al sistema di degasaggio sottovuoto Agilent Serie 1100. L'altra estremità è per uso generale.

Da sistema di degasaggio Agilent 1100 a connettore generale

Connettore G1322-81600	Colore	Pin Agilent 1100	Nome del segnale
	Bianco	1	Terra
	Marrone	2	Segnale di pressione
	Verde	3	
	Giallo	4	
	Grigio	5	CC + 5 V IN
	Rosa	6	Spurgo

Cavi CAN/LAN

Entrambe le estremità di questo cavo dispongono di un connettore modulare da collegare ai connettori bus CAN o LAN dei moduli Agilent Serie 1200.

Cavi CAN

Da modulo Agilent 1200 a modulo, 0,5 m	5181-1516	
Da modulo Agilent 1200 a modulo, 1 m	5181-1519	
Da modulo 1200 a modulo di controllo	G1323-81600	

Cavi LAN

Descrizione	Codice
Cavo di rete intrecciato, schermato, 3 m (per connessione da punto a punto)	5023-0203
Cavo di rete a coppia intrecciata, schermato, 7 m (per connessioni hub)	5023-0202

Cavo di contatto esterno

Ad un'estremità questo cavo termina con un connettore a 15 pin da collegare alla scheda di interfacciamento del modulo Agilent Serie 1200. L'altra estremità è per uso generale.

Da scheda di interfacciamento Agilent Serie 1200 a connettore generale

Connettore G1103-61611	Colore	Pin Agilent 1200	Nome del segnale
	Bianco	1	EXT 1
	Marrone	2	EXT 1
	Verde	3	EXT 2
	Giallo	4	EXT 2
	Grigio	5	EXT 3
	Rosa	6	EXT 3
	Blu	7	EXT 4
	Rosso	8	EXT 4
	Nero	9	Non collegato
	Viola	10	Non collegato
	Grigio/rosa	11	Non collegato
	Rosso/blu	12	Non collegato
	Bianco/verde	13	Non collegato
	Marrone/verd e	14	Non collegato
	Bianco/giallo	15	Non collegato

Kit del cavo RS-232

Questo kit contiene un cavo da 9 pin femmina a 9 pin femmina Null Modem (per stampante) e un adattatore. Il cavo e l'adattatore possono essere usati per collegare gli strumenti Agilent Technologies con connettori RS-232 maschio a 9 pin alla maggior parte dei PC e delle stampanti.

Descrizione	Codice
Cavo RS-232, da strumento a PC, da 9 a 9 pin (femmina) Questo cavo ha una disposizione dei pin speciale e non è compatibile per il collegamento di stampanti e plotter.	24542U G1530-60600
Kit cavo RS-232, da 9 a 9 pin (femmina) e un adattatore a 9 pin (maschio) 25 pin femmina. Idoneo per da strumento a PC.	34398A
Cavo per stampante seriale e parallelo, a 9 pin SUB-D femmina e un connettore Centronics all'altra estremità (NON ?PER AGGIORNAMENTO DEL FIRMWARE).	5181-1529
Questo kit contiene un cavo da 9 pin femmina-9 pin femmina Null Modem (per stampante) e un adattatore. Utilizzare il cavo e l'adattatore per collegare strumenti Agilent Technologies con connettori RS-232 maschio a 9 pin con la maggior parte di PC e stampanti.	34398A

9 Identificazione dei cavi

Kit del cavo RS-232

10 Appendice

Informazioni generali sulla sicurezza 162 Direttiva sullo smaltimento di apparecchiature elettriche ed elettroniche usate 166 Informazioni sulle batterie al litio 167 Interferenze radio 168 Emissioni sonore 169 Informazioni sui solventi 170 Agilent Technologies su Internet 172

Informazioni generali sulla sicurezza

Informazioni generali sulla sicurezza

Le seguenti precauzioni generali di sicurezza devono essere rispettate durante tutte le fasi di utilizzo, manutenzione e riparazione dello strumento. Il mancato rispetto di tali precauzioni o di avvertenze specifiche riportate in altri punti del presente manuale implica la violazione degli standard di sicurezza della progettazione, della produzione e dell'uso previsto dello strumento. Agilent Technologies non riconosce alcuna responsabilità per eventuali danni risultanti dal mancato rispetto delle istruzioni fornite.

ATTENZIONE

Verificare che lo strumento venga utilizzato correttamente.

La protezione fornita dallo strumento potrebbe risultare insufficiente.

→ L'operatore di questo strumento è tenuto a utilizzarlo come specificato nel presente manuale.

