NOTICE: This document contains references to Varian. Please note that Varian, Inc. is now part of Agilent Technologies. For more information, go to **www.agilent.com/chem.**

<u>TECHNICAL SPECIFICATIONS</u> FOR A WATER COOLED ACTIVELY SHIELDED GRADIENT SYSTEM WITH RT SHIM SET

SGRAD 205/120/HD

Prepared by:-Magnex Scientific Limited The Magnet Technology Centre 6 Mead Road Oxford Industrial Park Yarnton, Oxford OX5 1QU, UK

Tel	:	+44 (0)1865 853800
Fax	:	+44 (0)1865 842466
E-mail	:	sales@magnex.com
www	:	magnex.com

Document Ref: TS1442D Date: March 2005

CONTENTS

Description

- 1. Mechanical
 - 1.1 Dimensions and weight
 - 1.2 Finish
 - 1.3 Mounting
 - 1.4 Electrical connectors
 - 1.5 Temperature sensors
 - 1.6 Water cooling system
- 2. Gradient Coils

2.1	Strength
	~

- 2.2 Linearity
- 2.3 Residual eddy currents
- 2.4 Inductance
- 2.5 Resistance
- 2.6 Safe operating conditions and duty cycle
- 2.7 Peak strength and rise-time (estimated)
- 2.8 Orthogonality
- 2.9 Insulation
- 3. Shim System
 - 3.1 Shim characteristics
- 4. System Components
 - 4.1 Gradient
 - 4.2 Standard ancillaries
 - 4.3 Optional extras

GENERAL DESCRIPTION

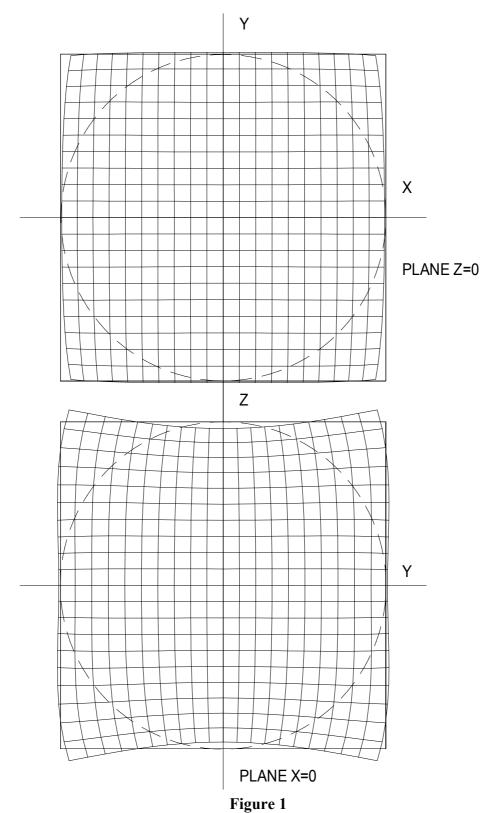
The SGRAD 205/120/HD is a fully self shielded gradient system designed to suit \geq 210mm room temperature bore superconducting magnets and gradient systems.

The design incorporates fully optimised X, Y and Z coil configurations. The X and Y coils are made from the highest quality copper plates machined with CNC technology. The Z coil is wound from heavy duty copper strip. The gradient has been optimized to allow for high duty cycle experiments.

The room temperature shim set has been specially designed to minimise coupling between gradients and shims during pulsing. Finally the gradient set is fully vacuum impregnated to minimise mechanical vibration and noise.

1. MECHANICAL

1.1	Dimensions and weight Total length External diameter Internal diameter Approximate weight	:	To suit magnet 205mm ±3mm 120mm ±0.5mm TBD
1.2	Finish Bore tube End plates	:	Natural GRP Plated aluminium or natural composite
1.3	Mounting Method at access end Method at service end Adjustment Loading		TBD TBD ±5mm axially Service or Access End
1.4	Electrical connectors ¹ Gradients Temperature sensors RT shims	:	5 way bayonet 15 way bayonet 41 way bayonet
1.5	Temperature sensors Type Number on inner section Number of outer section	:	Type T thermocouples 4 typical 2 typical
1.6	Water cooling system Volumetric flow rate Supply pressure (typical) Internal pressure drop Heat extraction Gradient connectors Fitting for supply hose Recommended water supply	:	3.4 litres/min 4 bar 2-3 bar 2.55 kW for $\Delta T=10K$ and $T_{inlet}=10^{0}C$ Double shut off connector 3/8" ID barbed hose fitting Recirculating water chiller



¹ Also available with Lemo connectors.

2.1	Strength X/Y/Z axis :	2.0mT/m/A ±5%
2.2	Linearity per axis (see figure 1) of X/Y/Z : Definition :	over 80mm d.s.v. ≤5% % Linearity =Max spatial deviation as a percentage of the plotting radius.
2.3	Residual eddy currents (before p X/Y/Z axis :	re-emphasis) ² < 1%
2.4	InductanceX axis:Y axis:Z axis:	155μH ±15% 120μH ±15% 140μH ±15%
2.5	DC Resistance X axis : Y axis : Z axis :	$\begin{array}{l} 140 \mathrm{m}\Omega \pm 25 \mathrm{m}\Omega \\ 100 \mathrm{m}\Omega \pm 25 \mathrm{m}\Omega \\ 150 \mathrm{m}\Omega \pm 25 \mathrm{m}\Omega \end{array}$
2.6	Safe operating conditionsPeak voltagePeak currentRMS currentPeak internal temperature	\leq 300V \leq 200A \leq 70A rms indefinitely all axes together \leq 60 ⁰ C
2.7	Typical peak strength and rise-ti Peak strength @200A X/Y/Z : Rise-time ³ (0-98%) X : @ 200A, 300V Y : Z :	400mT/m 110μs 85μs
2.8	Orthogonality X to Y :	90°+/-1°
2.9	Insulation Between X, Y, Z, shims, : sensors, cooling & enclosure.	$> 200 \text{ M}\Omega$ at 1000 Volts DC

² Measured 5ms after a 20ms trapezoidal pulse, and extrapolated to 1ms after the pulse.

³ Excluding the effects of lead resistance and filter impedance.

Theoretical image distortion of a 80mm cube phantom. DSV is denoted by the dashed circle

3. <u>SHIM SYSTEM</u>

3.1 Room temperature shims

First order shimming is achieved by DC offsets to the gradient coils. The nominal shim performances are shown below.

Shim	Strength (mG/cm ⁿ /A)	Inductance (mH)	Resistance (Ω)	Peak current (A)
shielded Z^0 (B ₀)	530	0.05	0.30	10
Z^2	87.0	2.22	1.25	10
ZX,ZY	41.0	1.55	1.65	10
$XY, X^2 - Y^2$	12.7	0.80	1.65	10

4. <u>SCOPE OF SUPPLY</u>

4.1	Gradient:-		
1 off	Actively shielded gradient, type SGRAD MkIII 205/120/HD		
4.2	Standard ancillaries:- (Not included on inserts)		
1 off	Set of X/Y/Z cables, standard length 15m	C0082125	
1 off	RT shim cable, standard length 15m	C0202150	
1 off	Thermometry cable, standard length 15m	C0259150	
4.3	Optional extras:-		
2 off	RF doors	ARZ325130	
1 off	Stand alone temperature monitor unit	E3515g	
1 off	 Gradient management unit, consisting of:- (i) Computer controlled X, Y and Z pre-emphasis (ii) Computer controlled Zo (Bo) pre-emphasis 	E3500	