Standard di sicurezza:

Questo strumento è classificato come facente parte della Classe di Sicurezza I (provvisto di terminale di messa a terra) ed è stato prodotto e collaudato secondo gli standard di sicurezza internazionali.

Funzionamento

Prima di attivare l'alimentazione, seguire le istruzioni della sezione relativa all'installazione. Inoltre, osservare quanto segue:

Non rimuovere i coperchi dello strumento mentre è in funzione. Prima di accendere lo strumento, collegare tutti i terminali di messa a terra, le prolunghe, i trasformatori automatici e gli altri dispositivi ad esso collegati alla messa a terra di protezione tramite la speciale presa. L'eventuale interruzione del collegamento alla terra di protezione può provocare scosse elettriche, che possono causare lesioni gravi alle persone. Se si sospetta che lo strumento sia rimasto privo di protezione, scollegarlo subito e rimuoverlo dall'uso.

Verificare che, in caso di sostituzione dei fusibili, vengano utilizzati solo quelli con la corrente nominale richiesta e del tipo specifico (normale, ad azione ritardata e così via). Evitare l'uso di fusibili riparati e il corto circuito delle sedi dei fusibili.

Alcune modifiche descritte nel manuale devono essere effettuate con la corrente collegata e lo strumento privo di coperchi. La corrente presente in molti punti può, in caso di contatto, provocare lesioni alle persone.

Qualsiasi operazione di modifica, manutenzione e riparazione dello strumento aperto sotto tensione deve essere, per quanto possibile, evitata. Queste operazioni, quando inevitabili, devono essere eseguite da persone competenti e consapevoli del rischio a cui sono sottoposte. Non tentare riparazioni o modifiche interne se non è presente un'altra persona in grado di prestare soccorso e rianimazione. Non sostituire parti con il cavo di alimentazione collegato.

Non usare lo strumento in presenza di gas infiammabili o fumi. L'uso dello strumento, al pari di altre apparecchiature elettriche, in queste condizioni può compromettere la sicurezza.

Non installare parti di ricambio e non effettuare modifiche non autorizzate.

10 Appendice

Informazioni generali sulla sicurezza

I condensatori all'interno dello strumento possono essere ancora carichi, anche se lo strumento non è collegato alla presa di corrente. Questo strumento utilizza tensioni pericolose, in grado di provocare gravi lesioni alle persone. Usare, collaudare e riparare lo strumento con la massima cautela.

Durante l'uso di solventi, osservare sempre le procedure di sicurezza idonee (ad esempio indossare bracciali ed abiti antinfortunistici) come descritto nella documentazione fornita con il materiale, specialmente in presenza di solventi tossici o pericolosi.

Simboli di sicurezza

Tabella 21 Simboli di sicurezza

Simbolo	Descrizione
\land	Questo simbolo segnala all'utente che è necessario consultare il manuale per l'uso per prevenire lesioni personali o danni alle apparecchiature.
\$	Indica la presenza di tensioni pericolose.
	Indica un terminale di messa a terra.
	Indica il rischio di lesioni agli occhi in caso di esposizione diretta alla luce prodotta dalla lampada al deuterio inclusa nel prodotto.
<u>k</u>	Questo simbolo indica la presenza di superfici surriscaldate che non devono essere toccate dall'utente.
ATTENZIONE	L'indicazione ATTENZIONE
	segnala situazioni che possono provocare lesioni fisiche o mortali.
	Prima di continuare a usare lo strumento, verificare di aver compreso e attuato quanto indicato nell'indicazione di attenzione.
AVVERTENZA	L'indicazione AVVERTENZA

indica situazioni che possono causare una perdita di dati o danni allo strumento.

→ Non procedere oltre finché non è stato compreso ed eseguito quanto indicato.

10 Appendice

Direttiva sullo smaltimento di apparecchiature elettriche ed elettroniche usate

Direttiva sullo smaltimento di apparecchiature elettriche ed elettroniche usate

Sunto

La direttiva RAEE sullo smaltimento delle apparecchiature elettriche ed elettroniche usate (2002/96/CE), adottata dalla Commissione Europea il 13 febbraio 2003, specifica che i produttori sono direttamente responsabili dello smaltimento di questo tipo di apparecchiature a partire dal 13 agosto 2005.

NOTA

Questo prodotto è conforme ai requisiti previsti per i marchi specificati nella direttiva RAEE (2002/96/CE). L'etichetta indica che questo prodotto elettrico/elettronico non deve essere smaltito come normale rifiuto domestico.

Categoria del prodotto:

In riferimento ai tipi di apparecchiature indicati nell'allegato I della Direttiva RAEE, questo prodotto è classificato come "strumentazione di monitoraggio e controllo"

NOTA

Non smaltirlo come normale rifiuto domestico.

Per informazioni su come restituire i prodotti indesiderati, rivolgersi all'ufficio Agilent locale o visitare il sito www.agilent.com per informazioni.

Informazioni sulle batterie al litio

ATTENZIONE

Le batterie al litio non possono essere smaltite con i normali rifiuti domestici. Il trasporto di batterie al litio da parte di vettori IATA/ICAO, ADR, RID, IMDG è vietato.

Il posizionamento errato delle batterie può comportare il pericolo di esplosioni.

- → Le batterie al litio scariche devono essere smaltite in loco secondo le norme vigenti in materia.
- → Sostituire le batterie esaurite solo con lo stesso tipo o con un tipo equivalente consigliato dal produttore dello strumento.

Interferenze radio

I cavi forniti da Agilent Technology vengono accuratamente ispezionati per garantire una protezione ottimale contro le interferenze radio. Tutti i cavi sono conformi alle norme di sicurezza o EMC.

Valutazione e misurazione

Se lo strumento di controllo e misurazione viene utilizzato con cavi non schermati e/o all'aperto, l'utente dovrà verificare che, alle normali condizioni operative, le interferenze radio rientrino nei limiti stabiliti.

Emissioni sonore

Dichiarazione del produttore

Questa dichiarazione viene fornita in conformità con le leggi sulle emissioni sonore approvate nella Repubblica Federale Tedesca il 18 Gennaio 1991.

Questo prodotto ha un'emissione sonora (dal punto di lavoro dell'operatore) < 70 dB.

- Pressione sonora Lp < 70 dB (A)
- In posizione di lavoro
- Funzionamento normale
- In conformità con la normativa ISO 7779:1988/EN 27779/1991 (test di tipizzazione type test)

Informazioni sui solventi

Informazioni sui solventi

Cella di flusso

Per proteggere la funzionalità ottimale della cella di flusso:

- Evitare l'uso di soluzioni alcaline (pH > 9,5) in grado di intaccare il quarzo e di alterare le proprietà ottiche della cella di flusso.
- Se la cella di flusso viene trasportata a temperature inferiori a 5°C, verificare che sia riempita con alcool.
- Solventi acquosi nella cella di flusso possono favorire la formazione di alghe. Pertanto, è consigliabile non lasciare solventi acquosi nella cella di flusso se non si prevede di usarla. Aggiungere piccole percentuali di solventi organici (ad esempio, acetonitrile o metanolo ~5%).

Uso dei solventi

Osservare le seguenti raccomandazioni sull'uso dei solventi.

- I contenitori in vetro scuro possono prevenire la crescita di alghe.
- Piccole particelle possono ostruire in modo permanente i capillari e le valvole. Filtrare sempre i solventi con filtri da 0,4 $\mu m.$
- Evitare l'uso dei seguenti solventi corrosivi dell'acciaio:
 - Soluzioni di alogenuri di alcali e relativi acidi (ad esempio, ioduro di litio, cloruro di potassio, ecc.).
 - Concentrazioni elevate di acidi inorganici, come l'acido solforico e nitrico, specialmente ad alte temperature (se il metodo cromatografico lo consente, sostituirli con soluzioni tampone di acido fosforico o fosfati, meno corrosivi per l'acciaio inossidabile).
 - Solventi alogenati o miscele che formano radicali e/o acidi, ad esempio:

 $2 \text{CHCl}_3 + \text{O}_2 \Rightarrow 2 \text{COCl}_2 + 2 \text{HCl}$

Questa reazione, nella quale l'acciaio inossidabile agisce da catalizzatore, avviene rapidamente in presenza di cloroformio anidro, se il processo di disidratazione elimina l'alcool stabilizzatore.

- Gli eteri di grado cromatografico contenenti perossidi (ad esempio, THF, diossano, diisopropiletere) devono essere filtrati con ossido di alluminio, che assorbe i perossidi.
- Solventi contenenti agenti complessanti forti (come EDTA).
- Miscele di tetracloruro di carbonio con 2-propanolo o THF.

10 Appendice

Agilent Technologies su Internet

Agilent Technologies su Internet

Per ottenere le informazioni più aggiornate su prodotti e servizi, visitare il sito Web di Agilent su Internet al seguente indirizzo:

http://www.agilent.com

Selezionare Prodotti/Analisi chimiche

È possibile scaricare direttamente l'ultima versione di firmware per i moduli Agilent Serie 1200.

A

adescamento tramite pompa 45 Agilent Lab Advisor 67 Aailent su Internet 172 alghe 48, 170, 170 altitudine non operativa 25 altitudine operativa 25 ambiente 24 applicazione di soluzioni tampone 48 arresto 74 avviso di manutenzione preventiva (EMF) 16 avviso EMF 103

B

bagno ad ultrasuoni 114 banco da laboratorio 24 batteria informazioni sulla sicurezza 167 batterie al litio 167 bottiglia del solvente 30 bracciale antistatico ESD (electrostatic discharge) 102 Bracciale antistatico ESD 31 Bus CAN 18

C

cacciavite pozidriv #1 121 cacciavite pozidrive 1 117, 126 calibrazione sensore di flusso 94 campione di controllo 54

CAN

157 cavo caratteristiche configurazione dello strumento 16 GLP 27 sicurezza e manutenzione 27 cavi di alimentazione 22 cavi panoramica 144 cavo BCD 144, 154 cavo di alimentazione 30 cavo di interfacciamento 37 cavo analogico 144, 144, 146, 146 ausiliario 144, 144, 156, 156 BCD 144, 154 CAN 30, 157 contatti esterni 145 contatto esterno 158 GPIB 145, 145 interfacciamento 37 LAN 145, 145, 157 remoto 30, 144, 144, 149, 149 RS-232 145, 145 segnale 30 cella di flusso 170 informazioni sui solventi 170 chiave da 1/4- 5/16" 31 chiave da 1/4" 84, 88, 114, 119, 121 chiave da 14 mm 110, 111, 112, 114 chiave esagonale da 3 mm 119, 121, 124, 127

chiave esagonale da 4 mm 119. 121. 124. 127 chiave. 14 mm 31 classe di sicurezza l 162 40 collegamenti di flusso collegamenti elettrici 18 collegamenti, flusso 40 comparto solvente, parti 135 comparto solventi 30, 41, 48 compensazione della compressibilità 26, 62 condensa 24 condizione di errore 71 confezione danneggiata 30 configurazione dello stack, vista anteriore 33 configurazione dello stack, vista posteriore 34 configurazione dello stack 32 Connettore GPIB 18 connettore remoto 18 connettore RS-232C 18 25 consumo elettrico contatore di usura delle quarnizioni 122 contatore solvente azzerato 78 contatori EMF 103 contatori usura guarnizioni 104 contatori, usura quarnizioni 104 contatto esterno 145.158 cavo controllo dello strumento 54

D

dado cieco 84 descrizione pompa 9 dimensioni 25 Direttiva RAEE 166 dispositivi principali, parti 132

E

elettronica, scheda CSM 17 elettronica, scheda HPM 17 EMF, contatore 103 emissioni sonore 169 EMPV, test 97 errore contatore solvente azzerato 78 esecuzione del test della pressione 84 esecuzione del test di tenuta 88

F

filtri del solvente prevenzione delle ostruzioni 51 pulizia 109 filtro di ingresso del solvente 48 frequenza di rete 18, 25 frit in PTFE 107, 117 frit 117 fusibile 18 fusibili elettronici 18

G

gancio a scatto 40 gruppi principali, descrizione generale 105 gruppo testa della bottiglia, parti 135 gruppo testa della bottiglia 30 gruppo testa della pompa 138 guarnizioni della pompa 107, 121 guarnizioni di tenuta 107, 126 guarnizioni, materiali alternativi 59 guarnizioni 107, 124

imballaggio di spedizione 30 indicatore dell'alimentazione 70 indicatore di stato dello strumento 71 indicatori di stato 68, 70 indicatori, stato 70 informazioni di sicurezza batterie al litio 167 informazioni sui solventi 48, 50, 170 installazione, modulo pompa 35 installazione alimentazione 23 cavi di alimentazione 22 interferenze radio 168 Internet 172 interruttore di alimentazione 36 intervallo di flusso impostabile 26 intervallo di flusso 26 intervallo di frequenza 18, 25 26 intervallo di pH consigliato Intervallo di pH 26 intervallo di pressione 59 intervallo di tensione 18.25 introduzione alla pompa 8

Κ

kit di accessori 31

L

LAN cavo 157 leva di sicurezza 36, 100 limiti EMF 104 lista di controllo della consegna 30 lista di controllo, pompa binaria 30 Iubrificante PTFE 127

Μ

materiale alternativo per guarnizioni 59 messaggi di errore arresto 74 77 perdita pressione al di sopra del limite superiore 78 pressione al di sotto del limite 79 inferiore timeout remoto 75 timeout 73 misuratore di liquidi 122 modalità AUTO 14

Ρ

parti danneggiate 30 parti dei dispositivi principali 132 parti del kit di accessori 141 parti del percorso idraulico 136 parti della sede della pompa 132 parti mancanti 30 parti sensore di flusso 140 parti comparto solvente 135 danneggiate 30 gruppo testa della bottiglia 135 kit di accessori 141 mancanti 30 percorso idraulico 136 132 sede della pompa 140 sensore di flusso testa della pompa 138 perdita 77 peso 25 pistone 107, 124 pompa binaria, lista di controllo 30

precisione del flusso 26 precisione della composizione 26 pressione al di sopra del limite superiore 78 pressione al di sotto del limite inferiore 79 pressione, intervallo di funzionamento 26 prestazioni ottimali 32 procedura di pulizia EMPV 98 procedure di manutenzione 15. 103 procedure di riparazione semplici 107 procedure di riparazione 107 proliferazione di alghe 51 pulizia della pompa 102 pulsazione della pressione 14, 62

R

requisiti ambientali alimentazione 23 requisiti elettrici 23 rifiuti apparecchiature elettriche ed elettroniche 166 rimontaggio della testa della pompa 127 rimozione della testa della pompa 119 riparazioni uso del bracciale antistatico FSD 102 RS-232C kit cavi per collegamento a PC 159

S

scariche elettrostatiche (ESD) 101, 129 scheda BCD 129 scheda di interfacciamento 129 Scheda principale della pompa a alta pressione (HPM) 17 Scheda principale di separazione capillare (CSM) 17 selettore di tensione 18 sensore della temperatura 77 set di chiavi esagonali 31 setaccio 107, 114 sicurezza informazioni generali 162, 162 simboli 165 standard 25 sistema idraulico 26 smaltimento apparecchiature elettroniche 166 smontaggio della testa della pompa 119 Software Agilent Diagnostic 67 Software Agilent Lab Advisor 67 software di controllo 39.39 Software Diagnostic 67 solventi 170 sostituzione frit della valvola di spurgo 107.117 guarnizioni della pompa 107. 121 quarnizioni di tenuta 107. 126. 126 parti interne 100 pistoni 107 scheda di interfacciamento 129 setaccio della valvola a sfera di uscita 107, 114 stantuffi 124 valvola a sfera di uscita 107.114 valvola di ingresso attiva 107, 110, 110 valvola di selezione del solvente 117 valvola di spurgo 107, 117 spazio necessario 24 specifiche delle prestazioni 26 specifiche fisiche 25 specifiche fisiche 25 prestazioni 26

spia dell'alimentazione 70 spia, alimentazione 70 spia, stato strumento 71 spia, stato 70 strumenti cacciavite pozidriv #1 121 chiave da 1/4" 121 suggerimenti per l'uso ottimale 48

T

temperatura ambiente non operativa 25 temperatura ambiente operativa 25 temperatura non operativa 25 temperatura operativa 25 tensione di rete 18, 25 test della pressione, risultati 85 test della pressione 68 test di tenuta, valutazione 89 test di tenuta 68.86 timeout remoto 75 timeout 73 tubo di scarico 31

U

umidità 25 uscita analogica 18, 27 uscita AUX 39 Uscita BCD 18 utensile di inserimento tenuta 31 utensili cacciavite pozidriv #1 117

V

valori del sensore di pressione 39 valvola a sfera di uscita 107, 114 valvola di ingresso attiva 107, 110, 110 valvola di selezione del solvente 117 valvola di spurgo 107, 117 volume con corsa variabile 14 volume della corsa 14 volume di ritardo 32

www.agilent.com

In questo volume

Il presente manuale contiene informazioni tecniche sulla pompa capillare Agilent Serie 1200. Vengono trattati i seguenti argomenti:

- Introduzione alla pompa
- Requisiti e specifiche
- Installazione
- Uso della pompa
- Ottimizzazione delle prestazioni
- Diagnostica e risoluzione dei problemi
- Manutenzione
- Parti e materiali
- Panoramica dei cavi
- Informazioni sulle garanzie, la sicurezza e le normative

© Agilent Technologies 2007, 2008

Printed in Germany 12/08

G1376-94012

